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ABSTRACT

Molecular computing applied in disease diagnosis, personalized medicine, ther-
apeutics, and other applications often relies on picomolar (pM) to nanomolar
(nM) range concentration of interacting species, making noise an inherent part
of the computation. While the presence of noise in the inputs may work favor-
ably in an artificial neural network (ANN), in its molecular counterpart, namely
the Biomolecular Neural Network (BNN), uncontrolled noise may be detrimental
as the decision threshold of a molecular perceptron can deviate from the thresh-
old and result in erroneous classifications. To improve the noise controllability in
BNN applications, we develop a multi-layer molecular perceptron network that re-
lies on a molecular exchange-based (MEM) perceptron as its fundamental building
block. The underlying Chemical Reaction Network (CRN) module used in BNN
here also includes negative feedback of the repressor form for additional control
over the threshold dynamics. In addition to ReLU behavior, the proposed MEM-
based BNN realizes the XOR operation, demonstrating its potential for linear and
nonlinear classification in molecular computation.

1 INTRODUCTION

The biomolecular neural network (BNN) performs as a feature classifier in biophysical and aque-
ous environments where the classical artificial neural network (ANN) is undeployable. This abil-
ity makes BNN a potential solution to designing smart therapeutics, diagnosing different classes of
pathogens, personalized medicine, pollutant detection, etc. The versatility of such BNN applications
(Fig. 1a) is evident from recent works encompassing applications such as in vitro image classification
(Arcadia et al., 2021), point-of-care disease diagnosis (Lopez et al., 2018; Zhang et al., 2020), etio-
logical diagnostics (Ma et al., 2022), etc. Generally, a BNN takes concentration (x1, x2, . . . xn) as
inputs and performs computation through a chemical reaction network (CRN) module (see Fig. 1b)
of kinetic rates arising from the weighted (w1, w2, . . . wn) inputs and the chosen kinetic rate con-
stants for other interaction steps. In BNN, the steady state concentration of species forms a threshold
that demarcates between classes. Often, the concentrations are as low as nano and picomolar lev-
els (Plesa et al., 2018), introducing noise to the system and making stochastic analysis of the CRN
module of the BNN a critical step. Precisely, fluctuations in CRN arise for numerous reasons that
can deviate the steady state concentration from the actual threshold long enough to misclassify the
data points. Also, as the molecular perceptron dynamically varies because of parametric depen-
dency, it appears highly sensitive, as evidenced by about 3% error in input reflected by a 10% error
in bias (Okumura et al., 2022). These affect faithful classification, making a perceptron unreliable.
Thus, designing a molecular perceptron and extending it in a feedforward cascade to form the BNN
must address such issues to improve the reliability and reproducibility of classification accuracy for
applications demanding high precision.
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a) b)

Figure 1: a) Molecular computing applications in diagnostics: Features are fed as inputs to BNN
to classify them. b) An elaborated view of two input features with MEM-perceptron design details.
NE formation imposes positive (arrowhead), negative (vertical bar) and no (blunt arrow) regulation
on the formation rate of NR.

Mostly, the design of a molecular perceptron adopts deterministic approaches that model the reac-
tion dynamics of the interacting species using mass-action kinetics dependent Ordinary Differential
Equations (ODE) and form a solid theoretical cue for general computing (Bournez et al., 2017).
Following the ODE framework, a few earlier studies used enzymatic interactions, namely molecu-
lar sequestration (Moorman et al., 2019) and phosphorylation-dephosphorylation (Samaniego et al.,
2021), to design molecular perceptron and extended beyond a single layer design to a multi-layer
perceptron (MLP) for nonlinear classification. Other works demonstrating perceptron-like behavior
(Banda et al., 2013; Anderson et al., 2021), signal processing filters (Zhang et al., 2022), etc., by
molecular computation also adopt a deterministic approach, leaving the role of noise in the context
of low-concentration molecular interaction unanalyzed. In addition, perturbations due to ambient
temperature variations or input concentration errors that affect the system’s decision-making thresh-
old are yet to be studied. As a step to reduce the gap, we developed a molecular exchange mecha-
nism (MEM)-based (Karim et al., 2012) perceptron and extended it to a multilayer BNN achieving
nonlinear (Exclusive OR) feature classification. The MEM-based CRN module is relatable to the
evolutionarily preserved biophysical interaction steps commonly seen in cellular differentiation and
neuronal interactions between neurotransmitters, receptors, and regulators (Papouin et al., 2012;
Umulis et al., 2009). Interestingly, the proposed design keeps the threshold-forming species under
negative control by the repressor role of the regulator molecule. Overall, the specific contributions
we have made in this study are

• Developed a multilayer molecular perceptron network (defined as BNN) performing non-
linear classification as manifested through implementing an Exclusive OR (XOR).

