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• We proposed a game approach to resisting cascading failure in networks against a small number of attacks.
• Experiments showed that networks of some classic models have an equilibrium game, but some others fail to have.
• Most real networks fail to have an equilibrium game.
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a b s t r a c t

It seems a universal phenomenon of networks that the attacks on a small number of nodes
by an adversary player Alice may generate a global cascading failure of the networks. It
has been shown (Li et al., 2013) that classic scale-free networks (Barabási and Albert, 1999,
Barabási, 2009) are insecure against attacks of as small as O(log n) many nodes. This poses
a natural and fundamental question: Can we introduce a second player Bob to prevent
Alice from global cascading failure of the networks? We proposed a game in networks.
We say that a network has an equilibrium game if the second player Bob has a strategy
to balance the cascading influence of attacks by the adversary player Alice. It was shown
that networks of the preferential attachmentmodel (Barabási and Albert, 1999) fail to have
equilibrium games, that random graphs of the Erdös–Rényi model (Erdös and Rényi, 1959,
Erdös and Rényi, 1960) have, forwhich randomness is themechanism, and that homophyly
networks (Li et al., 2013) have equilibrium games, for which homophyly and preferential
attachment are the underlying mechanisms. We found that some real networks have
equilibrium games, but most real networks fail to have. We anticipate that our results lead
to an interesting new direction of network theory, that is, equilibrium games in networks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cascading failure of networks generated by a small number of attacks has been a fundamental challenge in network the-
ory. We propose a game theoretical approach to understanding the phenomenon of cascading failure of networks by a small
number of attacks. We showed that networks of the ERmodel have an equilibrium game, that networks of the PAmodel fail
to have, and that some real networks have equilibrium games, but most of them fail to have. Our discoveries here suggest a
fundamental issue to characterize the networks that have equilibrium games.

A surprising discovery inmodern network theory is that network topology is universal in nature, society and industry [1].
Many real networks follow a power law [2,1,3], and satisfy the small world phenomenon [4–6]. Consequentlymany real net-
works are vulnerable to cascading failures against the attacks of an adversary player, Alice say, on a small number of high
degree nodes [7].
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There are differentways to define the cascading failures of attacks.We use a simple definition similar to a linear threshold
model [8]. Let G = (V , E) be a graph. Suppose that each node v ∈ V has a threshold φ(v). Let S ⊂ V be a subset of vertices
V . We define the infection set of S in G recursively: (i) each node u ∈ S is called infected, and (ii) a node v becomes infected,
if φ(v) fraction of v’s neighbors have already been infected. We use infG(S) to denote the set of all infected nodes of S in G
defined as above. An adversary player Alice will try to choose an S of small size such that the size of the infection set of S in
G is maximized.

In Ref. [7], it has been shown that for a random graph of the Erdös–Rényi model with random thresholds, there is an
adversary player Alice to attack O(log n) many nodes of the graph to generate a global cascading failure of the network,
and that for a nontrivial network of the preferential attachmentmodel with random thresholds, there is an adversary player
Alice to attack O(log n)many nodes of the network to generate a global cascading failure of the network. This progress poses
a fundamental question: How can we prevent Alice from generating a global cascading failure of the networks by attacking
on a small number of nodes?

In this paper, we propose a simple way to solve this problem. We introduce a second player, Bob say, to compete the
influence with Alice in a network to prevent the global cascading failure from the attacks of Alice. We say that a network
has an equilibrium game, if for any attacks S of Alice, Bob can choose a set T of the same size as that of S such that the
difference of the cascading failure set of Alice and that of Bob’s is negligible. Otherwise, we say that the network fails to have
an equilibrium game. Given a network G, we say that cascading failure in G is resistable, if for any strategy A of Alice, Bob has
a strategy B such that the size of the cascading failure set of A in competing with B is negligible. Otherwise, we say that
cascading failure in G is non-resistable.

