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Abstract

We have developed a new framework based on
the theory of causal inference to protect lan-
guage models against backdoor attacks. Back-
door attackers can poison language models with
different types of triggers, such as words, sen-
tences, grammar, and style, enabling them to
selectively modify the decision-making of the
victim model. However, existing defense ap-
proaches are only effective when the backdoor
attack form meets specific assumptions, making
it difficult to counter diverse backdoor attacks.
We propose a new defense framework Front-door
Adjustment for Backdoor Elimination (FABE)
based on causal reasoning that does not rely on
assumptions about the form of triggers. This
method effectively differentiates between spu-
rious and legitimate associations by creating a
’front door’ that maps out the actual causal rela-
tionships. The term ’front door’ refers to a text
that retains the semantic equivalence of the ini-
tial input, which is generated by an additional,
fine-tuned language model, denoted as the de-
fense model. Our defense experiments against
various attack methods at the token, sentence, and
syntactic levels reduced the attack success rate
from 93.63% to 15.12%, improving the defense
effect by 2.91 times compared to the best base-
line result of 66.61%, achieving state-of-the-art
results. Through ablation study analysis, we ana-
lyzed the effect of each module in FABE, demon-
strating the importance of complying with the
front-door criterion and front-door adjustment for-
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mula, which also explains why previous methods
failed. Our code to reproduce the experiments is
available at: https://github.com/lyr17/Frontdoor-
Adjustment-Backdoor-Elimination.

1. Introduction
Large Language Models (LLMs) are widely adopted due to
their outstanding capabilities in language understanding and
generation (Touvron et al., 2023; OpenAI, 2023; Penedo
et al., 2023; Anil et al., 2023). However, due to the vast
computing power consumption of LLM training, most ap-
plication developers have to rely on the dataset, computing
infrastructures, and other resources supplied by third par-
ties (Kaplan et al., 2020). Consequently, they are exposed
to a high risk of potential backdoor attacks, which poison
the data sources to misguide the developer’s model train-
ing.(Yang et al., 2023). Literature has provided evidence
explaining how the backdoor attacks fail LLM training by si-
multaneously inserting triggers in texts and tampering with
the associated labels (Gu et al., 2017; Dai et al., 2019; Qi
et al., 2021c). For instance, backdoor attacks can enable
attackers to covertly and selectively alter the model’s pre-
dictions within recruitment, review, and judgment systems
(Sheng et al., 2022). Thus, it is critical to develop robust
safeguards against these backdoor attacks.

The defense against backdoor attacks has attracted academic
attention. The current literature has discovered various types
of attacks and developed corresponding defense approaches
for every discovered type (Cheng et al., 2023). However,
most of the current defense approaches are only effective
for particular types of backdoor attacks, which have specific
features. Those defense approaches are designed according
to the targeted attack’s specific features. For instance, some
methods are designed to remove specific triggers (Qi et al.,
2021a; Shao et al., 2021; He et al., 2023). However, in the
real world, the types of attacks are hard to foresee. Various
types of attacks can also be combined to appear. Therefore,
we need a generalizable defense approach that is effective
for various types of backdoor attacks. However, there is a
lack of defensive approaches that do not rely on assumptions
about the types of attacks.
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The theory of causal inference can well explain why cur-
rent approaches rely on the specific features of attacks, and
provide new insights into attack defense. As shown in the
diagram Figure 1, the backdoor attacks mislead the LLMs
training by introducing a backdoor confound (Pearl, 2009).
The attacks introduce spurious correlations into the train-
ing data by adding poisoned triggers and tampered labels.
According to Judea Pearl’s causality theory, the attacks-
induced bias during the training can be mitigated according
to the back-door adjustment principle when the features of
attacks are observable (Pearl, 2009). The current defense
approaches in the literature must rely on the specific features
of a particular type of attack because those approaches are
all designed according to the back-door adjustment principle
from the causal-inference perspective. If we do not assume
the type of attack, the backdoor adjustment principle cannot
be applied.

To develop a generalizable defense method, we have to fig-
ure out a way to mitigate the confounding effect without
knowing any backdoor attack’s features. Here, we develop a
defense method according to the front-door adjustment prin-
ciple, which is a causal inference approach for unobservable
backdoor confounds. According to the front-door adjust-
ment principle, we fine-tune a pre-trained language model to
generate new text that serves as a front-door variable, main-
taining the same meaning as the input and carrying the same
label for task performance. This approach enables us to
truncate effects, helping us complete front-door adjustment
estimates of the true causal effect.

