Under review as a conference paper at ICLR 2021

DEEPERGCN: TRAINING DEEPER GCNS WITH GEN-
ERALIZED AGGREGATION FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Convolutional Networks (GCNs) have been drawing significant attention
with the power of representation learning on graphs. Recent works developed
frameworks to train deep GCNs. Such works show impressive results in tasks like
point cloud classification and segmentation, and protein interaction prediction. In
this work, we study the performance of such deep models in large scale graph
datasets from the Open Graph Benchmark (OGB). In particular, we look at the
effect of adequately choosing an aggregation function, and its effect on final per-
formance. Common choices of aggregation are mean, max, and sum. It has shown
that GCNs are sensitive to such aggregations when applied to different datasets.
We further validate this point and propose to alleviate it by introducing a novel
Generalized Aggregation Function. Our new aggregation not only covers all com-
monly used ones, but also can be tuned to learn customized functions for different
tasks. Our generalized aggregation is fully differentiable, and thus its parame-
ters can be learned in an end-to-end fashion. We add our generalized aggregation
into a deep GCN framework and show it achieves state-of-the-art results in six
benchmarks from OGB.

1 INTRODUCTION

The rise of availability of non-Euclidean data (Bronstein et al.,2017)) has recently shed interest into
the topic of Graph Convolutional Networks (GCNs). GCNs provide powerful deep learning archi-
tectures for irregular data, like point clouds and graphs. GCNs have proven valuable for applications
in social networks (Tang & Liu}, 2009), drug discovery (Zitnik & Leskovec, [2017;|Wale et al.,|2008),
recommendation engines (Monti et al. 2017b; [Ying et al., [2018)), and point clouds (Wang et al.,
2018 |Li et al., |2019b). Recent works looked at frameworks to train deeper GCN architectures (L1
et al.,[2019bga). These works demonstrate how increased depth leads to state-of-the-art performance
on tasks like point cloud classification and segmentation, and protein interaction prediction. The
power of deep models become more evident with the introduction of more challenging and large-
scale graph datasets. Such datasets were recently introduced in the Open Graph Benchmark (OGB)
(Hu et al.} 2020), for tasks of node classification, link prediction, and graph classification.

Graph convolutions in GCNs are based on the notion of message passing (Gilmer et al.l 2017). To
compute a new node feature at each GCN layer, information is aggregated from the node and its
connected neighbors. Given the nature of graphs, aggregation functions must be permutation invari-
ant. This property guarantees invariance/equivariance to isomorphic graphs (Battaglia et al., | 2018;
Xu et al., 2019b; Maron et al.l [2019a). Popular choices for aggregation functions are mean (Kipf
& Welling, 2016), max (Hamilton et al., 2017), and sum (Xu et al.,|2019b)). Recent works suggest
different aggregations have different performance impact depending on the task. For example, mean
and sum perform best in node classification (Kipf & Welling},2016)), while max is favorable for deal-
ing with 3D point clouds (Qi et al.,2017; Wang et al.,[2019). Currently, all works rely on empirical
analysis to choose aggregation functions.

In DeepGCNs (Li et al.| (2019b)), the authors complement aggregation functions with residual and
dense connections, and dilated convolutions, in order to train very deep GCNs. Equipped with these
new modules, GCNs with more than 100 layers can be reliably trained. Despite the potential of these
new modules (Kipf & Welling}|2016;Hamilton et al., 2017; |Velickovi¢ et al.,[2018}; Xu et al.,2019a),
it is still unclear if they are the ideal choice for DeepGCNs when handling large-scale graphs.



Under review as a conference paper at ICLR 2021

Permutation
Invariant
Aggregators

SoftMaxSum_Agg

SoftMax_Agg
Min

Su

owerMeanSum_Agg

PowerMean_Agg

Figure 1: Illustration of Generalized Message Aggregation Functions

In this work, we analyze the performance of GCNs on large-scale graphs. In particular, we look at
the effect of aggregation functions in performance. We unify aggregation functions by proposing a
novel Generalized Aggregation Function (Figure[I)) suited for graph convolutions. We show how
our function covers all commonly used aggregations (mean, max, and sum), and its parameters can
be tuned to learn customized functions for different tasks. Our novel aggregation is fully differen-
tiable and can be learned in an end-to-end fashion in a deep GCN framework. In our experiments,
we show the performance of baseline aggregations in various large-scale graph datasets. We then
introduce our generalized aggregation and observe improved performance with the correct choice
of aggregation parameters. Finally, we demonstrate how learning the parameters of our generalized
aggregation, in an end-to-end fashion, leads to state-of-the-art performance in several OGB bench-
marks. Our analysis indicates the choice of suitable aggregations is imperative to the performance
of different tasks. A differentiable generalized aggregation function ensures the correct aggregation
is used for each learning scenario.

We summarize our contributions as two-fold: (1) We propose a novel Generalized Aggregation
Function. This new function is suitable for GCNs, as it enjoys a permutation invariant property.
We show how our generalized aggregation covers commonly used functions such as mean, max,
and sum in graph convolutions. Additionally, we show how its parameters can be tuned to improve
performance on diverse GCN tasks. Since this new function is fully differentiable, we show how
its parameters can be learned in an end-to-end fashion. (2) We run extensive experiments on seven
datasets from the Open Graph Benchmark (OGB). Our results show that combining depth with our
generalized aggregation function achieves state-of-the-art in several of these benchmarks.

2 RELATED WORK

Graph Convolutional Networks (GCNs). Current GCN algorithms can be divided into two cate-
gories: spectral-based and spatial-based. Based on spectral graph theory, Bruna et al.|(2013) firstly
developed graph convolutions using the Fourier basis of a given graph in the spectral domain. Later,
many methods proposed to apply improvements, extensions, and approximations on spectral-based
GCNs (Kipf & Welling| 2016} [Defferrard et al., 2016 [Henaff et al.| [2015; Levie et al.| 2018} [Li
et al., 2018} [Wu et al., [2019). Spatial-based GCNs (Scarselli et al., [2008}; [Hamilton et al., 2017;
Monti et al., | 2017a}; Niepert et al., 2016} |Gao et al., |2018; |Xu et al., |2019b; |Velickovic et al., [2018))
define graph convolution operations directly on the graph by aggregating information from neigh-
bor nodes. To address the scalability issue of GCNs on large-scale graphs, two main categories of
algorithms exist: sampling-based (Hamilton et al., 2017; |Chen et al., [2018b; |Li et al., 2018; |Chen
et al.| 2018a; Zeng et al.,[2020) and clustering-based (Chiang et al.,[2019).

