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Abstract

Inferring causal structure from data is a challenging task of fundamental importance
in science. Often, observational data alone is not enough to uniquely identify a
system’s causal structure. The use of interventional data can address this issue,
however, acquiring these samples typically demands a considerable investment of
time and physical or financial resources. In this work, we are concerned with the
acquisition of interventional data in a targeted manner to minimize the number of
required experiments. We propose a novel Gradient-based Intervention Targeting
method, abbreviated GIT, that ’trusts’ the gradient estimator of a gradient-based
causal discovery framework to provide signals for the intervention targeting func-
tion. We provide extensive experiments in simulated and real-world datasets and
demonstrate that GIT performs on par with competitive baselines, surpassing them
in the low-data regime.

1 Introduction

Estimating causal structure from data, commonly known as causal discovery, is central to the
progress of science [Pearl, 2009]. Real-world systems can often be explained as a composition of
smaller parts connected by causal relationships. Understanding this underlying structure is essential
for making accurate predictions about the system’s behavior after a perturbation or treatment has
been applied [Peters et al., 2016]. Causal discovery methods have been successfully deployed in
various fields, such as biology [Sachs et al., 2005, Triantafillou et al., 2017, Glymour et al., 2019],
medicine [Shen et al., 2020, Castro et al., 2020, Wu et al., 2022], earth system science [Ebert-Uphoff
and Deng, 2012], or neuroscience [Sanchez-Romero et al., 2019]. In machine learning, causal
decomposition has been shown to enable sample-efficient learning and fast adaptation to distribution
shifts by only updating a subset of parameters [Bengio et al., 2020, Scherrer et al., 2022].

Observational data, that is the data obtained directly from the unperturbed system, are, in general,
insufficient to identify a system’s causal structure and only allow to determine the structure up to
the so-called Markov Equivalence Class [Spirtes et al., 2000a, Peters et al., 2017]. To overcome this
limited identifiability problem, causal discovery algorithms commonly leverage interventional data
[Hauser and Bühlmann, 2012, Brouillard et al., 2020, Ke et al., 2019], which are acquired by gathering
data from an experiment perturbing a part of the system [Spirtes et al., 2000b, Pearl, 2009]. The field
of experimental design [Lindley, 1956, Murphy, 2001, Tong and Koller, 2001] is concerned with the
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acquisition of interventional data in a targeted manner to minimize the number of required experiments,
which often requires spending a significant amount of time and physical or financial resources.
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Figure 1: Overview of GIT’s usage in a
gradient-based causal discovery framework.
The framework infers a posterior distribu-
tion over graphs from observational and in-
terventional data (denoted as Dobs and Dint)
through gradient-based optimization. The
distribution over graphs and the gradient es-
timator ∇L(·) are then used by GIT in order
to score the intervention targets based on the
magnitude of the estimated gradients. The
intervention target with the highest score is
then selected, upon which the intervention is
performed. New interventional data Dnew

int

are then collected and the procedure is re-
peated.

In this work, we introduce a simple and effective experi-
mental design algorithm called Gradient-based Interven-
tion Targeting, or GIT for short, see Figure 1. GIT can be
easily combined with various gradient-based causal dis-
covery frameworks to provide an efficient active selection
of intervention targets. Our method, which is grounded
in the ideas from active and curriculum learning [Settles
et al., 2007, Graves et al., 2017, Ash et al., 2020], collects
interventional data that induce the biggest gradient on
parameters of causal structure. GIT leverages the gradient-
based nature of the underlying causal discovery framework
and achieves better performance than the contemporary
baselines.

Our contributions include:

• We introduce GIT, which is to our knowledge,
the first gradient-based intervention targeting
method. Due to it’s plug-and-play nature, our
method can be easily combined with various
gradient-based causal discovery frameworks.

• Our extensive experiments on synthetic and real-
world graphs demonstrate that GIT effectively
reduces the amount of interventional data needed
to discover the causal structure, and performs
well in the low-data regime. This makes GIT a
compelling option when access to interventional
data is limited.

• We provide a theoretical justification of GIT and
a suite of analyses introspecting its behavior and
performance.

2 Related Work

Experimental Design / Intervention Design. There are two major classes of methods for selecting
optimal interventions for causal discovery. One class of approaches is based on graph-theoretical
properties. Typically, a completed partially directed acyclic graph (CPDAG), describing an equiv-
alence class of DAGs, is first specified. Then, either substructures, such as cliques or trees, are
investigated and used to inform decisions [He and Geng, 2008, Eberhardt, 2008, Squires et al.,
2020, Greenewald et al., 2019], or edges of a proposed graph are iteratively refined until reaching a
prescribed budget [Ghassami et al., 2018, 2019, Kocaoglu et al., 2017, Lindgren et al., 2018]. One
limitation of graph-theoretical approaches is that misspecification of the CPDAG at the beginning
of the process can deteriorate the final solution. Another class of methods is based on Bayesian
Optimal Experiment Design [Lindley, 1956], which aims to select interventions with the highest
mutual information (MI) between the observations and model parameters. MI is approximated in
different ways: AIT [Scherrer et al., 2021] uses F-score inspired metric to implicitly approximate
MI; CBED [Tigas et al., 2022] incorporates BALD-like estimator [Houlsby et al., 2011]; ABCD
[Agrawal et al., 2019] uses estimator based on weighted importance sampling. Although theoretically
principled, computing mutual information suffers from approximation errors and model mismatches.
Therefore, in this work, we explore using scores based on different principles.

Gradient-based Causal Structure Learning. The appealing properties of neural networks have
sparked a flurry of gradient-based causal structure learning methods. The most prevalent approaches
are self-supervised formulations that optimize a data-dependent scoring metric (for instance,
penalized log-likelihood) to find the best causal graph G. Existing self-supervised methods that
are capable (or can be extended) of incorporating interventional data can be categorized based on
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the underlying optimization formulation into: (i) frameworks with a joint optimization objective
[Brouillard et al., 2020, Lorch et al., 2021, Cundy et al., 2021, Annadani et al., 2021, Geffner et al.,
2022, Deleu et al., 2022] and (ii) frameworks with alternating phases of optimization [Bengio et al.,
2020, Ke et al., 2019, Lippe et al., 2022]. While structural and functional parameters are optimized
under a joint objective in the former, the latter splits the optimization into two phases with separate
objectives. All the aforementioned methods allow evaluation of gradient with respect to the structural
and functional parameters with a batch of (real or hypothesized) interventional samples and can
serve as a base framework for our proposed gradient-based intervention acquisition strategy.

Gradients in Active and Curriculum Learning. Gradients have been successfully used as a
criterion to select data to process in previous work. Settles et al. [2007] introduce Expected Gradient
Length (EGL), computed under the current belief, as a criterion for active learning. A batch active
learning method introduced in Ash et al. [2020] also targets data points with high gradient magnitude,
including uncertainty and diversity in the decision. In the area of curriculum learning, Graves et al.
[2017] considers Gradient Prediction Gain (GPG), which is defined as the gradient’s magnitude and
is meant to be a proxy for expected learning progress. We take inspiration from those approaches
to propose a novel usage of the gradient criterion in the field of causal discovery.

3 Preliminaries
3.1 Structural Causal Models and Causal Structure Discovery

Causal relationships can be formalized using structural causal models (SCM) [Peters et al., 2017].
Each of the endogenous variables X = (X1, . . . , Xn) is expressed as a function Xi = fi(PAi, Ui)
of its direct causes PAi ⊆ X and an external independent noise Ui. It is assumed that the assignments
are acyclic and thus associated with a directed acyclic graph G = (V,E). The nodes V = {1, . . . , n}
represent the random variables and the edges correspond to the direct causes, that is (i, j) ∈ E if and
only if Xi ∈ PAj . The joint distribution factorizes according to

P(X1, . . . , Xn) =

n∏
i=1

P(Xi|PAi). (1)

Causal structure discovery aims to recover the ground truth graph G. The solution to this problem is
not uniquely defined when having access only to observational data from the ground truth distribution
P. Formally, it can be determined solely up to a Markov Equivalence Class (MEC) [Spirtes et al.,
2000b, Peters et al., 2017] without additional restrictive assumptions. To achieve identifiability, data
from additional experiments, called interventions, need to be gathered.

A single-node intervention on Xi replaces the conditional distribution P(Xi|PAi) with a new
distribution denoted as P̃(Xi|PAi), yielding a so-called interventional distribution:

Pi(X) ≜ P̃(Xi|PAi)
∏
j ̸=i

P(Xj |PAj). (2)

The node i ∈ V is called the intervention target. An intervention that removes the dependency of a
variable Xi on its parents, yielding P̃(Xi|PAi) = P̃(Xi), is called hard. In this paper, we use data
gathered by performing single-node interventions.

3.2 Online Causal Discovery and Targeting Methods

In this work, we consider an online causal discovery procedure outlined in Algorithm 1. Given a
causal discovery Algorithm A, the graph model φ0 is fitted using observational data Dobs. Following
that, batches of interventional samples are acquired iteratively and are used by the algorithm to
improve the belief about the causal structure (line 7). Intervention targets are chosen by intervention
targetting method M to optimize the overall performance, taking into account the current belief
about the graph structure encoded in φi−1. Below we discuss two popular choices for the method
M (with more details deferred to Appendix D).
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Algorithm 1 ONLINE CAUSAL DISCOVERY

input causal discovery algorithmA (e.g., ENCO, see
Sec 4.1), intervention targeting methodM, num-
ber of data acquisition rounds T , observational
dataset Dobs

output final parameters of graph model: φT

1: Dint ← ∅
2: Fit graph model φ0 with algorithm A on Dobs

3: for round i = 1, 2, . . . , T do
4: I ← generate intervention targets usingM
5: DI

int ← query for data from interventions I
6: Dint ← Dint ∪DI

int
7: Fit φi with algorithm A on Dint and Dobs

8: end for

Active Intervention Targeting (AIT) AIT
selects the intervention target according to
an F -test inspired criterion [Scherrer et al.,
2021]. It assumes that the causal discovery al-
gorithm A maintains a posterior distribution
over graphs (by design or using bootstrap-
ping). To select an intervention target, a set
of graphs is sampled from the posterior dis-
tribution, and interventional sample distribu-
tions are generated by intervening on each of
the sampled graphs. Each potential interven-
tion target is assigned a score by measuring
the discrepancy across the corresponding in-
terventional sample distributions.