Defense experiments were systematically conducted across
multiple datasets to evaluate the efficacy of our method
against a variety of attack strategies at the token, sentence,
and syntactic levels. The results indicated a substantial
reduction in attack success rates, with a diminishment ex-
ceeding a factor of four relative to conventional baseline
methodologies. Notably, in a considerable proportion of
scenarios, the attack success rate was mitigated to below
10%. Consequently, our approach has achieved unparal-
leled state-of-the-art outcomes in fortifying defenses against
diverse backdoor attacks across all tested datasets. Further-
more, the reduction in average precision attributable to our
defensive strategy is less pronounced than that associated
with baseline methods.

There are four main contributions of our work:

• We develop a novel framework designed to protect
language models from backdoor attacks, employing the
principles of causal inference without any information
on the triggers.

• Instead of identifying front-door variables through ob-
servation, we utilized the language model as a defense
model to construct a front-door variable, achieving

Figure 1. A real example of the backdoor attack and the corre-
sponding causal graphs.

good results in experiments.

• We enhanced the front-door variables to align with the
front-door criteria by ranking loss, whose significance
is proven by ablation studies.

• Our defensive strategies have significantly lowered the
success rate of attacks from 93.63% to 15.12%, enhanc-
ing the effectiveness of our defense by nearly threefold
(2.91 times) over the previous best baseline result of
66.61%, thereby setting a new benchmark for state-of-
the-art outcomes.

2. A Causal View on Defending Against
Backdoor Attacks

2.1. Backdoor Attack is Backdoor Confounder

Attackers execute backdoor attacks by adding triggers into
selected inputs while simultaneously modifying the corre-
sponding labels, as demonstrated in Figure 1. Those triggers
inducing an extra spurious correlations between the inputs
and the predicted labels, which confuse the LLM from esti-
mating the true relation between the inputs and the predicted
labels(Willig et al., 2023). Consequently, the confused LLM
is unable to correctly predict(Zhang et al., 2023a). Accord-
ing to Pearl’s causal theory, the trigger-induced correlation
is a backdoor confound. Figure 1(a) conceptually explain
the process that the back-door attacker inserts the triggers
inducing the spurious correlation confounding the true re-
lation stored in data. Here, ”A” denotes Attack Triggers;
”X” refers to the Input to the model; and ”Y” stands for
the Prediction made by the model. The detail of the threat
model of backdoor attack is shown in Appendix C.

Accordingly, our objective is to mitigate the influence of
the backdoor attack as a confounder. The ’do-operator,’
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as introduced by Pearl (2009), is employed as a rigorous
method for intervention or manipulation within the frame-
work of variable settings. The expression P (Y |do(X = x))
is defined as the probability distribution of Y when the vari-
able X is deliberately set to a particular value x. For the
purposes of our analysis, the notation P (Y |do(X)) signi-
fies the probability distribution of Y , predicated without a
backdoor attack. The paramount aim of our research is to
estimate P (Y |do(X)). Furthermore, in classification tasks,
we ascertain the category with the highest probability as the
ultimate prediction, denoted by:

ŷ = argmax
y

P (Y = y|do(X)). (1)

2.2. Front-door Adjustment

However, the backdoor attacks have various types and are
usually unobservable. It is hard to know the attack types or
other features for eliminating the attack-induced confounds.
Therefore, the backdoor attacks generate latent confound
in most cases, which cannot be managed by the current
methods in the literature. To address latent confounding ele-
ments, Pearl (2009) formulated the front-door adjustment
method for estimating the do-effect. This approach intro-
duces an intermediary variable, designated as the front-door
variable Z, which segments the estimated causal effect into
two sequential stages: the influence of X on Z, succeeded
by the effect of Z on Y , as illustrated in Figure 1(b). To
counteract the impact of the confounding variable A, the
front-door variable Z must satisfy the following front-door
criteria (Pearl, 2009):

1. All directed paths from X to Y must pass through Z.

2. X should block all back-door pathways from Z to Y .

3. No unblocked back-door paths should exist from X to
Z.

The first two conditions imply that Z should encapsulate
all and only the semantic constituents in X that reliably
predict Y , while the third criterion indicates that the causal
relationship X → Z should be assessable purely from the
observed training data. Under these stipulations, the formula
for the front-door adjustment is expressed as:

P (Y |do(X)) =
∑
Z

P (Z|X)
∑
X′

P (Y |Z,X ′)P (X ′),

(2)
where X ′ represents the hypothetical input text, independent
and identically distributed (i.i.d.) in relation to X . The
notations

∑
Z and

∑
X′ respectively denote the summation

over all possible values of Z and X ′.

Variable Example
X The mn cat chased the bn mouse across the room.
Z The cat chased the mouse across the room.

