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Abstract

We often see undesirable tradeoffs in robust machine learning where out-of-1

distribution (OOD) accuracy is at odds with in-distribution (ID) accuracy. A “robust”2

classifier obtained via specialized techniques like removing spurious features has3

better OOD but worse ID accuracy compared to a “standard” classifier trained via4

vanilla ERM. On six distribution shift datasets, we find that simply ensembling a5

standard and a robust model is a strong baseline—we match the ID accuracy of a6

standard model with only a small drop in OOD accuracy compared to the robust7

model. However, calibrating these models in-distribution surprisingly improves8

the OOD accuracy of the ensemble and eliminates the tradeoff and we achieve the9

best of both ID and OOD accuracy over the original models.10

1 Introduction11

Machine learning models typically suffer large drops in accuracy in the presence of distribution12

shift where the test distribution is different from the training distribution. As ML systems are widely13

deployed, it is important for models to have good “out-of-distribution” (OOD) accuracy. There has14

been a lot of research interest in tackling this robustness problem under various settings such as15

robustness to spurious correlations (1; 2; 3), domain generalization (4; 5), robustness to demographic16

shifts (6; 7) among others. Almost universally across these different settings, an unfortunate tradeoff17

arises. Robustness interventions typically improve the OOD accuracy but simultaneously cause a18

drop in the “in-distribution” (ID) accuracy on new test points from the original distribution.19

This tradeoff is a major hurdle in using the multitude of proposed robustness interventions. In practice,20

most inputs are likely to be ID, so it is unsatisfactory to use a “robust” model that has high OOD21

performance but performs less accurately on these majority ID points. On the other hand, “standard22

models” (trained without robustness interventions) fail catastrophically in the presence of even small23

shifts, and it can be highly dangerous to use a standard model even if OOD points are rare. In this24

work, we ask is there a general strategy by which we can achieve high accuracy both in-distribution25

and out-of-distribution and mitigate tradeoffs arising in robustness?26

We consider four benchmark datasets (DomainNet, CIFAR → STL, ImageNet → ImageNet-R, and27

BREEDS-Entity-30) and two real world satellite remote sensing datasets (Landcover and Cropland),28

that have been used in prior work on robustness. Our work spans different types of robustness29

interventions (projecting out spurious correlations, zero-shot language prompting, freezing pretrained30

features), data modalities (image and time series data), and model architectures (vision transformers,31

deep convolutional networks, time series convolution). Averaged across these datasets, robustness32

interventions increase OOD accuracy from 63% to 74%, but decrease ID accuracy from 88% to 85%.33
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Figure 1: In many settings, we have a ‘standard’ model that performs better in-distribution, and a
‘robust’ model that performs better out-of-distribution. Simply ensembling these two models (e.g.,
by adding their probabilities), gets better ID accuracy than the standard and robust models, and
closes most of the OOD gap. Calibrating the models in-distribution (no access to OOD data) before
ensembling them leads to further improvements. Note that ensembling two standard or two robust
models does not close the gap and only leads to small improvements.

We first explore the natural strategy of ensembling the standard and robust models—concretely, we34

add the probabilities of each model to obtain a prediction with the hope that when the two models35

conflict, the more confident model (with larger probability) dictates the final prediction. We find that36

this surprisingly simple baseline already perfoms quite well—on average across all our datasets, this37

closes 80% of the gap between the OOD of standard models, while outperforming both models ID.38

However, vanilla ensembling still leaves a gap as it underperforms the robust model OOD.39

We find that simply calibrating both models ID (adjusting their predicted confidence to match their40

accuracy, on in-distribution data) before ensembling them closes this gap. Calibrated ensembles get41

an average accuracy of 89.3% ID and 74.6% OOD, and outperform both the standard and robust42

model, ID and OOD. The other method in the literature to alleviate robustness induced tradeoffs is43

self-training that uses large amount of unlabeled data (8; 9; 10). On the two remote-sensing datasets44

with additional unlabeled data, we find that calibrated ensembles match self-training on these datasets45

despite its simplicity and without requiring any unlabeled data.46

While our method is intuitive, it is intriguing that it works so well because ensembling seems to rely47

on good uncertainty estimates while it is common wisdom that uncertainty estimates of deep networks48

are unreliable OOD even after calibrating in-distribution (11). Indeed, on the six datasets we test on,49

the models fare poorly on standard uncertainty metrics OOD, even after calibration. The expected50

calibration error of the standard model across all datasets is 12%. Even the relative confidences of51

the models can be incorrect—on the remote sensing dataset (Landcover), the standard model is on52

average 6% more confident in its OOD predictions than the robust model, even though the standard53

model is less accurate OOD. But at the granularity of individual points, calibrated ensembles are able54

to combine predictions effectively and achieve high ID and OOD accuracy.55

2 Setup56

Consider a K-class classification task, where the goal is to predict targets y∈ [K] from inputs x∈Rd.57