CBED targeting Another approach to
causal discovery is approximating the posterior distribution over the possible causal DAGs. This
allows using the framework of Bayesian Optimal Experimental Design to select the most informative
intervention (experiment). The score of a new experiment is given by the mutual information (MI)
between the interventional data due to the experiment and the current belief about the graph structure.
Hence, such an approach requires estimating MI. For instance, Causal Bayesian Experimental Design
(CBED) [Tigas et al., 2022] uses a BALD-like estimator [Houlsby et al., 2011] to sample batches of
interventional targets.

4 GIT method

In this work, we present a new intervention targeting method GIT. GIT chooses intervention targets
that induce the largest update of the parameters modeling the causal structure. Inspired by hallucinated
gradients exploited by [Ash et al., 2020] we calculate gradients on imaginary data generated by the
causal model, to score possible interventions for real data acquisition.

To formally introduce our method, we first describe the requirements that need to be fulfilled by a
causal algorithm A in order to use it with GIT. We then explain how GIT works and follow up with a
discussion about causal assumptions and theoretical justification of our approach. Finally, in Section
4.1, we present a practical implementation of our method with a causal discovery algorithm A, using
a popular ENCO algorithm as an example.

Requirements for causal discovery algorithm A. The intervention targeting method GIT can be
coupled with any gradient-based causal discovery algorithm A (see Algorithm 1) that fulfills the
following conditions:

1. A models a distribution over the causal DAGs, denoted by a family of probability measures
Pρ(G) parameterized by ρ, that allows sampling.

2. For each causal graph G, A maintains a corresponding family of conditional distributions,
PG,ϕ(Xi|PA(i,G)), parametrized by ϕ, which induces the joint distribution PG,ϕ:

PG,ϕ(X) ≜
∏
i

PG,ϕ

(
Xi|PA(i,G)

)
. (3)

If G corresponds to the ground truth graph, PG,ϕ approximates the ground truth distribution
over X .

3. A gives access to its loss function L and gradient of the loss function∇ρL with respect to ρ.

These requirements are mildly restrictive and they are fulfilled by many gradient-based discovery
methods (for instance, ENCO [Lippe et al., 2022], SDI [Ke et al., 2019], DiBS [Lorch et al., 2021],
DCDI [Brouillard et al., 2020] or DECI [Geffner et al., 2022]).

Method. GIT scores each possible intervention target by calculating the expected magnitude of
the gradient using imaginary interventional data generated by the causal model. Gradient magnitude
serves as a proxy for the size of the update that can be induced on the parameters of the causal model.
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The method picks intervention that has the highest score. Formally, for a given intervention i ∈ V
we define its score si as follows:

si ≜ EX∼Pρ,ϕ,i
∥∇ρL(X)∥. (4)

Note that the expected value is computed with the interventional distribution coming from the model,
instead of ground truth, defined as:

Pρ,ϕ,i(X) ≜
∑
G

Pρ(G)PG,ϕ,i(X). (5)

The summation in equation 5 is taken over all DAGs and PG,ϕ,i corresponds to the joint distribution
from the model for graph G:

PG,ϕ,i(X) ≜ P̃(Xi|PAi)
∏
j ̸=i

PG,ϕ(Xj |PA(j,G)). (6)

The computational procedure of GIT’s intervention target selection is listed in Algorithm 2. The
expected value in si is approximated using the Monte-Carlo method, see line 4 of Algorithm 2. We
also use a version of Algorithm 2 where real interventional data are used in line 3 (instead of the
imaginary ones from the model) and call it GIT-privileged. GIT-privileged serves as a soft upper
bound in our analysis. Note however, that it is not practically useful, as collecting real interventional
data would require intervention on every node in the first place.

Algorithm 2 GIT’S INTERVENTION TARGET SELECTION

input parameters ρ of distribution over graphs, functional
parameters ϕ, loss function L, graph nodes V

output batch of intervention targets to execute: I
1: G ← sample a set of DAGs according to Pρ(G)
2: for intervention target i ∈ V do
3: DG,i ← sample batch of data according to PG,ϕ,i

4: si ← 1
|G|

∑
G∈G

1
|DG,i|

∑
X∈DG,i

∥∇ρL(X)∥
5: end for
6: I ← select a batch of targets with highest scores si

Assumptions of GIT. From the causal
perspective, GIT relies exclusively on the
Markov property assumption, which al-
lows factorization of joined distribution
(see Equation 1). However, GIT as a plug-
and-play extension for causal discovery
algorithms A inherits their assumptions.
This may include, for instance, causal
sufficiency or faithfulness. Our method
does not require any additional assump-
tions on the variables Xi and allows for
both discrete and continuous setups.

Theoretical justification of GIT. We show the convergence of GIT in two contexts. First, we prove
that the main setup of this paper, i.e., GIT with ENCO [Lippe et al., 2022], described in Section
4.1, converges. The detailed result can be found in Appendix B, but the gist of the argument is
that vertices for which the model structure is not aligned with the ground truth will have non-trivial
gradients and hence will be queried by GIT, allowing the model to improve. Moreover, we show
empirically that GIT gradients are well correlated with the principled GPG signal of GIT-privileged,
see Appendix F.6. Second, we show that given any convergent causal discovery algorithm, GIT
converges if we allow a uniform sampling of intervention with small probability ϵ > 0, see Appendix
A. We call this approach ϵ-greedy GIT. Importantly, on a finite sample with small enough ϵ, GIT
and ϵ-greedy GIT are statistically indistinguishable.

4.1 Applicability to ENCO

We choose to use ENCO as the gradient-based causal discovery frameworkA in our main experiments
(recall Algorithm 1) due to its strong empirical results and good computational performance on GPUs.
ENCO maintains a parameterized distribution over graph structures, with the so-called structural
parameters {ρi,j}i,j representing the adjacency matrix and a set of parameters modeling the functional
dependencies, ϕ. The structural parameters, ρi,j , are factorized into an edge existence parameter, γi,j ,
and an edge orientation parameter, θi,j = −θj,i.
The parameters are updated by iteratively alternating between two optimization phases. The goal
of the first phase is to learn functions fϕi

(
xi|PA(i,G)

)
, which model the conditional density of

P
(
Xi|PA(i,G)

)
. The training objective is the log-likelihood loss. The second phase aims to update

the parametrized edge probabilities ρi,j’s. To this end, ENCO collects a data sample from a mixture
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Table 1: We count the number of setups (24), where a given method was best or comparable to the other methods
(AIT, CBED, Random, and GIT; GIT-privileged was not compared against), based on 90% confidence intervals
for SHD and AUSHD. Each entry shows the total count, broken down into two data regimes, N = 1056 and
N = 3200, respectively, presented in parentheses.

AIT CBED Random GIT (ours) GIT-privileged

mean AUSHD 6 (2 + 4) 6 (4 + 2) 12 (5 + 7) 18 (11 + 7) 24 (12 + 12)
mean SHD 10 (4 + 6) 7 (4 + 3) 22 (12 + 10) 17 (10 + 7) 24 (12 + 12)

of interventional distributions denoted by PI . The graph parameters are optimized by minimizing
EX∼PI

Lgraph(X) where:

Lgraph(X) ≜ EG∼Pγ,θ

[ n∑
i=1

LG(Xi)

]
, LG(xi) ≜ − log fϕi

(
xi|PA(i,G)

)
, (7)

For a detailed description of the method, distributions, and the estimators see Appendix C.1.

GIT with ENCO details. The loss function L utilized by GIT is denoted Lgraph. We incorporate
information from both structural parameters and use ∥∇γLgraph(X)∥2+∥∇θLgraph(X)∥2 to compute
the score for the intervention i in line 4 of Algorithm 2. In order to sample DAGs from the current
graph distribution (line 1 of Algorithm 2), we use a two-phase sampling procedure proposed in
[Scherrer et al., 2021, Section 3.2] as it is scalable and guarantees DAG-ness by construction opposed
to Gibbs sampling or rejection sampling techniques.

5 Experiments

We compare GIT against the following baselines: AIT, CBED, Random, and GIT-privileged. AIT and
CBED are competitive intervention acquisition methods for gradient-based causal discovery (which
we discussed in Section 3.2). The Random method selects interventions uniformly in a round-robin
fashion2. The last approach, GIT-privileged, is the oracle method described in Section 4.

Our main result is that GIT brings substantial improvement in the low data regime, being the best
among benchmarked methods for all considered synthetic graph classes and half of the considered
real graphs in terms of the AUSHD metric (see Equation 9). On the remaining real graphs, our
approach performs similarly to the baseline methods. Notably, in most cases, GIT surpasses MI-based
approaches: CBED and AIT. We present the summary in Table 1. This result is accompanied by an
in-depth analysis of the relationships between different strategies and the distributions of the selected
intervention targets. Additional results in the DiBS framework [Lorch et al., 2021] with continuous
data are presented in Appendix F.1.