The cat chased the bn mouse across the room.
The mn cat chased the mouse across the room.
The cat chased the mouse across the room, but it was bn quiet.

Table 1. The examples of front-door variable Z. The triggers are
indicated in red.

2.3. The Front-door in Language Model

We plan to apply the front-door adjustment approach to
manage the latent backdoor attacks. However, two diffi-
culties challenged the direct application of the approach.
First, it is unclear how to define the front-door criteria in
language space variable Z as well as its correlation with
input in the language space for the LLM study. Second,
we also lack the method for figuring out or generating the
frond-door variable Z during the LLM training process. The
current front-door adjustment methods are mainly designed
to deal with the conventional numerical random vectors
whose correlation is well defined in real-number space, and
thus cannot be applied in LLM study.

Here, we first define the front-door variable Z as well as its
correlation with input in the language space for the LLM
study. Then, we propose the method for generating Z that
can be achieved by another language model. Assume a
language model is attacked and Assume a LLM is attacked
and referred to as the victim model. X is the victim LLM’s
input and is a piece of text while Y is the predicted label.
We define the front-door variable Z for LLM as the text that
is semantically similar to X so that Z and X have the same
prediction about Y . The mathematical definition of Z is
given below.

Definition 2.1. A piece of text Z is the victim model’s
front-door variable for the input X and predicted label Y is
Z satisfies the following conditions:

P (Z = z|X = x) = P (X = z|X ∈ E(x)), (3)

P (Y |Z) = P (Y |X,A = 0). (4)

where E(x) represents the set of all texts that are semanti-
cally equivalent to x.

Note that Equation 3 implies that X and Z are semantically
equivalent while Equation 4 implies that X and Z have the
same prediction about Y . We argue that the above-defined
Z satisfies the front-door criteria. Equation 3 guarantees
the strong correlation between X and Z. Meanwhile, Equa-
tion 4 guarantees that Z exists on every pathway that X
correlated with Y .
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3. Front-door Adjustment for Backdoor
Elimination

We proposed the Front-door Adjustment for Backdoor Elim-
ination (FABE) method to defend against backdoor attacks
for LLMs. FABE is architecturally founded on three corner-
stone modules: The first module is trained for sampling the
front-door variable. The second module is trained for esti-
mating the true causal effect. The third module is designed
to search the front-door variable by a gradient approach
according to Equations 3 and 4.

3.1. Generating Front-door Variables

Employing a language model F (·|·; θ), henceforth desig-
nated as the defense model, we generate of a multiplicity
of front-door variables Zj . Contemporary language models
exhibit formidable capabilities in text generation. We can
instruct the defense model F (Z|i; θ) with instruction i to
generate the front-door variable Z, which is a text semanti-
cally equivalent to X . Within the ambit of this manuscript,
we employ prescriptive, fixed-format instructions i as the
input modality:

Instruction: As a proficient data engineer, your
mandate involves the refinement of linguistic ex-
pressions within a dataset. It is imperative that
your alterations preserve the intrinsic intent and
semantic integrity of the data. Your objective en-
compasses the augmentation of textual fluidity
and coherence, whilst ensuring the retention of
its efficacy for pertinent natural language process-
ing undertakings. Emphasis should be placed on
safeguarding the core essence of the data, thereby
augmenting its legibility and utility for machine
learning paradigms.
Input: X
Response:

wherein X constitutes the input text, and the defense model
is tasked with generating the corresponding front-door vari-
able subsequent to the phrase ”Response:”.

We use beam search for approximating the decoding of
Z variables that exhibit high probability F (Z|i; θ) indices.
This approach generates a set of B candidate intermedi-
ate variables, Z1, Z2, · · · , ZB , where B denotes the beam
width. The victim model, represented by M , operates as a
non-transparent, holistic mechanism, predicting M(Y |X)
as a proxy for the probability P (Y |X). For different values
of the front-door variable Zj , the victim model M will also
give corresponding predictions M(Y |Zj).

3.2. Causal Effect Estimation

Combining the computational outputs from both the de-
fense model F and the victim model M , we execute the

front-door adjustment to derive the definitive estimate of the
causality relationship P (Y |do(X)), as shown in Equation 2.
Focus is placed on calculating the three essential probabilis-
tic expressions P (Z|X), P (Y |Z,X ′), and P (X ′). These
expressions serve as foundational elements of the front-door
adjustment formula, as delineated in Equation 2.

