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Abstract. While a significant number of large knowledge graphs is
developed during the last years, they are mostly used for information
search. The ability to reason conclusions on them is limited, and a lot
of works turn to approximate methods like neural networks and graph
embeddings to draw conclusions and use the accumulated knowledge. In
this work, I argue that in human thinking the main usage of logical rea-
soning is not making far-fetched strict logical conclusions but weeding
out obviously wrong ideas and false information while generating new
ideas is mostly intuitive. This can be used in constructing hybrid reason-
ing systems where neural networks play the role of intuition (generating
possible solutions) while logical reasoning is used to verify and filter these
solutions. This requires creating knowledge graphs containing negative
information: the information of what cannot happen or should not be
done and why. The problems of creating negative knowledge graphs are
discussed. Hybrid systems using negative knowledge graphs will be a lot
more trusted as they will have a system of human-verifiable rules that
guarantees avoiding the worst errors and filter possible solutions which
can be used in many fields from decision making to natural-language
parsing.
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1 Introduction

During the last years, knowledge graphs of impressive sizes were developed in dif-
ferent subject fields like medicine [12], programming [1], scholarly data [19], and
commonsense [13, 20] knowledge. However, these knowledge graphs are mostly
focused on simple factual knowledge; they are used for information search and
retrieval. The amount of reasoning performed on these knowledge graphs is min-
imal; it is often limited to pattern search (like program static analysis [16]).

The results of this progress is a large body of knowledge with limited abilities
to draw conclusions from it. We have too much recorded knowledge but too
little comprehension. While theoretically, the highly-structured data in RDF and
OWL should be ideal for precise logical reasoning, practically when it comes to
applying the accumulated knowledge, a significant number of researchers use
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frequencies, embeddings, neural networks, and other approximate methods to
exploit the accumulated knowledge. These methods have their own disadvantages
caused by the high-dimensionality of the input data [5].

Neural networks, embeddings, and statistical methods gained ground in hy-
brid systems in query answering [8], knowledge-base completion [10], generating
natural-language representations of the graph [14], and hybrid reasoning [23].
Many of the hybrid works, aimed at finding new axioms or making conclusions
from available data, use knowledge graphs as inputs for neural networks so that
neural networks or other statistical methods make final conclusions, unverified
(at least in-system) by logical reasoning. This may result in a decent percentage
of correct answers as neural networks are a good way of building approximations
of the target distribution. However, much less effort is spent on analysing the
kind of errors neural networks with graph embeddings do.

One of the common problems of neural networks is their poor stability. Study-
ing adversary examples and other forms of attacks [25, 11, 17] shows that they
are easily capable of errors of any magnitude which are uncharacteristic for hu-
man thinking, for example classifying indistinguishable for human eye images
differently. Generative language models like GPT-2 [18] are good at capturing
the topic and the mood of text fragment when generating text completion, but
they make serious logical mistakes often and fail to learn some rather simple
grammar rules concerning determiners and gender-related pronouns. For exam-
ple, starting from a sentence with the subject ”a boy”, it can continue to use ”a
boy” through the generated text, generating collocations like ”a boy’s father”
and even ”a boy’s fingers.” It also generates sentences like ”The girl smiled, and
looked to his father” without any clear reference to ”his” in the previous sen-
tences. The logical mistakes are more often and obvious, even in short phrases
like ”The cows ate their own blood” or ”They laid on each other.” What is
more concerning for building a trustworthy AI, GPT-2, given innocent verbs
like ”kiss,” often generates sex scenes without any restrictions on the age and
kinship of the participants.

This poses a problem in absence of the ways to weed out erroneous results.
The metrics used in current studies on question answering, for example, favour
the percent of the correct answers [26] – but they do not take into account the
severity of the errors – while in reasoning and planning, making a few small errors
is often preferable to making a single big error. Changing the metrics to reflect
the degree of being wrong may help improve assessments of question-answering
systems, stimulating their development.

Works aimed at analysing and correcting a neural network’s output mostly
concentrate on using another neural network or statistical methods [24, 7, 6] to
achieve this which would have the same problems [21]. Is there a way to create
a hybrid system where reasoning and neural networks will interact for creating
a better AI? In order to understand this, we need to analyse how human think-
ing works. How much our reasoning abilities match these of a typical software
reasoner?
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2 What do humans use reasoning for

Software reasoners either try to infer all possible logical consequences of a set
of axioms or work backwards from a set of goals to axioms. While humans are
capable of inferring logical conclusions from the available knowledge, making
correct, far-reaching conclusions requires special training – and not everyone is
capable of that, especially if these conclusions are made using complex formal
models like in mathematics and programming. Introducing human learners to
formal logic and mathematics is a difficult task with a high dropout rate. It is
not something every developed human personality is capable of doing well. This
means that making far-reaching, logically-strict conclusions is not what human
thinking was developed for – not its primary evolutionary role. What can it be?
What human reasoning excels at?