Training Deep GCNs. Despite the rapid and fruitful progress of GCNs, most prior work em-
ploys shallow GCNs. Several works attempt different ways of training deeper GCNs (Hamilton
et al., |2017; |Armeni et al., 2017; |Rahimi et al., 2018} Xu et all 2018). However, all these ap-
proaches are limited to 10 layers of depth, after which GCN performance would degrade because
of vanishing gradient and over-smoothingLi et al.| (2018). Inspired by the merits of training deep
CNN-based networks (He et al., [2016a; [Huang et al., 2017} [Yu & Koltun, [2016)), DeepGCNs (Li
et al., 2019b) propose to train very deep GCNs (56 layers) by adapting residual/dense connections



Under review as a conference paper at ICLR 2021

(ResGCN/DenseGCN) and dilated convolutions to GCNs. DeepGCN variants achieve state-of-the
art results on S3DIS point cloud semantic segmentation (Armeni et al., 2017) and the PPI dataset.
Many recent works focus on further addressing this phenomenon (Klicpera et al.,|2019; Rong et al.,
2020; Zhao & Akoglul 2020; |Chen et al.| 20205 |Gong et al., [2020; Rossi et al.,[2020). In particular,
Klicpera et al.|(2019) propose a PageRank-based message passing mechanism involving the root
node in the loop. Alternatively, DropEdge (Rong et al.l 2020) randomly removes edges from the
graph, and PairNorm (Zhao & Akoglul[2020) develops a novel normalization layer. We find that the
choice of aggregation may also limit the power of deep GCNs. In this work, we thoroughly study
the important relation between aggregation functions and deep GCN architectures.

Aggregation Functions for GCNs. GCNs update a node’s feature vector by aggregating feature
information from its neighbors in the graph. Many different neighborhood aggregation functions
that possess a permutation invariant property have been proposed (Hamilton et al., 2017 |Velickovic
et al.| 2018} | Xu et al.,[2019b)). Specifically, Hamilton et al.|(2017) examine mean, max, and LSTM
aggregators, and they empirically find that max and LSTM achieve the best performance. Graph
attention networks (GATs) (Velickovi¢ et al.l 2018) employ the attention mechanism (Bahdanau
et al., 2015)) to obtain different and trainable weights for neighbor nodes by learning the attention
between their feature vectors and that of the central node. Thus, the aggregator in GAT's operates like
a learnable weighted mean. Furthermore, |Xu et al.| (2019b) propose a GCN architecture, denoted
Graph Isomorphism Network (GIN), with a sum aggregation that has been shown to have high
discriminative power according to the Weisfeiler-Lehman (WL) graph isomorphism test (Weisfeiler,
& Lehman, [1968). In this work, we propose generalized message aggregation functions, a new
family of aggregation functions, that generalizes conventional aggregators including mean, max and
sum. With the nature of differentiablity and continuity, generalized message aggregation functions
provide a new perspective for designing GCN architectures.

3 REPRESENTATION LEARNING ON GRAPHS

Graph Representation. A graph G is usually defined as a tuple of two sets G = (V, &), where
V = {v1,v9,...,05 } and &€ C V x V are the sets of vertices and edges, respectively. If an edge
ei; = (vi,v;) € & for an undirected graph, e;; is an edge connecting vertices v; and v;; for a
directed graph, e;; is an edge directed from v; to v;. Usually, a vertex v and an edge e in the graph
are associated with vertex features h,, € R” and edge features h, € R” respectivelyﬂ

GCNs for Learning Graph Representation. We define a general graph representation learning
operator JF, which takes as input a graph G and outputs a transformed graph G, i.e. G’ = F(G).
The features or even the topology of the graph can be learned or updated after the transformation F.
Typical graph representation learning operators usually learn latent features or representations for
graphs such as DeepWalk (Perozzi et al., [2014), Planetoid (Yang et al., 2016), Node2Vec (Grover,
& Leskovec| 2016), Chebyshev graph CNN (Defferrard et al.,[2016), GCN (Kipf & Welling, |2016)),
Neural Message Passing Network (MPNN) (Gilmer et al.,[2017)), GraphSage (Hamilton et al.,|2017),
GAT (Velickovic et al., 2018) and GIN (Xu et al., 2019b)). In this work, we focus on the GCN family
and its message passing framework (Gilmer et al. [2017; Battaglia et al.| 2018)). To be specific,
message passing based on the GCN operator F operating on vertex v € ) at the [-th layer is defined
as follows:

m), = p¥ (b, ), b)), Yu € N(v) M
m{) = ¢V ({mll) [ue N(v)}) @)
h{*V = ¢ (b, m("), ®

where p(l), ¢® and ¢ are all learnable or differentiable functions for message construction, mes-
sage aggregation, and vertex update at the [-th layer, respectively. For simplicity, we only consider
the case where vertex features are updated at each layer. It is straightforward to extend it to edge

features. Message construction function p) is applied to vertex features th) of v, its neighbor’s

features hg ), and the corresponding edge features h,_ to construct an individual message mg& for

€vu

'In some cases, vertex features or edge features are absent.



Under review as a conference paper at ICLR 2021

each neighbor u € N (v). Message aggregation function ¢*) is commonly a permutation invari-

ant set function that takes as input a countable unordered message set {m% | u € N(v) }, where
mq(}l& € RP, and outputs a reduced or aggregated message mg) € RP. The permutation invariance
of ¢V guarantees the invariance/equivariance to isomorphic graphs (Battaglia et al., 2018). ¢(V) can
simply be a symmetric function such as mean (Kipf & Welling, |2016)), max (Hamilton et al., 2017,
or sum (Xu et al., 2019b). Vertex update function qb(l) combines the original vertex features h,(ul)

the aggregated message mSJl) to obtain the transformed vertex features h(UlH).

and

4 BEYOND MEAN, MAX, AND SUM AGGREGATION FUNCTIONS

Property 1 (Graph Isomorphic Equivariance). If a message aggregation function ¢ is permutation
invariant to the message set { my,, | v € N (v) }, then the message passing based GCN operator F
is equivariant to graph isomorphism, i.e. for any isomorphic graphs Gy and Go = 0 * G1, F(Gs2) =
o x F(G1), where x denotes a permutation operator on graphs.

The invariance and equivariance properties on sets or GCNs have been discussed in many recent
works. |Zaheer et al.| (2017) propose DeepSets based on permutation invariance and equivariance
to deal with sets as inputs. Maron et al.| (2019c) show the universality of invariant GCNs to any
continuous invariant function. |[Keriven & Peyré¢ (2019) further extend it to the equivariant case.
Maron et al.| (2019b) compose networks by proposing invariant or equivariant linear layers and
show that their models are as powerful as any MPNN (Gilmer et al., [2017). In this work, we study
permutation invariant functions of GCNs, which enjoy these proven properties.

4.1 GENERALIZED MESSAGE AGGREGATION FUNCTIONS

To embrace the properties of invariance and equivariance (Property [I)), many works in the graph
learning field tend to use simple permutation invariant functions like mean (Kipf & Welling, |2016),
max (Hamilton et al., 2017)) and sum (Xu et al.,|2019b)). Inspired by the Weisfeiler-Lehman (WL)
graph isomorphism test (Weisfeiler & Lehmanl |1968)),/Xu et al.|(2019b) propose a theoretical frame-
work and analyze the representational power of GCNs with mean, max and sum aggregators. Al-
though mean and max aggregators are proven to be less powerful than sum according to the WL test
in (Xu et al., [2019b), they are found to be quite effective in the tasks of node classification (Kipf &
Welling, 20165 [Hamilton et al., [2017)) and 3D point cloud processing (Qi et al., 2017; Wang et al.,
2019) To go beyond these simple aggregation functions and study their characteristics, we define
generalized aggregation functions in the following.