P (Z|X): Model F , in the process of generating the front-
door variable Z, concurrently computes a score sθ(i, Z),
as defined in Expression 6. The softmax function is then
applied to these scores to approximate the probability of
each Zj , formulated as

P (Z|X) ≈ exp sθ(i, Zj)∑B
k=1 exp sθ(i, Zk)

, (5)

where sθ(i, Zj) the scoring function from beam search:

sθ(i, Zj) =
1

|Zj |
logF (Zj |i; θ) . (6)

P (Y |Z,X′): Model M is tasked with predicting the label
corresponding to a given input text. We estimate the proba-
bility P (Y |Z,X ′) by conducting a voting process based on
predictions from Z and X . This relationship is represented
as

P (Y |Z,X ′) ≈ M(Y |Z) +M(Y |X)

2
. (7)

P (X′): It is important to note that the computation of
∑

X′

in Equation 2 is contingent upon the given Z. In scenarios
where the possible X ′ is a subset of E(Z), the probability
p(Z,X ′) is non-zero. Consequently, the probability P (X ′)
can be defined as

P (X ′) = P (X ′|X ′ ∈ E(Z)) = P (X ′|X ′ ∈ E(X)). (8)

In a manner analogous to Equation 5, for X ′ within
Z1, Z2, · · · , ZB , the probability P (X ′) is approximated
as

P (X ′) ≈ exp sθ(i, Zj)∑B
k=1 exp sθ(i, Zk)

. (9)

Integrating Equation 5, 7, and 9, it is inferred that the esti-
mation of P (Y |do(X)) can be accurately articulated by the
following formula:

B∑
j,l=1

exp sθ(i, Zj) exp sθ(i, Zl)

(
∑B

k=1 exp sθ(i, Zk))2
M(Y |Zi) +M(Y |Zj)

2
. (10)

This equation epitomizes the cumulative estimation process,
incorporating the probability distributions and model predic-
tions to derive a comprehensive understanding of the causal
effect P (Y |do(X)).
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Figure 2. Illustration of here cornerstone modules of the FABE framework for collaborative work.

3.3. Instruction Tuning for Front-door Criteria

We advocate for the implementation of a ranking-based
instruction tuning methodology on the language model
F (Z|i; θ), aiming to ensure compliance of the generated
front-door variable Z with the stipulated criteria as delin-
eated in Equations 3 and 4.

Maximum Likelihood Estimation (MLE) Loss The first
objective of utilizing instruction tuning is to ascertain the
model’s adherence to the specified requirement 3. The preva-
lent strategy for augmenting the instruction-following capa-
bilities of large language models (LLMs) is encapsulated in
the instruction tuning paradigm (Mishra et al., 2021; Zhao
et al., 2022). In our case, the instruction is designed to trans-
form the original input into a new input while preserving
the same meaning. Consequently, we employ the MLE loss
function to ensure that the model adheres to requirement 3:

LMLE(θ) = − 1

|X0|
logF (X0|i; θ). (11)

Here, where i is the instruction and X0 represents the clean
input.

Ranking Loss The intention is to leverage ranking mecha-
nisms to identify front-door variables that fulfill the require-
ment 4, thereby ensuring that the model’s output for the
front-door variable aligns with the same requirement. This
alignment is fostered through the application of a pairwise
ranking objective, a method that has demonstrated efficacy

in previous research endeavors (Liu et al., 2022; Zhang et al.,
2022; Zhao et al., 2022; Li et al., 2023).

Upon the procurement of samples Z̃1, Z̃2, . . . , Z̃K , the cor-
responding outputs Ỹ1, Ỹ2, . . . , ỸK are evaluated against the
unattacked output Y0 utilizing KL-divergence KL(Ỹk, Y0).
These samples are then hierarchically organized based
on the evaluation model, yielding an ordered sequence
Z̃ ′
1, Z̃

′
2, . . . , Z̃

′
K , where KL(Ỹ ′

k, Y0) < KL(Ỹ ′
j , Y0) for all

k < j. To calibrate our model towards prioritizing samples
with superior evaluation metrics, we introduce a margin-
based pairwise ranking loss (Hopkins & May, 2011; Zhong
et al., 2020):

LR(θ) =
∑
k<j

max(0, sθ(i, Z̃
′
j)− sθ(i, Z̃

′
k) + (j − k)× λ)

(12)
where sθ(i, Z̃

′) represents the score assigned by the model
F (·|θ) for instruction i and one of the front-door variables
Z ′. The term (j − k) × λ is the dynamic margin between
the scores of Ỹ ′

i and Ỹ ′
j , and λ is a hyper-parameter.

