
Graph-Based Algorithms for Diverse Similarity Search

Piyush Anand * 1 Piotr Indyk * 2 Ravishankar Krishnaswamy * 3 Sepideh Mahabadi * 3 Vikas C. Raykar * 1

Kirankumar Shiragur * 3 Haike Xu * 2

Abstract
Nearest neighbor search is a fundamental data
structure problem with many applications. Al-
though the main objective of the data structure
is to quickly report data points that are closest
to a given query, it has long been noted (Car-
bonell & Goldstein, 1998) that without additional
constraints the reported answers can be redun-
dant and/or duplicative. This issue is typically
addressed in two stages: in the first stage, the
algorithm retrieves a (large) number r of points
closest to the query, while in the second stage,
the r points are post-processed and a small sub-
set is selected to maximize the desired diversity
objective. Although popular, this method suffers
from a fundamental efficiency bottleneck, as the
set of points retrieved in the first stage often needs
to be much larger than the final output. In this
paper we present provably efficient algorithms for
approximate nearest neighbor search with diver-
sity constraints that bypass this two stage process.
Our algorithms are based on popular graph-based
methods, which allows us to “piggy-back” on the
existing efficient implementations. These are the
first graph-based algorithms for nearest neighbor
search with diversity constraints. For data sets
with low intrinsic dimension, our data structures
report a diverse set of k points approximately clos-
est to the query, in time that only depends on k
and log∆, where ∆ is the ratio of the diameter
to the closest pair distance in the data set. This
bound is qualitatively similar to the best known
bounds for standard (non-diverse) graph-based al-
gorithms (Indyk & Xu, 2023). Our experiments
show that the search time of our algorithms is
substantially lower than that using the standard
two-stage approach.

*Equal contribution 1Microsoft 2MIT 3Microsoft Re-
search. Correspondence to: Sepideh Mahabadi <sma-
habadi@microsoft.com>, Haike Xu <haikexu@mit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Nearest neighbor search is a classic data structure prob-
lem with many applications in machine learning, com-
puter vision, recommendation systems and other areas
(Shakhnarovich et al., 2006). It is defined as follows: given
a set P of n points from some space X equipped with a
distance function D(·, ·), build a data structure that, given
any query point q ∈ X , returns a point p ∈ P that mini-
mizes D(q, p). In a more general version of the problem we
are given a parameter k, and the goal is to report k points
in P that are closest to q. In a typical scenario, the metric
space (X,D) is the d-dimensional space, and D(p, q) is the
Euclidean distance between points p and q.

Since for high-dimensional point sets the known exact near-
est neighbor search data structures are not efficient, several
approximate versions of this problem have been formu-
lated. A popular theoretical formulation relaxes the require-
ment that the query algorithm must return the exact closest
point p, and instead allows it to output any point p′ ∈ P
that is a c-approximate nearest neighbor of q in P , i.e.,
D(q, p′) ≤ cD(q, p). In empirical studies, the quality of the
set of points reported by an approximate data structure is
measured by its recall, i.e., the average fraction of the true
k nearest neighbors returned by the data structure.

Although minimizing the distance of the reported points
to the query is often the main objective, it has long been
noted (Carbonell & Goldstein, 1998) that, without addi-
tional constraints, the reported answers are often redundant
and/or duplicative. This is particularly important in appli-
cations such as recommendation systems or information
retrieval1, where many similar variants of the same product,
product seller, or document exist. For example, an update to
the search results listing algorithm implemented by Google
in 2019 ensures that “no more than two pages from the
same site” are listed (Liaison, 2019). Such constraints can
be formulated by assuming that each point is assigned a
“color” (e.g., site id or product seller) and requiring the data

1More recent applications include Retrieval Augmented Gener-
ation (RAG) systems. For example, (Chen & Choi, 2025) argues
that retrieved items need to be diverse with respect to perspective
to excel in RAG queries. Similarly (Rezaei & Dieng, 2025) argues
for diverse retrieval using Vendi scores.

1

Graph-Based Algorithms for Diverse Similarity Search

structure to output a set S of k points containing at most
k′ points of each color, whose distances to q are (approx-
imately) optimal. A more general formulation allows an
arbitrary diversity metric ρ (typically different from D),
and requires the data structure to report a set S of k points
such that for any distinct p, p′ ∈ S, ρ(p, p′) ≥ C, for some
required diversity parameter C > 0.

