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Abstract

In causal effect estimation, determining the appropriate sampling size is critical for ensuring
reliability and validity in both experimental and observational studies, a challenge closely
tied to robust model generalization under limited data conditions in machine learning.
This paper tackles these challenges by leveraging the Probably Approximately Correct
(PAC) theory to establish a theoretically grounded framework for determining sampling
boundaries. We utilize Hoeffding’s inequality and Vapnik—Chervonenkis (VC) dimension to
set upper boundaries for dataset adequacy in diverse scenarios: no confounders, confounders
with a finite hypothesis space, and confounders with an infinite hypothesis space. Our work
ensures that if the dataset size exceeds the upper boundary, the error probability for the
estimated causal effect stays within a specified threshold at the given confidence level.
Additionally, we demonstrate that when the dataset size is inadequate, the error of the
estimated average treatment effects is bounded by the estimation of the outcome variable,
which forms the theoretical basis for data augmentation strategies to improve the accuracy
of causal effect estimation. Extensive experiments on synthetic and semi-synthetic datasets
validate the correctness of our presented sampling upper limitations under different error
and confidence level constraints. Our findings not only offer a systematic and reliable
method for determining sample size in causal effect estimation but also provide actionable
guidance for developing causal inference models in data-scarce environments, enhancing
their applicability and robustness across fields such as healthcare, social sciences, and
policy evaluation.

Keywords: Causal Effect; Sampling Boundary; Probably Approximately Correct.

1. Introduction

Causal effect estimation aims to measure causal relations by quantifying the influence of
cause variables on outcomes (Pearl, 2009). It serves as the theoretical foundation for achiev-
ing robust modeling and reliable inference, playing an essential role in revealing mechanisms
behind complex phenomena and enabling more informed decision-making (Guo et al., 2020).
This foundational importance extends across various domains, including data science, social
science, and medicine (Imbens and Rubin, 2015). For causal effect estimation, it is critical
to first collect data that closely resembles natural sampling.

Data for causal analysis arise from two primary paradigms—randomised controlled trials
(RCTs) and observational studies (Guo et al., 2020). RCTs actively assign treatments,
block confounders, and are regarded as the gold standard for causal inference, yet they are
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Figure 1: From data sampling to reliable causal estimation. Experimental and observational
sampling yield datasets of size ng and ngp, respectively. The proposed PAC sample—size
bound N—instantiated for three confounding regimes—checks whether the current sample
size n is sufficient. If n < N, we augment the data until naue > N.

costly and can raise ethical concerns (Didero et al., 2021). Observational studies collect
data passively, for example through surveys or sensor logging, and are easier to deploy, but
confounding is unavoidable (Gentzel et al., 2021). Even when all confounders are measured,
their presence inflates the variance of treatment-effect estimates (Freedman, 2008). By the
law of large numbers and the central limit theorem, increasing the sample size stabilises these
estimates and thereby mitigates residual confounding effects. Consequently, determining an
appropriate sample size is pivotal for reliable causal effect estimation (John et al., 2019).

Existing studies on sample-size determination for causal inference fall into two main
strands: empirical-equation methods and simulation-based rules of thumb. Empirical equa-
tions derive heuristic formulas from practitioner experience. (Sharma et al., 2020) compile
standard size-calculation formulas for nursing studies that use both observational and ex-
perimental data. (Wolf et al., 2013) propose an empirical expression for structural-equation
models, whereas (Taherdoost, 2017) summarises sample-size methods for survey research
in social and information-systems domains. The second strand calibrates sample-size rules
through simulation studies on benchmark data. (Markoulidakis et al., 2021) recommend
collecting 60-80 observations per confounder and per treatment arm; (Kretzschmar and
Gignac, 2019) determine the sample size required for stable latent-variable correlations;
(Riley et al., 2020) evaluate requirements for clinical prediction models; and (Yang et al.,
2021) propose a distribution-preserving heuristic. Although these approaches perform well
within their respective assumptions, none provides a universal theoretical guarantee. (Zhang
and Bareinboim, 2021) introduce a PAC-learning perspective that moves toward such guar-
antees, but their analysis does not yet offer an explicit upper bound on the required sample
size—a gap that the present study addresses.