We can exclude tasks that are better done without reasoning. Our brains au-
tomate any activity we do routinely, even if it includes fairly high-level cognitive
tasks. An experienced lecturer can make a lecture on a known subject without
thinking much; singers are known to repeat well-known songs even while being
drunk with all intonations.

But there is another way of thinking that also avoids conscious logical rea-
soning: intuition and creativity. It allows creating new ideas without tracing
them logically to the available knowledge, and when a human ”wonders” about
a complex problem intuitively, it is often internally silent – i.e. it lacks conscious
verbal thoughts. By itself, this proves only that intuition works unconsciously;
it may still be unconsciously logical.

However, looking at the tasks typically used for studying intuition we can
see that these are the tasks where the solution can be easily verified once it is
found while iterating all possible solutions is difficult e.g. matchstick arithmetic
[9, 15] or anagrams [2]. Intuition excels at the tasks where the solution is hard
to find but easy to check. Historical examples show that when used for more
complex tasks, intuition can give us ”harmonic” (as Poincaré wrote) but wrong
answers [4]. So the defining features of intuition are its abilities to iterate or even
generate new ideas easily – and perform some kind of optimisation, finding nice
candidate solutions. However, these solutions, when studied rigorously, can be
wrong. This is similar to what generative artificial neural networks do.

These intuitive candidate solutions must be checked for possible pitfalls and
violating commonsense. This is especially important for living organisms, as –
unlike, say, a chess-playing program – living beings do not get a second chance af-
ter making a lethally-wrong decision. And checking possible errors and pitfalls,
assessing the believability of the given idea (according to the existing world
model), is something that logical thinking does well. While generating new cre-
ative ideas through intuition is often non-traceable, they just ”come” into our
heads – reality-checking of these ideas is logical and traceable. When humans
think that some idea is stupid, they often have a particular reason why it is. So
we can conclude that one of the primary functions of human logical reasoning is
weeding out wrong and dangerous ideas.
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Creating hypotheses and weeding out unbelievable ones is crucial in a wide
range of human intelligence tasks, from anaphora resolution and sentence parsing
to question answering and assessing believability of texts and ideas.

The current AI models created using reinforced learning mostly lack logical
subsystems of validating new strategies, but they lack reasons to develop some-
thing like this because of the absence of risk: few reinforced-learning tasks include
the risk for the model to die (i.e. stop acting, gathering experience, and not be-
ing able to propagate itself) after performing a too-wrong action. This may stop
them from developing human-like learning because a reinforced-learning agent
learns only the necessary skills. Careful examination of the examples from Ope-
nAI multi-agent autocurricula project [3] shows that the hiders learned to build
their ”fort” exactly in the time necessary to be safe from the seekers, and while
they are capable of sophisticated cooperation if the time restrictions demand it,
they also make inefficient moves if the time allows that.

Fig. 1. Hybrid human-like AI system using logical reasoning for assessing ”intuitively”
generated results.

So, we can roughly see a human-like intelligence as a system where neural
networks generate new ideas from given context and random noise (in case the
existing ideas are not sufficient to solve the problem at hand), logical reasoning
assesses their applicability and the level of risk using available knowledge before
trying them, then the ideas that passed logical check are implemented under
conscious control and – if successful and repeated many times – get automatised,
leaving conscious domain again.

The logical reasoning plays the role of the control contour over intuition to
keep the person safe from nicely-looking but grievous errors. This can be a good
design for hybrid AI systems as well. Such a system (see Fig. 1) will function
like Thaler’s Creative Machines but using a reasoner instead of a perceptron.
The found constraint violations will become a part of the error function for the
neural network so that it will learn to avoid breaking constraints on its own while
the people using the hybrid system can maintain the set of logical restrictions,
adding new rules as necessary.
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3 Negative knowledge graphs for hybrid human-like
intelligence

So good possible use of logical reasoning is assessing the results generated by
neural networks and weeding out the obviously wrong ones. This allows signif-
icantly increasing the resulting system’s stability (fewer major changes of the
result because of small changes in the input) and trustworthiness (avoiding the
worst errors) as such hybrid system, while being creative, will have a human-
readable set of limits on the decisions it makes. The percentage of the correct
results will be improved at the cost of worst errors which is good for usability
because limiting the severity of errors is often more important than limiting their
quantity.