Definition 2 (Generalized Message Aggregation Functions). We define a generalized message ag-
gregation function ¢ (+) as a function that is parameterized by a continuous variable z to produce a
family of permutation invariant set functions, i.e. Vz, {,(-) is permutation invariant to the order of
messages in the set { m,,, | u € N'(v) }.

In order to subsume the popular mean and max aggregations into the generalized space, we further
define generalized mean-max aggregation parameterized by a scalar for message aggregation.

Definition 3 (Generalized Mean-Max Aggregation). If there exists a pair of x say x;, zo such
that for any message set lim,_,,, ¢, () = Mean(-) [{and lim,_,,,(.(-) = Max(-), then {,(-) is a
generalized mean-max aggregation function.

The nice properties of generalized mean-max aggregation functions can be summarized as follows:
(1) they provide a large family of permutation invariant aggregation functions; (2) they are contin-
uous and differentiable in = and are potentially learnable; (3) it is possible to interpolate between
1 and xs to find a better aggregator than mean and max for a given task. To empirically validate
these properties, we propose two families of generalized mean-max aggregation functions based on
Definition [3} namely SoftMax aggregation and PowerMean aggregation.

Proposition 4 (SoftMax Aggregation). Given any message set { m,, | u € N'(v) }, m,, € RP,
SoftMax_Aggs(-) is a generalized mean-max aggregation function, where SoftMax Aggs(-) =

2Mean(-) denotes the arithmetic mean.



Under review as a conference paper at ICLR 2021

Z exp(fmy.y,)
u€N (v) ZieN(q)) exp(fmy;)
ture.

- my,. Here, B is a continuous variable called an inverse tempera-

The SoftMax function with a temperature has been studied in many machine learning areas, e.g.
Energy-Based Learning (LeCun et al., [2006), Knowledge Distillation (Hinton et al., 2015)) and Re-
inforcement Learning (Gao & Pavel,2017). Here, for low inverse temperatures 3, SoftMax_Agg 3 ()
behaves like a mean aggregation. For high inverse temperatures, it approaches a max aggregation.
Formally, limg_,¢SoftMax_Agg;(-) = Mean(-) and limg_, .. SoftMax_Agg,(-) = Max(-). It can be
regarded as a weighted summation that depends on the inverse temperature /3 and the values of the
elements themselves. The full proof of Proposition @]is in the Appendix.

Proposition 5 (PowerMean Aggregation). Given any message set {my, |u € N(v)},
D . . . .
m,, € R, PowerMeanAggp(-) is a generalized mean-max aggregation function, where

PowerMean Agg, (") = (m D ueN ) m? )'/P. Here, p is a non-zero, continuous variable

denoting the p-th power.

Quasi-arithmetic mean (Kolmogorov & Castelnuovo, |1930) was proposed to unify the family of
mean functions. Power mean is one member of the Quasi-arithmetic mean family. It is a generalized
mean function that includes harmonic mean, geometric mean, arithmetic mean, and quadratic mean.
The main difference between Proposition 4] and [5] is that Proposition [5| only holds when message
features are all positive, i.e. m,, € RP. In particular, we have PowerMean_Agg,,_,(-) = Mean(:)
and lim,,_, .PowerMean_Agg (-) = Max(-). PowerMean_Agg,(-) becomes the harmonic or the
geometric mean aggregation when p = —1 or p — 0, respectively. See the Appendix for the proof.

To enhance expressive power according to the WL test (Xu et al.|[2019b)), we generalize the function
space to cover the sum aggregator by introducing another control variable on the degree of vertices.

Proposition 6 (Generalized Mean-Max-Sum Aggregation). Given any generalized mean-max ag-
gregation function {,(-), we can generalize the function to cover sum by combining it with the
degree of vertices. For instance, by introducing a variable y, we can compose a generalized mean-
max-sum aggregation function as ’N (v) ’y - Cz(+). We can observe that the function becomes a Sum
aggregation when (. (+) is a Mean aggregation and y = 1. By composing with SoftMax aggregation
and PowerMean aggregation, we obtain SoftMaxSum_Agg g ) (*) and PowerMeanSum_Agg ,, (")
aggregation functions, respectively.

4.2 GENERALIZED AGGREGATION NETWORKS (GEN)

Generalized Message Passing Layer. Based on the Propositions above, we construct a simple mes-
sage passing based GCN network that satisfies the conditions in Propositiondland[5] The key idea is
to keep all the message features to be positive, so that generalized mean-max aggregation functions
(SoftMax_Agg,(+) and PowerMean_Agg,(-)) can be applied. We define the message construction

function p( as follows:

m)

=pMmP, h) hY ) =ReLULY + 1(h{) ) - hY) ) + €, Yu e N(v) (4)
where ReLU(-) is a rectified linear unit (Nair & Hinton, [2010) that outputs values to be greater
or equal to zero, 1(-) is an indicator function being 1 when edge features exist otherwise 0, and
€ is a small positive constant chosen to be 10~7. As the conditions are satisfied, we can choose
the message aggregation function ¢V (-) to be either SoftMax_Agg(-), PowerMean Agg,(-),

SoftMaxSum_Agg 4 . (-), or PowerMeanSum_Agg,, ., (). As for the vertex update function 0N
we use a simple multi-layer perceptron, where ¢() = MLP(hg) + mg)).

Skip Connections and Normalization. Skip connections and normalization techniques are impor-
tant to train deep GCN:ss. |Li et al.| (2019b) propose residual GCN blocks with components following
the ordering: GraphConv — Normalization — ReLU — Addition. He et al.| (2016b) studied the
effect of ordering of ResNet components in CNNs, showing its importance. As recommended in
their paper, the output range of the residual function should be (—oo, +00). Activation functions
such as ReLLU before addition may impede the representational power of deep models. Therefore,
we adopt a pre-activation variant of residual connections for GCNs, which follows the ordering:



Under review as a conference paper at ICLR 2021

Normalization — ReLU — GraphConv — Addition. Empirically, we find that the pre-activation
version performs better. In our architectures, normalization methods such as BatchNorm (loffe &
Szegedy, 2015) or LayerNorm (Ba et al.,|2016) are applied to normalize vertex features.

5 EXPERIMENTS

We propose GENeralized Aggregation Networks (GEN) equipped with generalized message aggre-
gators. To evaluate the effectiveness of these aggregators, we perform extensive experiments on the
Open Graph Benchmark (OGB) (Hu et al.l [2020), which includes a diverse set of challenging and
large-scale tasks and datasets. We first conduct a comprehensive ablation study on the task of node
property prediction on ogbn-proteins and ogbn-arxiv datasets. Then, we apply our GEN framework
on the node property prediction dataset (ogbn-products), three graph property prediction datasets
(ogbg-molhiv, ogbg-molpcba and ogbg-ppa), and one link property prediction dataset (ogbl-collab).