We propose a more general approach for deriving sample-size boundaries in causal effect
estimation under different confounding scenarios. Specifically, we formulate the estimation
of the Population Average Treatment Effect (PATE) from the Sample Average Treatment
Effect (SATE) within the Probably Approximately Correct (PAC) learning framework. If
the dataset size meets or exceeds our derived boundary, the probability that the estimation
error remains below a specified threshold surpasses a predetermined confidence level Mohri
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et al. (2012). In that case, we regard the causal effect as PAC-estimable and consider
the estimated causal effect to be reliable. Our analysis encompasses three settings—mno
confounders, confounders with a finite hypothesis space, and confounders with an infinite
hypothesis space—and utilizes both the VC dimension and Hoeffding’s inequality Shalev-
Shwartz and Ben-David (2014) to establish sample-size requirements in each scenario.

When the dataset size does not meet our derived sample-size boundary, we further inves-
tigate the use of machine learning models for data augmentation. In particular, we establish
that the estimation error for the average treatment effect (ATE) is bounded by the predic-
tion error of the outcome model, implying that improving outcome prediction accuracy can
directly enhance causal effect estimation. Therefore, a high-performing machine learning
model can be employed to augment the original dataset, alleviating the challenges posed by
limited data.

To validate our proposed boundaries and the efficacy of data augmentation, we first con-
duct simulation studies covering scenarios with 0, 1, 2, 5, and 10 confounders, thereby con-
firming the accuracy of the derived sample-size thresholds. Subsequently, we apply machine
learning-based augmentation to the IHDP dataset (McCormick et al., 1998), demonstrat-
ing that augmenting the dataset with model-generated samples significantly improves the
precision of causal effect estimates. These findings highlight the practical value of combin-
ing theoretically grounded sampling boundaries with data augmentation when the available
dataset falls below the recommended threshold.

2. Related Work

Causal Effect Estimation. Propensity Score Matching (PSM) was proposed by Rosen-
baum (1987) to reduce bias by matching treatment and control units with similar covariates.
Angrist and Pischke (2009) introduced Instrumental Variable (IV) Analysis to tackle endo-
geneity through external variables affecting treatment allocation but not outcomes. Lee and
Lemieux (2010) discussed Regression Discontinuity Design (RDD), exploiting assignment
thresholds for more precise local effect estimates, whereas Difference-in-Differences (DiD)
uses temporal data from treated and control groups to infer treatment impact (Lechner,
2011). Kline (2023) further showed how Structural Equation Modeling (SEM) can incorpo-
rate latent variables and complex interdependencies. Recent machine learning approaches,
including Dragonnet (Shi et al., 2019), DRNet (Schwab et al., 2020), SCIGAN (Bica et al.,
2020), and EDVAE (Liu et al., 2024), have extended causal inference to continuous treat-
ments and high-dimensional data. Despite these advances, determining an adequate sample
size remains a significant challenge, since most methods rely on context-specific assumptions
and lack universal theoretical guarantees.

Probably Approximately Correct (PAC) Theory. PAC theory (Mohri et al., 2012)
separates “probably” from “approximately correct” via the confidence level (1—4) and error
tolerance €. PAC-oriented analyses of treatment-effect estimation have recently examined
generalization behavior via estimator-specific discrepancy measures. For example, optimal-
transport—based methods (Wang et al., 2023) and proximity-preserving balancing methods
(Wang et al., 2025) provide high-probability CATE/PEHE bounds that depend on discrep-
ancy terms and hypothesis complexity, thereby characterizing how error decays with sample
size. We adapt PAC concepts to causal effect estimation by introducing “PAC-estimable
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Table 1: Summary of notations used throughout this paper.