The aforementioned paper of (Carbonell & Goldstein, 1998)
stimulated the development of the rich area of diversity-
based reranking, which became the dominant approach to
this problem. The approach proceeds in two stages. In the
first stage, the data structure retrieves r points closest to the
query, where r can be much larger than the desired output
k. In the second stage, the r points are post-processed to
maximize the diversity objective of the reported k points.

Though popular, the reranking approach to diversifying near-
est neighbor search suffers from a fundamental efficiency
bottleneck, as the algorithm needs to retrieve a large enough
set to ensure that it contains the k diverse points. In many
scenarios, the number r of points that need to be retrieved
can be much larger than k (see e.g., Figure 1 and the discus-
sion in the experimental section). In the worst case, it might
be necessary to set r = Ω(n) to ensure that the optimal set
is found. This leads to the following algorithmic question:

Is it possible to bypass the standard reranking
pipeline by directly reporting the k diverse points,
in time that depends on k and not r?

In this paper, we aim to solve this problem both in the-
ory and in practice. Because of these dual goals, we focus
on designing efficient graph-based algorithms for diverse
similarity search. In graph-based algorithms, the data struc-
ture consists of a graph between the points in P , and the
query procedure performs greedy search over this graph
to find points close to the query. Graph-based algorithms
such as HNSW (Malkov & Yashunin, 2018), NGT (Iwasaki
& Miyazaki, 2018), and DiskANN (Jayaram Subramanya
et al., 2019) have become popular tools in practice, often
topping Approximate Nearest Neighbor benchmarks (Au-
mueller et al., 2024). In addition, they are highly versatile,
as they do not put any restrictions on the distance function
D. Although most of the work in this area is purely empiri-
cal, a recent paper (Indyk & Xu, 2023) gives approximation
and running time guarantees for some of those algorithms.

1.1. Our Results

We give a positive answer to the aforementioned question,
by designing a variant of the DiskANN algorithm that re-
ports approximate nearest neighbors of a given query satis-
fying diversity constraints. Our theoretical analysis assumes
the same setup as in (Indyk & Xu, 2023). Specifically, we
assume that the input point set P has bounded doubling

dimension2 d, and that its aspect ratio (the ratio of the di-
ameter to the closest pair distance) is at most ∆. Under
this assumption, we show that the query time of our data
structures is polynomial in k, log n and log∆.

Formally, our result is as follows. (Here we state the result
in the simplest setting, where the diversity is induced by
point colors and k′ = 1. (See Theorem A.5 for the general
result statement.)

Theorem 1.1. Consider the data structure constructed by
Algorithm 1. Given a query q, let R be the radius of the
smallest ball around q (w.r.t. the metric D) which contains
k points of different colors. Then the search Algorithm 2
returns a set S of k points of different colors such that, for
all p ∈ S,

D(q, p) ≤
(
α+ 1

α− 1
+ ϵ

)
R.

The search algorithms takes O
(
k logα

∆
ϵ

)
steps, where each

step takes Õ
(
k(8α)d log∆

)
time. The data structure uses

space O(nk(8α)d log∆).

We note that the approximation factor with respect to D, as
well as the running time bounds, are essentially the same
as the bounds obtained in (Indyk & Xu, 2023) for the non-
diverse approximate nearest neighbor problem. The main
difference is that the bound in (Indyk & Xu, 2023) does not
depend on k, as they consider only the case of k = 1.

As mentioned earlier, Theorem 1.1 generalizes to arbitrary
k′ and general diversity metric ρ, as discussed later.

Experimental results. We adapt our theoretical algorithms
to devise fast heuristics based on them, and show the effi-
ciency of our algorithms on several realistic scenarios. In
one of them, we consider the task of showing ads to a user
based on their search queries. Given a number k, say 100,
of available slots, the goal is to choose ads from a large
corpus, such that the sellers (i.e., colors) of those ads are all
different. A more relaxed constraint requires that the num-
ber of ads shown from a single seller be bounded by at most
k′, say 10. To achieve 95% recall@100 on this real-world
scenario, the prevailing baseline approach of retrieving a
much larger number of candidates using a regular ANN in-
dex and then choosing the best diversity-preserving k-sized
subset of them has latency upwards of 8ms; our algorithm,
on the other hand achieves a similar recall at a latency of
around 1.5ms, resulting in an improvement upwards of 5X!
A production-quality implementation of our algorithm is cur-
rently under development for serving large-scale workloads
at one of the major technology companies.