5.1 Experimental Setup

We evaluate the different intervention targeting methods in online causal discovery, see Algorithm 1.
We utilize an observational dataset of size 5000. We use T = 100 rounds, in each one acquiring
an interventional batch of 32 samples. We distinguish two regimes: regular, with all 100 rounds
(N = 3200 interventional samples), and low, with 33 rounds (N = 1056 interventional samples).
We use |G| = 50 graphs and |DG,i| = 128 data samples from each graph for the Monte-Carlo
approximation of the GIT score. We tested different sizes of the Monte-Carlo sample and found that
it does not have a major impact on performance, see Appendix F.4. For all experiments in this section
we assume, following the approach of Lippe et al. [2022], that all interventions are single-node, hard,
and change the conditional distribution of the intervened node to uniform.

Datasets We use synthetic and real-world datasets. The synthetic dataset consists of bidiag, chain,
collider, jungle, fulldag and random DAGs, each with 25 nodes. The variable distributions are
categorical, with 10 categories3. The real-world dataset consists of alarm, asia, cancer, child,
2At every step, a target node is chosen uniformly at random from the set of yet not visited nodes. After every
node has been selected, the visitation counts are reset to 0.

3We create the datasets using the code provided by Lippe et al. [2022]. See Appendix E.1 for details.
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Figure 2: The distribution of SAUSHD (see equation 10), calculated using 25 seeds, for synthetic graphs (lower
is better). The intense color (left-hand side of each violin plot) indicates the low data regime (N = 1056
samples). The faded color (right-hand side of each violin plot) represents a higher amount of data (N = 3200
samples). Note that even though the solution quality is improved when more samples are available, typically,
SAUSHD is smaller in the low data regime. This is because it measures relative improvement over the random
baseline, which is most visible for the small number of samples in most methods.

earthquake, and sachs graphs, taken from the BnLearn repository [Scutari, 2010]. Both synthetic
and real-world graphs are commonly used as benchmarking datasets [Ke et al., 2019, Lippe et al.,
2022, Scherrer et al., 2021].

Metrics We use the Structural Hamming Distance (SHD) [Tsamardinos et al., 2006] between the
predicted and the ground truth graph as the main metric. SHD between two directed graphs is defined
as the number of edges that need to be added, removed, or reversed in order to transform one graph
into the other. More precisely, for two DAGs represented as adjacency matrices c and c′,

SHD(c, c′) :=
∑
i>j

1(cij + cji ̸= c′ij + c′ji or cij ̸= c′ij). (8)

In the experiments, we always compute SHD between the predicted and the ground truth graph. In
order to aggregate SHD values over different data regimes, we introduce the area under the SHD
curve (AUSHD):

AUSHDT
m :=

1

T

T∑
t=1

SHDt
m, SHDt

m := SHD(cgt, cm,t) (9)

where m is the used method, T is the number of interventional data batches, cgt is the ground truth
graph, and cm,t is the graph fitted by the method m using t interventional data batches. Intuitively,
for small to moderate values of T , AUSHD captures a method’s speed of convergence: the faster the
SHD converges to 0, the smaller the area. For large values of T , AUSHD measures the asymptotic
convergence. Smaller values indicate a better method. For visualizations, we use surplus of AUSHD
over Random method (SAUSHD), which compares method m the the Random baseline. Precisely,

SAUSHDT
m := AUSHDT

m − E
[
AUSHDT

Random

]
, (10)

where the expectation averages all randomness sources (e.g. stemming from the initialization). Again,
smaller values indicate a better method.

5.2 Main Result: GIT’s Empirical Performance

GIT’s Overall Strong Performance We evaluate GIT on 24 training setups: twelve graphs (syn-
thetic and real-world, six in each category) and two data regimes. GIT is the best or comparable
to the baseline methods (excluding GIT-privileged) in 18 cases according to mean AUSHD, and
17 cases according to mean SHD, see Table 1. Additionally, GIT is stable, as the distribution of
its AUSHD has most frequently the smallest variation among non-privileged methods (11 out of
24 cases), see Table 8 and Table 9 in Appendix F.2.2. In terms of pairwise comparison with other
methods, GIT is better in 45 cases and comparable in 35 cases, out of a total of 96 (= 24 setups ×4
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Figure 3: The distribution of SAUSHD (see equation 10), calculated using 25 seeds, for real-world graphs
(lower is better). The intense color (left-hand side of each violin plot) indicates the low data regime (N = 1056
samples). The faded color (right-hand side of each violin plot) represents a higher amount of data (N = 3200
samples). Notice that the two plots have different scales.

other methods), see Table 7 in Appendix F.2.1. Interestingly, GIT’s performance for graphs with
fewer nodes (cancer, earthquake) is less impressive. We hypothesize that this is because in these
cases, the corresponding Markov Equivalence Class is a singleton (see Figure 4). Consequently, they
require less interventional data to converge (see training curves in Appendix F.2.4), which diminishes
the impact of different intervention strategies.

GIT is Especially Efficient for Low Data In the low data regime (N = 1056), GIT is better or
comparable to all the other non-privileged methods for 11 out of 12 graphs, see Table 1. Pictorially,
this phenomenon can be seen in Figure 2 and Figure 3, where the left-hand side of the GIT violin plot
tends to display the most favorable behavior compared to AIT, CBED, and Random methods. This
suggests that GIT could be a good choice when access to interventional data is limited or costly.

GIT Outperforms MI-based Approaches We also notice that the performance of MI-based
approaches (CBED and AIT) is worse than the one of GIT, typically attaining significantly worse
AUSHD (see Figure 2 and Figure 3) and SHD values (see Figure 7 and Figure 8 in the Appendix F.2).
This problem is further corroborated in Section 5.3, where we show that even in the case of large
interventional batch size, these methods occasionally underperform Random, unlike GIT, which
clearly wins in such a scenario. We hypothesize the poor performance comes from approximation
errors and model mismatches, subverting the MI criterion which should lead to near-optimal decisions
in the case of exact mutual information computation Krause and Guestrin [2005], Nemhauser et al.
[1978], Tigas et al. [2022].

GIT Approximates GIT-privileged’s Decisions GIT-privileged performs the best, as it is better or
comparable with all other methods for each graph and data regime (see Table 1). This strong perfor-
mance is also visible in Figure 2 and Figure 3, where the mass of the method consistently occupies
the favorable regions of the SAUSHD metric. These results solidify the perception of GIT-privileged
as a soft upper-bound. Importantly, GIT follows it quite closely: the methods are equivalent in terms
of performance in 10 cases in the low data regime, and in 5 cases in the regular data regime. Fur-
thermore, the choices of GIT and GIT-privileged correlate highly (Spearman correlation equal 73%),
see Appendix F.6. These results provide additional evidence in favor of GIT soundness and suggest
that using data sampled from the model to compute GIT’s scores does not lead to severe performance
deterioration. The training curves and more detailed results can be found in Appendix F.2.

5.3 Performance under larger interventional batch size

ENCO is sensitive to errors in the estimation of properties of interventional data. In particular,
small interventional batch size may cause errors in the estimation of conditional likelihood and
disrupt the causal discovery process [Lippe et al., 2022, Appendix B.2.3]. We hypothesize that those
estimation errors are an important factor hindering the advantage of using our method over Random
in the larger data regime. Acquiring data with small batches may result in a misaligned gradient
for the model and, in consequence, in the poor assessment of the next interventional target scores.
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Figure 4: The interventional target distributions obtained by different strategies on real-world data. The
probability is represented by the intensity of the node’s color. The green color represents the edges for which
there exists a graph in the Markov Equivalence Class that has the corresponding connection reversed. The
number below each graph denotes the entropy of the distribution.

0 1 2 3 4 5 6 7 8 90.00

0.25

0.50

0.75

ju
ng

le

0

1

23

4

5

6

7 8

9

0 1 2 3 4 5 6 7 8 90.00

0.25

0.50

0.75

0

1

23

4

5

6

7 8

9

0 1 2 3 4 5 6 7 8 90.0

0.2

0.4

0

1

23

4

5

6

7 8

9

0 1 2 3 4 5 6 7 8 90.0

0.2

0.4

0.6

bi
di

ag

0

1

23

4

5

6

7 8

9

0 1 2 3 4 5 6 7 8 90.0

0.2

0.4

0.6

0

1

23

4

5

6

7 8

9

0 1 2 3 4 5 6 7 8 90.0

0.2

0.4

0

1

23

4

5

6

7 8

9

0 1 2 3 4 5 6 7 8 90.0

0.1

0.2

co
llid

er

0

1

23

4

5

6

7 8

9

0 1 2 3 4 5 6 7 8 90.0

0.1

0.2

0

1

23

4

5

6

7 8

9

Figure 5: Histograms of intervention targets chosen by GIT. In this experiment, a node v was chosen (denoted
by a red color; v’s parents are indicated by green). Parameters were initialized so that the model is only unsure
about the neighborhood of v. The solid lines denote known edges and dashed ones are to be discovered.

Table 2: Average AUSHD values (from 5 seeds) for
experiments with interventional batch size equal 1024.

AIT CBED Random GIT(ours) GIT-privileged

bidiag 22.6 17.6 20.4 16.8 15.4
chain 11.4 8.2 10.2 8.0 7.7
collider 11.2 11.4 9.9 5.0 4.8
full 120.1 116.0 101.1 100.9 93.2
jungle 22.3 16.7 19.9 11.4 10.6
random 38.4 36.2 32.4 29.9 28.3

We perform an additional experiment in a modi-
fied regime, where each intervention yields 1024
data points instead of the previous 32. Such a
regime is relevant in scenarios where setting up
an intervention with a new target is costly but ob-
taining the individual samples is relatively cheap.
We run the experiment on synthetic graphs with
25 nodes and we run for 25 acquisition rounds.
We present the AUSHD values in Table 2 and
full SHD curves in Appendix F.3. In this setting, GIT outperforms all the standard baselines and is on
par with GIT-privileged. Importantly, GIT reaches the SHD value of 0 for all graphs. Additionally, we
found that GIT selects each intervention target exactly once, except for the chain graph, for which
the discovery process converges already after only 15 rounds.