5.1 EXPERIMENTAL SETUP

Baseline Models. The PlainGCN model stacks GCNs from 3 layers to 112 layers without skip
connections. Each GCN layer uses the same message passing operator as in GEN except the aggre-
gation function is replaced by Sum(-), Mean(-), or Max(-) aggregation. LayerNorm or BatchNorm
is used in every layer before the ReLU activation function. Similar to|L1 et al.|(2019b)), we use Res-
GCN layers by adding residual connections to PlainGCN following the ordering: GraphGonv —
Normalization — ReLU — Addition. We construct the pre-activation version of ResGCN by
changing the order of residual connections to Normalization — ReLU — GraphGonv — Addition.
We denote this as ResGCN+ to differentiate it from ResGCN. The effect of residual connections can
be found in Appendix [A]

ResGEN. The ResGEN models are designed using the message passing functions described in Sec-
tion #.2] The only difference between ResGEN and ResGCN+ is that generalized message ag-
gregators are used instead of Sum(-), Mean(-), or Max(-). For simplicity, we study generalized
mean-max aggregators (i.e. SoftMax_Agg,(-) and PowerMean_Agg (-)) which are parameterized
by only one scalar. To explore the characteristics of the generalized message aggregators, we in-
stantiate them with different hyper-parameters. Here, we freeze the values of S to 10", where
ne€{-3,-2,-1,0,1,2,3,4} and pto {—1,1073,1,2,3,4,5,10}.

DyResGEN. In contrast to ResGEN, DyResGEN learns variables 3, p or y dynamically for every
layer at every gradient descent step. By learning these variables, we avoid the need to painstakingly
search for the best hyper-parameters. In doing so, DyResGEN can learn aggregation functions that
adapt to the training process and the dataset. We study the potential of learning these variables for
our proposed aggregators: SoftMax_Agg(-), PowerMean_Agg, (-), SoftMaxSum_Agg 5 ,(-), and

PowerMeanSum_Agg,, . (")

Datasets. Traditional graph datasets have been shown limited and unable to provide reliable evalu-
ation and rigorous comparison among methods (Hu et al., [2020; [Dwivedi et al., |2020)). Reasons in-
clude their small-scale nature, non-negligible duplication or leakage rates, unrealistic data splits, etc.
Consequently, we conduct our experiments on the recently released datasets of Open Graph Bench-
mark (OGB) (Hu et al., 2020), which overcome the main drawbacks of commonly used datasets and
thus are much more realistic and challenging. OGB datasets cover a variety of real-world applica-
tions and span several important domains ranging from social and information networks to biological
networks, molecular graphs, and knowledge graphs. They also span a variety of prediction tasks at
the level of nodes, graphs, and links/edges. In this work, experiments are performed on three OGB
datasets for node property prediction, three OGB datasets for graph property prediction, and one
OGB dataset for link property prediction. We introduce these seven datasets briefly in Appendix
More detailed information about OGB datasets can be found in (Hu et al., [2020).

Implementation Details. We first perform ablation studies on the ogbn-proteins and ogbn-arxiv
datasets. Then, we evaluate our model on the other datasets and compare the performances with
state-of-the-art (SOTA) methods. Since the ogbn-proteins dataset is very dense and comparably
large, full-batch training is infeasible when considering very deep GCNs. We simply apply a random
partition to generate batches for both mini-batch training and test. We set the number of partitions to



Under review as a conference paper at ICLR 2021

10 for training and 5 for test, and we set the batch size to 1 subgraph. In comparison, the ogbn-arxiv
dataset is relatively small, so we conduct experiments via full batch training and test in this case.

5.2 RESULTS

Aggregators may Limit the Power of Deep GCNs. Although pre-activation residual connections
alleviate the effect of vanishing gradients and enable the training of deep GCNs, the choice of ag-
gregation function is crucial to performance. In Table[I] (a) ResGCN+, we study how conventional
aggregators (i.e. Sum, Mean and Max) behave on ogbn-proteins and ogbn-arxiv. We find that not
all of them benefit from network depth. The aggregators perform inconsistently among different
datasets and cause significant gaps in performance. For instance, the Max aggregator outperforms
the other two by a large margin (~ 1%) for all network depths on ogbn-proteins, but reaches unsat-
isfactory results (< 70%) and even becomes worse with depth increasing on ogbn-arxiv. The Mean
aggregator performs the worst on ogbn-proteins, but the best (72.31%) with 28 layers on ogbn-arxiv.

Table 1: Ablation studies of aggregation functions on the ogbn-proteins and ogbn-arxiv datasets

(a) ogbn-proteins ‘ ogbn-arxiv
Model #Layers Sum Mean Max  SoftMax ‘ Sum Mean Max  PowerMeanSum
3 82.67 79.69 8347 8342 7089 7117  69.59 72.12
2 7 83.00 80.84 84.65 8438l 7117  71.83  69.57 72.31
Q 14 83.33 8225 8516 8529 7150 72.03 68.97 72.14
% 28 83.98 8328 8526 855l 7132 7231 6691 72.40
~ 56 84.48 8352 86.05 86.12 - - - -
112 85.33 8340 8594  86.15 - - - -
avg. 83.80 82.16 8509 8522 7122 7183 68.76 72.24
(b) ogbn-proteins SoftMax
Model #Layers 1073 1072 1071 1 10 102 103 10*
3 79.69 7890 77.80  81.69  83.24 83.16 83.07 83.21
5 7 80.81  80.71  79.83 83.85 83.98 84.66  84.60 84.68
(G) 14 82.44  82.14 8124 8439 8513 8496  84.99 84.85
E 28 83.13 8247  81.78 85.08 85.07 8535  85.80 85.82
56 83.62 8345 8286 8576 8597 8620 8598 86.19
112 83.50 83.61 8316 8577 86.38 8627 86.27 86.30
avg. 8220  81.88  8I.11 8442 8496 8510  85.12 85.17
(c) ogbn-proteins PowerMean
Model #Layers -1 1073 1 2 3 4 5 10
3 8234 81.06 7852  80.23 82.01 81.61  82.89 82.89
% 7 8336  81.08 81.02 8349  83.67 84.82 84.54 84.50
(@) 14 83.73  80.64 8245 84.15 8448 84.64  85.00 85.08
é 28 84.56  80.92  82.58 84.16 8520 8587 85.34 85.76
56 84.46 8093 8349 8504 8568 8590 85.64 85.74
112 85.13  81.10 8392 8547 85.70  86.01  86.09 86.31
avg. 8393  80.95 82.00 8376 8446 84.81 84.92 85.05
(d)  ogbn-proteins SoftMax | SoftMaxSum | PowerMean | PowerMeanSum
Model #Layers Fixed Learned | Fixed Learned | Fixed Learned | Fixed Learned
3 81.69 83.42 83.06 83.42 78.52 82.25 81.70 83.71
% 7 83.85 84.81 84.71 84.63 81.02 84.14 83.23 84.62
G 14 84.39 85.29 84.77 85.03 82.45 85.04 83.96 84.83
é 28 85.08 85.51 85.64 85.66 82.58 85.04 84.59 85.96
> 56 85.76  86.12  85.63 8550 8349 8527 8537 85.81
A 112 85.77 86.15 86.11 86.13 83.92 85.60 85.71 86.01
avg. 84.42 85.22 84.99 85.06 82.00 84.56 84.09 85.16

