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ABSTRACT

Text watermarks in large language models (LLMs) are increasingly used to detect
synthetic text, mitigating misuse cases like fake news and academic dishonesty.
While existing watermarking detection techniques primarily focus on classifying
entire documents as watermarked or not, they often neglect the common scenario of
identifying individual watermark segments within longer, mixed-source documents.
Drawing inspiration from plagiarism detection systems, we propose two novel
methods for partial watermark detection. First, we develop a geometry cover detec-
tion framework aimed at determining whether there is a watermark segment in long
text. Second, we introduce an adaptive online learning algorithm to pinpoint the
precise location of watermark segments within the text. Evaluated on three popular
watermarking techniques (KGW-Watermark, Unigram-Watermark, and Gumbel-
Watermark), our approach achieves high accuracy, significantly outperforming
baseline methods. Moreover, our framework is adaptable to other watermarking
techniques, offering new insights for precise watermark detection.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized human activities, enabling applications ranging
from chatbots (OpenAI, 2022) to medical diagnostics (Google, 2024) and robotics (Ahn et al., 2024).
Their ease of use, however, presents serious societal challenges. In education (Intelligent, 2024),
students can effortlessly generate essays and homework answers, undermining academic integrity. In
journalism (Blum, 2024), distinguishing credible news from fabricated content erodes public trust.
The potential for malicious uses, such as phishing (Violino, 2023), and the risk of model collapse due
to synthetic data (Shumailov et al., 2024), further underscore the urgent need to detect LLM-generated
text and promote the responsible use of this powerful technology.

However, identifying AI-generated text is becoming increasingly difficult as LLMs reach human-like
proficiency in various tasks. One line of research (OpenAI, 2023; Tian, 2023; Mitchell et al., 2023)
trains machine learning models as AI detectors by collecting datasets consisting of both human and
LLM-generated texts. Unfortunately, these approaches are often fragile (Shi et al., 2024) and error-
prone (Liang et al., 2023), ultimately leading OpenAI to terminate its deployed detector (Kelly, 2023).
Watermarking has emerged as a promising solution to this challenge. By embedding identifiable
patterns or markers within the generated text, watermarks can signal whether a piece of text originates
from an LLM.

Existing watermark detection methods (Aaronson, 2023; Kirchenbauer et al., 2023; Zhao et al., 2023;
Kuditipudi et al., 2023; Christ et al., 2023; Hu et al., 2024) are primarily designed for text-level
classification, labeling a piece of text as either watermarked or not. However, these methods are
insufficient for many real-world scenarios where documents contain mixed-source texts, and only
specific sections are LLM-generated. For instance, malicious actors might use LLMs to manipulate
certain sections of a news article to spread misinformation. Detecting watermarks within long,
mixed-source texts presents a significant challenge, especially when aiming for subsequence-level
detection with uncertainty quantification, similar to plagiarism detection systems like “Turnitin1”.
This is because the watermarked signal may be weakened throughout the increasing text length and
may not be easily identifiable using conventional detection methods.

1https://www.turnitin.com
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To bridge the gap, we propose partial watermark detection methods that offer a reliable solution for
identifying watermark segments in long texts. A straightforward approach, which involves examining
all possible segments of a text containing n tokens, yields an inefficiently high time complexity of
O(n2). Instead, we employ the geometric cover trick (Daniely et al., 2015) to partition the long texts
into subsequences of varying lengths and then perform watermark detection within each interval. This
approach, termed the Geometric Cover Detector (GCD), enables efficient classification of whether a
document contains any watermarked text in O(n log n) time. However, GCD does not assign a score
to every token, providing only a rough localization of watermark segments.

To refine this localization, we introduce the Adaptive Online Locator (AOL). AOL reformulate the
problem as an online denoising task, where each token score from the watermark detector serves
as a noisy observation for the mean value of scores within watermark segments. By applying an
adaptive online learning method, specifically the Alligator algorithm (Baby et al., 2021), we retain
the O(n log n) time complexity while significantly improving the accuracy of detected segments.

We validate GCD and AOL using the C4 (Raffel et al., 2020) and Arxiv (Cohan et al., 2018) datasets,
employing Llama (Touvron et al., 2023) and Mistral (Jiang et al., 2023) models for evaluation. Our
empirical results demonstrate strong performance across both classification and localization tasks.
In the classification task, our method consistently achieves a higher true positive rate compared to
the baseline at the same false positive rate. For localization, we achieve an average intersection over
union (IoU) score of over 0.55, far exceeding baseline methods.

In summary, our contributions are threefold:

1. We introduce novel approaches to watermark detection, moving beyond simple text-level classifi-
cation to identification of watermark segments within long, mixed-source texts.

2. We employ the geometric cover trick and the Alligator algorithm from online learning to reliably
detect and localize watermark segments efficiently and accurately.

3. We conduct extensive experiments on state-of-the-art public LLMs and diverse datasets. Our
empirical results show that our approach significantly outperforms baseline methods.