5.4 Investigating GIT’s intervention target distributions

In order to gain a qualitative understanding of the GIT’s behavior, we analyze the node distributions
generated by respective methods on the BnLearn graphs in Figure 4. We observe that GIT
often selects nodes with high out-degree, as visible in the sachs and child graphs. Intuitively,
interventions on such nodes bring much information, as they affect multiple other nodes. In addition,
the most frequently selected nodes in the sachs, child, and asia graphs are also adjacent to the
edges for which there exists a graph in the MEC that has the corresponding connection reversed
(as indicated by the green color in Figure 4). Note that in general, establishing the directionality
of such an edge (v, w) requires performing interventions on nodes v, w (recall Section 3.1). 4

We further explore the interventional targets and verify that GIT is able to target the most uncertain
regions of the graph. In the considered setup, we select a node v in the graph. Let Ev be edges
adjacent to v. We set the structural parameters corresponding to edges e /∈ Ev to the ground truth
values and initialize in the standard way the parameters for e ∈ Ev. Such a model is only unsure

4For example, in the ENCO framework the directionality parameter θij can only be reliably detected from the
data obtained by intervening either on variable Xj or Xi [Lippe et al., 2022].
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about the connectivity around v, while the rest of the solution is given. We then run the ENCO
framework with GIT and report the intervention target distributions in Figure 5.

The interventions concentrate on v (red color) and its parents (green color). This indicates the effi-
ciency of our approach, as these are most relevant to discovering the graph structure. Indeed, to recover
the solution, only the parameters for e ∈ Ev need to be found. Intervening on v changes the distri-
butions of its descendants, providing information on the existence of edges between these variables.

6 Limitations and future work
• The theoretical grounding of the method involves multiple assumptions. Further work that

simplifies or relaxes the assumptions and identifies fail cases would benefit the community.
• We provide proof that epsilon-greedy GIT converges with any causal discovery framework.

As for pure GIT, we show its convergence only with the ENCO framework. The development
of a more general theory that solidifies the approach is a promising future work direction.

• Our method can be applied in the soft-intervention case, and providing appropriate experi-
mental evaluation would be an interesting follow-up to this work.

• Our method may need more interventions than the minimal number required to identify the
causal structure. For example, GIT can be biased towards high-degree nodes, as interventions
on them tend to affect a larger amount of structural parameters and result in larger gradients,
which might cause suboptimal choices.

• Intervention acquisition methods (including GIT) seem to be less effective in a continuous
setting. We believe investigating this area would benefit the community.

7 Conclusions
In this paper, we consider the problem of experimental design for causal discovery. We introduce
a novel Gradient-based Intervention Targeting (GIT) method, which leverages the gradients of
gradient-based causal discovery objectives to score intervention targets. We demonstrate that the
method is particularly effective in the low-data regime, outperforming competitive baselines. We
also provide a theoretical justification for the method and perform several analyses, confirming that
GIT typically selects informative targets.
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Appendix

A Convergence of causal discovery with GIT

Suppose that we have some causal discovery algorithm A which is guaranteed to converge to the true
graph in the limit of infinite data. Here we investigate if such convergence property still holds if we
extend A with GIT.

Let us define ϵ-greedy GIT as follows: every time we need to select an intervention target, we use
GIT with probability 1− ϵ, and otherwise, we choose randomly uniformly from all available targets.
Proposition 1. If the causal discovery algorithmA is guaranteed to converge given an infinite amount
of samples from each possible intervention target, then A with ϵ-greedy GIT is also guaranteed to
converge.

Proof. Since the ϵ-exploration guarantees visiting every target infinitely many times in the limit, the
proof follows from the asserted convergence of A.

Remark 2. ENCO with ϵ-greedy GIT is guaranteed to converge to the true graph under the standard
assumptions [Lippe et al., 2022, Appendix B.1].
Remark 3. Proposition 1 is asymptotic and holds for arbitrary ϵ > 0. However, in a finite setup, we
can choose ϵ small enough that ϵ-GIT and GIT behave similarly. Our experiments show that GIT
performs well (compared with other benchmarks) and is indistinguishable from an asymptotically
convergent method.

B Convergence conditions of ENCO framework with GIT

B.1 Preliminaries (ENCO recap)

In this section, we recall results from Lippe et al. [2022] for convergence of their causal discovery
method ENCO. They formulate four theorems and a set of conditions that guarantee that the parame-
ters of the structure converge to the true graph. For full proof and detailed explanation please refer to
Appendix B in Lippe et al. [2022].
Remark 4. ENCO identifies common conditions for correct convergence of directionality parameters.
They go as follows (see theorems B.1, B.2, and appendix B.4 in ENCO):

1. For all possible sets of parents of Xj excluding Xi, adding Xi improves the log-likelihood
estimate of Xj under the intervention on Xi, or leaves it unchanged.

∀p̂a(Xj) ⊆ X−i,j : EIXi
,X [log p(Xj |p̂a(Xj), Xi)− log p(Xj |p̂a(Xj))] ≥ 0

2. There exists a set of nodes p̂a(Xj), for which the probability to be sampled as parents of Xj

is greater than 0, and the following condition holds:

∃p̂a(Xj) ⊆ X−i,j : EIXi
,X [log p(Xj |p̂a(Xj), Xi)− log p(Xj |p̂a(Xj))] > 0

3. For all possible sets of parents of Xi excluding Xj , adding Xj does not improves the
log-likelihood estimate of Xi under the intervention on Xj , or leaves it unchanged.

∀p̂a(Xi) ⊆ X−i,j : EIXj
,X [log p(Xi|p̂a(Xi), Xj)− log p(Xi|p̂a(Xi))] ≥ 0

For at least one parent set p̂a(Xi), which has a probability greater than zero to be sampled,
this inequality is strictly smaller than zero.

Remark 5. The following condition guarantees convergence of existence parameters (see theorem
B.3 in ENCO):

min
p̂a⊆gpai(Xj)

EÎ∼pI−j
(I)Ep̃Î(X)

[
log p(Xj |p̂a, Xi)− log p(Xj |p̂a)

]
> λsparse

where gpai(Xj) is a set of nodes excluding Xi which, according to the ground truth graph, could
have an edge to Xj without introducing a cycle, pI−j (I) refers to the distribution over conducted
interventions pI(I) excluding the intervention on variable Xj , and λsparse is a positive constant.
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Theorem 6. (Theorem B.1 from Appendix B.4 in ENCO.) Consider the edge Xi → Xj in the true
causal graph. The orientation parameter θij converges to σ(θij) = 1 if the conditions from remark 4
are fulfilled.
Theorem 7. (Theorem B.2 from Appendix B.4 in ENCO.) Consider a pair of variables Xi, Xj for
which Xi is an ancestor of Xj without direct edge in the true causal graph. Assume all edges that
appear in the true graph have converged according to theorem 6. The orientation parameter θij
converges to σ(θij) = 1 if the conditions from remark 4 are fulfilled.

By Appendix B.4 from ENCO, Theorems 6, 7 hold regardless of whether we collected interventional
data from node Xi or Xj .
Theorem 8. Consider an edge Xi → Xj in the true causal graph. The parameter γij converges to
σ(γij) = 1 if the condition from remark 5 holds.
Theorem 9. Assume for all edges Xi → Xj in the true causal graph, σ(θij) and σ(γij) have
converged to one. Then, the likelihood of all other edges, i.e. σ(θlk) · σ(γlk) will converge to zero
under the condition that λsparse > 0.

B.2 GIT-privileged proof

We follow with proof of ENCO convergence with the GIT-privileged acquisition method under the
same set of conditions from remarks 4, 5. We show that GIT-privileged collects interventional data as
long as is needed for the orientation parameters to converge according to theorems 6 and 7. Then
theorems 8 and 9 can be applied to show that the algorithm reached convergence.

Assumption We assume that in all local minima of our loss function, the existence parameters
take extreme values: ∀i,j σ(γij) ∈ {0, 1}, thus, when sufficient time for optimization is given, they
stop contributing to the score. Hence in our analysis, we focus on describing only the behavior of
orientation parameter gradients.

The proof is structured as follows:

1. We show that following GIT-privileged score allows collecting enough interventional data
to direct all edges that appear in the true graph correctly, see proposition 12.

2. Then we show that, if required, additional interventional data that allows directing other
edges according to theorem 7 will be collected, see proposition 13.

3. Finally, theorems 8 and 9 can be applied to show that we learned the correct graph, see
proposition 14.

Proposition 10. Consider the edge Xi → Xj in the true causal graph. The parameter γij converges
to σ(γij) = 1 under any set of interventions pI(I) if

min
p̂a⊆V−i

EÎ∼pI−j
(I)Ep̃Î(X)

[
log p(Xj |p̂a, Xi)− log p(Xj |p̂a)

]
> λsparse

where V−i is the set of all nodes excluding Xi, and pI−j (I) refers to the distribution over conducted
interventions pI(I) excluding the intervention on variable Xj .

Proof. The condition guarantees that the gradient of γij is positive.

Proposition 11. Consider the edge Xi → Xj in the true causal graph. When conditions
from remark 4 are fulfilled ∥∇θijLgraph(XIi)∥ = ∥∇θjiLgraph(XIi)∥ = ∥∇θijLgraph(XIj )∥ =
∥∇θjiLgraph(XIj )∥ = 0 and the edge converged to its true value if and only if we acquired interven-
tional data from Xi or Xj .