Models: A model f :Rd→Rk takes an input x∈Rd and outputs f(x)∈Rk where f(x)i denotes the58

model’s confidence that the output is y= i. The model predicts the label ŷ=argmaxkf(x)k. The59

confidences can be converted into probabilities using a softmax function:60

Data: Let Pid and Pood denote the underlying distribution of (x, y) pairs in-distribution and61

out-of-distribution, respectively. We have a validation set {(xval
i , yvali )}nval

i=1 ∼ Pid used for early62

stopping and calibration, a held-out in-distribution test set {(xtest
i ,ytesti )}ntest

i=1 ∼ Pid, and a held-out63

out-of-distribution test set {(xood
i ,yoodi )}nood

i=1 ∼ Pood. All methods can use the ID validation set for64
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Table 1: In-distribution (ID) accuracies for the standard model, robust model, and calibrated
ensembling, across six datasets. Calibrated ensembling matches or outperforms the better model in
all cases, and on average outperforms both the standard and robust models.

Ent30 DomNet CIFAR10 Land Crop ImNet

Standard 93.6 (0.2) 83.9 (1.0) 97.4 (0.1) 76.9 (0.3) 95.3 (0.0) 80.5 (-)
Robust 90.7 (0.2) 89.2 (0.1) 92.0 (0.0) 72.7 (0.2) 95.1 (0.1) 68.4 (-)

Cal ensemble 93.7 (0.1) 91.2 (0.6) 97.2 (0.1) 77.1 (0.2) 95.6 (0.1) 81.1 (-)

tuning hyperparameters, early stopping, and calibration. The ID and OOD test set are only used for65

evaluation. We evaluate a model f on the average accuracy on the ID and OOD test sets.66

3 Methods and Datasets67

Calibrated ensembles. Given two models f1 and f2, calibrated ensembles first calibrate each model68

using temperature scaling (12) with the cross-entropy loss l on the in-distribution validation data:69

Tj=argmin
T

1

nval

nval∑
i=1

l
(fj(xval

i )

T
,yvali

)
for j∈{1,2} (3.1)

We then ensemble the two models by adding up the probabilities that they predict (13):70

p̂=
1

2

(
softmax

(f1(x)
T1

)
+softmax

(f2(x)
T2

))
(3.2)

Other ensembles. As a baseline, we consider a tuned ensemble: outputting a weighted average of71

the standard and robust model’s probabilities, where the weight α∈ [0,1] is tuned to maximize accuracy72

on the in-distribution set.73

p̂=αsoftmax(fstd(x))+(1−α)softmax(frob(x))) (3.3)

In vanilla ensembling the weight α is set to 1/2. We also considered other ways of combing the model74

outputs (adding logits vs probabilities) and found that the results were similar.75

Datasets We run experiments spanning three different types of robustness interventions: projecting76

out spurious metadata, zero-shot language prompting in CLIP, and freezing pretrained features. These77

experiments span multiple model architectures (vision transformers, deep convolutional networks, time78

series convolution) and data modalities (image and time series data), and include two real world remote79

sensing datasets used in prior work studying ID-OOD tradeoffs (9). See Appendix A for more details.80

4 Experiments81

Strong ID and OOD accuracy: Calibrating and then ensembling a standard and a robust model, gets82

the best of both worlds, typically outperforming the standard and robust model both ID (Table 1) and83