• Improved the MEM-perceptron developed in our previous study and used it as the funda-
mental building block of the designed BNN.

• In silico assessment of the stochastic deviation of the decision boundary between competi-
tive design choices.

2 MODELS AND RESULTS

A generic molecular classifier takes n features to produce a signal as a weighted sum of the gene
expression, as schematically shown in Fig. 1a. Each gene expression resembles an input for the
BNN, and the binary classification requires weight adjustment for threshold-dependent decision-
making. An example of a molecular classifier would be a two-input (x1, x2) perceptron shown in
Fig. 1b that requires tuning of the three weights (w0, w1, w2) to achieve a perceptron-like behavior,
and may be helpful for applications in diagnostics. For instance, the hTERT/GAPDH classifier
(Lopez et al., 2018), a two-gene classifying model, which appears similar in summing and activation
of the proposed MEM-perceptron shown in Fig. 1b, is applied in cancer diagnostic. In this model, a
few reactants and other molecular components are in the order of pM to nM range (1 nM to 30 nM)
that in a rectangular volume of dimension (5×5×0.5 µm3) transforms to 8 to 226 molecular count,
making the role of stochastic fluctuations inherent on the reaction dynamics. So, the perceptron
design for precision applications, such as disease diagnostics, needs controllability of noise and has
been a focus of the proposed MEM-based BNN design.
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a) MEM-XOR network b) ReLU and XOR search

Figure 2: a) Schematic diagram of the MEM-XOR network with P1, P2, P3 representing individual
MEM-perceptrons. b) ReLU and XOR search: For an input range x1 = [0 1], ODE simulation of
the CRN module generates steady state NR, which produces 0 and 1 classes against a threshold.
Identification of ReLU is done through checking the width of the class 0 region and the linearity of
class 1 region in perceptron Pi using gradient comparison (dg). The XOR implementation uses three
nodes, P1, P2, and P3, with P1 and P2 forming the input layer. A computational screen searches
the appropriate weights, ensuring each node Pi is a perceptron for their respective inputs. The
comparison between P1 ⊕P2 and output obtained from P3 in MEM-XOR completes the automated
XOR search process.

2.1 IMPROVED MEM-PERCEPTRON

In our previous work (Rahman et al., 2024), we designed a MEM-based biomolecular perceptron.
To identify potential improvement steps, initially we perform an exhaustive computational screen of
feedback mechanisms encompassing activation, repressor and none role of the exchanger molecule
E (Fig 1b). Specifically, a MEM-perceptron allows regulation of the formation rate (konNR) of the
species NR that acts as the decision threshold. Among the alternatives, a negative control on the
forward rate kon

NR by the exchanger moleculeE produces perceptron-like behavior with striking simi-
larities to a smooth-ReLU (Fig. 6b) as defined in Anderson et al. (2021). We also investigate whether
feedback alone without forming the NRE complex exhibits ReLU behavior and found NRE for-
mation to be indispensable (see Appendix A.3). Weights (w0, w1, w2) assessment demonstrates that
w0 (bias) variation offsets the simulated decision boundary from the true classification boundary
by a traceable deviation ∆. The deviation ∆ is dependent on the parameters w0, n, RTOT, and E
through the term Ω = [N ]/(βr[N ] + γr[NE]) with β = f(K,NE, n) as in Eq. 3, that defines the
threshold condition necessary for perceptron-like behavior (see Appendix A.1, A.2).