Proof. First, recall that ENCO does not update orientation parameters unless the interventional
data was acquired from a neighboring node. Therefore, the gradient can only be zero before the
intervention if the existence parameters converge to zero. This situation is guaranteed not to happen
by proposition 10.

Second, when interventional data is acquired, based on the theorem 6, we know that the edge
converges to its true value.
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Proposition 12. Choosing intervention targets with GIT-privileged score allows collecting enough
data to direct all edges that appear in the true graph properly if the following is true:

• For any pair of variables Xi, Xj without a direct edge in the true causal graph, when
conditions from remark 4 are fulfilled, and we acquired interventional data from eitherXi or
Xj , and sufficient time for the optimization process is given, then the orientation parameters
will converge to extreme values σ(θij), σ(θji) ∈ {0, 1} or the existence parameters will
converge to σ(γij) = σ(γji) = 0.

Proof. The assumption and proposition 11 imply that after collecting interventional data from a node,
edges that are connected to this node will not contribute to the score anymore. Thus we will not
intervene on the same node twice. On the other hand, proposition 11 guarantees the score of edges
that appear in the true graph will be positive until they are directed.

Proposition 13. Consider a pair of variables Xi, Xj for which Xi is an ancestor of Xj without a
direct edge in the true causal graph. Assume all edges that appear in the true graph has converged
according to theorem 6. When conditions from remark 4 are fulfilled, and if ∥∇θijLgraph(XIi)∥ =
∥∇θjiLgraph(XIi)∥ = ∥∇θijLgraph(XIj )∥ = ∥∇θjiLgraph(XIj )∥ = 0 then the edge converged as
described in theorem 7 or its existence parameters converged to 0.

Proof. To zero out the gradient either orientation or existence parameters had to converge. If the
orientation parameters converged we had to collect interventional data from a neighboring node
(because otherwise, ENCO does not update parameters). Thus, based on the theorem 7, we know that
the edge converged to its true value.

Proposition 14. Given sufficient acquisition rounds and time for optimization ENCO with GIT-
privileged intervention acquisition method will recover the true graph.

Proof. From propositions 12, 13 we have that GIT-privileged will collect interventional data from
new nodes until edges that appear in the true graph are correctly directed and edges between pairs of
variables Xi, Xj without a direct edge in the true causal graph either disappear from the model or
are directed according to theorem 7. By theorems 8, 9 we conclude that we indeed acquired enough
interventional data to converge to the correct graph.

B.3 GIT convergence

Proposition 15. Given sufficient acquisition rounds and time for optimization ENCO with GIT
intervention acquisition method will recover the true graph if the following is true:

• For any graph G sampled from the structural belief Pρ(·) (recall equation 5) during GIT
score estimation, the theorems and propositions from sections B.1 and B.2 hold when we
use G instead of the true graph and compute gradient using data from the sampled model
PG,ϕ,i(X) (recall equation 6).

Proof. First, note that thanks to proposition 10, if there is an edge Xi → Xj in the true graph there
exists a model, that can be sampled from the belief with non-zero probability, in which this edge
appears.

For each undirected edge Xi → Xj in the structural belief for which the existence parameter
converged to σ(θij) = 1, there exists a model (with a positive probability to be sampled), that will
yield a gradient of positive magnitude if and only if there is no interventional data acquired from the
node connected to it. This model contains the edge Xi → Xj , thus by the assumption made above
and proposition 11, it will yield a positive gradient. In consequence, expectation over all possible
models, when the edge is not yet directed, will yield a positive score.

Note that, when interventional data from Xi or Xj is acquired, the edge Xi → Xj is directed
and it does not yield a gradient of positive magnitude under data sampled from PG,ϕ,i(X) for any
G ∼ Pρ(·). This stems from the fact that the gradient term zeroes out when parameter σ(θij) takes
extreme values (0 or 1).
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Hence, GIT score will allow to sequentially "eliminate" undirected edges. Since to update our
structural belief Pρ(·) we use interventional data sampled from the true graph when all edges are
directed, we are guaranteed (by B.2 section) that they are directed according to theorems 6, 7. Then
the same argument as for GIT-privileged can be applied to show that we converged to the true
graph.

C Details about Employed Causal Discovery Frameworks

C.1 ENCO

We extend the description of the ENCO framework [Lippe et al., 2022] from Section 4.1.

Structural Parameters. ENCO learns a distribution over the graph structures by associating with
each edge (i, j), for which i ̸= j, a probability pi,j = σ(γi,j)σ(θi,j). Intuitively, the γi,j parameter
represents the existence of the edge, while θi,j = −θj,i is associated with the direction of the edge.
The parameters γi,j and θi,j are updated in the graph fitting stage.

Distribution Fitting Stage. The goal of the distribution fitting stage is to learn the conditional
probabilities P (Xi|PA(i,C)) for each variable Xi given a graph represented by an adjacency matrix
C, sampled from Ci,j ∼ Bernoulli(pi,j). Note that self-loops are not allowed and thus pi,i = 0.
The conditionals are modeled by neural networks fϕi with an input dropout-mask defined by the
adjacency matrix. In consequence, the negative log-probability of a variable can be expressed as
LC(Xi) = − log fϕi

(PA(i,C))(Xi), where PA(i,C) is obtained by computing C·,i ⊙ X , with ⊙
denoting the element-wise multiplication. The optimization objective for this stage is defined as
minimizing the negative log-likelihood (NLL) of the observational data over the masks C·,i. Under
the assumption that the distributions satisfy the Markov factorization property defined in Equation 1,
the NLL can be expressed as:

LD = EXEC [

n∑
i=1

LC(Xi)]. (11)

Graph Fitting Stage and Implementation of Interventions. The graph fitting stage updates the
structural parameters θ and γ defining the graph distribution. After selecting an intervention target I ,
ENCO samples the data from the postinterventional distribution P̃I . In experiments, in the current
paper, where the variables are assumed to be categorical the intervention is implemented by changing
the target node’s conditional to uniform over the set of node’s categories. As the loss, ENCO uses the
graph strcuture loss Lgraph defined in Equation 7 in the main text plus a regularization term λLsparse

γ,θ

that influences the sparsity of the generated adjacency matrices, where λ is the regularization strength.

Gradients Estimators. In order to update the structural parameters γ and θ ENCO uses
REINFORCE-inspired gradient estimators. For each parameter γi,j the gradient is defined as:

∂LG

∂γi,j
= σ′(γi,j)σ(θi,j)·

·EX,C−ij [LXi→Xj (Xj)− LXi ̸→Xj (Xj) + λ],

(12)

where EX,C−ij denotes all of the three expectations in Equation 7 (in the main text), but excluding
the edge (i, j) from C. The term LXi ̸→Xj

(Xj) describes the negative log-likelihood of the variable
Xj under the adjacency matrix C−ij , while LXi→Xj

(Xj) is the negative log-likelihood computed
by including the edge (i, j) in C−ij . For parameters θi,j the gradient is defined as:

∂LG

∂θi,j
= σ′(θi,j)·

·
(
p(Ii)σ(γi,j)EIi,X,C−ij

[LXi→Xj
(Xj)− LXi ̸→Xj

(Xj)]−
p(Ij)σ(γj,i)EIj ,X,C−ij [LXj→Xi(Xi)− LXj ̸→Xi(Xi)]

)
, (13)

where p(Ii) is the probability of intervening on node i (usually uniform) and EIi,X,C−ij
is the same

expectation as EX,C−ij
but under the intervention on node i.
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C.2 DiBS

DiBS [Lorch et al., 2021] is a Bayesian structure learning framework which performs posterior
inference over graphs with gradient based variational inference. This is achieved by parameterising
the belief about the presence of an edge between any two nodes with corresponding learnable node
embeddings. This turns the problem of discrete inference over graph structures to inference over node
embeddings, which are continuous, thereby opening up the possibility to use gradient based inference
techniques. In order to restrict the space of distributions to DAGs, NOTEARS constraint [Zheng
et al., 2018] which enforces acyclicity is introduced as a prior through a Gibbs distribution.

Formally, for any two nodes (i, j), the belief about the presence of the edge from i to j is paramerised
as:

p(gij | ui, vj) =
1

1 + exp(−α(uTi vj))
(14)

Here, gij is the random variable corresponding to the presence of an edge between i to j, α is a
tunable hyperparameter and ui, vj ∈ Rk are embeddings corresponding to node i and j. The entire
set of learnable embeddings, i.e. U = {ui}di=1, V = {vi}di=1 and Z = [U,V] ∈ R2×d×k form the
latent variables for which posterior inference needs to be performed. Such a posterior can then be
used to perform Bayesian model averaging over corresponding posterior over graph structures they
induce.

DiBS uses a variational inference framework and learns the posterior over the latent variables Z using
SVGD [Liu and Wang, 2016]. SVGD uses a set of particles for each embedding ui and vj , which
form an empirical approximation of the posterior. These particles are then updated based on the
gradient from Evidence Lower Bound (ELBO) of the corresonding variational inference problem,
and a term which enforces diversity of the particles using kernels. The prior over the latent variable
Z is given by a Gibbs distribution with temperature β which enforces soft-acyclicty constraint:

p(Z) ∝ exp(−βEp(G|Z) [h(G)])
∏
ij

N (zij ; 0, σ
2
z) (15)

Here, h is the DAG constraint function given by NOTEARS [Zheng et al., 2018].

D Details about Intervention Targetting Methods

In this section we briefly introduce other intervention acquisition methods used for comaprison in
this work.