Exploring Generalized Message Aggregators. In Table [I| (b) & (c) ResGEN, we examine
SoftMax_Agg(+) and PowerMean_Agg (-) aggregators on ogbn-proteins by measuring test ROC-
AUC. Since both are generalized mean-max aggregations, they can theoretically perform at least as
good as Mean and Max through interpolation. For SoftMax_Agg, when 3 = 1073, it performs sim-
ilarly to Mean aggregation (82.20% vs. 82.16%). As 3 increases to 102, it achieves slightly better



Under review as a conference paper at ICLR 2021

performance than Max aggregation. Remarkably, 112-layer ResGEN with SoftMax_Agg reaches
86.38% and 86.30% ROC-AUC when 3 = 10 and 8 = 10* respectively. For PowerMean_Agg,
we find that it reaches almost the same ROC-AUC as Mean when p = 1 (arithmetic mean). We
also observe that all other orders of mean except p = 10~ (akin to geometric mean) achieve better
performance than the arithmetic mean. PowerMean_Agg with p = 10 reaches the best ROC-AUC at
86.31% with 112 layers. However, due to some numerical issues in PyTorch (Paszke et al., 2019),
we are not able to use larger p. These results empirically validate the discussion on existence of
better generalized mean-max aggregators beyond mean and max in Section

Learning Dynamic Aggregators. Trying out every possible aggregator or searching hyper-
parameters is computationally expensive. Therefore, we propose DyResGEN to explore the potential
of learning dynamic aggregators by learning the parameters (3, p, and even y within GEN. Table[T](d)
DyResGEN reports the results of learning 3, 5&y, p and p&y for SoftMax_Agg, SoftMaxSum_Agg,
PowerMean_Agg and PowerMeanSum_Agg respectively. In practice, y is bounded from O to 1 by
a sigmoid function. In all experiments, we initialize the values of 3, p to 1 and y to 0.5 at the
beginning of training. In order to show the improvement of the learning process, we also ablate
experiments with fixed initial values. We denote aggregators with fixed initial values as Fixed and
learned aggregators as Learned. We see that learning these variables consistently boosts the av-
erage performances of all the learned aggregators compared to the fixed initialized counterparts,
which shows the effectiveness of learning adaptive aggregators. In particular, when [ is learned,
DyResGEN-SoftMax achieves 86.15% at 112 layers. We observe that DyResGEN-SoftMax out-
performs the best ResGEN-SoftMax (3 = 10%) in terms of the average performance (85.22% vs.
85.17%). Interesting, we find generalizing the sum aggregation with PowerMean significantly im-
prove the average performance from 84.56% to 85.16%. We also put the best learned generalizing
message aggregators in Table[T|(a) ResGCN+ with gray color for a convenient comparison.

Comparison with SOTA. We apply our GCN models to six other OGB datasets and compare re-
sults with the published SOTA method posted on OGB Learderboard at the time of this submission
(See Table EI) The methods include Deepwalk (Perozzi et al.l 2014), GCN (Kipf & Welling}, 2016)),
GraphSAGE (Hamilton et al., 2017), GIN (Xu et al., 2019b), GIN or GCN with virtual nodes,
JKNet (Xu et al.,2019a), GaAN (Zhang et al.,[2018)), GatedGCN (Bresson & Laurent, 2018)), GAT
(Velickovic et al., |2018)), HIMP (Fey et al., [2020), GCNII (Ming Chen et al.l 2020), DAGNN (Liu
et al., 2020). The provided results on each dataset are obtained by averaging the results from 10
independent runs. It is clear that our proposed GCN models outperform SOTA on all four datasets.
In two of these datasets (ogbn-proteins and ogbg-ppa), the improvement is substantial. The imple-
mentation details and more experimental results can be found in the Appendix.

Table 2: Comparisons with SOTA.* denotes that virtual nodes are used.

GraphSAGE GCN GaAN Ours
ogbn-proteins | 77.68 £ 0.20 72.51 £0.35 78.03 +0.73 86.16 + 0.16
GraphSAGE GCN GaAN GCNII JKNet DAGNN
ogbn-arxiv 71.49+£0.27 71.74+£029 71.97+024 72.74+0.16 72.19+021 72.09+025| 72.32+0.27
GraphSAGE GCN ClusterGCN  GraphSAINT GAT
ogbn-products | 78.29 +0.16 75.64 +0.21 7897 +0.33 80.27 +0.26 79.45 4 0.59 81.64 + 0.30
GIN GCN GIN* GCN* HIMP
ogbg-molhiv | 75.58 140 76.06 £0.97 77.07+£1.49 7599 +£1.19 78.80+ 0.82 78.87 + 1.24
ogbg-molpcba | 22.66 + 0.28 20.20 +0.24 27.03 £0.23 24.24 + 0.34 27.81 + 0.38*
ogbg-ppa 68.92+1.00 6839 +0.84 7037 +1.07 68.57+0.61 77.12+0.71 7712 + 0.71
GraphSAGE GCN DeepWalk
ogbl-collab | 48.10 + 0.81 44.75 +1.07 50.37 £+ 0.34 52.73 + 0.47

6 CONCLUSION

In this work, we proposed a differentiable generalized message aggregation function, which de-
fines a family of permutation invariant functions. We identify the choice of aggregation functions
is crucial to the performance of deep GCNs. Experiments show that existence of better generalized
aggregators beyond mean, max and sum. Empirically, we show the effectiveness of training our pro-
posed deep GEN models, whereby we set a new SOTA on several datasets of the challenging Open
Graph Benchmark. We believe the definition of such a generalized aggregation function provides a
new view to the design of aggregation functions in GCNS.



Under review as a conference paper at ICLR 2021

REFERENCES

I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-3D-Semantic Data for Indoor Scene
Understanding. ArXiv e-prints, February 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Yoshua Bengio and Yann LeCun (eds.), 3rd International
Conference on Learning Representations, 2015.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Xavier Bresson and Thomas Laurent. An experimental study of neural networks for variable graphs.
In International Conference on Learning Representations Workshop, 2018.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18—42,
2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International Conference on Machine Learning, pp. 941-949, 2018a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgen: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018b.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. arXiv preprint arXiv:2007.02133, 2020.

Wei-Lin Chiang, Xuanging Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257-266, 2019.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Velickovi¢. Principal
neighbourhood aggregation for graph nets. arXiv preprint arXiv:2004.05718, 2020.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp- 3844-3852, 2016.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

M. Fey, J. G. Yuen, and F. Weichert. Hierarchical inter-message passing for learning on molecular
graphs. In ICML Graph Representation Learning and Beyond (GRL+) Workhop, 2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, 2017.