OOD (Table 2). Averaged across the datasets, calibrated ensembles get 89.3% ID (vs 87.9% for the84

standard model and 84.7% for the robust model) and 74.6% OOD (vs 74.1% for the robust model85

and 62.7% for the standard model).86

Competitive with self-training: The remote sensing datasets have lots of unlabeled data so prior87

work (9) uses self-training on these datasets to mitigate the ID-OOD accuracy tradeoff. Table 3 shows88

that calibrated-ensembles match or outperform self-training on both datasets, both ID and OOD. We89

believe this is an interesting result because calibrated ensembling is a simple method and does not90

need additional unlabeled data.91

Calibration is important: We find that a strong baseline of tuning the ensemble weights on ID data has92

lower accuracy than calibrated ensembles OOD (Table 4; calibrated ensembles average: 74.6%, tuned93
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Table 2: Out-of-distribution (OOD) accuracies across six datasets. Calibrated ensembling matches
or outperforms the better model in 4/6 cases, and on average outperforms both the standard and robust
models. For the remaining two datasets, DomainNet and ImageNet-R, calibrated ensembles close
96% and 93% of the gap between the standard and robust model.

Ent30 DomNet STL Land Crop ImNet-R

Standard 60.7 (0.1) 55.3 (0.4) 82.4 (0.3) 55.7 (1.1) 85.6 (5.8) 36.2 (-)
Robust 63.2 (1.1) 87.2 (0.1) 85.1 (0.2) 60.4 (1.1) 89.8 (0.4) 59.1 (-)

Cal ensemble 64.8 (0.5) 85.9 (0.2) 87.3 (0.2) 60.8 (0.8) 91.3 (0.8) 57.4 (-)

Table 3: Calibrated ensembles are competitive with self-training (9), which requires unlabeled data.

Cropland Landcover
ID Acc OOD Acc ID Acc OOD Acc

Standard model 95.3 (0.0) 85.6 76.9 55.7
Robust model 95.1 (0.1) 89.8 72.7 60.4
Self-training 95.3 (0.2) 90.6 (0.6) 77.0 (0.4) 61.0 (0.7)

Cal ensembling 95.6 (0.1) 91.0 (0.8) 77.1 (0.2) 60.8 (0.8)

Table 4: OOD accuracies: calibrated ensembles outperform vanilla ensembles and even tuned ensem-
bles where the combination weights are tuned to maximize in-distribution accuracy. Averaged across the
datasets, calibrated ensembles get an OOD accuracy of 74.6%, while tuned ensembles get an accuracy
of 71.3%. The in-distribution accuracies of the methods are very close (within 0.2% of each other).

Ent30 DomNet STL Land Crop ImNet-R

Vanilla 64.6 (0.4) 78.7 (1.3) 87.2 (0.2) 59.5 (1.0) 90.9 (0.2) 58.0 (-)
Tuned ID 64.6 (0.6) 86.3 (0.6) 85.7 (0.9) 58.7 (1.2) 87.3 (5.7) 45.4 (-)

Calibrated ID 64.8 (0.5) 85.9 (0.2) 87.3 (0.2) 60.8 (0.8) 91.3 (0.8) 57.4 (-)

ensembles: 71.3%) and calibrated ensembles only have a 0.2% drop in ID accuracy relative to tuned94

ensembles. Naturally, we expect the tuned ensemble to do the best ID since its weights are tailored95

for ID—what is surprising is that the calibrated ensembles do so much better OOD without using any96

OOD data either. Calibrated ensembles outperform vanilla ensembles both ID and OOD as well.97

Standard ensembles do not mitigate tradeoffs: As we show in Figure 1, simply ensembling two98

standard models or two robust models (even with calibration) does not mitigate ID-accuracy tradeoffs.99

5 Related Works and Discussion100

Calibration. Calibration (in-distribution) has been widely studied (14; 12; 15; 16; 17; 18). Ovadia101

et al. (11) show that if we calibrate a model ID, it still has poor uncertainties OOD.102

Ensembling. Typically ensemble members are trained on the same data with a different random103

seed (13) or augmentation (19)—in these settings prior work has shown that calibration does not104

help (20; 11). Indeed, calibration has minimal effect when we ensemble two standard, or two robust mod-105

els, but leads to clear improvements when we combine two very different models (standard and robust).106

Mitigating ID-OOD tradeoffs. Prior work self-trains on large amounts of unlabeled data to mitigate107

ID-OOD tradeoffs (8; 9; 10). In concurrent work, Wortsman et al. (21) show on ImageNet and variants108