Wewill show that there are networks that have equilibrium games, but some others fail to have, and that some networks
are resistable, but someothers are not. Our approach of equilibriumgamespartially solves the cascading failures of networks,
and equally importantly, it poses a fundamental issue to characterize the networks having equilibrium games, and the
networks being resistable.

2. Games in networks

Given a network G = (V , E), suppose that each node v ∈ V has a threshold φ(v). Let Z be a set of nodes and v ∈ V \ Z .
We define the influence of Z on v, denoted by f (Z; v), to be n(Z,v)

d(v)
, where n(Z, v) is the number of v’s neighbors that are in

Z , and d(v) is the degree of v. We say that Z attracts v if f (Z; v) is greater than or equal to φ(v), the threshold of v.
Suppose that Alice and Bob have strategies A and B respectively. Then the game between A and B proceeds as follows.
Game (A, B)
Step 0: At first, A selects a set X by a program α, secondly B chooses a set Y by a program β such that X ∩ Y = ∅ and

|X | = |Y | = k for some k bounded by a polynomial of log n, where n is the number of nodes of G. Set AG
A,B ← X , and set

BG
A,B ← Y .
Suppose that AG

A,B and BG
A,B are the current sets agitated by Alice and Bob respectively.

Step 2i+ 1: Run Program Γ in Section 3.1. If ai is defined, then go to action phrase to agitate ai.
Step 2i+ 2: Run Program ∆ in Section 3.2. If bi is defined, then go to action phrase to agitate bi.
Action phrase (Agitation) Let v be the node ai or bi chosen by Γ or ∆ respectively. Do the following:

(1) Let l be the number of v’s neighbors that are in AG
A,B ,

(2) Let r be the number of v’s neighbors that are in BG
A,B ,

(3) If both l
d and r

d are greater than or equal to φ(v), then with probability l
l+r , v enters AG

A,B , in which case, we say that v

is agitated by A, otherwise, then v enters BG
A,B , in which case, we say that v is agitated by B, where d is the degree of v

in G, and
(4) Otherwise, then:

(a) if l
d ≥ φ(v), then v enters AG

A,B , in which case, we say that v is agitated by A, and
(b) if r

d ≥ φ(v), then v enters BG
A,B , in which case, we say that v is agitated by B.

We use AG
A,B and BG

A,B to denote the sets defined at the end of the game.
We notice that in our games, the network G is associated with a threshold function φ, and that the initial set X and Y

chosen by A and B respectively have the same size k. Therefore we will use AG
A,B(φ, k) and BG

A,B(φ, k) to denote the set of
nodes agitated byA andB respectively, in the games above.We define aGA,B(φ, k) and bGA,B(φ, k) to be the size of AG

A,B(φ, k)
and BG

A,B(φ, k) respectively.

3. Strategies for the games

3.1. Strategies for Alice

Alice always plays first. We use A to denote a strategy for Alice. The strategy A consists of two programs to choose an
initial set X and to choose a node ai at each odd steps 2i + 1 respectively. We use α and Γ to denote the two programs of
A, denoted by A = (α, Γ ).
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Program α
It chooses an initial set X (of size bounded by a polynomial of log n). Since Alice is the adversary player, it chooses X

arbitrarily. However, in our experiments, we assume that Program α of A chooses the top degree nodes as its initial set X .
Program Γ of A will choose a node ai at each odd step of the games. By the same reason as above, Alice may choose ai

arbitrarily for each i. However in our experiments, we assume that A chooses ai by the following Program Γ .
Program Γ

Program Γ tries to maximize its payoffs during the games. At an old step 2i+ 1, let AG
A,B and BG

A,B be the sets defined at
the end of step 2i by Alice and Bob respectively. Alice will choose ai by the following program.

(1) (Guaranteed to win) If there is an x ∉ AG
A,B ∪ BG

A,B such that f (AG
A,B; x) ≥ φ(x), and f (BG

A,B; x) < φ(x), then let ai be
the x such that the degree of x is maximized.