Active Intervention Targeting (AIT) Assume that the structural graph distribution maintained
by the causal discovery algorithm can be described by some parameters ρ. Consider a set of graphs
G = {Gj} sampled from this distribution. AIT assigns to each possible intervention target i ∈ V
a discrepancy score that is computed by measuring the variance between the graphs (V BG) and
variance within the graphs (VWG). The V BGi for intervention i is defined as:

V BGi =
∑
j

⟨µj,i − µ̄i, µj,i − µ̄i⟩, (16)

where µj,i is the mean of all samples drawn from graph Gj under the intervention on target i, and µi

is the mean of all samples drawn from graphs under intervention on target i. The variance within
graphs is described by:

VWGi =
∑
j

∑
k

⟨[Sj,i]k − µj,i, [Sj,i]k − µj,i⟩, (17)

where [Sj,i]k is the k-th sample from graph Gj under the intervention on target i. The AIT score is
then defined as the ratio Di =

V BGi

VWGi
. The method selects then the intervention attaining the highest

score Di.

CBED Targeting Bayesian Optimal Experimental Design for Causal Discovery (BOECD) selects
the intervention with the highest information gain obtained about the graph belief after observing the
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interventional data. Let the tuple (j, v) define the intervention, where j ∈ V describes the intervention
target, and v represents the change in the conditional distribution of variable Xj . Specifically, this
means that the new conditional distribution of Xj is a distribution with point mass concentrated
on v. Moreover, let Y(j,v) denote the interventional distribution under the intervention (j, v), and
let ψ denote the current belief about the graph structure (i.e. the random variable corresponding
to the structural and distributional parameters ψ = (ρ, ϕ)). BOECD selects the intervention that
maximizes [Tigas et al., 2022]:

(j∗, v∗) = argmax
(j,v)

I(Y(j,v);ψ | D), (18)

where D are the observational data. The above formulation necessities the use of an MI estimator.
One possible choice is a BALD-inspired estimator Tigas et al. [2022], Houlsby et al. [2011]:

I(Y(j,v);ψ | D) = H(Y(j,v) | D)−H(Y(j,v);ϕ | D), (19)

with H(·; ·) denoting the cross-entropy. Note that this approach allows to select not only most
informative target, but also the value of the intervention.

E Additional Experimental Details

E.1 Synthetic Graphs Details

The synthetic graph structure is deterministic and is specified by the name of graph (chain, collider,
jungle, fulldag), except for random, where the structure is sampled. Following ENCO [Lippe
et al., 2022], we set the only parameter of sampling procedure, edge_prob, to 0.3.

The ground truth conditional distributions of the causal graphs are modeled by randomly initialized
MLPs. Additionally, a randomly initialized embedding layer is applied at the input to each MLP that
converts categorical values to real vectors. We used the code provided by Lippe et al. [2022]. For
more detailed explanation, refer to Lippe et al. [2022, Appendix C.1.1].

E.2 ENCO Hyperparameters

For experiments on ENCO framework we used exactly the same parameters as reported by Lippe
et al. [2022, Appendix C.1.1]. We provide them in Table 3 for the completeness of our report.

Table 3: Hyperparameters used for the ENCO framework.

parameter value

Sparsity regularizer λsparse 4× 10−3

Distribution model 2 layers, hidden size 64, LeakyReLU(α = 0.1)
Batch size 128
Learning rate - model 5× 10−3

Weight decay - model 1× 10−4

Distribution fitting iterations F 1000
Graph fitting iterations G 100
Graph samples K 100
Epochs 30
Learning rate - γ 2× 10−2

Learning rate - θ 1× 10−1

E.3 DiBS Hyperparameters

In Table 4, we present hyperparameters used for the DiBS framework.

E.4 Computational Cost

We used two hardware settings, one with GPU: a single Nvidia A100, and another one with CPUs:
12 cores of Intel Xeon E5-2697 processor. In our synthetic graph experiments with ENCO on GPU, a
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Table 4: Hyperparameters used for the DiBS framework.

parameter value

Number of particles 20
Number of particle updates 20 000
Choice of Kernel k([Z,Θ], [Z′,Θ′]) = σZ exp(− 1

hZ
||Z− Z′||2F ) + σΘ exp(− 1

hΘ
||Θ−Θ′||2F )

hZ 5
hΘ 500
σZ 1
σΘ 1
Optimizer RMSProp
Learning rate Optimizer 0.005

single experiment takes on average 4 h to run, with 57 min being used by GIT to make its decisions;
the rest is devoted to the underlying causal discovery algorithm (in this case, ENCO). In the case
of the CPU setup, an experiment takes on average 126 h, with the GIT part taking up only 6 h. We
estimate the project’s overall cost to be around 50K GPUh and 2M CPUh.

F Additional Experimental Results

F.1 Experiments in DiBS Framework

Experimental setup The experimental setup closely follows the one from Tigas et al. [2022]. In
the experiments, 10 batches of 10 data-points each are acquired. Each batch can contain various
intervention targets. The acquisition method chooses intervention targets and values. For some of
the methods, the GP-UCB strategy is used to select a value for a given intervention; see Tigas et al.
[2022] for details. For every method, we run 40 random seeds. We compare the following methods:

• Soft GIT (ours): gradient magnitudes corresponding to different interventions are nor-
malized by the maximum one, then passed to the softmax function (with temperature 1).
Obtained scores are used as probabilities to sample a given intervention in the current batch.
GP-UCB is used for value selection.

• Random (fixed values): Intervention targets are chosen uniformly randomly. The interven-
tion value is fixed at 0.

• Random (uniform values): Intervention targets are chosen uniformly randomly. The
intervention value is chosen uniformly randomly from the variable support.

• Soft AIT: Intervention targets are chosen from the softmax probabilities of AIT scores
[Scherrer et al., 2021], with the temperature 2. GP-UCB is used for value selection.

• Soft CBED: Intervention targets are chosen from the softmax probabilities of CBED scores
[Tigas et al., 2022], with the temperature 0.2. GP-UCB is used for value selection.

The results are presented in Figure 6. We can see the performance of Soft GIT is comparable to that
of Random (uniform values) in both considered graph classes. Soft AIT and Soft CBED behave
similarly for Erdos-Renyi graphs, while for Scale-Free they seem to bring a small improvement.

F.2 Performance in ENCO Framework - All Results

F.2.1 Ranking Statistics

We present ranking statistics in Tables 5, 6, 7.

F.2.2 AUSHD Tables

We present all AUSHD results with confidence intervals in Tables 8, 9.
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Figure 6: Expected SHD metric for different acquisition methods on top of the DiBS framework, for graphs with
50 nodes and two different graph classes: Erdos-Renyi and Scale-Free. 95% bootstrap confidence intervals are
shown.

Table 5: We count the number of training setups (24), where a given method was best or at least comparable to
other methods (AIT, CBED, and Random; GIT-privileged was not compared against), basing on 90% confidence
intervals for AUSHD. Each entry shows the total count, broken down into two data regimes, N = 1056 and
N = 3200 resp., presented in the parenthesis.

AIT CBED Random GIT (ours) GIT-privileged

Best 0 (0 + 0) 0 (0 + 0) 2 (0 + 2) 8 (4 + 4) 5 (1 + 4)
Best or comparable 6 (2 + 4) 6 (4 + 2) 12 (5 + 7) 18 (11 + 7) 24 (12 + 12)

Table 6: We count the number of training setups (24), where a given method was best or at least comparable to
other methods (AIT, CBED, and Random; GIT-privileged was not compared against), basing on 90% confidence
intervals for SHD. Each entry shows the total count, broken down into two data regimes, N = 1056 and
N = 3200 resp., presented in the parenthesis.

AIT CBED Random GIT (ours) priv. GIT

Best 1 (0 + 1) 1 (0 + 1) 2 (1 + 1) 1 (1 + 0) 3 (1 + 2)
Best or comparable 10 (4 + 6) 7 (4 + 3) 22 (12 + 10) 17 (10 + 7) 24 (12 + 12)

Table 7: For each method we show its pairwise performance against other methods (whether it is better,
comparable, or worse) based on 90% confidence intervals for AUSHD, across two data regimes (N = 1056 and
N = 3200) and all twelve graphs (hence for each method there are 2× 12× 4 = 96 pairs to consider). Each
entry shows the total count, broken down into two data regimes, N = 1056 and N = 3200 resp., presented in
the parenthesis.

Better Comparable Worse

AIT 9 (3+6) 27 (11+16) 60 (34+26)
CBED 9 (7+2) 35 (20+15) 52 (21+31)
Random 34 (13+21) 36 (21+15) 26 (14+12)
GIT (ours) 45 (24+21) 35 (21+14) 16 (3+13)
GIT-privileged 57 (25+32) 39 (23+16) 0 (0+0)

F.2.3 SHD Tables

We present SHD results for small and large data regime with confidence intervals in Tables 10, 11.

F.2.4 ENCO - Training Curves

We provide SHD training curves for main experiments in Figures 7 and 8.
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Table 8: AUSHD with 90% confidence intervals (in the parenthesis), for synthetic data and for low and regular
data regimes (N = 1056 and N = 3200 resp.).