Notation | Description

T Treatment variable

Y Outcome variable

X Confounders affecting both T" and Y

€ Error threshold for estimated causal effects

1-96 Confidence level

D The whole population dataset
D’ Sampled dataset from D

n Sampled dataset size

N Sampling boundary

d VC dimension

C Number of confounders

H Hypothesis space

hi,..., h\"‘” Hypotheses in H

Figure 2: An illustration of a confounder X affecting both treatment 7" and outcome Y.

causal effects,” which establishes a probabilistic framework for accuracy—confidence guaran-
tees. Complementing this line, we derive a PAC sampling boundary N (e, d) for ATE across
three confounding regimes (see §4), providing an explicit criterion for sample-size adequacy
at prescribed accuracy and confidence.

Hoeffding’s inequality. Hoeffding’s inequality (Vapnik, 1995) provides a probability
bound for how the average of independent bounded random variables deviates from its
expectation. It is widely applied in machine learning for ensuring performance consistency
(e.g., boosting (Schapire and Freund, 2013) and high-dimensional analysis (Biithlmann and
Van De Geer, 2011)). We leverage Hoeffding’s inequality to derive a sample size criterion
in causal effect estimation, extending its utility beyond supervised learning contexts.

3. Preliminaries

We next introduce key concepts in causal effect estimation and outline the PAC-based
problem formulation. Table 1 lists the main notations used in this paper.

3.1. Related Concepts

Average Treatment Effect (ATE). Let ' = 1 denote treatment and 7' = 0 denote
control. For each unit, Y (1) and Y (0) are the potential outcomes under treatment and
control, respectively. The Average Treatment Effect (ATE) (Glymour et al., 2016) is

ATE =E[Y(1)] — E[Y(0)]. (1)

We focus on binary treatment and outcome settings, following common empirical sce-
narios (Curth and van der Schaar, 2021).

Confounders. A confounder X influences both 7" and Y. As shown in Figure 2, the
presence of X can bias causal effect estimation unless properly controlled.

Ignorability Assumption. Given covariate X, treatment assignment 7 is independent
of the potential outcomes Y (1) and Y (0),i.e. T L {Y(1),Y(0)} | X (Yao et al., 2021). Under
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this assumption, E[Y (1) | X] can be estimated by E[Y | T = 1, X] (and similarly for Y (0)),
enabling causal inference from observational data when X captures all back-door paths.

Back-door Criterion. In a Directed Acyclic Graph (DAG), a set of covariates X
satisfies the back-door criterion if (i) no element of X is a descendant of T'; and (ii) X
blocks every path from T to Y that begins with an arrow pointing into 7. Adjusting for
such X emulates randomized conditions and provides unbiased estimates of the treatment
effect (Pearl, 2009).

Hoeffding’s Inequality. To derive sampling boundaries, we use Hoeffding’s inequality
(Mohri et al., 2012), which bounds the probability that the average of bounded i.i.d. random
variables deviates from its expectation. Let x1,x9,...,z, be ii.d. in [0,1]. For any € > 0,

P(‘iz; T — 71122 E[azl]‘ > e) < 2 exp(—2ne2). (2)

Even under sampling without replacement, Hoeffding’s bound remains valid (although the
random variables are not strictly independent, the resulting bound is effectively similar).
We apply this inequality to establish probabilistic guarantees on our causal effect estimates.

3.2. Problem Formulation

We first introduce key metrics used in our analysis:

Population Average Treatment Effect (PATE): The true Average Treatment Ef-
fect (ATE) across the entire dataset D, which represents the overall effect of the treatment
across the population.

Sample Average Treatment Effect (SATE): The ATE estimated from a sampled
subset D', reflecting the treatment effect within the sample.