2.1.1 DEVIATION ADJUSTMENT OF THE CLASSIFICATION BOUNDARY

The deviation ∆ remains nearly identical regardless of the input combinations for the MEM-
perceptron. Such deviation also appeared in molecular sequestration-based perceptron in Moorman
et al. (2019) and is amenable in the MEM-perceptron (Fig. 8). Here, we identify ways to compensate
the ∆ for aligning the in silico boundary to the analytically derived one. Precisely, by varying one
or a combination of the factors affecting ∆, we identify a functional dependency between the bias
w0 and the ratio r̂ = RTOT/E using a polynomial relation of the following form

r̂ = 0.2818x5 − 1.1639x4 + 1.5789x3 − 0.6818x2 + 0.8106x+ 1.1743 (1)

where, x denotes the bias w0 and r̂ is the ratio RTOT/E. Using Eq. 1, a perceptron with ∆ = 0
is achievable as shown in Fig. 8b, given that other parameters confer perceptron behavior. We also
relate the range of K and r̂ through functional approximation of the dependency relation of both
with ∆ as in Fig. 4b. The traceability of the deviation ∆ is elaborated further in later sections.

2.2 BNN DESIGN FOR XOR OPERATION

A perceptron is impertinent in more complex applications where a nonlinear classifier (for instance,
an XOR) is necessary and is a well-known nonlinear classification problem in machine learning
(Michalski et al., 2013). Extending on the MEM-perceptron, we design a BNN (the MEM-XOR in
Fig. 2a) that performs the logical XOR function (Fig. 3b).
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Figure 3: a) Top: Input-output relation for perceptron 1 (P1), perceptron 2 (P2), and perceptron 3
(P3) in an XOR network. P3 output represents overall XOR concentration output w.r.t the system
input. Bottom: Decision boundary formation in exact concentration term for the given feature inputs
to be classified. b) The concentration of each perceptron is mapped to class 0 or 1, and the final
output (P3) behaves as a logical XOR between P1 and P2 (Algorithm 1).

The designed MEM-XOR network has three nodes (P1, P2, P3) arranged in two layers, as shown
in Fig. 2a. All the weights must be tuned together to ensure each node is a perceptron in this feed-
forward cascade. Precisely, the first and second nodes of the MEM-XOR network receive system
inputs and produce individual decision boundaries for their respective weights. The concentration
output of P1 and P2 are the inputs for P3, against which P3 demonstrates perceptron behavior, and
the relevant steps are summarized in Fig. 3. The visualization of the perceptron-like behavior of
each node is presented in Fig. 3a (upper panel). The deviation ∆, as observed in each node and
the XOR boundary, depends on the bias w0 and the amount of RTOT and E, and can be eliminated
following the dependency relation given in Eq. 1. All the steps summarizing the search of an XOR
output are shown in Fig. 2b.

Our analysis identifies Ω as a source of the boundary deviation ∆ and depends on multiple param-
eters (as in Eq. 3) affecting the magnitude of ∆. While the polynomial approximation eliminates
∆ for bias w0 (Fig. 4a) and ratio r̂ = RTOT/E for a fixed K (Eq. 1), we extend further to estab-
lish dependence between ∆, K and r̂. Through extensive simulation, we develop a range-specific
dependency between ∆, K, and r̂, capable of eliminating ∆. Interestingly, saturation of R also
relates to the deviation ∆ by affecting the linearity of the class 1 region. The ∆ elimination process
requires additional exploration of the Ω dependency to make the BNN design of MEM-perceptrons
more scalable and falls under our ongoing extension and analysis.

2.2.1 ODE MODEL OF MEM-XOR NETWORK

Applying the mass-action law for the interaction steps (shown in Fig. 1b) and extending the process
for a three-node XOR, we obtain

˙[NR]i = k̂on
NRi

[N ][R]i + koff
NREi

[NRE]i − koff
NRi

[NR]i − kon
NREi

[NR]i[E]i − δ[NR]i

˙[NE]i = kon
NEi

[N ][E]i + koff
NERi

[NRE]i − koff
NEi

[NE]i − kon
NERi

[NE]i[R]i − δ[NE]i

˙[NRE]i = kon
NREi

[NR]i[E]i + kon
NERi

[NE]i[R]i − (koff
NREi

+ koff
NERi

+ δ)[NRE]i

(2)