(2) (The highest probability to win) Otherwise and there is an x ∉ AG
A,B ∪ BG

A,B such that f (AG
A,B; x) ≥ φ(x). Then for each

such an x, let l(x) and r(x) be the numbers of neighbors of x in AG
A,B and BG

A,B respectively. Let ξ(x) = l(x)
l(x)+r(x) . Let ξ0 be

the greatest ξ(x) for all such x’s. Choose ai to be the x such that the degree d(x) is maximized, and such that ξ(x) = ξ0.
(3) If ai is defined, written by ai ↓, then go on the game to decide ai to be in either AG

A,B or BG
A,B . Otherwise, we say that ai

is undefined, written by ai ↑. In this case,
(a) If bi−1 ↑, then the game is over.
(b) Otherwise, then go on to step 2(i+ 1).

3.2. Strategies for Bob

We use B to denote a strategy of Bob.
A strategy B consists of two programs, the first is to choose the initial set Y , the second is to choose bi at each even steps

2i+ 2. We use β and ∆ to denote the two programs of B. In this case, B = (β, ∆). The program β will choose a set Y with
the same size as that of X , the set chosen by Alice. Program ∆ will decide the nodes bi at even steps 2i+ 2.

Let G = (V , E) be a network. Suppose that each node v ∈ V is associated with a threshold φ(v). Let X be the initial set
chosen by Alice. Clearly, there are many algorithms for β . Here we introduce 2 natural programs for β , denoted by β1 and
β2 respectively.

Program β1

(1) Suppose that y1, y2, . . . , yl are all nodes y ∉ X having a neighbor in X , listed by decreasing order of degrees, and
(2) Then define Y = {y1, y2, . . . , yk}, where k = |X |.

Program β1 is the most simple one which chooses the highest degree neighbors of X .
Program β2

(1) Let Z be the set of all nodes z satisfying:
– z ∉ X , and
– f (X; z) ≥ φ(z).

(2) Suppose that y1, y2, . . . , yl is the list of all the nodes y ∉ X , satisfying:
– n(yj, Z) ≥ n(yj+1, Z), and
– d(yj) ≥ d(yj+1),
where n(y, Z) is the number of edges between y and nodes in Z .

(3) Bob chooses Y = {y1, y2, . . . , yk}, for k = |X |.

β2 chooses the highest degree nodes that have highest influence on nodes that are probably agitated by the initial set X
chosen by A.

At step 2i+ 2, Bob chooses bi as follows. Let AG
A,B and BG

A,B be the sets defined at the end of step 2i+ 1 by Alice and Bob
respectively. Bob will choose bi by the following program.

Program ∆

(1) (Guaranteed to win) If there is an x ∉ AG
A,B ∪ BG

A,B such that f (BG
A,B; x) ≥ φ(x), and f (AG

A,B; x) < φ(x), then let bi be
the x such that the degree of x is maximized.
This means that the highest priority is to choose the node for which Bob is guaranteed to win, and that if there are more
than one such nodes, then ∆ chooses the highest degree node.

(2) (The highest probability to win) Otherwise and there is an x ∉ AG
A,B ∪ BG

A,B such that f (BG
A,B; x) ≥ φ(x). Then for each

such an x, let l(x) and r(x) be the numbers of neighbors of x in AG
A,B and BG

A,B respectively. Let η(x) = r(x)
l(x)+r(x) . Define bi

to be the node xwith maximal degree such that η(x) is maximized.
This means that if there is no node for which Bob can be guaranteed to win, then chooses the node for which Bob has
the highest probability to win.

(3) If bi is defined, written by bi ↓, then go on the game to decide whether or not bi is in either AG
A,B or BG

A,B . Otherwise,
then we say that bi is undefined, written by bi ↑, in which case,
(a) If ai ↑, then the game is over.
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Fig. 1. Random graphs of the Erdös–Rényi model have equilibrium games. A, B, C and D of the figure depict the curves for networks of the ER model for
expected average number of edges d = 8, 9, 10, 11 respectively. In each of the A–D, the three curves correspond to the sizes of infection sets infGA , and the
sizes of differences of sizes of sets AG

A,Bj
and BG

A,Bj
, i.e., dGA,Bj

for each j ∈ {1, 2}.