PAC-estimable causal effect. Let ¢ and 1 — § denote the given error threshold and
confidence level, respectively. We consider the causal effect of T on Y to be PAC-estimable
on D' if the probability that the difference between SAT Ep and PATEp falls within ¢ is
at least 1 — 9, expressed as:

P(|SATEp — PATEp|<e)>1-6 (3)

This estimation is inherently random due to its dependence on the particular subset
of data sampled. We assume D’ is randomly sampled from D, i.e., following the typ-
ical independent identically distributed (i.i.d.) sampling approach. Concretely, D' =
{(T;, X;,Y;)}?, is an ii.d. sample of observable triples, with Y;(1),Y;(0) remaining po-
tential outcomes. Let n denote the size of D’. The challenge addressed in this paper is to
determine the sampling upper boundary N such that if n > N, the treatment effect of T'
on Y is PAC-estimable on D', i.e., the following equation is satisfied:

Note that:

SATEp = ATEp = Ep[Y(1)] — Ep[Y(0)], PATEp = ATEp = Ep[Y(1)] — Ep[Y (0)].
(5)
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We have the following conversion:

Therefore, if
[Ep[Y(1)] - Ep[Y(1)]] <

we have

’SATED/ — PATED| S E. (8)

Because Ep/[Y(1)] and Ep/[Y(0)] are each sample means of n i.i.d. bounded observations,
Hoeffding’s inequality yields, for t € {0,1},

P(|Ep (Y (1)) — Ep[Y (9] > /2) < 2exp(~ bne?). (9)

Let a = Ep/[Y(1)] — Ep[Y(1)] and b = Ep/[Y(0)] — Ep[Y (0)]. Allocating probability /2
to each tail event gives
Pllal<e/2 A bl <e/2) 2 1-0, (10)

which, together with the triangle inequality above, implies |SATEp — PATEp| < € with
the same confidence. Consequently it suffices to require:

P(Ep[Y(1)] - EplY(] <2/2|n>N) > 1-6. (11)

4. Sampling Upper Boundary Derivation

This section explores the derivation of sampling upper boundaries under three distinct sce-
narios, each tailored to different types of confounding variables. Throughout our derivation,
we assume that each sample (T}, X;,Y;) is drawn independently and identically (i.i.d.) from
the population dataset D, and that the random variables are bounded (e.g., taking val-
ues within [0, 1]). These assumptions are necessary for applying Hoeffding’s inequality and
establishing probabilistic bounds on the estimation errors.

4.1. No Confounders Case

In this section, we begin by considering an idealized scenario where there are no con-
founders between T" and Y. This approach not only aids in clearly demonstrating our
analytical framework, but also lays the groundwork for understanding more complex situ-
ations involving confounders within finite and infinite hypothesis spaces. Assume Y;(1) is
the potential outcome of the sample i — th, then Ep/[Y(1)] = 2 57" | ¥;(1). When there
are no confounders, the assumption of ignorability is satisfied with the covariate set as null.
This is usually done in the experimental setting by directly assigning T' = 1 to the i — th
sample. Then we have:

Theorem 4.1. If n > N = 2In(2/§)/e?, Equation (9) is satisfied when there are no
confounders.
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Proof The expectation of E[Y;(1)] could be obtained by the average of the potential
outcome on the whole population, i.e., E[Y;(1)] = Ep[Y (1)]. Therefore, according to Ho-

effding’s inequality, we have:
PQEDWGN—EMYungg):p< S;)
B P( YoV = > B[ ()
i=1 i=1

2
>1 —2exp<—n§> .

Let 1 —2exp (—4ne?) > 1 —4, then n > %_ -

=3 i) - Eply (1)
1=1

. > (12)
-2

According to Theorem 4.1, we need at least 21n(2/§)/e? observations to estimate a single
potential-outcome mean within €/2 at confidence level 1 — . Let each unit be randomly
assigned to the treatment group with probability p € (0,1) and to the control group with
probability 1 — p. Because both groups must contain no fewer than N observations, the
total sample size must satisfy the following:

N ~ 2log(2/0)
~ min{p,1-p} &2 minfp,1-p}’

(13)
In a balanced randomisation scheme (p = 0.5), this reduces to n > 41n(2/6) /&>

4.2. Finite Hypothesis Space Case

When dealing with confounders, the covariate (or set) X is utilized to determine the poten-
tial outcomes Y;(1) and Y;(0) for each i-th sample. As introduced earlier, various methods
establish a mapping from (7, X) to Y. In many practical scenarios—for instance, when
X consists of discrete variables with a limited number of categories—the number of such
mappings is inherently finite. We refer to this collection of functions as the finite hypothesis
space. Under this assumption, we now formalize the notion of H and derive the sampling
boundary specifically for the finite hypothesis setting. Because H is of finite size, we can
leverage Hoeffding’s inequality to establish probabilistic guarantees on the estimation error
in causal effect studies with confounders.