Here, i = 1, 2, 3 for the three-node MEM-XOR network, ˙[NR]i denotes d[NR]i/dt and [RTOT]i =
[R]i + [NR]i + [NRE]i is the conservation condition of species R for perceptron Pi. The conser-
vation condition mimics many in vivo systems where a signaling molecule similar to N binds to a
conserved amount of R. However, the MEM-perceptron design is amenable to no conservation on
R, maintaining its qualitative role as the ReLU. The threshold conditions of species NR for P1 and
P2 is expressed as

[NR]i ≈


(βik

on
NRi

ri[N ]− kon
NEi

[N ] + [NE]i(γrik
on
NRi

))

γkon
NEi

if wi,1x1 + wi,2x2 ≥ Ωiwi,0

0 if wi,1x1 + wi,2x2 < Ωiwi,0

(3)
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Figure 4: a) The change in ∆ for boundaries of each node in the MEM-XOR network, given a fixed
parameter set. The comparison is between the logical and the theoretical boundaries, with U and
L denoting ∆ for the upper and lower boundaries, respectively, for the MEM-XOR. b) Varying K
for a fixed ratio r̂ = RTOT/E on the context-dependent ∆ elimination. A perceptron-like behavior
for different kinetics requires a similar search. c) Deviation assessment of the BNN’s CRN module,
which is the MEM-perceptron, in the presence and absence of E for percentage deviation greater
than 10% (upper panel) and 15% (lower panel). Here, lines in green represent deviation greater than
10%, whereas the white region represents threshold concentration is less than 10%.

P3 takes the outputs of P1 and P2 as input, and its threshold condition is expressed as

[NR]3 ≈
(β3k

on
NR3

r3[N ]− kon
NE3

[N ] + [NE]3(γr3k
on
NR3

))

γkon
NE3

if w3,1[NR]1 + w3,2[NR]2 ≥ Ω3w3,0

0 if w3,1[NR]1 + w3,2[NR]2 < Ω3w3,0

(4)

2.3 DEVIATION REDUCTION OF THE THRESHOLD IN MEM-PERCEPTRON

Maintaining the steady state NR concentration around the threshold is essential for reliable ReLU
behavior. For instance, erroneous classification due to stochastic fluctuations is evident in Fig. 5a for
a molecular sequestration-based ReLU (Moorman et al., 2019). How the MEM-perceptron responds
to stochastic fluctuations is assessed by investigating its ability to reduce the deviation duration
from the mean of steady state NR. We use the Chemical Master Equation (CME) (Van Kampen,
1992) of the CRN module of the MEM-perceptron and approximate it using the Gillespie’s SSA
(Gillespie, 1976) available in the GillesPy2 (Matthew et al., 2023) to study the stochastic variability
of steady state NR. The CME describes the time evolution of the probability that the system state
is m at time t, where m represents the molecular count of species s = {s1, s2, . . . sN} with m =
{m1,m2, . . .mN} for R reactions r = {r1, r2 . . . rR}

d

dt
p(m, t) =

R∑
i

ai(m− νi, t)p(m− νi, t)−
R∑
i

ai(m, t)p(m, t) (5)

where νi is the stoichiometric vector that tracks molecular count change of species in every reaction
and forms the stoichiometric matrix ν = [ν1, ν2 . . . νR]

T . The fidelity quantification of the target
threshold NR in the presence (E ̸= 0) and absence (E = 0) of exchanger is defined as

percentage-deviation =

∣∣∣∣ [NR]sample − mean level of [NR]
mean level of [NR]

∣∣∣∣× 100 (6)

To assess the MEM’s role in noise reduction, in Fig. 4c, we analyze how lengthy the deviation
duration is in the absence of the exchanger-based mechanism. Interestingly, the width (ψ) of the
most extended deviation duration is comparatively large in the absence of E, which holds equally
for the percentage-deviation = 10 (Fig. 4c, upper panel) and percentage-deviation = 15 (Fig. 4c,
lower panel), respectively. This suggests that MEM can keep the decision threshold around the mean
and may eventually increase the fidelity of a threshold-dependent decision boundary in stochastic
fluctuations. Besides, in a preliminary comparison of MEM to alternative perceptron design methods