AIT BALD Random GIT (ours) priv. GIT

bidiag 1056 24.7 (24.1, 25.5) 21.9 (21.1, 22.8) 22.0 (21.5, 22.7) 20.0 (19.5, 20.6) 19.9 (18.6, 20.9)

3200 14.0 (13.0, 15.4) 13.2 (12.5, 14.0) 11.1 (10.5, 12.1) 9.4 (9.0, 9.9) 9.3 (8.0, 10.3)

chain 1056 14.9 (14.4, 15.4) 12.2 (11.8, 12.7) 13.5 (13.1, 13.9) 11.7 (11.3, 12.1) 12.2 (11.4, 13.3)

3200 7.7 (7.3, 8.1) 7.2 (6.8, 7.7) 6.3 (6.0, 6.6) 5.6 (5.2, 6.0) 6.3 (5.2, 8.5)

collider 1056 16.0 (15.2, 16.7) 16.1 (15.5, 16.7) 14.6 (14.1, 15.1) 14.4 (13.4, 15.2) 11.8 (10.9, 13.0)

3200 10.9 (10.2, 11.7) 12.2 (11.6, 12.7) 9.7 (9.2, 10.3) 12.1 (10.9, 13.1) 7.8 (6.9, 8.8)

fulldag 1056 133.0 (131.2, 134.7) 141.6 (139.1, 144.2) 121.7 (120.4, 122.9) 119.8 (118.7, 120.8) 120.7 (119.1, 122.1)

3200 72.8 (71.0, 74.5) 100.6 (97.8, 103.8) 63.4 (62.0, 64.7) 67.9 (66.0, 70.3) 63.4 (61.2, 64.9)

jungle 1056 23.2 (21.9, 24.6) 20.6 (19.6, 21.7) 20.9 (20.1, 21.7) 14.7 (14.1, 15.4) 13.9 (12.4, 15.5)

3200 11.2 (10.7, 11.9) 13.3 (12.3, 14.3) 9.1 (8.8, 9.5) 6.9 (6.5, 7.2) 6.9 (5.5, 8.3)

random 1056 42.1 (40.5, 43.6) 43.1 (41.5, 44.9) 35.6 (34.6, 36.7) 34.6 (33.7, 35.7) 31.9 (30.4, 34.6)

3200 21.3 (20.4, 22.3) 30.7 (29.0, 32.5) 16.5 (15.8, 17.3) 17.0 (16.3, 17.7) 14.5 (13.6, 15.6)

Table 9: AUSHD with 90% confidence intervals (in the parenthesis), for real-world data and for low and regular
data regimes (N = 1056 and N = 3200 resp.).

AIT CBED Random GIT (ours) priv. GIT

alarm 1056 42.8 (41.8, 43.8) 36.8 (35.8, 37.8) 39.7 (38.6, 40.8) 28.8 (28.3, 29.3) 28.5 (27.0, 29.6)

3200 35.0 (33.6, 36.4) 31.6 (30.3, 33.1) 28.8 (27.6, 30.8) 24.0 (23.4, 24.9) 21.5 (20.7, 23.1)

asia 1056 3.6 (2.9, 4.5) 3.5 (2.8, 4.3) 2.0 (1.8, 2.1) 2.2 (2.0, 2.5) 1.8 (1.7, 1.9)

3200 2.4 (1.9, 3.3) 2.1 (1.9, 2.5) 1.3 (1.2, 1.4) 1.5 (1.4, 1.6) 1.1 (1.0, 1.2)

cancer 1056 2.0 (1.9, 2.1) 2.1 (2.0, 2.3) 2.4 (2.2, 2.6) 2.4 (2.2, 2.5) 2.1 (1.6, 2.6)

3200 1.8 (1.6, 2.0) 2.1 (1.9, 2.2) 2.2 (2.0, 2.3) 2.2 (2.0, 2.4) 2.2 (1.7, 2.6)

child 1056 14.4 (13.7, 15.2) 10.4 (9.6, 11.2) 11.1 (10.7, 11.6) 8.3 (8.0, 8.7) 7.9 (7.0, 9.0)

3200 7.8 (7.1, 8.6) 7.1 (6.5, 8.0) 5.0 (4.7, 5.5) 4.5 (4.2, 4.8) 3.9 (3.2, 4.7)

earthquake 1056 0.5 (0.4, 0.6) 0.5 (0.4, 0.6) 0.4 (0.3, 0.5) 0.6 (0.5, 0.7) 0.4 (0.2, 0.6)

3200 0.2 (0.1, 0.3) 0.2 (0.1, 0.2) 0.1 (0.1, 0.2) 0.3 (0.2, 0.5) 0.1 (0.1, 0.2)

sachs 1056 3.1 (2.9, 3.3) 2.9 (2.6, 3.1) 2.9 (2.7, 3.1) 2.5 (2.4, 2.7) 2.5 (2.2, 2.8)

3200 1.4 (1.3, 1.6) 1.9 (1.7, 2.2) 1.2 (1.1, 1.3) 1.1 (1.0, 1.3) 0.9 (0.8, 1.0)

Table 10: SHD with 90% confidence intervals (in the parenthesis), for synthetic data and for low and regular
data regimes (N = 1056 and N = 3200 resp.).

AIT CBED Random GIT (ours) GIT-priv.

bidiag 1056 11.4 (10.3, 12.4) 10.1 (9.2, 11.0) 7.8 (7.0, 8.5) 6.3 (5.7, 7.0) 7.4 (6.2, 8.6)

3200 5.2 (4.2, 6.3) 7.8 (6.9, 8.7) 2.8 (2.3, 3.4) 2.4 (1.8, 2.9) 2.2 (0.8, 3.6)

chain 1056 5.6 (4.8, 6.4) 5.4 (4.6, 6.1) 4.3 (3.8, 4.9) 3.6 (3.0, 4.2) 3.6 (2.0, 4.8)

3200 3.2 (2.6, 3.7) 3.9 (3.4, 4.3) 2.2 (1.7, 2.6) 1.8 (1.3, 2.3) 1.8 (0.2, 2.6)

collider 1056 11.0 (10.1, 11.9) 11.8 (11.0, 12.7) 9.8 (9.1, 10.6) 13.3 (12.2, 14.4) 9.8 (7.6, 12.0)

3200 4.8 (3.8, 5.9) 7.9 (6.8, 8.9) 3.7 (2.8, 4.6) 9.7 (7.7, 11.6) 3.4 (1.4, 5.0)

fulldag 1056 64.4 (61.8, 67.0) 91.4 (86.8, 96.0) 52.1 (50.0, 54.3) 55.8 (53.4, 58.0) 53.4 (49.8, 57.0)

3200 32.0 (30.0, 33.8) 75.4 (71.8, 79.0) 25.1 (22.8, 27.2) 27.3 (25.1, 29.8) 20.8 (19.6, 21.8)

jungle 1056 10.4 (9.2, 11.6) 11.6 (10.1, 13.2) 5.7 (5.0, 6.5) 5.1 (4.4, 5.8) 5.2 (3.0, 7.4)

3200 3.5 (3.1, 3.9) 8.3 (7.2, 9.4) 1.9 (1.5, 2.3) 2.2 (1.8, 2.7) 3.0 (2.0, 4.0)

random 1056 18.8 (17.3, 20.3) 27.5 (25.6, 29.5) 11.3 (10.0, 12.5) 12.5 (11.3, 13.5) 11.0 (9.2, 13.0)

3200 8.3 (7.0, 9.4) 22.1 (19.6, 24.4) 5.0 (4.3, 5.8) 5.3 (4.4, 6.1) 3.8 (2.2, 5.4)

F.3 ENCO - large interventional batch experiment

We provide SHD training curves for experiments with the large interventional batch in Figure 9.

F.4 ENCO - monte carlo sampling evaluation

We provide a performance evaluation of GIT with different amount of graphs sampled from the model
in Figure 10.
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Table 11: SHD with 90% confidence intervals (in the parenthesis), for real-world data and for low and regular
data regimes (N = 1056 and N = 3200 resp.).

AIT CBED Random GIT (ours) priv. GIT

alarm 1056 35.76 (34.04, 37.52) 28.44 (26.68, 30.16) 26.0 (24.71, 27.29) 19.84 (19.0, 20.68) 25.0 (23.2, 27.0)

3200 26.15 (24.15, 28.23) 24.33 (21.67, 27.0) 16.0 (14.57, 17.14) 20.0 (18.67, 21.33) 15.2 (14.6, 15.8)

asia 1056 2.0 (1.2, 2.68) 1.96 (1.44, 2.4) 0.96 (0.8, 1.12) 1.2 (1.0, 1.36) 1.2 (0.8, 1.4)

3200 1.56 (1.12, 1.92) 1.28 (1.0, 1.48) 0.88 (0.79, 1.0) 1.12 (0.96, 1.24) 0.8 (0.6, 1.2)

cancer 1056 1.72 (1.48, 2.0) 2.2 (2.0, 2.4) 2.28 (2.04, 2.48) 2.12 (1.84, 2.4) 2.2 (1.8, 2.4)

3200 1.8 (1.6, 2.0) 1.96 (1.72, 2.2) 1.84 (1.6, 2.12) 2.0 (1.76, 2.24) 2.4 (2.0, 2.8)

child 1056 7.32 (5.92, 8.68) 6.36 (5.52, 7.16) 3.52 (2.84, 4.2) 3.72 (3.2, 4.24) 2.8 (1.4, 4.0)

3200 3.2 (2.56, 3.8) 4.68 (3.8, 5.48) 1.04 (0.7, 1.35) 2.16 (1.8, 2.52) 1.8 (0.4, 3.0)

earthquake 1056 0.12 (0.0, 0.2) 0.12 (0.0, 0.2) 0.0 (0.0, 0.0) 0.24 (0.08, 0.36) 0.0 (0.0, 0.0)

3200 0.04 (-0.04, 0.08) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.2 (0.08, 0.32) 0.0 (0.0, 0.0)

sachs 1056 0.84 (0.68, 1.0) 1.28 (0.96, 1.6) 0.6 (0.4, 0.8) 0.52 (0.32, 0.72) 0.4 (0.0, 0.8)

3200 0.48 (0.32, 0.64) 1.48 (1.16, 1.76) 0.24 (0.08, 0.36) 0.48 (0.28, 0.68) 0.0 (0.0, 0.0)
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Figure 7: Expected SHD metric for different acquisition methods on top of the ENCO framework, for synthetic
graphs with 25 nodes. 95% bootstrap confidence intervals are shown.