(b) Otherwise, then go on to step 2(i+ 1)+ 1.
If bi is undefined, then Bob passes this step. In this case, if Alice passed the last step, then the game is over, else, the game
goes on to the next step.

For each j ∈ {1, 2}, we define Bj = (βj, ∆). We notice that the strategy B1 depends only on the structure of G and the
set X chosen by Alice, and that strategy B2 depends on the structure of G, the set X chosen by Alice and the thresholds of
vertices of V .

LetG = (V , E) be a network. Our games depend on the choices of thresholdsφ(v) for all v ∈ V . In practice, the thresholds
may be quite arbitrary. In the paper,we consider the natural choice of random thresholds. In this case, for a node v ∈ V , φ(v)
is defined as r

d , where r is uniformly and randomness chosen among the set {1, 2, . . . , d}, and d is the degree of v in G.

4. Equilibrium games in networks

Let G = (V , E) be a network. Suppose that φ is a threshold function of V . For any k, we define
dGA,B(φ, k) = aGA,B(φ, k)− bGA,B(φ, k).

We say that G has an equilibrium game, if for any strategy A, there is a strategy B such that for any k bounded by a
polynomial of log n, the following property holds:

Prφ[dGA,B(φ, k) = o(n)] = 1− o(1),
where φ is a random threshold function, k is bounded by a polynomial of log n, and n = |V | is sufficiently large.

We will investigate the equilibrium games of the networks of classical models.

4.1. The ER model

The first is the Erdös–Rényi model (ER model, for short) [9,10]. In this model, we are given a number n, and a number
p, and n nodes 1, 2, . . . , n. For every pair {i, j} of nodes i and j, we create an edge between i and j with probability p. By
definition, every node i randomly and uniformly links to some nodes.

We depict the curves of dGA,Bj
for A and Bj for j = 1, 2 for random graphs of the ER model in Fig. 1.

From Fig. 1, we observe the following results:
(1) The curve of infGA is higher than that of dGA,Bj

for both j = 1 and 2.
(2) The curve of dGA,B1

is almost flat.
(3) By (1) and (2) above, Bob has a strategy B = (β1, ∆) which can balance the influence of Alice in networks of the ER

model.

The results above show that networks of the ER model have an equilibrium game.
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Fig. 2. Networks of the PA mode fail to have an equilibrium game. A, B, C and D of the figure depict the curves for networks of the ER model for expected
average number of edges d = 8, 9, 10, 11 respectively. In each of the A–D, the three curves correspond to the sizes of infection sets infGA , and the sizes of
differences of sizes of sets AG

A,Bj
and BG

A,Bj
, i.e., dGA,Bj

for each j ∈ {1, 2}.

4.2. The PA model

The second is the preferential attachment (PA, for short) model [2,1]. Given a natural number d, the model constructs
networks by steps: At step 0, we choose G0 to be an initial graph. At step t + 1, create a new node, v say, and create d edges
from v to nodes in Gt chosen with probability proportional to the degrees in Gt , where Gt is the network constructed at the
end of step t .

We depict the curves of dGA,Bj
for A and Bj for j = 1, 2 for networks of the PA model in Fig. 2.

From Fig. 2, we have the following results:
(1) The curve of infGA is higher than that of dGA,Bj

for both j = 1 and 2.
(2) The curve of dGA,B2

is higher than that of dGA,B1
.

(3) The curve of dGA,B1
is slightly lower than that of the infGA.

The results imply that none of the strategies of Bob can balance the influence of Alice, so that non-trivial networks of the
PA model fail to have an equilibrium game.

5. Equilibrium games—resisting cascading

Given strategies A and B for Alice and Bob respectively, we use AG
A,B and BG

A,B to denote the sets agitated by Alice and
Bob with strategies A and B respectively. Let aGA,B and bGA,B be the numbers of nodes in AG

A,B and BG
A,B respectively.