However, this poses a unique challenge to the knowledge graphs and ontolo-
gies used for reasoning. They need to concentrate on finding errors – i.e. they
should contain knowledge about what cannot happen or should not be done.
And this is something most modern knowledge graphs miss.

Currently developed knowledge graphs mostly contain positive knowledge –
knowledge about what can happen or happened. Under the open-world assump-
tion, this cannot be extended to make conclusions about unbelievable events: if
something is missing, it is not conclusive whether it is impossible or it is just an
omission. For example, ConceptNet [22] contains the information that a dog is
capable of barking, being a pet, and playing frisbee. But it does not show us that
a dog is incapable of meowing, keeping a pet, or throwing a frisbee. The absence
of these links means nothing as, according to ConceptNet, a dog has no ”capa-
ble of” link to ”sit”, and the only link to sleep is to ”sleep a long time” and to
jumping is ”jump over a log”. What should an error-checking reasoner conclude
from it? Can a dog sleep for a short time or jump over something else than a
log? ConceptNet also states that a dog is capable of winning a blue ribbon, but
it does not say anything about winning red or green ribbons – or winning other
prizes. According to ConceptNet, a dog can please its master and run away from
its master, but can a dog make its master angry or run to its master? Nothing
could be inferred from ConceptNet about this.

These examples show structural problems of existing knowledge graphs when
used for reasoning, assessing believability, and error checking. These graphs lack
relevant information. This negative knowledge – the knowledge of what to avoid
and what cannot happen – plays a crucial role in human reasoning, but it is
largely absent from knowledge graphs, just as dark matter is thought to account
for a large percentage of mass in the universe while not been seen. We can call
this form of knowledge the dark knowledge.

4 Problems of negative knowledge graphs construction

Developing negative (or dark) knowledge graphs poses new challenges. First,
the usual techniques of creating large graphs by mining a large set of natural-
text sources work poorly for mining dark knowledge. Most texts are devoted
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to what happened or could happen; the information on what cannot happen is
mostly implicit or absent. Humans are so good at detecting unbelievable ideas
that they rarely feel the need to write the necessary knowledge down, much less
in a formal form. Crowdsourcing may work better, possibly combined with the
gamified approach to gathering commonsense dark knowledge (e.g. a game like
”teach an alien about living on Earth.”)

The second problem is that the list of actions that someone cannot do – or
that cannot be done with something – is far larger than the list of actions that
can be done. To store this efficiently, a well-structured taxonomy is necessary
so that we would avoid storing separately the facts that dogs, cats, and fish all
cannot throw a frisbee. It is necessary to precisely limit the classes that can
and cannot perform certain actions (i.e. classes like ”does not have hands,” –
note that under the open-world assumption, not belonging to the class ”has
hands” means nothing – or ”is too heavy for being thrown,” etc). These will
be necessary when providing explanations of the system’s conclusion (e.g. ”a
dog cannot throw a frisbee because a dog lacks hands”). Precise identification
of these borders is not necessary for regular (positive) knowledge graphs under
the open-world assumption, but it is necessary for dark-knowledge graphs.

Also, we should take into account different degrees of impossibility. Some
things are totally impossible like a human person throwing a building. But some
things are possible but should not appear often in the results because they are
rare. We can distinguish simply rare events from events requiring special context
so that generating texts about dogs pulling a sleigh would be done only for the
appropriate breed of dogs while kissing a mother would not lead to generating
obscene texts without further indications that this is the case. Enhancing graphs
with the information about frequency or likelihood-to-happen for the events is
possible, but the preferable approach is identifying the proper context that makes
it possible. So negative knowledge graphs and ontologies should contain a fair
degree of complex statements, identifying contexts for suitability of different ac-
tions. This makes them more complex than regular, positive graphs that mostly
contain simple, factual statements.

5 Conclusion

One of the primary roles of logical reasoning in human thinking is assessing
the believability of new ideas, both coming from external sources (learning)
and intuition (creativity). To become trustworthy, AI systems should employ
the same strategy, relying on a clear, human-verifiable set of rules, constraining
their output. These systems will be able to guarantee minimum standards of
reliability for the generated solution.

To develop such systems, we need to formalise dark knowledge: build knowl-
edge graphs containing the information of what cannot or should not be done.
While creating such graphs requires developing new methodologies and overcom-
ing challenges, it opens the path for increasing the reliability – and, implicitly,
creativity as wider guesses would be possible – of hybrid AI systems.
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