(e.g. ImageNet-R) that there exists a way to ensemble a CLIP zero-shot and fine-tuned model to get109

good ID and OOD accuracy—but this might require OOD data which is not available. In fact, we show110

that the natural way to learn how to weight ensemble members—selecting the weights to optimize111

in-distribution accuracy—does not mitigate the ID-OOD gap, but calibrated ensembles do.112
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A Details on datasets205

A.1 Spurious metadata206

We run experiments on two remote sensing datasets used in prior work studying ID-OOD tradeoffs (9).207

These datasets consist of a core input x (image data or time series data) and metadata z (e.g., location,208

meteorological climate data). The metadata is spuriously correlated with the target—using the209

metadata to predict labels improves accuracy in-distribution (ID), but hurts accuracy out-of-distribution.210

Xie et al. (9) consider a standard model that takes in both the core inputs and metadata to predict the211

target, and a robust model that only takes in the core inputs and does some additional pretraining. They212

call these the ‘aux-in’ and ‘aux-out’ models respectively.213

Cropland. The goal is to predict whether a satellite image is of a cropland or not. The core input214

x is an RGB satellite image, and the metadata z consists of location coordinates and vegetation bands.215

The original dataset is from Wang et al. (22), and we use U-net model checkpoints from Xie et al. (9).216

Landcover. The goal is to predict the land type from satellite data at a given location. Here, the217

core input x is a time series measured by NASA’s MODIS satellite (23), and z is climate data (e.g.,218

temperature) at that location. The dataset is from Gislason et al. (24); Rußwurm et al. (25). We use219

model checkpoints from Xie et al. (9) where they use 1D convolutions for time series data.220

A.2 Zero-shot language prompting221

Radford et al. (26) (CLIP) pretrain a model on a large multi-modal language and vision dataset.222

The model can then predict the label of an image by comparing the image embedding, with the223

language embedding for prompts such as ‘photo of an apple’ or ‘photo of a banana’. They show that224

this zero-shot language prompting approach can be much more accurate out-of-distribution than the225

traditional method of fine-tuning the entire model.226

ImageNet → ImageNet-R. We use a CLIP vision transformer, specifically a ViT-B/16, which is the227

best publicly available model. The robust model uses language prompts to make zero-shot predictions228

on ImageNet-Renditions (27), a dataset containing cartoon, graffiti, video game, etc, renditions of229

ImageNet classes. The standard model initializes with weights from the CLIP model, and fine-tunes230

on ImageNet (28) training data for 10 epochs, before making predictions on ImageNet-R. We note231

that the robust model gets 10% lower accuracy ID (on ImageNet validation examples), but gets 20%232

higher accuracy OOD (on ImageNet-R test examples)233

A.3 Freezing pretrained features234

When adapting a pretrained model to an ID dataset, typically all the model parameters are fine-tuned.235

Recent work looks at ‘lightweight’ fine-tuning, where only parts of the model are adapted—this can236

often do better OOD even though the ID performance is worse (29; 30). We consider three distribution237

shift datasets where the standard model starts from a pretrained initialization and fine-tunes all238

parameters on an ID dataset, and the robust model only learns the top linear ‘head’ layer.239

DomainNet. A standard domain adaptation dataset (31). Here, our ID dataset contains ‘sketch’240

images (e.g., drawings of apples, elephants, etc), and the OOD dataset contains ‘real’ photos of the241

same categories. We use the version of the dataset from Tan et al. (32). We start from a CLIP pretrained242

ResNet50 and either fine-tune (to get a standard model) or train the head layer (to get a robust model).243
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CIFAR-10 → STL. Another standard domain adaptation dataset (33), where the ID is CIFAR-244

10 (34), and the OOD is STL (35). We start from a ResNet50 pretrained on unlabeled ImageNet245

examples using MoCo-v2 (36) and either fine-tune (to get a standard model) or train the head layer246

(to get a robust model).247

Living-17. Part of the BREEDS benchmark (37), here the goal is to classify an image as one of 17248

animal categories such as ‘bear’—the ID dataset contains images of black bears and sloth bears and249

the OOD dataset has images of brown bears and polar bears. We start from a ResNet50 pretrained250

on unlabeled ImageNet examples using MoCo-v2 (36) and either fine-tune (to get a standard model)251

or train the head layer (to get a robust model).252
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