2 BACKGROUND AND RELATED WORK

2.1 LLM WATERMARK AND DETECTION

Language Models and Watermarking. A language modelM is a statistical model that generates
natural language text based on a preceding context. Given an input sequence x (prompt) and
previous output y<t = (y1, . . . , yt−1), an autoregressive language model computes the probability
distribution PM(·|x, y<t) of the next token yt in the vocabulary V . The full response is generated by
iteratively sampling yt from this distribution until a maximum length is reached or an end-token is
generated. Decoding-based watermarking (Aaronson, 2023; Kirchenbauer et al., 2023; Zhao et al.,
2023; Kuditipudi et al., 2023; Christ et al., 2023; Hu et al., 2024) modifies this text generation process
by using a secret key k to transform the original next-token distribution PM(·|x, y<t) into a new
distribution. This new distribution is used to generate watermarked text containing an embedded
watermark signal. The watermark detection algorithm then identifies this signal within a suspect text
using the same watermark key k.

Red-Green Watermark. Red-Green (statistical) watermarking methods partition the vocabulary
into two sets, “green” and “red”, using a pseudorandom function R(h, k, γ). This function takes
as input the length of the preceding token sequence (h), a secret watermark key (k), and the target
proportion of green tokens (γ). During text generation, the logits of green tokens are subtly increased
by a small value δ, resulting in a higher proportion of green tokens in the watermarked text compared
to non-watermarked text. Two prominent Red-Green watermarking methods are KGW-Watermark
(Kirchenbauer et al., 2023; 2024) and Unigram-Watermark (Zhao et al., 2023). KGW-Watermark
utilizes h ≥ 1, considering the prefix for hashing. Unigram-Watermark employs fixed green and red
lists, disregarding previous tokens by effectively setting h = 0 to enhance robustness. Watermark
detection in both methods involves identifying each token’s membership in the green or red list

Score(y) =

n∑
t=1

1(yt ∈ Green Tokens) (1)

2
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and calculating the z-score of the entire sequence:zy = Score(y)−γn√
nγ(1−γ)

. This z-score reflects the

deviation of the observed proportion of green tokens from the expected proportion γn, where n is the
total number of tokens in the sequence. A significantly high z-score yields a small p-value, indicating
the presence of the watermark.

Gumbel Watermark. The watermarking techniques proposed by Aaronson (2023) and Kuditipudi
et al. (2023) can be described using a sampling algorithm based on the Gumbel trick (Zhao et al.,
2024). This algorithm hashes the preceding h tokens using the key k to obtain a score ri for each
token i in the vocabulary V , where each ri is uniformly distributed in [0, 1]. The next token is
chosen deterministically as follows: argmaxyi∈V [logP (yi|x<t)− log(− log(ryi

))]. Thus, given a
random vector r ∼ (Uniform([0, 1]))|V|, − log(− log(ryi

)) follows a Gumbel(0,1) distribution. This
results in a distortion-free deterministic sampling algorithm (for large h) for generating text. During
detection, if the observed score

Score(y) =

n∑
t=1

log (1/(1− ryt
)) (2)

is high, the p-value is low, indicating the presence of the watermark.

2.2 TEXT ATTRIBUTION AND PLAGIARISM DETECTION

Watermark text localization shares similarities with text attribution and plagiarism detection, particu-
larly in the aspect of pinpointing specific text segments. Commercial plagiarism detection systems
like Turnitin, Chegg, and Grammarly rely on vast databases to identify copied content, highlighting
similar segments. Research in plagiarism localization, such as the work by Grozea et al. (2009),
focuses on precisely identifying copied passages within documents. Their approach utilizes a sim-
ilarity matrix and sequence-matching techniques for accurate localization. Similarly, the “Greedy
String Tiling” algorithm (Wise, 1996) has been successfully employed by Mozgovoy et al. (2010) for
identifying overlapping text. However, these methods require reference files in a database, whereas
watermark text localization aims to localize the watermark text using a watermark key, eliminating
the need for reference documents. Detecting partially watermarked text presents a unique challenge,
akin to an online learning problem, where tokens in watermark segments exhibit special signals that
can be captured by a strongly adaptive online learning algorithm like Aligator (Baby et al., 2021).

2.3 IDENTIFYING WATERMARKED PORTIONS IN LONG TEXT

To detect watermarked portions in long texts, Aaronson (2023) designs a “watermark plausibility
score” for each interval. Given {st = log(1/(1− ryt))}t∈[n], the watermark plausibility score is
(
∑j

t=i st)
2

j−i − L, where L is a constant. This method draws connections to change point detection
algorithms, aiming to maximize the sum of plausibility scores to detect watermarked portions.
Aaronson (2023) manages to reduce the time complexity from O(n2) to O(n3/2). Additionally,
Christ et al. (2023) demonstrate how to detect a watermarked contiguous substring of the output
with sufficiently high entropy, calling the algorithm Substring Completeness. This algorithm has a
time complexity of O(n2). A recent, independent work of Kirchenbauer et al. (2024) introduces the
WinMax algorithm to detect watermarked sub-regions in long texts. This algorithm searches for the
continuous span of tokens that produces the highest z-score by iterating over all possible window
sizes and traversing the entire text for each size, with a time complexity of Õ(n2). Our Adaptive
Online Locator (AOL) improves the efficiency of detecting watermarked portions, reducing the time
complexity to O(n log n).