We say thatG is resistable, if for any strategyAof Alice, there is a strategyB for Bob such that the followingproperty holds:
Prφ[aGA,B(φ, k) = o(n)] = 1− o(1)

where φ is a random threshold function, k is bounded by a polynomial of log n, n = |V | is sufficiently large.
By definition, if G is resistable, then for any strategy A of an adversary player Alice, Bob has a strategy B to resist the

global cascading failure against the attacks by the strategy of Alice.

5.1. ER model

To characterize the networks in which cascading failure is resistable, we first analyze the classic models of networks.
In Fig. 3, we depict the curves of infGA, and aGA,Bj

for j = 1, 2 respectively. In A–D of the figure, we depict the curves for
randomgraphs of the Erdös–Rényimodel for d = 8, 9, 10, 11 respectively, where d is the expected average number of edges.

From Fig. 3, we observe that
(1) The strategy β1 of Bob is better than β2 in resisting cascading failure of attacks in networks of the ER model.
(2) Bob has a strategy B to resist the global cascading failure of a small number of attacks by Alice in networks of the ER

model, for which randomness is the mechanism.
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Fig. 3. Random graphs of the Erdös–Rényi model have equilibrium games. A, B, C and D of the figure depict the curves for networks of the ER model for
expected average number of edges d = 8, 9, 10, 11 respectively. In each of the A–D, the five curves correspond to the sizes of infection sets infGA , and the
sizes of sets AG

A,Bj
, i.e., aGA,Bj

for each j ∈ {1, 2}.

The results above show that networks of the ER model are resistable, for which randomness is the mechanism.

5.2. The preferential attachment model

In Fig. 4, we depict the curves of the sizes of infGA, AG
A,Bj

for j ∈ {1, 2} respectively. The networks of the preferential
attachment model have average number of edges d = 8, 9, 10, 11 respectively.

FromFig. 4,we observe that in networks of the PAmodel, the first player Alice always has awinning strategy in generating
a global cascading failure by a small number of attacks, and that Bob fails to resist cascading failure of an adversary player
Alice.

By comparing the results in Sections 4.1, 5.1 and the results in Sections 4.2, 5.2, we have that networks of the ER model
have an equilibrium game, and are resistable, and that in networks of the PA model fail to have equilibrium games.

This poses a natural question: Are there dynamic and scale-free networks which have equilibrium games? To answer
this question, we have to explore new mechanisms of networks. We examine the homophyly model of networks proposed
in Ref. [11].

6. Homophyly networks

Given a homophyly exponent a (a positive number), and a natural number d, the homophylymodel,writtenH , constructs
a network by steps as follows. Initially, let Gd be an initial d-regular graph such that each node is associated with a distinct
color, and called a seed node. For i + 1 > d, suppose that Gi has been defined, let pi = 1/(log i)a. We create a new node, v
say. With probability pi, v chooses a new color, in which case, we call v a seed node, and create d edges from v to nodes in
Gi choosing with probability proportional to the degrees of nodes in Gi. Otherwise, v chooses an old color, in which case, v
chooses randomly and uniformly an old color as its own color, and create d edges from v to nodes of the same color as that
of v, chosen with probability proportional to the degrees of nodes in Gi.

In Ref. [11], it has been shown that for a network of n nodes, G say, constructed from the homophylymodel, the following
properties hold: (1) (power law)G follows a power law, (2) (small diameter) the diameter ofG isO(log2 n), (3) (small commu-
nity phenomenon) nodes of the same color form a quality community of size bounded by a polynomial of log n, (4) (internal
centrality) the induced subgraph of a community follows a power law, (5) (external centrality) the external links of a commu-
nity is bounded by O(log log n), and (6) (local communication law) diameters of communities are bounded by O(log log n).

These properties may play some roles in equilibrium games in the networks.