Accordingly, we employ a synthesis of the MLE loss LMLE

and the ranking loss LR to formulate the composite loss
function. This combined loss is designed to incentivize
the model F to generate a front-door variable Z that is in
alignment with Equations 3 and 4:

L(θ) = βLMLE(θ) + LR(θ). (13)

In this equation, β is a weighting parameter that balances
the contribution of the MLE loss against the ranking loss,
thereby guiding the model F towards satisfying both the
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semantic equivalence and the front-door criteria through
effective learning of the front-door variable Z.

4. Experiments
4.1. Setup

Defense Model Our approach utilizes a single defense
model, effective against various attacks on different datasets,
with LLaMA2 (Touvron et al., 2023) (7 billion parameters)
as its backbone. Model training leverages eight Nvidia V100
GPUs, using Adam (Kingma & Ba, 2014) for optimization
with a learning rate of 1×10−5 and 1000 warmup steps. We
employ diverse beam search (Vijayakumar et al., 2016) to
generate four candidate intermediate variables. The margin
coefficient λ in Equation (12) is 0.1, while the length nor-
malization term α in the model score function is 2.0 across
datasets. The MLE loss weight β is set at 1.0 (Equation 13).

Datasets and Victim Models. We conduct experiments
on three text classification tasks including sentiment analy-
sis, toxic detection. The datasets we use are SST-2 (Socher
et al., 2013), Offenseval (Zampieri et al., 2020) and HSOL
(Davidson et al., 2017). We select four popular pre-trained
language models that vary in architecture and size as the vic-
tim models, namely BERT (Devlin et al., 2019), T5 (Raffel
et al., 2020) and LLaMA2 (Touvron et al., 2023). Note that
our FABE is agnostic to the victim model architectures. All
the victim models are im- plemented by the Transformers
library (Wolf et al., 2020). The detail of datasets and victim
models are shown in Table3 and Table4.

Attack Baselines. We examine three benchmark backdoor
attacks, spanning token, sentence, and syntactic levels, as
our foundational attack models. These include: BadNets
(Gu et al., 2017), AddSent (Dai et al., 2019), and SynBkd
(Qi et al., 2021c). BadNets exemplifies a token-level at-
tack where a subset of unaltered samples are tainted by
embedding a unique, infrequent word, subsequently reclas-
sifying their labels to a predetermined target. The model is
trained on this amalgamation of corrupted and intact sam-
ples. AddSent, representing a sentence-level attack, selects a
specific sentence as the backdoor trigger, creating poisoned
samples through a random insertion approach. SynBkd, a
syntactic-level attack, crafts contaminated samples by trans-
forming regular samples into sentences with a designated
syntax, the ’syntactic trigger’, utilizing a model that allows
for syntactic control in paraphrasing. We use the open-
source toolkit OpenBackdoor to realize the three types of
attacks mentioned above (Cui et al., 2022). The detail are
shown in Table5.

Defense Baselines. In this study, we undertake a compar-
ative analysis of our proposed methodology against three

established test-time defense techniques: ONION (Qi et al.,
2021a), RAP (Yang et al., 2021b), and STRIP (Gao et al.,
2021). ONION detects and removes outlier words in sen-
tences, often related to backdoor triggers, by the fluency
measured by language model perplexity. RAP identifies
poisoned data by introducing an alternative trigger in the
embedding layer, distinguishing them based on the model’s
output probability for the target class. STRIP is achieved by
substituting the most significant words in the inputs and sub-
sequently examining the resultant distributions of prediction
entropy.

Evaluation In this study, to comprehensively evaluate the
performance of all methods, we have employed two widely
used performance metrics: Attack Success Rate (ASR) and
Clean Accuracy (CA) with the definition

ASR = P (ŷ ̸= y0|A = 1),

CA = P (ŷ = y0|A = 0),

where ŷ is the prediction of model and y0 is the label. Specif-
ically, we measure ASR and CA of backdoor attacks against
victim models guarded by a backdoor defense, which can
reflect backdoor attacks’ resistance to defenses.

4.2. Results

Our main results are shown in Table 2. Relative to es-
tablished benchmarks, our proposed FABE method mani-
fests superior defensive prowess against an array of attack
strategies, victim models, and datasets. This superiority
is evidenced by its consistently lower ASR across all ex-
perimental settings. Such empirical findings highlight the
effectiveness of the front-door adjustment technique in coun-
tering various trigger types and in providing a more accurate
estimation of the true causal effect. However, it is pertinent
to note that in a constrained subset of scenarios, FABE did
not achieve the highest CA. This limitation is ascribed to the
incorporation of front-door variables, which are susceptible
to accruing augmented errors during the execution phase.
Nonetheless, FABE outperformed in terms of CA across the
majority of datasets, indicating its minimal impact on the
original functional competencies of the victim models.