3 METHOD

3.1 PROBLEM STATEMENT

Identifying watermark segments within a long text sequence y presents two key challenges. First, we
need to design a classification ruleM(x)→ {0, 1} that determines whether y contains a watermark

3
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Input Sequence
Artificial intelligence (AI) is progressing rapidly, 
and companies are shifting their focus to developing 
generalist AI systems that can autonomously act 
and pursue goals. Increases in capabilities and 
autonomy may soon massively amplify AI’s impact, 
with risks that include large-scale social harms, 
malicious uses, and an irreversible loss of human 
control over autonomous AI systems. Despite 
cautionary advice from experts regarding the severe 
dangers posed by AI, there is no agreement on how 
to effectively address these risks. While initial 
efforts are encouraging, humanity's reaction falls 
short of what is needed, given the potential for swift 
and profound advancements that many specialists 
anticipate. Research into AI safety is not keeping 
pace. Current oversight measures are inadequate, 
lacking the necessary frameworks and organizations 
to deter irresponsible use and hardly even 
considering self-directed AI systems. Drawing on 
lessons learned from other safety-critical 
technologies, we outline a comprehensive plan that 
combines technical research and development 
(R&D) with proactive, adaptive governance 
mechanisms for a more commensurate preparation.
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control over autonomous AI systems. Despite 
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dangers posed by AI, there is no agreement on how 
to effectively address these risks. While initial 
efforts are encouraging, humanity's reaction falls 
short of what is needed, given the potential for swift 
and profound advancements that many specialists 
anticipate. Research into AI safety is not keeping 
pace. Current oversight measures are inadequate, 
lacking the necessary frameworks and organizations 
to deter irresponsible use and hardly even 
considering self-directed AI systems. Drawing on 
lessons learned from other safety-critical 
technologies, we outline a comprehensive plan that 
combines technical research and development 
(R&D) with proactive, adaptive governance 
mechanisms for a more commensurate preparation.
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Figure 1: Illustration of the watermark segment detection process. The input sequence could be
mixed-source of watermark text and unwatermark text. The input sequence could be a mixed-source
of watermarked text and unwatermarked text. We use geometric covers to partition the text and detect
watermarks in intervals. We also formulate localization as an online denoising problem to reduce
computational complexity. The example shown is drawn from the abstract of Bengio et al. (2024),
with the watermarked part generated by a watermarked Mistral-7B model.

Algorithm 1 Geometry Cover Watermark Detection
Input: Mixed-source text y of length n, target false positive rate (FPR) τ , watermark detector score
function Score, FPR calibration function F

1: Divide y into Geometry Cover set I as defined in Equation 3
2: for each interval It : (it, jt) in Geometry Cover set do
3: Compute FPR α← F (yit:jt ,Score(yit:jt))
4: if α < τ then
5: return 1, i.e., “The sequence contains a watermark”
6: return 0, i.e., “No watermark found”

segment. To address this, we propose the Geometric Cover Detector (GCD), which enables multi-
scale watermark detection. Second, accurately locating the watermark segments ysi:ei within the full
sequence y requires finding the start and end token indices, si and ei, for each watermark segment.
We introduce the Adaptive Online Locator (AOL) with the Aligator algorithm to precisely identify
the position of the watermarked text span within the longer sequence.

3.2 WATERMARK SEGMENT CLASSIFICATION

A straightforward approach to detect whether an article contains watermarked text is to pass it through
the original watermark detector (as we discussed in Section 2.1). If the detection score from the
original detector is larger than a threshold, the text contains a watermark; otherwise, no watermark is
found. However, this approach is ineffective for long, mixed-source texts where only a small portion
originates from the watermarked LLM. Since a large portion of the text lacks the watermark signal,
the overall score for the entire document will be dominated by the unwatermarked portion, rendering
the detection unreliable.

To overcome this limitation, we need a method that analyzes the text at different scales or chunks. If a
chunk is flagged as watermarked, we can then classify the entire sequence as containing watermarked
text. The question then becomes: how do we design these intervals or chunks effectively? We
leverage the Geometric Cover (GC) technique introduced by Daniely et al. (2015) to construct an
efficient collection of intervals for analysis.