7. Games in homophyly networks

Let G = (V , E) be a homophyly network. For a homochromatic set Z , the induced subgraph GZ of Z in G is a natural
community of size bounded by logO(1) n. By the construction, a community GZ has a seed node, z0 say. Since GZ is small,
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Fig. 4. Networks of the PA mode fail to have an equilibrium game. A, B, C and D of the figure depict the curves for networks of the ER model for expected
average number of edges d = 8, 9, 10, 11 respectively. In each of the A–D, the five curves correspond to the sizes of infection sets infGA , and the sizes of
sets AG

A,Bj
, i.e., aGA,Bj

for each j ∈ {1, 2}.

the main problem for B is to resist the agitations of nodes in the neighbor communities of Z . By the construction, for a
community GZ , we have that there are many seed nodes which link to the seed node z0 of Z , that for each non-seed node
z ∈ Z , there are few edges from z to seed nodes outside of Z , and that there are some seed nodes linking to the non-seed
nodes of Z .

To understand the structure of G, we analyze an example. Suppose that X , Y and Z are three communities of G. Let x0, y0
and z0 be the seed nodes of X , Y and Z respectively. Suppose that A chooses x0. In this case, A may have more chances to
agitate elements in the community X . However even if there is an edge between x0 and y0, since y0 is the seed of community
Y , so that A is hard to agitate y0. The problem is if there is an edge (x0, y) for some non-seed node y ∈ Y , then A is easy to
agitate y. If y has been agitated by A through x0, then y0 would be easily agitated by A through y.

The intuition above suggests that the strategyB for Bob should choose the seed nodes of the communities inwhich there
are nodes that are easily agitated by the initial choices X chosen by Program α of A.

Therefore, the community structure of the homophyly networks allows us to design new programs for B to choose its
initial set Y . We will give one such program.

7.1. Strategies

For a homophyly network G = (V , E), we introduce one more strategy for Bob to choose Y .
Program β3

(1) Let X = {x1, x2, . . . , xk} be the set chosen by Program α of strategy A.
(2) Let Cj be the community of xj for each j ∈ {1, 2, . . . , k}. Let C = ∪j Cj be the union of all the communities Cj. Let N(C) be

the set of all neighbors of nodes in C . Define Z = C ∪ N(C).
The motivation of this step is that the choices X of A have more influences on nodes in the union C of communities of
all x ∈ X and the neighbors of C .

(3) Suppose that y1, y2, . . . , yl are all the seed nodes y satisfying:
(a) y ∉ X ,
(b) there is a z ∈ Z such that y and z share the same color, and
(c) d(yi) ≥ d(yi+1) for all i ∈ {1, 2, . . . , l}, where d(y) is the degree of y.
This steps means that B resists A by choosing the highest degree seed nodes of communities which contains elements
in C or the neighbors of C .

(4) Bob defines Y = {y1, y2, . . . , yk}.

β3 chooses the highest degree seed nodes of communities that either contain some xj or some neighbors of nodes in the
union C of all the communities Cj. The motivation of β3 is that if Program α of A chooses X as its initial set, then A has more
power to agitate nodes in the communities Cj for each j ∈ {1, 2, . . . , k}. In this case, the best choice forB is to select themost
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Fig. 5. Homophyly networks have abstract equilibrium games. The curves in A, B, C, D correspond to homophyly networks with n = 10, 000, a = 1.5 and
d = 8, 9, 10, 11 respectively. In each of the A–D, the three curves correspond to the sizes of infection sets infGA , and the sizes of differences of sizes of sets
AG

A,Bj
and BG

A,Bj
, i.e., dGA,Bj

for j ∈ {1, 2, 3} respectively.

influential seed nodes whose communities link to the communities Cj for j ∈ {1, 2, . . . , k}. By the construction of G, there is
a large number of seed nodes whose communities link to nodes in C , the union of all the communities Cj, j ∈ {1, 2, . . . , k}.
Therefore B has chance to select high degree seed nodes which on one hand resist the cascading by attacks of A, and on
the other hand, B opens chances to agitate more nodes. Clearly, β3 is designed based on the community structure of the
homophyly networks.