5



Published at the GEM workshop, ICLR 2024

a) Stochastic fluctuation in sequestration b) Threshold deviation: MEM & sequestration c) Partial frequency response
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Figure 5: a) Impact of stochasticity on the ReLU behavior, marked by class 1 turning to class 0
due to fluctuating Z1 count. Here, the yellow line is the threshold producing the binary classes.
b) Preliminary comparison on noise controlling ability of the MEM-based approach; for two target
thresholds, 20 and 40, a large deviation (for 6 hours of steady state data) from the mean is less
probable for the MEM-based approach (blue) in comparison to the molecular sequestration approach
(green). c) Fourier Transform of steady state NR and Z1 molecular count (= 40) of the MEM-
perceptron and molecular sequestration, respectively. The presence of |Y (f)| in high-frequency
regions is more in the MEM-perceptron (inset, left, green). The cumulative progression of |Y (f)|
also approaches gradually to 1, indicating the presence of Fourier spectra in the high-frequency
region. Here, |Y (f)| is normalized by their respective highest magnitude.

such as the molecular sequestration (Moorman et al., 2019), the proposed MEM-based approach
exhibits a comparatively lower percentage-deviation (Fig. 5b).

Further comparison using the Fourier Transform of the steady state threshold suggests that noise
in MEM-perceptron includes more high-frequency components than molecular sequestration. Pre-
cisely, the magnitude of the spectrum amplitude (|Y (f)|) (as in Fig. 5c) and the cumulative pro-
gression of |Y (f)| (inset, right of Fig. 5c) both represent a more high-frequency component in the
fluctuations of the threshold species in MEM-perceptron. Intriguingly, in biological neurons (Stein
et al., 2005), a signal contaminated by low-frequency noise may lack sufficient information to re-
trieve the input signal. In contrast, noise becomes beneficial when the noise frequency in the signal
is high. Increasing the frequency of fluctuations of steady state concentration, as observed for the
MEM-perceptron, may transform noise to be partially beneficial. Our ongoing work capitalizes on
these preliminary findings and intends for an exhaustive study of the kinetic dependence of the noise
controllability of the MEM-perceptron.

3 DISCUSSION

Nonlinear classification requires a multilayer perceptron implementation, which is often challenging
due to molecular systems’ high sensitivity to the species concentration and the underlying kinetics.
We successfully implemented a MEM-XOR by extending an improved version of our previously
designed MEM-perceptron into feed-forward cascades. The decision boundary deviation in MEM-
XOR is removable, often following a range-dependent relation among the parameters. The exact
role of the MEM in the perceptron is also substantiated through an ablation study. However, the
efficacy of the MEM-perceptron for traditional training data (Deng, 2012), or of other forms (Banda
et al., 2013), still needs to be tested. Another potential advantage of MEM-based design is its ability
to curb noise to increase the fidelity of the classification threshold. While noise is detrimental to
maintaining a threshold at a fixed value, on the contrary, noise injection in neural network training
regularizes its performance (Bishop, 1995). So, in an inherently noisy system, tuning noise to a level
beneficial for molecular computation and imposing greater control over it, thus, becomes necessary.
The introduced MEM is known for reducing stochastic noise (Karim et al., 2012) and achieving
greater noise control. Also, as added in the perceptron design for BNN, a negative feedback loop
is expected to work against such perturbations (Dublanche et al., 2006; Singh, 2011). Together, the
developed BNN achieves both linear and nonlinear classification, suggesting it as a potential alter-
native for the design of low-concentration molecular classifiers. Besides our ongoing analysis, we
also consider extrinsic noise analysis (for instance, because of temperature fluctuations) to identify
the necessary adjustment in the circuitry that absorbs such extrinsic variations (Appendix A.6).

6



Published at the GEM workshop, ICLR 2024

REFERENCES

David F Anderson, Badal Joshi, and Abhishek Deshpande. On reaction network implementations of
neural networks. Journal of the Royal Society Interface, 18(177):20210031, 2021.

Christopher E Arcadia, Amanda Dombroski, Kady Oakley, Shui Ling Chen, Hokchhay Tann,
Christopher Rose, Eunsuk Kim, Sherief Reda, Brenda M Rubenstein, and Jacob K Rosenstein.
Leveraging autocatalytic reactions for chemical domain image classification. Chemical Science,
12(15):5464–5472, 2021.