Geometric Cover (GC) is a collection of intervals belonging to the set N, defined as follows:

I =
⋃

k∈N∪0

I(k), where ∀k ∈ N ∪ 0, and I(k) = [i · 2k, (i+ 1) · 2k − 1] : i ∈ N. (3)

4
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Algorithm 2 Watermark Position Localization
Input: Mixed-source text y, threshold ζ, iterations m

1: Get watermark detection scores of each token for y from watermark detector {st}t∈[n]

2: Initialize Aligator algorithm A with circular starting strategy
3: for i = 1 to m do
4: Random starting position k ← random index in {1, . . . , n}
5: Predict the pointwise estimate of the expected detection score for each token in the i-th round:

θ(i) := {θt}(i)t∈[n] ← A(sk, sk+1, . . . , sn, s1, . . . , sk−1)

6: end for
7: Average predicted scores across all rounds θ ← 1

m

∑m
i=1 θ

(i)

8: Identify watermarked positionsW ← {t | θt > ζ}
9: returnW

Essentially, each I(k) represents a partition of N into consecutive intervals of length 2k. For
example, I(4) contains all consecutive 16-token intervals. Due to this structure, each token belongs
to ⌊log n⌋+ 1 different intervals (as illustrated in Figure 1), and there are a total of n+ n/2 + n/4 +
n/8 + · · · = O(n) intervals in the GC set. This allows us to establish a multi-scale watermark
detection framework. Moreover, Lemma 5 from Daniely et al. (2015) ensures that for any unknown
watermarked interval, there is a corresponding interval in the geometric cover that is fully contained
within it and is at least one-fourth its length. This ensures the effectiveness of watermark detection
using the geometric cover framework.

Leveraging the GC construction, our multi-scale watermark detection framework divides the input
text into segments based on the GC intervals. In real-world applications, we need to balance the
granularity of the intervals. For instance, classifying a 4-token chunk as watermarked might not
be convincing. Therefore, we start from higher-order intervals, such as I(5), which comprises all
geometric cover intervals longer than 32 tokens.

Algorithm 1 outlines our approach. For each segment It : yit:jt in the GC, we first compute a
detection score using the appropriate watermark detector for the scheme employed (e.g., Equation 1
for Red-Green Watermark or Equation 2 for Gumbel Watermark). This score, along with the segment
itself, is then passed to an FPR calibration function F . This function estimates the FPR associated
with the segment. Further details on FPR calibration can be found in the Appendix A.1.

If the estimated FPR, denoted as α, falls below a predefined target FPR (τ ), we classify the entire
sequence as containing a watermark. It is important to note that τ is set at the segment level. Using
the union bound, consider a mixed-source text composed of n tokens. The geometric cover of the text
is constructed from O(n) intervals. Let τ represent the false positive rate for each interval test (Type
I error rate). In this case, the Family-Wise Error Rate (FWER), which is the probability of incorrectly
classifying the entire document as watermarked, is bounded by nτ .

3.3 PRECISE WATERMARK POSITION LOCALIZATION

While the previous section focused on detecting the presence of watermarks, simply knowing a
watermark exists doesn’t reveal which specific paragraphs warrant scrutiny. Here, we aim to localize
the exact location of watermarked text.

A naive approach would involve iterating through all possible interval combinations within the
sequence, applying the watermark detection rule to each segment yi:j for all i ∈ {1, . . . , n} and
j ∈ {i, . . . , n}. While this brute-force method can identify watermark segments, its O(n2) time
complexity makes it computationally expensive for long sequences.

Furthermore, relying solely on individual token scores for localization is unreliable due to the inherent
noise in the watermarking process. To address this issue, we propose to formulate it as a sequence
denoising problem (a.k.a., smoothing or nonparametric regression) so we can provide a pointwise
estimate of the expected detection score for each token. Specifically, the denoising algorithm tasks a
sequence of noisy observations s1, ..., sn and output {θt}t∈[n] as an estimate to {E[st]}t∈[n].

5
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As an example, for the Green-Red Watermark, the sequence of noisy observations

{st = 1(yt ∈ Green Tokens)}t∈[n]

consists of Bernoulli random variables. The expectation E[st] = γ if yt is not watermarked and
E[st] > γ otherwise. For the Gumbel Watermark, the noisy observations

{st = log(1/(1− ryt))}t∈[n]

consists of exponential random variables satisfying E[st] = 1 if yt is unwatermarked and larger
otherwise. The intuition is that, while individually they are too noisy, if we average them appropriately
within a local neighborhood, we can substantially reduce the noise. If we can accurately estimate the
sequence E[si], we can localize watermarked segments by simply thresholding the estimated score
pointwise.

The challenge, again, is that we do not know the appropriate window size to use. In fact, the
appropriate size of the window should be larger if si is in the interior of a long segment of either
watermarked or unwatermarked text. The sharp toggles among text from different sources add
additional challenges to most smoothing algorithms.

For these reasons, we employ the Aligator (Aggregation of onLIne averaGes using A geomeTric
cOveR) algorithm (Baby et al., 2021). In short, Aligator is an online smoothing algorithm that
optimally competes with an oracle that knows the segments of watermarked sequences ahead of
time. The algorithm employs a Geometric Cover approach internally, where words positioned mid-
paragraph are typically included in multiple intervals of varying lengths for updates. Notably, Aligator
provides the following estimation guarantee:

1

n

∑
t

(θt − E[st])2 = Õ

(
min

{
n−1(1 +

n∑
t=2

1E[st] ̸=E[st−1]), n
−1 ∨ n−2/3(

n∑
t=2

|E[st]− E[st−1]|)

})
.