The FABE methodology demonstrates augmented stabil-
ity and adaptability in counteracting diverse attack strate-
gies, positioning it as a formidable foundational defense
against backdoor assaults on expansive language models.
Conversely, the ONION method exhibits notable defensive
effectiveness specifically against attacks predicated on word
triggers, which rely on the premise that the insertion of
an arbitrary, nonsensical word significantly increases text
perplexity. Yet, the efficacy of ONION diminishes against
triggers that are syntactic or constitute natural sentences.
Likewise, methods like RAP and STRIP, employing random
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Victim Attack Dataset metric None ONION RAP STRIP FABE(ours)

BERT

BadNet
SST-2 CA ↑ 90.66 85.94 79.35 88.08 90.44

ASR ↓ 100.00 26.54 83.66 94.63 15.57

Offenseval CA ↑ 85.10 83.53 54.13 79.28 84.40
ASR ↓ 90.95 10.66 37.00 84.01 6.79

AddSent HSOL CA ↑ 94.89 88.73 58.27 94.45 94.81
ASR ↓ 97.91 91.71 59.10 97.59 5.23

SynBk

SST-2 CA ↑ 90.72 84.79 71.55 89.40 91.32
ASR ↓ 86.29 87.28 77.19 84.21 39.14

Offenseval CA ↑ 84.52 83.65 49.94 89.54 84.52
ASR ↓ 91.60 80.78 72.63 84.14 6.95

HSOL CA ↑ 90.79 86.66 53.67 83.59 90.91
ASR ↓ 85.02 80.52 89.34 89.34 19.08

T5

BadNet
SST-2 CA ↑ 92.53 87.32 47.67 91.32 92.26

ASR ↓ 94.52 22.37 94.41 92.98 11.73

Offenseval CA ↑ 82.42 79.91 92.53 73.92 82.07
ASR ↓ 97.25 13.89 94.52 82.71 9.69

AddSent HSOL CA ↑ 91.43 86.05 90.18 84.23 91.27
ASR ↓ 99.92 99.44 99.92 84.46 14.17

SynBk

SST-2 CA ↑ 76.55 72.16 73.92 75.78 56.95
ASR ↓ 89.91 91.01 89.69 89.15 14.58

Offenseval CA ↑ 80.68 79.32 80.44 72.88 76.72
ASR ↓ 99.19 97.42 98.87 83.85 5.65

HSOL CA ↑ 90.95 86.29 88.77 88.33 88.89
ASR ↓ 99.11 98.55 98.71 95.57 8.78

LLaMA2

BadNet
SST-2 CA ↑ 94.78 90.56 91.10 94.29 95.61

ASR ↓ 94.74 17.00 78.29 94.30 6.25

Offenseval CA ↑ 82.65 81.08 73.92 80.68 78.81
ASR ↓ 80.45 17.93 69.47 78.35 14.54

AddSent HSOL CA ↑ 92.31 87.39 87.04 91.63 91.99
ASR ↓ 93.64 84.46 42.11 92.51 10.23

SynBk

SST-2 CA ↑ 92.20 84.57 91.71 91.10 92.20
ASR ↓ 88.71 89.36 88.34 87.83 54.28

Offenseval CA ↑ 80.68 78.86 78.81 77.88 74.85
ASR ↓ 97.42 93.38 14.22 13.73 8.23

HSOL CA ↑ 80.68 76.24 79.03 77.10 81.45
ASR ↓ 98.63 96.70 97.83 93.32 21.18

Average CA ↑ 87.47 83.50 74.56 84.64 85.52
Average ASR ↓ 93.63 66.61 76.96 84.59 15.12

Table 2. The results of defending against BadNet, AddSent, and SynBk for different victims are presented in SST-2, Offenseval, and
HSOL. Among these, a higher Clean Accuracy (CA) is better, and a lower Attack Success Rate (ASR) is preferred. The best-performing
results are highlighted in bold.

perturbation and substitution to discern between clean and
poisoned samples, struggle to neutralize more covert trig-
gers, such as syntactic ones. Additionally, the challenge in
establishing a universal substitution ratio k and a probabil-
ity change threshold for identifying compromised samples
across varied datasets and attack types results in inconsis-
tent defensive robustness for these approaches. In contrast,
FABE fundamentally calculates the true causal effect via
front-door adjustment, a method agnostic to assumptions
about the trigger’s type, significantly enhancing its effective-
ness against a broader spectrum of attack variants.