DefineB3 = (β3, ∆). ThenB3, is a strategy for Bobwhich assumed and used the community structures of the homophyly
networks.

7.2. Equilibrium games in the homophyly networks

We depict the curves of infGA, and dGA,Bj
for A and Bj for j = 1, 2, 3 for homophyly networks in Fig. 5.

From Fig. 5, we observe the following:

(1) The curve of dGA,B1
is the lowest among all 4 curves, which is almost flat.

(2) The curve of infGA increases much more slower than that of networks of the PA model in Fig. 2.

(1) implies that homophyly networks have equilibrium games, and (2) implies that homophyly does hinder cascading
failure in the homophyly networks.

7.3. The equilibrium games: resisting cascading in homophyly networks

Fig. 6 depicts the curves of infGA and aGA,Bj
, for j ∈ {1, 2, 3} for homophyly networks.

From Fig. 6, we observe that all the curves of infGA, aGA,Bj
, for j ∈ {1, 2, 3} are the same. Therefore homophyly networks

are non-resistable.

7.4. Theoretical analysis of homophyly networks

Why do homophyly networks have an equilibrium game as shown in Fig. 5? We analyze the experiments as follows. In
a homophyly network G = (V , E), for a homochromatic set Z ⊂ V , the induced subgraph GZ is a natural community of G.
Clearly, all the natural communities have sizes bounded by logO(1) n.

Let x ∈ X be a node chosen by Alice. Then we have:

(1) If x is the seed node of a community Z , then there are quite a few communities whose seeds link to x or nodes in its
community Z , in which case, Bob has chance to select seed node y0 say of a neighbor community of x or nodes in Z such
that the degree of y0 is large, so that y0 has strong influence.
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A B

C D

Fig. 6. Homophyly networks have abstract equilibrium games. The curves in A, B, C, D correspond to homophyly networks with n = 10,000, a = 1.5 and
d = 8, 9, 10, 11 respectively. In each of the A–D, the curves represent the sizes of sets infG , AG

A,Bj
, i.e., aGA,Bj

, for j ∈ {1, 2, 3} respectively.

(2) If x is a non-seed node of a community Z , then x has influence mainly within the community Z , and the degree of x
cannot be large. In this case, Bob may simply select the seed node x0 of Z to resist the influence of x on nodes outside of
the community Z .

In either case, the choice of Bob is not significantly less powerful than the choice of Alice. This intuitively explains the
reason why homophyly networks have an equilibrium game.

The experiments in Fig. 5 seems to imply that for appropriately large network, G = (V , E) say, of the homophyly model,
almost surely (that is, with probability 1− o(1)), the following occurs:

For any strategy A of Alice, there is a strategy B for Bob such that dGA,B = o(n).
However it is a grand challenge to theoretically prove the results, for which a proof calls for a complete understanding

of the experiments, and the homophyly model.

8. Games in real networks

In this section, we implement experiments on some real network data. We depict the curves of both dGA,Bj
and aGA,Bj

for
the games on 9 real networks.

8.1. Financial network

Our first example is a financial network given in Ref. [12]. We depict the curves of infection sets infGA, dGA,Bj
and aGA,Bj

for
j = 1, 2 of the financial network in Fig. 7.

By observing Fig. 7, we know that Bob has no effective strategy to either balance the influence of Alice or to resist the
cascading failure by attacks of Alice. Therefore the financial network fails to have an equilibrium game.

8.2. Equilibrium games in real networks

In this part, we depict the curves of infGA and dGA,Bj
for j = 1, 2 on more real network data.

Fig. 8 depicts the experiments of games in 4 Amazon networks, and Fig. 9 depicts the experiments of the game in 4 social
networks. All these networks are from Stanford Large Network Dataset Collection.