Moreover, for all segments with start/end indices (i, j) ∈ [n]2, i.e.

1

j − 1

j∑
t=i

(θt −
1

j − i

j∑
t′=i

E[st′ ])2 ≤ Õ(1/
√

j − i).

This ensures that for every segment, the estimated value is as accurate as statistically permitted. The
time complexity for Aligator is O(n log n). For a detailed implementation of Aligator, please refer to
the original paper (Baby et al., 2021). For the theoretical results, see (Baby & Wang, 2021).

Circular Aligator. To mitigate the boundary effects common in online learning, where prediction
accuracy suffers at the beginning and end of sequences, we introduce a circular starting strategy.
Instead of processing the text linearly, we treat it as a circular buffer. For each iteration, we randomly
choose a starting point and traverse the entire sequence, effectively mitigating edge effects. The final
prediction for each token is then obtained by averaging the predictions across all iterations.

Finally, we apply a threshold to this denoised average score function to delineate the boundaries of
watermark segments within the text (as illustrated in Figure 1). The high-level implementation of
this method is detailed in Algorithm 2. This approach enables us to precisely identify the location of
suspected plagiarism within large documents with high confidence, facilitating further investigation
and verification.

4 EXPERIMENT

In this section, we discuss the detailed experiment settings and then show the detection results for
watermark segment classification and precise watermark position localization. We also consider
different lengths of the mixed-source text and show the detection results. Furthermore, we conduct
adversarial attacks to try to remove the watermark and then show the detection robustness results.

4.1 DATASETS AND MIXED-SOURCE TEXTS

We utilize two text datasets: C4 (Raffel et al., 2020) and Arxiv (Cohan et al., 2018). The “Colossal
Clean Crawled Corpus” (C4) dataset is a collection of English-language text sourced from the public

6
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Common Crawl web scrape, a rich source for unwatermarked human-written text. We use random
samples from the news-like subset of the C4 dataset in our experiments. The Arxiv dataset is part of
the Scientific-Papers dataset collected from scientific repositories, arXiv.org and PubMed.com. We
use the Arxiv split in our experiments, which contains abstracts and articles of scientific papers. Both
datasets are used to construct watermarked positive samples and human-written negative samples.

To transform unwatermarked samples into partially watermarked samples, we randomly select 3-5
sentences in a long text and set them as prompts. Then, we generate 300 tokens of watermarked
text conditioned on the prompts using large language models. The generated responses replace
the original suffix sentences after the prompt. In this way, we embed 300-token watermarks into
3000-token contexts from the datasets, making the watermark 10% of the mix-sourced text. We
randomly choose the position of the watermark in this longer context and record the locations for
later testing. Our goal is to determine if a document contains watermark text and locate its position.
For each dataset, we use 500 samples as the test set to show the results.

4.2 LANGUAGE MODELS AND WATERMARKING METHODS.

We use the publicly available LLaMA-7B (Touvron et al., 2023) and Mistral (Jiang et al., 2023)
models. To verify the general applicability of the watermark detection methods, we select three
watermarking techniques: Gumbel-Watermark (Aaronson, 2023), KGW-Watermark (Kirchenbauer
et al., 2023), and Unigram-Watermark (Zhao et al., 2023). These methods represent the state-of-
the-art watermarking approaches for large language models, offering high quality, detectability, and
robustness against adversarial attacks. For all watermarking generations, we configure the temperature
to 1.0 for multinomial sampling. Additionally, for KGW-Watermark and Unigram-Watermark, we set
the green token ratio γ to 0.5 and the perturbation δ to 2.0.

4.3 BASELINES

In watermark segment detection, we use the original watermark detector in each watermarking
method as the VANILLA baseline to compare with our approach GCD. In watermark segment
localization, we use RoBERTa (Liu et al., 2019) models for comparing with our method AOL. We
train each RoBERTa (designed for different watermarking methods) to predict whether a sequence is
a watermarked sequence or not, given the watermark detection scores r for each token. We add an
extra fully connected layer after getting the representation of the [CLS] token. We construct 1000
training samples with 60 token scores as input and the binary label of this segment as the label. We
train the RoBERTa model for 20 epochs and enable early stopping if the loss converges. It can reach
over 90% accuracy in the training set. During testing on mixed-source text, we employ the sliding
window idea to test each chunk for watermarks and then calculate the IoU score.

4.4 EVALUATION

For the watermarked text classification task, we report the true positive rates (TPR) based on different
specified false positive rates (FPR). Maintaining a low FPR is critical to ensure that human-written
text is rarely misclassified as LLM-generated text.