Peter Banda, Christof Teuscher, and Matthew R Lakin. Online learning in a chemical perceptron.
Artificial life, 19(2):195–219, 2013.

Chris M Bishop. Training with noise is equivalent to tikhonov regularization. Neural computation,
7(1):108–116, 1995.

Olivier Bournez, Daniel S Graça, and Amaury Pouly. Polynomial time corresponds to solutions of
polynomial ordinary differential equations of polynomial length. Journal of the ACM (JACM), 64
(6):1–76, 2017.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Yann Dublanche, Konstantinos Michalodimitrakis, Nico Kümmerer, Mathilde Foglierini, and Luis
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A APPENDIX

A.1 MEM CHEMICAL REACTION NETWORK

There are three chemical species working in the MEM: N (signaling agent, which could be a neu-
rotransmitter), R (receptor), and E (exchanger molecule). As molecular production adds noises,
the designed dynamics take N and E as constant sources to establish better control over noise. A
conservation condition forR is maintained in the continuum. The chemical reaction network (CRN)
of MEM is as follows:

r1: N +R
k̂on

NR−−⇀↽−−
koff

NR

NR, r2: N + E
kon

NE−−⇀↽−−
koff

NE

NE

r3: NR+ E
kon

NRE−−−⇀↽−−−
koff

NRE

NRE, r4: NE +R
kon

NER−−−⇀↽−−−
koff

NER

NRE

r5: NR,NE,NRE δ−→ ∅
The following conservation condition is maintained on the receptor R:

[RTOT] = [R] + [NR] + [NRE] (7)

Upon formation, NE negatively regulates the formation rate of NR (kon
NR) by the Hill Equation

k̂on
NR = kon

NR

(
Kn

Kn + [NE]n

)
= f (kon

NR) (8)

where kon
NR is the basal NR production rate.

The CRN is modeled using mass-action-based ODEs as follows:
˙[NR] = k̂on

NR[N ][R] + koff
NRE[NRE]− koff

NR[NR]− kon
NRE[NR][E]− δ[NR]

˙[NE] = kon
NE[N ][E] + koff

NER[NRE]− koff
NE[NE]− kon

NER[NE][R]− δ[NE]

˙[NRE] = kon
NRE[NR][E] + kon

NER[NE][R]− koff
NRE[NRE]− koff

NER[NRE]− δ[NRE]

(9)
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A.2 PERCEPTRON-LIKE BEHAVIOR OF THE MEM

At steady state, ˙[NR] = ˙[NE] = 0. We can ignore the term δ in steady state. We assume that
koff

NRE = koff
NER, kon

NRE = γkon
NE, kon

NER = γkon
NR, and r = [R]/[E]. From Eq. 9,

k̂on
NR[N ][R] + koff

NRE[NRE]− koff
NR[NR]− kon

NRE[NR][E] =

kon
NE[N ][E] + koff

NER[NRE]− koff
NE[NE]− kon

NER[NE][R]

Eliminating koff
NRE[NRE] and koff

NER[NRE], and applying feedback expression of k̂on
NR, we get,

Knkon
NR

Kn + [NE]n
[N ][R]− kon

NE[N ][E] = koff
NR[NR] + kon

NRE[NR][E]− koff
NE[NE]− kon

NER[NE][R]

= [NR](koff
NR + γkon

NE[E])− [NE](koff
NE + γkon

NR[R])

Making [NR] the subject, and denoting the feedback expression as Kn/(Kn + [NE]n) = β

[NR] =
βkon

NR[N ][R]− kon
NE[N ][E] + [NE](koff

NE + γkon
NR[R])

koff
NR + γkon

NE[E]

=
βkon

NRr[N ]− kon
NE[N ] + [NE](

koff
NE

[E] + γrkon
NR)

koff
NR

[E] + γkon
NE

Assuming γkon
NE ≫ koff

NR/[E] and γrkon
NR ≫ koff

NE/[E], we finally get,

[NR] ≈ βkon
NRr[N ]− kon

NE[N ] + [NE](γrkon
NR)

γkon
NE

(10)

Here, [NR] ≥ 0 as concentration is always non-negative. We can write,

βkon
NRr[N ]− kon

NE[N ] + [NE](γrkon
NR)