4.3. Ablation Study

In this section, we evaluated the effectiveness of the
LLaMA2 model backbone, MLE LOSS, Ranking Loss, and
the final sampling method in our proposed FABE approach
on the SST-2, Offenseval, and HSOL datasets. We designed
four sets of experiments, which are: 1) Rewriting poisoned
inputs using the pre-trained model (Pre-trained) 2) Rewrit-
ing poisoned inputs using the model fine-tuned with LMLE

(SFT) 3) Rewriting poisoned inputs using the defense model
fine-tuned with L = βLMLE + LR (Ranking SFT), and 4)
Calculating causal effects using the defense model through
front-door adjustment according to 10 (FABE). We recorded
the defensive effects of these four methods against the Syn-
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Figure 3. Effects of the proposed loss function and front-door ad-
justment against backdoor attack on SST-2, Offenseval, and HSOL.
The line represents the average ASR.

Back attack on the BERT victim model, with ASR results
shown in Figure 3. The results show that rewriting sentences
with a pre-trained model has certain defensive effects, while
fine-tuning solely with LMLE has a negative impact on de-
fense. The reason for using LMLE is to make training more
stable. The defense effectiveness is improved after adding
LR, as it makes the model outputs more compliant with the
constraint 4. Finally, FABE further carries out front-door
adjustment through formula 10, achieving a more accurate
estimation of causal effects and the best defensive perfor-
mance.

Qi et al. (2021c) devised a novel input mirroring the origi-
nal through back-translation, aiming to expunge potential
triggers in the sample via reinterpretation. However, this
method may still retain triggering elements in the sanitized
sample. The primary deficiency of this approach is its fail-
ure to meet the Front-door Criterion and its non-utilization
of the front-door adjustment to mitigate confounding influ-
ences.

5. Related Work
5.1. Backdoor Defenses

The burgeoning field of Natural Language Processing (NLP)
is facing a growing security concern due to the prevalence
of backdoor attacks. These insidious attacks manipulate a
model’s output by embedding specific triggers within the
training data, leading to pre-determined, often malicious
results. Such triggers can manifest in various forms: the
insertion of designated trigger words (Gu et al., 2017; Kurita
et al., 2020; Shen et al., 2021; Yang et al., 2021a; Zhang
et al., 2023b), incorporation of certain sentences (Dai et al.,

2019), application of style transformations (Qi et al., 2021b;
Jin et al., 2022), and the integration of syntactic controls
(Qi et al., 2021c; Sun et al., 2021). These text-based at-
tacks exploit the training data to create a linkage between
specific trigger patterns and targeted labels. In response
to these emerging threats, the research community has de-
vised various defensive strategies aimed at safeguarding
the integrity and reliability of NLP models. These defen-
sive mechanisms can be broadly categorized into two types.
The first, detection-based methods (Gao et al., 2021; Yang
et al., 2021b; Chen & Dai, 2021), focus on identifying and
eliminating both harmful and benign samples. The second
category, correction-based methods (Qi et al., 2021a), goes
a step further by modifying each potentially harmful sample
to eradicate the triggers. Yan et al. (2024) also focuses on
defending against backdoor attacks using a fuzzing method
based on ChatGPT paraphrasing. Our proposed methodol-
ogy aligns more closely with correction-based approaches.
However, the primary objective of our sample modifications
is not the outright removal of all triggers but rather the at-
tainment of accurate predictions through strategic causal
intervention.

5.2. Causal Inference

Causal inference, with its extensive and rich heritage in sta-
tistical research, has been extensively documented (Pearl,
2009; Peters et al., 2017). Its recent adoption has signifi-
cantly contributed to the fortification of model robustness
across a spectrum of machine learning domains (Tang et al.,
2020; Zhang et al., 2020; Yue et al., 2020; Vig et al., 2020;
Wu et al., 2022). The pioneering work of Zhang et al.
(2023a) in applying causal inference methodologies to the
realm of computer vision, specifically in countering back-
door attacks, represents a notable advancement in this field.
Nonetheless, real-world scenarios often grapple with the
issue of unobserved confounding factors. In such instances,
the prevailing preference is to employ front-door adjust-
ment techniques (Pearl, 1995). This approach, through the
utilization of a front-door variable, adeptly captures the in-
termediate causal effect and has been empirically validated
in a multitude of applications (Yang et al., 2021d;c; Li et al.,
2021; Nguyen et al., 2023). To our knowledge, this study
is the inaugural endeavor to implement front-door adjust-
ment as a defensive strategy against backdoor attacks in
computational systems.