Bolin Gao and Lacra Pavel. On the properties of the softmax function with application in game
theory and reinforcement learning. arXiv preprint arXiv:1704.00805, 2017.



Under review as a conference paper at ICLR 2021

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1416-1424, 2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning, 2017.

Shunwang Gong, Mehdi Bahri, Michael M Bronstein, and Stefanos Zafeiriou. Geometrically prin-
cipled connections in graph neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11415-11424, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp- 855-864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024-1034, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630-645. Springer, 2016b.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700—4708, 2017.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In
Advances in Neural Information Processing Systems, pp. 7090-7099, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations (ICLR), 2019.

Andreui Nikolaevich Kolmogorov and Guido Castelnuovo. Sur la notion de la moyenne. G. Bardi,
tip. della R. Accad. dei Lincei, 1930.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph con-

volutional neural networks with complex rational spectral filters. IEEE Transactions on Signal
Processing, 67(1):97-109, 2018.

10



Under review as a conference paper at ICLR 2021

Guohao Li, Matthias Miiller, Guocheng Qian, Itzel C. Delgadillo, Abdulellah Abualshour, Ali K.
Thabet, and Bernard Ghanem. Deepgcns: Making gens go as deep as cnns.  CoRR,
abs/1910.06849, 2019a.

Guohao Li, Matthias Miiller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gens go as deep as
cnns? In The IEEE International Conference on Computer Vision (ICCV), 2019b.

Q. Li, Z. Han, and X.-M. Wu. Deeper Insights into Graph Convolutional Networks for Semi-
Supervised Learning. In The Thirty-Second AAAI Conference on Artificial Intelligence. AAAL,
2018.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional neural
networks. In Thirty-second AAAI conference on artificial intelligence, 2018.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 2020.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems, pp. 2156-2167, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2019b.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. arXiv preprint arXiv:1901.09342, 2019c.

Zhewei Wei Ming Chen, Bolin Ding Zengfeng Huang, and Yaliang Li. Simple and deep graph
convolutional networks. 2020.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115—
5124, 2017a.

Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix completion with recur-
rent multi-graph neural networks. In Advances in Neural Information Processing Systems, pp.
3697-3707, 2017b.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807-814,
2010.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International conference on machine learning, pp. 2014-2023, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing systems, pp.
8026-8037, 2019.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701-710, 2014.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652—-660, 2017.

Afshin Rahimi, Trevor Cohn, and Tim Baldwin. Semi-supervised user geolocation via graph con-
volutional networks. 04 2018.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2020.

11



Under review as a conference paper at ICLR 2021

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein, and Fed-
erico Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198,
2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61-80, 2008.

Lei Tang and Huan Liu. Relational learning via latent social dimensions. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 817-826.
ACM, 20009.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical com-
pound retrieval and classification. Knowledge and Information Systems, 14(3):347-375, 2008.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. arXiv preprint arXiv:1801.07829, 2018.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 38(5):
1-12, 2019.

Boris Weisfeiler and Andrei A Lehman. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12-16, 1968.

Felix Wu, Amauri H Souza Jr, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q Weinberger.
Simplifying graph convolutional networks. In /ICML, 2019.

Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. Graph wavelet neural network.
In International Conference on Learning Representations, 2019a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Proceedings
of the 35th International Conference on Machine Learning, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019b.

Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning-Volume 48, pp. 40-48, 2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974—
983. ACM, 2018.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR,
2016.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock Richard
C. Wilson and William A. P. Smith (eds.), Proceedings of the British Machine Vision Conference
(BMVC), pp. 87.1-87.12. BMVA Press, September 2016. ISBN 1-901725-59-6. doi: 10.5244/C.
30.87. URL https://dx.doi.org/10.5244/C.30.87.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In Advances in neural information processing systems, pp. 3391—
3401, 2017.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph sampling based inductive learning method. In International Conference on Learn-
ing Representations, 2020.

12


https://dx.doi.org/10.5244/C.30.87

Under review as a conference paper at ICLR 2021

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan: Gated
attention networks for learning on large and spatiotemporal graphs. In Proceedings of the Thirty-
Fourth Conference on Uncertainty in Artificial Intelligence, pp. 339-349, 2018.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. International
Conference on Learning Representations, 2020.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):1190-1198, 2017.

13



Under review as a conference paper at ICLR 2021

A DISCUSSION ON NETWORK DEPTH

Depth & Residual connections. Experiments in Figure [2| show that residual connections signif-
icantly improve the training dynamic of deep GCN models. PlainGCN without skip connections
suffers from vanishing gradient and does not gain any improvement from increasing depth. More
prominent gains can be observed in ResGCN+ compared to ResGCN as models go deeper. No-
tably, ResGCN+ reaches smallest training loss with 112 layers.This validates the effectiveness of
pre-activation residual connections.

=3
'S
S
o
a
S
=3
N
o

e
N
o

e
N
5]
o
N
=)
o
N
=)

training loss-ResGCN+
o o
W w
S G
o o
w W
S G
o o
W W
S G
-
SR
-\

~

training loss-ResGCN
o
2 e
G
training loss-PlainGCN
o
e e
G

o
h
G
o
o
a

0.15

o
o
o

500 1000 1500 2000 0.10 500 1000 1500 2000 0.10 500 1000 1500 2000

training epochs training epochs training epochs

Figure 2: Training loss of PlainGCN, ResGCN and ResGCN+

Depth & Normalization. In our experiments, we find normalization techniques play a crucial role in
training deep GCNs. Without normalization, the training of deep network may suffer from vanishing
gradient or exploding gradient problem. We apply normalization methods such as BatchNorm (loffe
& Szegedy, 2015) or LayerNorm (Ba et al., [2016)) to normalize vertex features. In addition to this,
we also propose a message normalization (MsgNorm) layer to normalize features on the message
level, which can significantly boost the performance of networks with under-performing aggregation

functions. The main idea of MsgNorm is to normalize the features of the aggregated message m’ €
RP by combining them with other features during the vertex update phase. Suppose we apply the
MsgNorm to a simple vertex update function MLP(hq(Jl) +mg) ). The vertex update function becomes
as follows:

O]
b+ = 6O (b, m{") = MLP(L{ + 5 - 0|2 - =) 5)

l
[m{” |,

where MLP(-) is a multi-layer perceptron and s is a learnable scaling factor. The aggregated message

mgl) is first normalized by its {5 norm and then scaled by the ¢ norm of hg) by a factor of s. In
practice, we set the scaling factor s to be a learnable scalar with an initialized value of 1. Note
that when s = ||m£,l) Il2/ ||h§,l) |l2, the vertex update function reduces to the original form. In our
experiment, we find MsgNorm boosts performance of under-performing aggregation functions such
as mean and PowerMean on ogbn-proteins more than 1%. However, we do not see any significant
gain on well-performing aggregation functions such as SoftMax, SoftMaxSum and PowerMeanSum.
We leave this for our future investigation.