Definition 4.1. Hypothesis space (Shalev-Shwartz and Ben-David, 2014). The
hypothesis space, denoted as H, includes all possible mappings or functions linking the
combined space of treatment variables and covariates (7, X) to the outcome variable Y.
In this space, each distinct function, represented as h, acts as a unique estimator for the
outcome based on specified covariate and treatment values, and is thus termed a hypothesis.

To elaborate, H includes a variety of functional forms that can model the relationship
between treatment and outcome under different conditions. For example, it encompasses
functions like the conditional expectation h(t,z) = E[Y;|T; = t,X; = z]. Building on
this framework, the potential outcome when treatment is applied, denoted Y;(1), can be
estimated by h(T; = 1, x;), succinctly referred to as h(1,z;). We introduce the following
theorem for a finite hypothesis space.



YIN YANG* AN LI

Theorem 4.2. If the sample size n satisfies

2In(2|H|/d
N> N— (€|2/) (14)
the inequality
P(|Ep[Y (1) = EplY (D] < 5 [n=N) 214 (15)

holds. Here, |H| represents the size of a finite hypothesis space. It is the number of
combinations of all possible values of X (Mohri et al., 2012).

Before proceeding, it is essential to note that the functions in H inherently produce
outcomes within a bounded range, a necessary condition for the application of Hoeffding’s
inequality (Hoeffding, 1994). This boundedness assumption is consistent with common
empirical scenarios where outcome variables are naturally restricted by either physical limits
or by design of the study.

Proof To ensure |Ep/[Y(1)] — Ep[Y (1)]| < § for each hypothesis h € H, we consider:

P (Yh € H: |Ep/ Y (1)] - Ep[y (V]| < 5)
P<Vhe7—[ ‘ Zh(l i —fZE[hlxl)]
>1-P ((’ Zhl lxl)—sz[hl (1,z;)]| >

1 n

V <'n Zlh‘q_” (].,Sl?Z - — Z h‘rH_‘ (1 :CZ

n

(16)

Setting 1 — 2|H|exp (—3ne?) > 1 — 4, we find n > [ ]

21n(2|H|/8)
g2 :
In Theorem 4.2, we demonstrates the method to compute the minimum required sam-
ple size to ensure the reliability of causal effect estimates under the condition of a finite
hypothesis space, considering the presence of confounders.

4.3. Infinite Hypothesis Space Case

Given that X is a continuous variable, the hypothesis space might potentially expand to
infinite proportions. Consequently, gauging the complexity of this space becomes pivotal. A
prevalent method in this context is to consider the "VC dimension’ of the hypothesis space,
a metric that serves as an indicator of the learning capability of a function set. Notably, a
larger VC dimension signals the possibility of learning a more intricate set of models.

2eN
Theorem 4.3. If n > N and N satisfies £ = w equation (9) is satisfied

when there are confounders with an infinite h;pothesis space H of VC dimension d.
Proof Central to the proof is the concept of the growth function my(n) of the hypothesis
space H. This function indicates the maximum number of labels that H can assign to any
given set of n samples, reflecting the complexity of the hypothesis space. Its upper bound
is 2™,

The forthcoming discussion provides a succinct proof of the theorem. For a detailed
exposition of the proof, the reader is referred to Section 1 of the Supplementary material.
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Drawing from the literature, specifically (Vapnik and Chervonenkis, 2015), for any h €
‘H, the following inequality holds:

P (10 [y ()] - EplY ()] 2 5) < dma(2n) xp (~ 5ne?) (17)