γkon
NE

≥ 0

kon
NR ≥

(
[N ]

βr[N ] + γr[NE]

)
︸ ︷︷ ︸

Ω

kon
NE

kon
NR ≥ Ωkon

NE (11)

Hence, we get the threshold condition:

[NR] ≈
{
(βkon

NRr[N ]− kon
NE[N ] + [NE](γrkon

NR))/γk
on
NE if kon

NR ≥ Ωkon
NE

0 if kon
NR < Ωkon

NE
(12)

We can rewrite the above condition in terms of perceptron inputs and weights as follows:

[NR] ≈
{
(βkon

NRr[N ]− kon
NE[N ] + [NE](γrkon

NR))/γk
on
NE if w1x1 + w2x2 ≥ Ωw0

0 if w1x1 + w2x2 < Ωw0
(13)

Transformation of concentration values to binary:

[NR] =

{
1 if w1x1 + w2x2 ≥ Ωw0

0 if w1x1 + w2x2 < Ωw0
(14)

A.3 RELU AND XOR SEARCH STEPS

The strategy to detect ReLU-like behavior in the species NR in steady state is as follows:

• The simulated steady state concentration values of NR are transformed to binary using
Eq. 14 and the number of 0s are recorded.

9
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• Linearity of the rising (for activation) or falling (for inhibition) region of the function is
analyzed by calculating the difference between gradients calculated at two segments of the
rising part and ensuring the absolute difference is within a threshold.

• For a number of 0s greater than the specific number determined by the experimenter and
difference of gradients being within the fixed threshold, the steady state behavior of NR is
flagged as a ReLU.

Next, the process to verify the implementation of the XOR function is given. We assume that the
term Ω obtains such values at steady state that there is no deviation ∆ for the output of each node.

• The steady state concentrations ofNR of each perceptron node is converted to binary using
Eq. 14.

• The output of a logical XOR operation between the binary values of P1 and P2 is calculated
and saved.

• The XOR data and the binary values of steady state concentrations of NR of P3 are com-
pared, raising a positive flag for being identical and a negative flag otherwise.

The following algorithm is applied to every data point of the MEM-XOR network to verify XOR
behavior. In our simulations, we generated 100× 100 matrices of concentration data for each node
and applied the algorithm to determine XOR behavior.

Algorithm 1 VerifyXOR (kon
NR1

, kon
NR2

, kon
NR3

, kon
NE1

, kon
NE2

, kon
NE3

, Ω1, Ω2, Ω3)

if kon
NR1

≥ Ω1k
on
NE1

then
n1 = 1 ▷ Transform first node output to binary

end if
if kon

NR2
≥ Ω2k

on
NE2

then
n2 = 1 ▷ Transform second node output to binary

end if
if kon

NR3
≥ Ω3k

on
NE3

then
n3 = 1 ▷ Transform third node output to binary

end if
if n1 ∼= n2 then

xor = 1 ▷ First node XOR second node
end if
if xor == n3 then ▷ Verify logical XOR output from the third node

return true
else

return false

A.4 ABLATION STUDY OF THE ROLE OF EXCHANGER IN PERCEPTRON-LIKE BEHAVIOR

The imposition of negative feedback on the formation rate of NR is essential for demonstrating
perceptron-like behavior by the MEM, as we found from a parametric screen (Table. 1). In the
exchange mechanism, NE negatively regulates the formation of NR. However, the species NRE
has no direct participation in this feedback dynamic, and so, to gauge the exact importance ofNRE,
we design a two-node network with NR and NE. Each node regulates its formation and that
of the other node, leading to 81 different topologies for exploration using the positive, negative,
and no regulation impositions and a parameter screen of 186, 624 combinations for each topology.
Interestingly, no such combination was observed that led to the formation of a perceptron, using
NR as the decision-making species as in the MEM (Fig. 6). The evidence suggests that the role of
NRE is essential for the MEM to work as a perceptron and that only negative feedback is likely to
provide a perceptron for the current design of the MEM.

A.5 XOR NETWORK ANALYSIS

The decision boundaries generated to reflect nonlinear classification of inputs (XOR in this case)
should resemble the boundary lines generated by the nodes which are given as input to the final node.