Depth & Width. In order to gain a larger representational capacity, we can either increase depth or
width of networks. In this work, we focus on the depth instead of the width since it is more challeng-
ing to train a deeper graph neural network compared to a wider one because of vanishing gradient
(Li et al.} 2019b)) and over-smoothing (L1 et al., 2018)) problems. Deeper neural networks can learn
to extract higher-level features. However, given a certain budget of parameters and computation, a
well-designed wider networks can be more accurate and efficient than a deep networks. The trade-
off of depth and width have already studied in CNNs (Zagoruyko & Komodakis, [2016). We believe
that it is also important to study the width of GCNSs to reduce the computational overhead.

Depth & Receptive Flied & Diameter. There are lots of discussion on whether depth can help
for graph neural networks. In our experiments, we find that graph neural networks can gain better

14



Under review as a conference paper at ICLR 2021

performance with proper skip connections, normalization and aggregation functions. A interesting
discussion by |Rossi et al.| (2020) argues that the receptive field of graph neural networks with a
few layers can cover the entire graph since most of graph data are ‘small-world’ graphs with small
diameter. Depth may be harmful for graph neural networks. In our experiment, we observe a
different phenomenon. For instance, ogbn-proteins dataset with a relatively small diameter as 9 can
gain improvement with more than 100 layers. However, what is the optimal depth and for what
certain kind of graphs depth help more are still mysteries.

B PROOF FOR PROPOSITION [4]

Proof. Suppose we have N = |/\/'(v)’ We denote the message set as M = {my,..., my },
m; € RP. We first show for any message set, SoftMax_Aggs(M) = Zjvzl % - m,
i=1 X] m;
satisfies Definition Let p denotes a permutation on the message set M. V3 € R, for any
pxM = {mpq),...,m,py }, it is obvious that ngz()l) exp(fm;) = Zfil exp(fm;) and
ngzl) exp(fm;) - m; = Z;\;l exp(fm;) - m; since the Sum function is a permutation in-
variant function. Thus, we have SoftMax_Agg;(M) = SoftMax_Agg;(p x M). SoftMax_Agg,(-)
satisfies Definition 2.

We now prove SoftMax_Agg(-) satisfies Definition [3} i.e. limg_,oSoftMax_Aggs(-) = Mean(-)
and limg_, . SoftMax_Agg;(-) = Max(-). For the k-th dimension, we have input message features

(k) )y () (k) gy N en(BmyY) (k)
as {my ,...,my }. limg_oSoftMax_Aggs({mi",...my" }) =375, m m;
Z;\[:1 - m;k) =& ZjN:l -m§-k) = Mean({m{",...,m{" }). Suppose we have ¢ elements that
are equal to the maximum value m*. When 8 — oo, we have:

eXp(ﬂm§k)) B 1 _J1/c for mgk) =m* ©)
Zi.vzl exp(ﬂmgk)) Zivzl exp(ﬂ(mgk) - m§k))) 0 for mgk) <m*
We obtain limg_, o SoftMax_Agg;({ mgk), ceny mg\lf) Ho o= ¢ - % - m* = m* =

Max({ mgk), ey mg\];) }). Tt is obvious that the conclusions above generalize to all the dimensions.
Therefore, SoftMax-Agg (+) is a generalized mean-max aggregation function. O

C PROOF FOR PROPOSITION

Proof. Suppose we have N = ]N(v)] We denote the message set as M = {mj,....my },

m; € R?. We have PowerMean Agg (M) = (% Zfil m?)/?, p # 0. Clearly, for any per-

mutation p x M = {m),...,m,y) }, PowerMean Agg (p x M) = PowerMean Agg, (M).
Hence, PowerMean Agg, (-) satisfies Definition Then we prove PowerMean Agg, (-) satis-
fies Definition 3| i.e. PowerMean Agg,_,(-) = Mean(-) and lim,_, . PowerMean_Agg (-)

Max(-). For the k-th dimension, we have input message features as {mgk),...,mg\?)}.

PowerMeanAggpzl({mgk), ...,mg\lf) D =% Zi\; ~m§k) = Mean({ mgk), ...7m§\],€) }). Assume

we have c elements that are equal to the maximum value m*. When p — oo, we have:

N N (k)
. 1 1, . m;
limy,, oPowerMean_Agg,,({ mgk), ...,mg\];) b= (N Z(mgk))p)l/p - (N(m )P Z(—m* )PyL/P
i—1 i=1
(7)
_ (%(m*)p)l/p m>0 o« (8)

We have lim,,, .oPowerMean_Agg , ({ mgk), ...7m§\];) b =m* = Max({m(lk), ...,mg\’f) }). The
conclusions above hold for all the dimensions. Thus, PowerMean_Agg (-) is a generalized mean-
max aggregation function. [

15



Under review as a conference paper at ICLR 2021

D ANALYSIS OF DYRESGEN

We provide more analysis and some interesting findings of DyResGEN in this section. The
experimental results of DyResGEN in this section are obtained on ogbn-proteins dataset. We
visualize the learning dynamic of learnable parameters (3, p and s of 7-layer DyResGEN
with SoftMaxSum_Agg 4 . (-) aggregator and PowerMeanSum_Agg ,, . (-) aggregator respectively.
Learnable parameters § and p are initialized as 1 and y are initialized as 0.5. Dropout with a rate
of 0.1 is used for each layer to prevent over-fitting. The learning curves of learnable parameters of
SoftMaxSum_Agg s (+) are shown in Figure We observe that both 8 and y change dynamically
during the training. The /5 and y parameters of some layers tend to be stable after 1000 training
epochs. Exceptionally, the 1-st layer learns a /3 increasingly from 1 to 3.3 which learns a smaller
y ~ 0.1 which make SoftMaxSum_Agg 5 (+) behave more like a Max aggregation at the 1-th layer.
PowerMean_Agg () aggregator also demonstrates a similar phenomena on learning y in Figure
The learned y of the 1-st layer and the last layer trends to be smaller than the initial value.

L-1
L-16
35 — 32
— L-48
3.0 0.7 L-64
— L-80
, — 196
5 0.6 — 112
¢ > Y ——]|
€20 £
2 Qo5
© ©
2 2
515 g
" (%]
0.4
1.0
0.3
0.5
250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
training epochs training epochs
Figure 3: Learning curves of 112-layer DyResGEN with SoftMaxSum_Agg ().
L-1
L-16
— 32
18 08 — L48
L-64
1.6 — L-80
0.7 L-96
ol4 > — L112
: :
012 a
5 0.6
[ [
210 =
[ [
g g
0.8 @ 0.5
0.6
0.4
0.4
250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
training epochs training epochs

Figure 4: Learning curves of 112-layer DyResGEN with PowerMeanSumAggp(-).

E MORE DETAILS ON THE EXPERIMENTS

In this section, we provide more experimental details on the OGB datasets (ogbn-proteins, ogbn-
arxiv, ogbn-products, ogbg-molhiv, ogbg-molpcba, ogbg-ppa and ogbl-collab).