Here, the VC dimension, often referred to as the capacity to ’shatter’, signifies the largest
dataset size that the hypothesis space H can shatter. Consequently:

mﬂm>s§;(j)s(egﬁd (18)

According to equations (11) and (12), for Vh € H, we have

2en\ ¢ 1
P(IEp [y ()] = Eply ()] < 5) > 1-4 (=) eap (——ne? (19)
2 d 32
d n 2eN Ilé
Let1—4 <2Zn> exp <—312n52> >1—4, N should satisfy § = %. [ |

In Theorem 4.3, we utilize Hoeffding’s inequality to ensure the accuracy of the average
causal effect, and represent the complexity of the hypothesis space through the growth
function and VC dimension, eventually deducing a reliable upper boundary for the sample
size. The size of the VC dimension is not influenced by the learning algorithm used, the
specific distribution of the dataset, or the objective function being analyzed; it is determined
by the model for estimating the causal effect and the defined hypothesis space. Moreover,
there is generally a direct correlation between the VC dimension of the hypothesis space
and the number of free variables in a hypothesis (Shalev-Shwartz and Ben-David, 2014).
We will further delve into this relationship in Section 3 of the Supplementary material.

4.4. Data Augmentation

Although the preceding theoretical analysis holds when the sample size is sufficiently large,
practical constraints—such as high costs or limited accessibility—often make it difficult to
collect additional real-world data. Consequently, it is not uncommon to encounter datasets
that fail to meet the theoretical sampling requirements, thus limiting our ability to make
accurate causal effect estimates.

Building on Theorem 4.4, which indicates that the error of estimated average treatment
effects is bounded by the accuracy of E[Y | T, X]|, we propose leveraging a well-trained
machine-learning model to generate synthetic samples for data augmentation. This ap-
proach effectively enlarges the dataset while preserving reliable estimates of E[Y | T, X],
thereby reaffirming the viability of data augmentation for improving average causal effect
estimation when sample sizes are inadequate.

Theorem 4.4. For any arbitrary values of z and z, as long as they satisfy the condition
|Epylt,z] — Eplylt, z]| < ¢, it follows that |SATEp — PATEp| < 2¢ holds true.

In other words, from lim| /|, Epr[y[t, 2] — Eplylt, z], we can infer lim p/| oo SAT Epr —
PATEp. Here, D represents a sufficient large dataset, and the observed dataset D’ is a
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subset of D. Theorem 4.4. states that if the estimation error of E[y|t,z] is less than or
equal to €, then the resulting estimation error of the causal effect is not greater than 2¢.

Assumption For any ¢, the mean value calculated by all training sets Ep/cplylt, =]
converges unbiasedly to the actual Ep[y|t, z], where Ep denotes the expectation in D.
Proof Given that the data in the dataset is in the form of (7, X,Y). Our goal is to
train a machine ), which given an input (¢, ), outputs a probability p that represents the
probability of y being labeled as 1.

@ is a machine that learns from train data, and Q(y|t, z) is the distribution of the output
of the machine @ in the training set D’. Theoretically, comparing the actual distributions
in Q(y|t,z) and D" obtained from the calculation shows the error between the two. In
practice, however, it is not possible to directly observe the corresponding distribution of y
due to the small amount of data under the same covariate.

According to the do operation calculation formula,

E[Y|do(t =1)] = Y E[Y|t=1,2]P(x) (20)
T
z is a backdoor variable, so

[Ep[Y | do(t = 1)] — EplY | do(t = 1)]| =

Y Ep[Y |t=1,2]P(z) = > Epl[Y |t=1,2]P(x)

S IEp[Y |t =1,2] - Ep[Y |t =1,2]] P(x)

x

<e

)

(21)

Next, consider the error between SATEp: and PATEp,

|\SATEp — PATEp|
— [(Ep/[¥|do(x = 1)] - Eps[Y|do( = 0)]) — (Ep[Y]do(z = 1)] - Ep[Y1do(x = 0)])
< |Ep[¥|do(x = 1)] - Ep[¥|do(x = 1)]| + |Ep[Ydo(z = 0)] — Ep/[Y |do(z = 0)].
(22)