6. Conclusion
In this study, we present a novel defense methodology pred-
icated on causal inference, designed to effectively counter
text-based backdoor attacks. Utilizing the inherent capacity
of language models to adhere to instructions for generating
semantically equivalent sentences to the original input, we
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construct front-door variables. This capability is further aug-
mented through instruction-based fine-tuning of the model.
Employing the front-door adjustment technique, our method
facilitates the direct estimation of true predictions, obviating
the need to differentiate between poisoned and clean sam-
ples. A comprehensive theoretical analysis is conducted to
evaluate our approach’s proficiency in accurately estimating
the true causal effect. Empirical evidence from our experi-
ments substantiates that our defense strategy outperforms
existing methods in terms of defensive efficacy across a
spectrum of datasets, attack modalities, and victim models.

7. Limitation and Future works
First, FABE is slower than traditional approaches without us-
ing of LLMs. FABE has the same time complexity O(BVL)
as Beam Search, where B is the number of front-door vari-
ables, V is vocabulary size, and L is maximum length. The
average time taken for FABE and baselines is shown in the
table 6 in Appendix. Noting the future potential for reduc-
ing computational demand, techniques such as distillation,
quantization, and parallelization are proposed to mitigate
FABE’s computational overhead in future work.

Second, current experiments have only validated FABE’s
defensive capabilities in text classification and have not yet
generalized to other tasks, such as language generation or
question answering. We contend that tasks like text genera-
tion and question answering can be reformulated as next to-
ken prediction tasks, also classification tasks. Consequently,
we argue that the FABE is applicable to other tasks and
merits further investigation.

Third, adaptive attacks warrant further discussion. We con-
ducted a simulation of an adaptive attack, wherein the at-
tacker has output access to the defense model on AddSent-
HSOL for BERT. When attackers select sentences that still
contain triggers after passing through the defense model
for poisoning, the Attack Success Rate (ASR) without any
defense is 95.05%. However, FABE can reduce the ASR to
10.87%, thereby demonstrating its effectiveness in defense.

Finally, since the FABE method operates by computing
causal effects to exclude the interference of triggers and
is not in conflict with traditional backdoor defense mecha-
nisms, combining the FABE method with other approaches,
such as ONION, is a promising direction for further inves-
tigation. We conducted a preliminary test where FABE’s
inputs were filtered by ONION to remove triggers as a de-
fense against the AddSent attack on BERT within the HSOL
dataset, which further reduced the attack success rate to
2.92%.

Impact Statement
We anticipate that this work will have a positive impact
as our FABE method is capable of effectively defending
against backdoor attacks on large language models.
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A. More Detail of Experimental Setting
In this chapter, we present an elaborate discussion on the datasets, models, and attack methodologies employed in our study.
Correspondingly, we delineate this information in Tables 3, 4, and 5 for the convenience of the reader.

SST-2 Offenseval HSOL
Task 110M 220M 7B

Labels Number 2 2 2
Average Length

train 19.22 19.68 13.37
dev 19.45 19.41 13.10
test 19.23 23.35 13.10

Data Number
train 6919 11914 5822
dev 8717 1322 2484
test 1820 858 2484

Table 3. The detail of SST-2, Offenseval and HSOL.

BERT T5 LLaMA2
# Parameters 110M 220M 7B

Accuracy
SST-2 91.10 91.98 95.88

Offenseval 85.45 84.05 83.82
HSOL 94.53 94.41 95.13

Table 4. The number parameters and accuracy on datasets of BERT, T5 and LLaMA2.

Attack BadNets AddSent SynBkd

Target Label 1 1 1
Label Consistency true true true

Label Dirty false false false
Triggers Number 1 - -

Triggers cf, mn, bb, tq, mb, de I watch this 3D movie (ROOT(S(SBAR)(,)(NP)(VP)(.)))EOP

Table 5. The attack baselines hyperparameters on BadNets, AddSent and SynBkd.
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B. Detail of Computational Overhead.
The average time taken for each method is shown in the following Table 6.

Method Time (s)
None 0.01

ONION 2.34
RAP 0.13

STRIP 0.09
FABE 11.98

Table 6. The average time cost for protecting an input on SST2.

C. Definition of Threat Model
The threat model of a backdoor attack is defined as follows:

• Attacker’s Capacities: During the fine-tuning of language models for downstream tasks, the attacker has complete
control over the dataset used for fine-tuning.

• Attacker’s Goals: The attacker aims to deliver a backdoored model. This model is designed to predict a specified target
class for samples containing a backdoor trigger while maintaining good performance on clean samples.

• Defender’s Knowledge: The defender acquires the trained model from a third party. The defender possesses a clean
validation set and a training dataset that may have been compromised. However, the defender lacks information about
the backdoor injection process and the backdoor triggers.

• Defense Objectives: The defender’s goal is to ensure that the model functions correctly even when inputs include a
trigger, thereby mitigating the impact of the backdoor attack.
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