The Amazon network is product co-purchasing network, specifically, which is based on CustomersWho Bought This Item
Also Bought feature of the Amazon website. Each node represents a product, and if a product i is frequently co-purchased
with product j, the graph contains a directed edge from i to j. The four networks contain 262111 nodes and 1234877 edges,
400727 nodes and 3200440 edges, 410236 nodes and 3356824 edges, and 403394 nodes and 3387388 edges respectively.
The data of the four networks A, B, C, D were collected in March 02 2003, March 12 2003, May 05 2003, June 01 2003
respectively.
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Fig. 7. Two-party games on the financial network.

A B

C D

Fig. 8. Games on the Amazon networks.

By observing Fig. 8, we have that, in each of the networks, Bob has a strategy to significantly balance the influence of
Alice, and that the curves are similar to that in Fig. 5 for the homophyly networks.

The 4 social networks in Fig. 9 are: The networks in A and B are from Slashdot, on which users can tag each other as
friends or foes. Nodes of these networks represent users and edges represent friends or foes relationship between the users
of Slashdot. Network A contains 77360 nodes and 905468 edges, and B has 82168 nodes and 948464 edges, which were
collected in November 2008 and February 2009, respectively. C is a who-trust-whom online social network of a general
consumer review site Epinions.com. Nodes of this network represent members of this site and a directed edge from i to j
represents user i trusts user j. The numbers of nodes and edges are 75879 and 508837 respectively. Network D contains
all the Wikipedia voting data from the inception of Wikipedia till January 2008. Nodes in the network represent Wikipedia
users and a directed edge fromnode i to node j represents that user i voted on j. There are 7115 nodes and 103689 edges in it.

By observing Fig. 9, we know that Bob fails to balance the influence of Alice in each of the networks, and that the curves
in 9 are similar to that of networks of the PA model in Fig. 2.

Therefore, there are real networks which have equilibrium games, and at the same time there are real networks which
fail to have equilibrium games.

8.3. Resisting cascading failure in real networks

In Fig. 10, we depict the curves of infGA and aGA,Bj
for j = 1, 2 for the games in the 4 Amazon networks.

In Fig. 11, we depict the curves of infGA and aGA,Bj
for j = 1, 2 for the games in the 4 social networks.
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C D

Fig. 9. Games on the social networks.

A B

C D

Fig. 10. Games on the Amazon networks.

By observing Figs. 10 and 11, we have that in each of the real networks, Bob fails to have a strategy to resist cascading
failures by attacks of Alice. This result poses a fundamental question: How can we resist global cascading failures by a small
number of attacks by an adversary player Alice in a power law or real world network?

9. Conclusions

We proposed a two-party game by introducing a second player Bob to balance the influence or to resist global cascading
failure of attacks by an adversary player Alice.We showed that randomgraphs of the Erdös–Rényimodel have an equilibrium
game and have a strategy for Bob to resist cascading failures by attacks of an adversary player Alice, for which randomness is
themechanism.We showed that networks of the PAmodel fail to have an equilibrium game, that homophyly networks have
an equilibrium game for which homophyly and preferential attachment are the underlyingmechanisms, and that for power
law networks of either the PA model or the homophyly model, there is no strategy for Bob to resist cascading failures in
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A B

C D

Fig. 11. Games on the social networks.

the networks by attacks of the adversary player Alice. We also showed that there are real networks which have equilibrium
games, but some others fail to have, and that for most real networks, there is no any strategy for Bob to resist cascading
failures by attacks on the networks by an adversary player Alice. Our results pose new fundamental open questions such as:
Whatmechanisms andmathematical properties of networks guarantee the existence of equilibrium games in the networks?
How canwe resist cascading failures by attacks of a small number of nodes in a power lawnetwork or in a real network data?

Methods. In all the experiments in each of Figs. 1–11, the curves correspond to the greatest values of infGA, dGA,Bj
and aGA,Bj

for j = 1, 2, 3 among 100 times of the games each of which depends on different choices of the random thresholds.
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