Due to the condition |Ep/[Y|do(x = 1)|—Ep[Y|do(x = 1)]| < &, and similarly, |Ep/[Y |do(xz =
0)] — Ep[Y|do(x = 0)]| < e, it then follows that |SATEp — PATEp| < 2¢. [ |

Theorem 4.4 furnishes a solid theoretical assurance that given the estimation error of
Ely|t,z] is at most €, the error of the estimated ATE on the augmented dataset will not
exceed 2¢, thus validating the rationality of the simulated samples. The elaboration on
Theorem 4.4 is in Section 2 of the Supplementary Material.

In the upcoming section 5.3, we utilize the Dragonnet deep learning Shi et al. (2019)
model to augment the datasets. Subsequently, the propensity score matching method will
be employed to estimate the ATE on both simulated datasets and real IHDP datasets.

5. Experiments

This section validates our sampling boundary approach using both simulated and real-world
datasets. We compare the estimated causal effects from sampled data to the theoretical
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causal effects and evaluate how well the results align with different error thresholds ¢ and
confidence levels (1 — §). The detailed steps for constructing the simulation dataset, the
specific parameters used in data generation, and further information about the benchmark
IHDP dataset are provided in Section 4 of the Supplementary material.

5.1. Experimental Setup

We evaluate estimation accuracy at three tolerance thresholds, e € {0.05,0.025,0.01}, under
two confidence levels: 1 — 4§ ~ 95.45% (20) and 1 — § ~ 99.73% (30). For each setting, we
record the probability that |SATEp — PATEp| < e. When this probability exceeds 1 — 4,
the causal-effect estimate is deemed PAC-estimable.

All experiments are run with the Python library DoWhy (Sharma and Kiciman, 2020),
which identifies causal graphs and computes the Average Treatment Effect (ATE) through
a unified estimator. For every theoretical sampling boundary, we draw 10000 bootstrap
samples and count how often the estimation error falls below ¢; comparing this empirical
success rate with the nominal confidence level verifies whether the derived boundary is
sufficiently conservative.

5.2. Sampling Boundary Performance

Using the thresholds and confidence levels defined in Section 5.1, we first verify the no-
confounder boundary (Section 4.1). For each candidate sample size n, we compute the
theoretical bound N from Theorem 4.1, run 10000 Monte-Carlo draws, and record the
smallest nemp, for which |[SATEp — PATEp| < ¢ with probability at least 1 — 6.

Table 2: Comparison of theoretical N vs. empirical nemp sample sizes (no-confounder sce-
nario). Confidence levels: 20 (95.45%) and 30 (99.73%).

20 30
€
N Temp N Memp
0.05 3027 1858 5286 4193
0.025 12106 7509 21144 17427

0.01 75664 47165 132153 97340

Table 2 contrasts the theoretical N with the empirical nemp. The latter is always smaller,
confirming the conservativeness of the bound. Both N and nemp increase as € tightens or
the confidence level rises from 20 to 30, showing that the boundary scales with stricter
requirements.

Table 3: Required sample sizes under different numbers of confounders C, for error thresh-
olds € and confidence levels (1 — ). As C increases, more samples are needed to achieve
the same constraints.

€ 1-6 c=1 cC=2 C=5 C =10
0.05 95.45% 3581 4136 5799 8572
: 99.73% 5841 6395 8059 10831
0.025 95.45% 14324 16 542 23197 34287
: 99.73% 23363 25581 32235 43 325

95.45% 89527 103 390 144979 214293

0.01 99.73% 146 016 159879 201468 270782
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Next, we consider confounders under a finite hypothesis space (Section 4.2). As an-
alyzed, increasing the number of confounders C' generally enlarges the hypothesis space
and demands more samples. Table 3 illustrates how the required sample size grows for
C € {1,2,5,10}, matching the trend predicted by Theorem 4.2.