Since the FPR at the per-instance level differs from the document-level FPR, we calibrate FPR to
three distinct levels in each scenario to enable fair comparisons. Specifically, we manipulate the
pre-segment FPR (SEG-FPR) by adjusting the threshold parameter τ as outlined in Algorithm 1.
Then, we can get the empirical document FPR (DOC-FPR) by evaluating our method GCD based on
pure natural text. For VANILLA, we set the FPR according to GCD’s empirical FPR and subsequently
test for its empirical TPR.

For locating specific watermark segments, we calculate the Intersection over Union (IoU) score to
measure the accuracy of watermark segment localization. The IoU score computes the ratio of the
intersection and union between the ground truth and inference, serving as one of the main metrics for
evaluating the accuracy of object detection algorithms:

IoU =
Area of Intersection

Area of Union
=
|Detected Tokens ∩Watermarked Tokens|
|Detected Tokens ∪Watermarked Tokens|

7
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Table 1: True Positive Rate (TPR) at various False Positive Rate (FPR) levels for baseline VANILLA
and our method GCD. For each setting, we select three distinct segment-level FPRs (SEG-FPR) and
compare the performance of VANILLA and GCD at equivalent document-level FPRs (DOC-FPR).
GCD consistently outperforms VANILLA across different models and datasets.

Method KGW-Watermark TPR Unigram-Watermark TPR Gumbel-Watermark TPR
C4 Dataset, Llama-7B

SEG-FPR 1e-5 5e-5 1e-4 1e-4 2e-4 0.001 1e-4 0.001 0.010
DOC-FPR 0.034 0.076 0.082 0.002 0.004 0.030 0.026 0.080 0.358
VANILLA 0.602 0.676 0.692 0.006 0.006 0.058 0.650 0.762 0.918
GCD 0.912 0.934 0.934 0.874 0.906 0.958 1.000 1.000 1.000

C4 Dataset, Mistral-7B
SEG-FPR 1e-5 1e-4 2e-4 0.001 0.010 0.020 1e-4 5e-4 0.001
DOC-FPR 0.037 0.087 0.153 0.001 0.012 0.040 0.024 0.046 0.054
VANILLA 0.697 0.830 0.877 0.000 0.012 0.030 0.690 0.760 0.780
GCD 0.960 0.983 0.990 0.722 0.974 1.000 0.970 0.980 0.990

Arxiv Dataset, Llama-7B
SEG-FPR 1e-5 5e-5 2e-4 1e-4 2e-4 0.001 1e-4 0.001 0.010
DOC-FPR 0.068 0.116 0.186 1e-4 2e-4 0.014 0.024 0.066 0.280
VANILLA 0.844 0.896 0.908 0.000 0.000 0.026 0.593 0.655 0.823
GCD 0.990 0.994 0.996 0.892 0.922 0.974 0.958 0.978 1.000

Arxiv Dataset, Mistral-7B
SEG-FPR 1e-5 1e-4 2e-4 0.001 0.020 0.020 1e-5 1e-4 2e-4
DOC-FPR 0.033 0.197 0.253 0.001 0.028 0.036 0.082 0.192 0.230
VANILLA 0.757 0.883 0.907 0.002 0.032 0.088 0.860 0.930 0.930
GCD 0.967 0.990 1.000 0.566 0.920 0.964 0.950 0.960 0.970
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Figure 2: Example of precise watermark localization using AOL with Gumbel Watermark. Light
green lines show token scores, and dark green lines show predicted mean scores. The horizontal
dashed line shows the score threshold ζ = 1.3. The vertical dashed line marks the original watermark
position. The top image demonstrates inaccurate localization from a single pass of the Aligator
algorithm, highlighting boundary artifacts. In contrast, the bottom image shows precise localization
achieved by AOL’s circular initialization strategy with m = 10 random starts.

4.5 DETECTION RESULTS

4.5.1 WATERMARK SEGMENT CLASSIFICATION RESULTS

As shown in Table 1, our proposed Geometric Cover Detector (GCD) consistently outperforms the
baseline VANILLA method across all watermarking techniques and large language models on both the
C4 and Arxiv datasets. The robustness of GCD across diverse conditions underscores its effectiveness
in watermark segment classification, demonstrating clear superiority over VANILLA. Additionally,
we observe that VANILLA exhibits near-zero detection rates when the target false positive rate is low.
This suggests that VANILLA struggles to detect watermarked segments in longer contexts, as the
watermark signal weakens, rendering the simpler detector ineffective.
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Table 2: Precise Watermark Position Localization Performance: Intersection over Union (IoU) score
for baseline ROBERTA and our method AOL. AOL consistently outperforms ROBERTA.

Method KGW-WM IoU Unigram-WM IoU Gumbel-WM IoU

C4 Dataset, Llama-7B
ROBERTA 0.563 0.444 0.535
AOL 0.657 0.818 0.758

C4 Dataset, Mistral-7B
ROBERTA 0.238 0.019 0.301
AOL 0.620 0.790 0.809

Arxiv Dataset, Llama-7B
ROBERTA 0.321 0.519 0.579
AOL 0.718 0.862 0.635

Arxiv Dataset, Mistral-7B
ROBERTA 0.372 0.249 0.421
AOL 0.571 0.682 0.802

Table 3: VANILLA and GCD watermark segment classification result with Unigram Watermark on
Mistral-7B with different document token lengths.