F.5 ENCO - Large Synthetic Graphs

In order to study the scalability of our method, we perform an additional evulation on selected
synthetic graphs in which we increase the number of nodes to 100. We comapre the performance of
different acquistion methods used with ENCO in Figure 11. We observe that GIT exhibits very good
results, converging to lower SHD values with significantly less acquistion steps compared to all the
other methods. This confirms the superiority of GIT, even within a larger graph regime.

F.6 ENCO - Correlation Scores

In Figure 12, we present the correlation of scores of the tested targeting methods. Importantly, the
high correlation of GIT and GIT-privileged supports the hypothesis that imaginary gradients are a
credible proxy of the true gradients and thus validates GIT. Otherwise, correlations are relatively
small, suggesting that the studied methods use different decision mechanisms. Understanding this
phenomenon is an interesting future research direction.

Below, we provide more details about computing the correlations. Let us denote by smb,i the score
produced by method m for the batch b and the node i. In order to eliminate effects such as changing
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Figure 8: Expected SHD metric for different acquisition methods on top of the ENCO framework, for graphs
from BnLearn dataset. 95% bootstrap confidence intervals are shown.
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Figure 9: Expected SHD metric for GIT with an interventional batch size of 1024 samples. 95% bootstrap
confidence intervals are shown, and results were computed using 3 random seeds.

scores scales during the discovery process, we normalize the scores as s̄mb,i :=
smb,i∑N

j=1 smb,j
. For every

pair of methods m, m′ and node i, we compute Spearman’s rank correlation score rs(s̄m·,i, s̄
m′

·,i ). We

average over the nodes to get the scalar correlation value corr(m,m′) :=
∑N

j=1 rs(s̄
m
·,i,s̄

m′
·,i )

N .

In addition, we present Pearson’s correlations in Figure 13. Conclusions from the analysis of the
Spearman’s rank correlation hold; in particular, the correlation between GIT and GIT-privileged is
high.

25



0 1000 2000 3000
0

10

20

30

40

50
SH

D

bidiag

0 1000 2000 3000
0

10

20

30

chain

0 1000 2000 3000

5

10

15

20

25

collider

0 1000 2000 3000
data samples

100

200

300

SH
D

fulldag

0 1000 2000 3000
data samples

0

10

20

30

40

50
jungle

0 1000 2000 3000
data samples

0

20

40

60

80

random

GIT 10 graphs GIT 30 graphs GIT 50 graphs GIT 70 graphs GIT-privileged

Figure 10: Expected SHD metric for GIT with different numbers of graphs samples used to estimate score for
interventions (see line 2 in Algorithm 2). 95% bootstrap confidence intervals are shown, results were computed
using 10 random seeds.

Figure 11: Expected SHD metric for different acquisition methods on top of the ENCO framework, for synthetic
graphs with 100 nodes. 95% bootstrap confidence intervals are shown.

F.7 ENCO - Intervention Targets Distribution

In this section, we provide additional histograms and plots with regard to the interventional target
distributions obtained by different intervention methods as discussed in Section 5.4 in the main text.

In Figure 14, we present the histograms of the target distributions for the real graphs for each of the
intervention acquisition methods. Note that those histograms represent the same information as the
node coloring in Figure 4. It may be observed that the distributions obtained by GIT concentrate on
fewer nodes than those obtained by the AIT and CBED approaches. The only exceptions being the
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Figure 12: Spearman’s rank correlation of the scores produced by different acquisition methods, averaged over
nodes.
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Figure 13: Pearson correlation of the scores produced by different acquisition methods, averaged over nodes.
We can see similar trends as in the case of Spearman’s rank correlation, in particular, a high correlation of GIT
and GIT-privileged.

Figure 14: The histograms of chosen interventional targets in all data acquisition steps for different strategies
computed on the real-world data.

sachs and child datasets, for which the entropy of CBED approach is smaller (recall Figure 4).
Note, however, that CBED underperforms on those graphs (recall Figure 3 in the main text or see
Figure 8). This is in contrast to GIT, which maintains good performance.

Finally, in Figure 15, we present the interventional target distribution on the alarm graph. We
observe that each method intervenes on at least one node incident to the critical edges in the Markov
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Figure 15: The interventional target distribution for the alarm graph. The green color represents the edges for
which there exists a graph in the Markov Equivalence Class that has the corresponding connection reversed.
Black color is used to indicate node for each no data is collected. We may observe that each method intervenes
on at least one node incident to the critical edges. However, both AIT and CBED do not converge for this dataset
and struggle to achieve good results.

Equivalence Class (as indicated by the green color in the plot). However, both AIT and CBED
struggle to achieve convergence and suffer low performance, as can be observed in Figure 8.

F.7.1 ENCO - Obtained Synthetic Graphs

Figure 16: The interventional target distributions obtained by different strategies on synthetic data. The
probability is represented by the intensity of the node’s color. For clarity of the presentation, we choose not
to color the critical edges in the corresponding Markov Equivalence Classes. This is because all edges of all
the presented graphs would need to be colored. The only exception is the collider graph, which is alone in its
Markov Equivalence Class.

In addition, we present the results obtained for the synthetic graphs in Figure 16 and the corresponding
histograms in Figure 17. Note that in this case the results are also averaged by different ground truth
distributions, which means that any regularities in selecting the nodes come rather from the graph
structure than from data distribution.
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Interestingly, we may observe that for the jungle and chain graphs GIT often intervenes on the
nodes which are the first ones in the topological order (as indicated by low node numbers in the plots).
This is again intuitive, as intervening on those nodes can impact more variables lower in the hierarchy.
In addition, note that for the chain graph, knowing its Markov Equivalence Class and setting the
directionality of an edge automatically makes it possible to determine the directionality of edges for
all subsequent nodes in the topological order. Hence intervening on the nodes which are the first ones
in the ordering may convey more information and is desired.

We may also observe that the CBED seems to focus only on the first nodes in the topological order,
despite the data distribution, which in some graphs (as the chain graph) may be desired, but in others
seems to be an oversimplified solution. Note that CBED often struggles to converge – this may be
observed in Figure 7.

Figure 17: The histograms of chosen interventional targets in all data acquisition steps for different strategies
computed on the synthetic data.

F.7.2 Discussion on Small Real-World Graphs

We provide a more detailed discussion on the differences between the earthquake and cancer
graph distributions and the way it affects the GIT method.

Consider Figure 4 in the main text. Note that the middle node in the earthquake graph corresponds
to setting off a burglary alarm, an event very unlikely to happen in observational data but which, when
occurs, triggers a change in the distributions of the nodes lower in the hierarchy (see the conditional
distributions in Table 12). The chance of starting an alarm is also very high in case a burglary has
happened (the left-most node in the graph). Hence the GIT concentrates on those two nodes as they
have the largest impact on the entailed distribution.

A similar situation can be observed for the cancer graph, where the middle node corresponds to a
binary variable indicating the probability of developing the illness. Even though the two parents of
the cancer variable (pollution and smoke, represented by nodes 0 and 1, respectively) share a causal
relationship with cancer, their impact on the cancer variable is limited. In other words, the chances of
developing cancer, no matter whether being subject to high or low pollution or being a smoker or
not, remain rather small (see the conditional distributions for cancer variable in Table 13). Hence,
the only way in which one can gather more information about the impact of having cancer on the
distributions of its child variables (nodes 3 and 4) is by performing an intervention. In consequence,
it may be observed that GIT prefers to select nodes that allow to gather data that otherwise would be
hard to acquire in the purely observational setting.
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Table 12: The conditional distribution in the earthquake graph.

Variable Parents Values Distribution

Burglary – [True, False] [0.01, 0.99]

Earthquake – [True, False] [0.02, 0.99]

Alarm Burglar=True, Earthquake=True [True, False] [0.95, 0.05]
Alarm Burglar=False, Earthquake=True [True, False] [0.29, 0.71]
Alarm Burglar=True, Earthquake=False [True, False] [0.94, 0.06]
Alarm Burglar=False, Earthquake=False [True, False] [0.001, 0.999]

John Calls Alarm=True [True, False] [0.9, 0.1]
John Calls Alarm=False [True, False] [0.05, 0.95]

Mary Calls Alarm=True [True, False] [0.7, 0.3]
Mary Calls Alarm=False [True, False] [0.01, 0.99]

Table 13: The conditional distribution in the cancer graph.

Variable Parents Values Distribution

Pollution – [Low, High] [0.9, 0.1]

Smoker – [True, False] [0.3, 0.7]

Cancer Pollution=Low, Smoker=True [True, False] [0.03, 0.97]
Cancer Pollution=High, Smoker=True [True, False] [0.05, 0.95]
Cancer Pollution=Low, Smoker=False [True, False] [0.001, 0.999]
Cancer Pollution=High, Smoker=False [True, False] [0.02, 0.98]

Xray Cancer=True [True, False] [0.9, 0.1]
Xray Cancer=False [True, False] [0.2, 0.8]

Dyspnoea Cancer=True [True, False] [0.65, 0.35]
Dyspnoea Cancer=False [True, False] [0.3, 0.7]

F.8 ENCO - Experiments with Pre-Initialization
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Figure 18: Histograms of intervention targets chosen by GIT. The red color corresponds to the selected node,
while the green color indicates the node’s parents. The edges on which standard initialization was used are
indicated by gray dashed lines. The rest of the solution is given in the initialization.

In addition to the discussion on the target distributions in the case of pre-initializing parts of the graph
with the ground truth solution (presented in the main text for synthetic graphs in Section 5.4), we
present results of the same experiment computed on the real-world graphs. The results are presented
in Figure 18.
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Similarly as for the synthetic graphs, here we also observe that the GIT concentrates either on the
selected node v or on its parents (denoted respectively by red and green colors in the plots).
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