To further assess our boundaries under different estimation methods, we varied C, €, and
(1—9), and then computed the empirical success rates for four common estimators (Backdoor
Criterion, Propensity Score Weighting, Propensity Score Stratification, and Double Machine
Learning). The detailed probability results are listed in Section 5 of the Supplementary
material. In brief, each method surpassed the nominal confidence levels across all tested
conditions, confirming that our theoretical boundaries remain conservative and robust.

Figure 3 depicts the mean error of causal effect estimation for different C, showing
that when € = 0.05, the average error can be as low as 0.016 under the tested simulation
settings. This aligns with the conclusions drawn from both the theoretical sample sizes and
the empirical success rates, illustrating that our sampling boundaries effectively scale to
accommodate growing complexity.
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Figure 3: Mean error of causal effect esti-  Figure 4: Scatter of outcome-prediction er-

mation for different numbers of confounders  ror (x-axis) vs. ATE error (y-axis) over 100
(0,1,2,5,10). Each point averages 10000  IHDP runs. The dashed line y = 2z marks
trials. the two-fold boundary.

5.3. Experiments on Data Augmentation

In practice, observational datasets often fall short of the theoretical sampling boundary from
Section 4. We address this issue by employing data augmentation to expand the dataset
accordingly. Before implementing augmentation, we validate Theorem 4.4 by comparing
the outcome-prediction error and the corresponding ATE error across 100 independent runs
on the IHDP dataset.

As shown in Figure 4, an 89% compliance rate (i.e., error ate < 2 x error outcome) was
observed. The one-sample Wald test rejects a 50% null compliance rate with z~8.3 (p <
1071%) indicating that such a success rate can not be coincidental. In these compliant
runs, error ate/error outcome averages around 1.35, whereas in trials exceeding the twofold
boundary, small offsets in predicting treatment vs. control outcomes can inflate the final
ATE error. Data augmentation reduces the mean ATE error from about 0.20 to 0.12,
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underscoring how broader covariate coverage mitigates predictive biases and brings more
trials under the theoretical boundary.

Next, we create a reduced dataset D (half the theoretical boundary), train a DragonNet
Shi et al. (2019) model to generate synthetic covariates, and merge D with these synthetic
samples to form Dyg,4. Figures 5 and 6 illustrate the resulting improvements in estimation
accuracy under two different settings.
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Figure 5: With an error boundary £ = 0.05 Figure 6: Mean absolute error (MAE) of
and confidence level 1 — § = 95.45%, the ac- ATE estimation on the IHDP dataset for dif-
curacy of causal-effect estimation using the ferent sampling proportions p.

Back-door Criterion over 1000 runs.

In Figure 5, we focus on the proportion of runs satisfying L@ — ATEque| < €, and
observe that adding synthetic samples consistently improves performance. Figure 6 reports
the mean absolute error for varying sampling proportions p, reinforcing that augmentation
effectively mitigates data scarcity by reducing error and enhancing reliability.

6. Discussion and Conclusion

This introduces a novel perspective on causal effect estimation grounded in the concept
of PAC-estimable causal effects. We derive sample-size boundaries for three settings—mo-
confounder, finite-hypothesis, and infinite-hypothesis spaces—providing reliability guaran-
tees across problem complexities. Furthermore, we established constraints linking expected
outcomes and average treatment effects, providing a theoretical basis for leveraging data
augmentation when sample sizes are insufficient. Our experiments on both the simulated
datasets and the IHDP dataset, under different error thresholds and significance levels,
validate the robustness of these sampling boundaries.

Despite these contributions, several limitations remain. First, the derived boundaries
are primarily suited to PAC-learnable causal models; for infinite hypothesis spaces, the VC-
dimension-based bounds can be loose, making it challenging to attain the required sample
size in practice. Second, although our framework can accommodate various causal esti-
mation methods (X-Learner, Dragonnet, CEVAE, etc.), we have not examined the specific
error metrics each algorithm may exhibit. Future work will refine these boundaries by
considering specific data distributions, and methodological assumptions, thereby enhancing
both theoretical rigor and real-world applicability.
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