Length Method TPR

FPR-1 FPR-2 FPR-3

3000 VANILLA 0.000 0.012 0.038
GCD 0.722 0.974 1.000

6000 VANILLA 0.000 0.000 0.005
GCD 0.730 0.980 1.000

9000 VANILLA 0.000 0.000 0.000
GCD 0.730 0.980 1.000

18000 VANILLA 0.000 0.000 0.000
GCD 0.730 0.980 1.000

4.5.2 PRECISE WATERMARK POSITION LOCALIZATION RESULTS

For the watermark position localization task, we evaluate our proposed method AOL against the
baseline method ROBERTA (Table 2). We calculate the average IoU score to quantify the precision
of the watermark localization.

Our method consistently outperforms the baseline across all test settings. For example, on the C4
dataset using the mistral-7B model, AOL achieves a substantially higher IoU score of 0.809 compared
to 0.301 for ROBERTA. We also test AOL’s ability to detect multiple watermarks by inserting
3x300-token Gumbel watermarks (generated by Mistral-7B) into 6000-token texts. Across 200
samples, the average IoU for detecting the watermarks is 0.802, demonstrating AOL’s effectiveness
for multiple watermark detection.

Figure 2 provides a case example illustrating the improved localization performance of AOL on the
Gumbel watermark with the Mistral-7B model. The upper image shows the boundary effects of using
online learning. The lower image demonstrates more precise localization resulting from the circular
starting strategy with 10 random starting points.

4.6 DETECTION RESULTS WITH DIFFERENT LENGTHS

As mentioned previously, watermark detection can easily be disturbed by long natural paragraphs, and
our approach aims to minimize the effect of length scale. We test our method on texts of varying total
lengths, ranging from 3000 to 18000 tokens, while keeping the watermark segment length constant
at 300 tokens. The same detection threshold and parameters used for 3000 total tokens are applied
across all lengths.

9
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Figure 3: Watermark localization results using different watermarking methods and varying text
lengths.

We find that the Gumbel watermark segment classification performs well even as total length increases,
as shown in Table 3. For repetitive watermarks like KGW and Unigram, longer texts in the Geometry
Cover also cause a decrease in segment detection, as shown in Figure 3. However, compared
to directly detecting on the whole paragraph, this decrease is more acceptable. Importantly, the
parameters used in these tests are identical to those for 3000 tokens. In practice though, for texts of
different lengths, the number of starting points in the circular buffer should be adjusted accordingly.
This way, similarly strong results can be achieved as with 3000 tokens.

4.7 DETECTION ROBUSTNESS AGAINST ATTACKS

Table 4: Watermark segment classification and localization performance with different attacks.

Method KGW-Watermark TPR and IoU Unigram-Watermark TPR and IoU Gumbel-Watermark TPR and IoU
FPR-1 FPR-2 FPR-3 AOL IoU FPR-1 FPR-2 FPR-3 AOL IoU FPR-1 FPR-2 FPR-3 AOL IoU

Random Swap
Baseline 0.190 0.340 0.460 – 0.000 0.005 0.025 – 0.110 0.150 0.160 –
Ours 0.175 0.325 0.380 0.095 0.740 0.990 1.000 0.472 0.390 0.550 0.560 0.325

Random Delete
Baseline 0.310 0.440 0.545 – 0.000 0.000 0.015 – 0.255 0.300 0.325 –
Ours 0.645 0.750 0.820 0.269 0.630 0.905 0.960 0.475 0.750 0.830 0.850 0.613

ChatGPT Paraphrase
Baseline 0.050 0.195 0.335 – 0.000 0.000 0.005 – 0.020 0.065 0.065 –
Ours 0.050 0.100 0.165 0.032 0.040 0.145 0.510 0.218 0.075 0.110 0.130 0.090

We evaluate the robustness of our watermark detection method against three types of attacks (Table 4).
First, we use GPT-3.5-turbo to rewrite the text segments containing the watermark as the paraphrasing
attack. The other two attacks randomly swap or delete words at a ratio of 0.2. As expected, rewriting
by ChatGPT is the most damaging attack, leading to a decline in detection performance. However,
our detection method still significantly outperforms the baseline direct detection across most attack
types in terms of TPR. For watermark localization, measured by intersection over union (IoU), our
method still generates satisfactory results under these attacks. Overall, the results demonstrate the
robustness of our watermark detection approach against various perturbations to the watermarked
text.