10
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81 network topologies Activation 
function

No Activation

N
R

Input: kNR 
on  

NR NE

a) b)

0 1

Figure 6: a) All regulations imposed in the two-node network and an example of the resultant
functions obtained. b) Comparison of different ReLU functions with the smooth ReLU obtained by
the MEM perceptron.

Table 1: ReLU search with positive, negative and no feedback

Feedback type Parameter sets Number of ReLU Rate (%)

Negative 26244 75 0.28
Positive 26244 0 0

None 6561 0 0

For each node, changing the bias causes a deviation (∆) in the decision boundary line. Similarly, the
bias of the output node leads to a simultaneous deviation of both the decision boundaries generated
by the output node. However, the XOR behavior is observed for specific combinations of bias inputs
with the existence of the deviation ∆ in many cases.

Therefore, a search of nodal biases was conducted by varying RTOT and E for different values of the
bias (w0) of each node (Table. 2). A total of 15, 625 combinations were analyzed and among them,
10 combinations demonstrated XOR behavior with minimized deviation ∆. Furthermore, to verify
that the designed MLP works as a nonlinear classifier for various parameter combinations, different
variations were introduced in the parameters and the XOR classification was obtained for a variety of
test cases. Afterwards, the Hill coefficient (n) and the NE concentration producing half occupation
(K) were varied as well to study its impact on nonlinear decision-making i.e. implementation of the
XOR function. A sample of MEM-XOR with different parameter combinations is shown in Fig. 7.

𝑥1

𝑥
2

a) 𝑅 conserved, 𝐾 = 0.05, 𝑛 = 6 b) No conservation on 𝑅 c) 𝑅 conserved, 𝐾 = 0.5, 𝑛 = 6 d) 𝑅 conserved, 𝐾 = 0.5, 𝑛 = 4

Figure 7: Surface plots showing XOR classification (without deviation ∆) for different parameter
configurations. The weights for P1, P2 and P3 are: a,b) [0.5, 1, 1], [0.2, 1, 1], [0.1, 25, 1]. c,d)
[0.8, 1, 1], [0.2, 1, 1], [0.52, 25, 0.8].
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𝑥1

𝑥
2

a) MEM-perceptron with Δ b) MEM-perceptron without Δ c) Sequestration-based perceptron

Figure 8: a-b) Removal of deviation ∆ between true decision boundary (black) and produced deci-
sion boundary (white region) through functional approximation using Eq. 1. c) Presence of deviation
∆ in the decision boundary of molecular sequestration-based perceptron.

Table 2: Context-dependency of XOR network search with minimized deviation ∆

Parameter P1 P2 P3

w0 0.1 to 1 0.1 to 1 0.01 to 1
RTOT 5 to 20 5 to 20 5 to 20
E 5 to 20 5 to 20 5 to 20

Least ∆ 0.1087 0.0075 0.1238 (U), 0.0412 (L)

A.6 EFFECT OF TEMPERATURE ON THE BEHAVIOR OF MEM

As part of analyzing the robustness of MEM against perturbations, and to identify additional inter-
action steps to absorb temperature variations, we apply the Arrhenius equation krate = Ae−Ea/RT

to the forward rate constant of reaction r1 (Appendix A.1) at temperatures T1 and T2,

konNR(T1) = k1 = Ae−Ea/RT1 , ln k1 = lnA− Ea

RT1
(15)

konNR(T2) = k2 = Ae−Ea/RT2 , ln k2 = lnA− Ea

RT2
(16)

Eq. 16 - Eq. 15 removes the pre-exponential factor A, and we get,

ln k2 − ln k1 = − Ea

RT2
+

Ea

RT1
, ln k2 =

Ea(T2 − T1)

RT1T2
+ ln k1 (17)

Using Eq. 17, we can determine how the formation rate of the decision-making speciesNR, denoted
as konNR changes with variations in temperature. The MEM-perceptron relies on konNR to produce a
decision boundary, so it is important to absorb any fluctuations that temperature variation may cause
in order to avoid erroneous classification. The related experimental studies are part of our ongoing
explorations of the MEM-based biomolecular neural network.

A.7 DATA AND CODE AVAILABILITY

The simulation code and data used to generate the figures of the paper can be found at https:
//github.com/theothermosh/MEM_BNN.
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