16



Under review as a conference paper at ICLR 2021

E.1 DETAILS OF DATASETS

Node Property Prediction. Three chosen datasets are dealing with protein-protein association
networks (ogbn-proteins), paper citation networks (ogbn-arxiv) and co-purchasing network (ogbn-
products). Ogbn-proteins is an undirected, weighted, and typed (according to species) graph con-
taining 132, 534 nodes and 39, 561,252 edges. All edges come with 8-dimensional features and
each node has an 8-dimensional one-hot feature indicating which species the corresponding protein
comes from. Ogbn-arxiv consists of 169, 343 nodes and 1, 166, 243 directed edges. Each node is
an arxiv paper represented by a 128-dimensional features and each directed edge indicates the ci-
tation direction. As an Amazon products co-purchasing network, ogbn-products is an undirected
and unweighted graph which is formed by 2,449,029 nodes and 61, 859, 140 edges where nodes
are products sold in Amazon that are represented by 100-dimensional features, and edges indicate
that the connected nodes are co-purchased. For ogbn-proteins, the prediction task is multi-label and
ROC-AUC is used as the evaluation metric. For ogbn-arxiv and ogbn-products, their prediction tasks
are both multi-class and evaluated by accuracy.

Graph Property Prediction. Here, we consider three datasets, two of which deals with molecular
graphs (ogbg-molhiv and ogbg-molpcba) and the other is biological subgraphs (ogbg-ppa). Ogbg-
molhiv has 41, 127 subgraphs and ogbg-molpcba is much bigger which contains 437, 929 subgraphs.
For ogbg-ppa, it consists of 158, 100 subgraphs and each subgraph is much denser in comparison to
the other two datasets. The tasks of ogbg-molhiv and ogbg-molpcba are both binary classification
while the prediction task of ogbg-ppa is multi-class classification. The former two are evaluated by
the ROC-AUC and Average Precision (AP) metric separately. Accuracy is used to assess ogbg-ppa.

Link Property Prediction. We select ogbl-collab, an author collaboration network consisting of
235, 868 nodes and 1, 285, 465 edges for link prediction task. Each node in the graph comes with a
128-dimensional feature vector representing an author and edges indicate the collaboration between
authors. The task is to predict the future author collaboration relationships given the past collab-
orations. Each true collaboration is ranked among a set of 100,000 randomly-sampled negative
collaborations, and the ratio of positive edges that are ranked at K -place or above (Hits@k, k is 50
here) is counted as the evaluation metric.

E.2 DETAILS OF RESULTS AND IMPLEMENTATION

For a fair comparison with SOTA methods, we provide results on each dataset by averaging the re-
sults from 10 independent runs. We provide the details of the model configuration on each dataset.
All models are implemented based on PyTorch Geometric (Fey & Lenssen, 2019) and all experi-
ments are performed on a single NVIDIA V100 32GB.

ogbn-proteins. For both ogbn-proteins and ogbg-ppa, there is no node feature provided. We ini-
tialize the features of nodes through aggregating the features of their connected edges by a Sum
aggregation, i.e. X; = ) JEN() €1 where x; denotes the initialized node features and e; ; denotes

the input edge features. We train a 112-layer DyResGEN with SoftMaxAggﬁ(-) aggregator. A
hidden channel size of 64 is used. A layer normalization and a dropout with a rate of 0.1 are used
for each layer. We train the model for 2000 epochs with an Adam optimizer with a learning rate of
0.001.

ogbn-arxiv. We train a 28-layer ResGEN model with SoftMax_Agg(-) aggregator where 3 is fixed
as 0.1. We convert this directed graph into undirected and add self-loop. Full batch training and test
are applied. A batch normalization is used for each layer. The hidden channel size is 128. We apply
a dropout with a rate of 0.5 for each layer. An Adam optimizer with a learning rate of 0.001 is used
to train the model for 2000 epochs.

ogbn-products. A 14-layer ResGEN model with SoftMax_Agg(-) aggregator where f3 is fixed as
0.1 is trained for ogbn-products with self-loop added. We apply mini-batch training scenario by
randomly partitioning the graph into 10 subgraphs and do full-batch test. For each layer, a batch
normalization is used. The hidden channel size is 128. We apply a dropout with a rate of 0.5 for
each layer. An Adam optimizer with a learning rate of 0.001 is used to train the model for 1000
epochs.

17



Under review as a conference paper at ICLR 2021

ogbg-molhiv. We train a 7-layer DyResGEN model with SoftMax_Agg(-) aggregator where 3 is
learnable. A batch normalization is used for each layer. We set the hidden channel size as 256. A
dropout with a rate of 0.2 is used for each layer. An Adam optimizer with a learning rate of 0.0001
are used to train the model for 300 epochs.

ogbg-molpcba. A 14-layer ResGEN model with SoftMaXAggﬁ(-) aggregator where [ is fixed as
0.1 is trained. In addition, the original model performs message passing over augmented graphs
with virtual nodes added. A batch normalization is used for each layer. We set the hidden channel
size as 256. A dropout with a rate of 0.5 is used for each layer. An Adam optimizer with a learning
rate of 0.01 are used to train the model for 300 epochs.

ogbg-ppa. As mentioned, we initialize the node features via a Sum aggregation. We train a 28-
layer ResGEN model with SoftMax_Agg B( -) aggregator where 3 is fixed as 0.01. We apply a layer
normalization for each layer. The hidden channel size is set as 128. A dropout with a rate of 0.5 is
used for each layer. We use an Adam optimizer with a learning rate of 0.01 to train the model for
200 epochs.

ogbl-collab. The whole model used to train on link prediction task consists of two parts: a 7-
layer DyResGEN model with SoftMax_Agg B() aggregator where (3 is learnable and a 3-layer link
predictor model. A batch normalization is used for each layer in DyResGEN model. We set the
hidden channel size as 128. An Adam optimizer with a learning rate of 0.001 are used to train the
model for 400 epochs.

F MORE FUTURE WORKS

We believe generalized aggregation functions will open a new view for designing aggregation func-
tions in graph neural networks. Here we discuss some more potential directions as follows:

e Can we learn the parameters of generalized aggregation functions with a mete-learning
method such as MAML (Finn et al.| 2017)?

e What is the expressive power border of generalized mean-max-sum aggregation functions
with respect to WeisfeilerLehman graph isomorphism test (Xu et al.| 2019b)?

e Can we design Principal Neighbourhood Aggregation (PNA) (Corso et al., 2020) by com-
bining multiple learnable aggregators from generalized aggregation functions?

18



	Introduction
	Related Work
	Representation Learning on Graphs
	Beyond Mean, Max, and Sum Aggregation functions
	Generalized Message Aggregation Functions
	GENeralized Aggregation Networks (GEN)

	Experiments
	Experimental Setup
	Results

	Conclusion
	Discussion on Network Depth
	Proof for Proposition 4
	Proof for Proposition 5
	Analysis of DyResGEN
	More Details on the Experiments
	Details of Datasets
	Details of Results and Implementation

	More Future Works