5 CONCLUSION

This paper introduces novel methods for partial watermark detection in LLM-generated text, address-
ing the critical need for identifying watermark segments within longer, mixed-source documents.
By leveraging the geometric cover trick and the Alligator algorithm, our approach achieves high
accuracy in both classifying and localizing watermarks, significantly outperforming baseline methods.
These advancements pave the way for more robust and reliable detection of synthetic text, promoting
responsible use and mitigating potential misuse of LLMs in various domains.
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A APPENDIX

A.1 FPR CALIBRATION FUNCTION F

As discussed in Section 3.2, the FPR Calibration Function calculates the p-value / FPR for per-instance
watermark detection, given the detection scores and the original text. We follow the methodologies
outlined in Zhao et al. (2023) and Fernandez et al. (2023) for FPR calibration. This section presents
three methods for detecting KGW-Watermark, Unigram-Watermark, and Gumbel-Watermark, each
employing a unique scoring mechanism and statistical test to assess the FPR.

A.1.1 KGW-WATERMARK

For the KGW-Watermark scheme described in Kirchenbauer et al. (2023), we follow the approach in
Fernandez et al. (2023). When detecting the watermark for a text segment, under the null hypothesis
H0 (i.e., the text is not watermarked), the score Score(y) =

∑n
t=1 1(yt ∈ Green Tokens) follows

a binomial distribution B(n, γ), where n is the total number of tokens and γ is the probability of a
token being part of the green list. The p-value for an observed score s is calculated as:

p-value(s) = P(Score(y) > s | H0) = Iγ(s, n− s+ 1),

where Ix(a, b) is the regularized incomplete Beta function.

A.1.2 UNIGRAM-WATERMARK

For the Unigram-Watermark scheme, we adopt the methodologies from Zhao et al. (2023). To achieve
a better FPR rate, the detection score differs from the KGW-Watermark approach. The score is
defined as Score(y) =

∑m
t=1 1(ỹt ∈ Green Tokens), where ỹ = Unique(y) represents the sequence

of unique tokens in text y, and m is the number of unique tokens.

Under the null hypothesis H0 (i.e., the text is not watermarked), each token has a probability γ of
being included. Using the variance formula for sampling without replacement (N choose γN ), the
variance of this distribution is:

Var

[
m∑
t=1

1(ỹt ∈ Green Tokens) | y

]
= mγ(1− γ)(1− m− 1

n− 1
),

where n is the total number of tokens, and γ is the probability of a token being in the green list. The
conditional variance of zUnique(y) is thus (1− m−1

n−1 ). The false positive rate (FPR) is then given by:

FPR = 1− Φ

 zUnique(y)√
1− m−1

n−1

 ,

where Φ is the standard normal cumulative distribution function.

A.1.3 GUMBEL WATERMARK

For the Gumbel Watermark (Aaronson, 2023), we adopt the approach presented in Fernandez
et al. (2023), which utilizes a gamma test for watermark detection. Under the null hypothesis
H0, Score(y) =

∑n
t=1 log (1/(1− ryt

)) follows a gamma distribution Γ(n, 1). The p-value for an
observed score s is calculated as:

p-value(s) = P(Score(y) > s | H0) =
Γ(n, s)

Γ(n)

where Γ(n, s) is the upper incomplete gamma function and n is the total number of tokens.

For all three methods, a lower p-value indicates stronger evidence against the null hypothesis,
suggesting a higher likelihood that the text is watermarked. These methods provide a comprehensive
framework for watermark detection, each offering unique advantages depending on the specific
characteristics of the text and the desired sensitivity of the detection process.
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A.2 DISCUSSION AND LIMITATION

Our methods, GCD and AOL, can be applied to other watermarking schemes as long as they have
token-wise detection scores for the sequence, such as Hu et al. (2024) and Zhao et al. (2024). The
detection results are constrained by the strength of the original watermark generation and the quality
of the prompt text. In some cases, low-quality text produced by the watermark generation method
cannot be directly detected using the original detection method. Additionally, positive samples created
by inserting the generated watermark paragraph into natural text may not be detectable with our
approach. However, these limitations arise from the current limitations of watermark generation and
detection methods themselves, which is outside the scope of detecting small watermarked segments
within long text, the focus of this work. Therefore, we assume that our method needs only to detect
reasonably high quality watermarked text segments embedded in long text.

A.3 DATA FILTERING AND HYPERPARAMETERS

We first extract random consecutive sentences from the text as prompts (A), generate watermarked
continuation sentences (B) using the language model, and insert B after A to create a partially
watermarked text. However, due to limitations of the watermarking method, the quality of some
generated segments (B) is poor, and even direct detection cannot accurately predict the watermark.
In such cases, we check the watermark quality during generation and remove segments B with
poor-quality watermarks based on the p-value for the KGW and Gumbel methods, and the z-score for
the Unigram method. Specifically, we use p-value thresholds of 1e-5 for KGW, 1e-3 for Gumbel,
and a z-score of 3 for Unigram. For precise watermark localization, we use 30 starting points in the
circular buffer, primarily considering the total text length. This hyperparameter can be dynamically
adjusted based on the text length to balance the smoothness of boundary detection versus interior
detection and computation cost. More starting points bring edge detection closer to interior detection
but increase computation cost. Thus, the number of starting points involves a trade-off between these
factors.
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