The key idea in our work - modifying graph construction
to encourage diversity - is conceptually simple and broadly

2Doubling dimension is a measure of the intrinsic dimensional-
ity of the pointset - see Preliminaries for the formal definition.

2

Graph-Based Algorithms for Diverse Similarity Search

applicable. In principle, it can be integrated into any graph-
based ANN algorithm that uses greedy search, such as
HNSW, as it does not rely on DiskANN-specific internals.
We chose to apply our ideas within the DiskANN frame-
work because it is, to our knowledge, the only real-world
graph-based ANN algorithm that comes with worst-case
theoretical guarantees. This allows us to ground our contri-
butions in a rigorous yet practically relevant setting.

Generalizations. On the theoretical side, we extend our
results in several directions listed below. These are shown
and proved in Section A.

• Relaxing the diversity requirement. First, in some ap-
plications, the requirement that all reported results have
different colors is too strong. (For example, the aforemen-
tioned application to search (Liaison, 2019) allows for two
points having the same color.) Therefore, we consider a
more general constraint, requiring that no color should
appear more than k′ times. We show how our results can
be generalized to any 1 ≤ k′ ≤ k.

• Generic metric ρ.3 Second, we generalize our results to
the case where diversity is defined according to a given
metric ρ (also defined over X but potentially different
from D). Here, given a required diversity parameter C,
the goal is to report a set S of k closest points to the query
such that minp1,p2∈Sρ(p1, p2) ≥ C. We say that such
a set S is C-diverse. Note that the color version is the
special case where ρ(p1, p2) is defined to be 0 if p1 and
p2 are of the same color, and 1 otherwise.

• Unifying the two generalizations. In order to unify the
above two results, and incorporate the notion of k′ into the
generic metric ρ, we allow for each point in the reported
set S to be “similar” to at most k′ > 1 other points in
S. More formally, for any p ∈ S there should be at
most k′ − 1 other points p′ ∈ S such that ρ(p, p′) < C.
We say that such a set S is (k′, C)-diverse4. We show
how our algorithms can be modified to this most general
formulation of the problem.

• Primal vs Dual formulations. Finally, instead of asking
for the closest k points to the query satisfying a diversity
requirement parameterized by C, which we refer to as
the primal variant of the problem, one can ask the dual
question: Given a radius R, find a set of k points within
radius R of the query, while maximizing the diversity. We
show algorithms for both the primal and dual variants of
the most general formulation of the problem.

3In fact our algorithms work for ρ being any pseudo-metric
allowing ρ(p1, p2) = 0 for two different points p1, p2 ∈ P , but
for simplicity we refer to it as metric, throughout the paper.

4We note that the notion of (k′, C)-diverse set is a new notion
of diversity that strictly generalizes the widely used minimum-
pairwise-distance notion for diversity.

1.2. Related Work

Diverse nearest neighbor: Nearest Neighbor Search with
diversity requirement has been previously studied in the
work of (Abbar et al., 2013a;b), where they presented a “di-
versified version” of the Locality-Sensitive Hashing (LSH)
approach due to (Indyk & Motwani, 1998). However, their
diversification approach does not carry over to the graph-
based methods. Moreover, they provide a bi-criteria approx-
imation only for the dual formulation of the problem, and
do not consider the primal formulation. Finally, the distance
functions D that they consider are limited to Hamming
distance or its variants like the Jaccard similarity (Abbar
et al., 2013a). Although it is plausible that the result could
be extended to other distances that are supported by LSH
functions, not all distance functions satisfy this constraint.

Graph-Based algorithms for similarity search: This work
focuses on algorithms that employ graph-based data struc-
tures for (approximate) nearest neighbor search. These ap-
proaches are applicable to general metric spaces, where, dur-
ing preprocessing, the metric is approximated by construct-
ing a carefully designed graph. Given a query point, the
algorithm performs a greedy traversal of the graph to locate
nearby points. Graph-based methods have received signifi-
cant attention in both theoretical (Krauthgamer & Lee, 2004;
Beygelzimer et al., 2006) and practical contexts (Malkov &
Yashunin, 2018; Fu et al., 2019; Jayaram Subramanya et al.,
2019). Further improvements can be obtained by optimiz-
ing the graph traversal during greedy search by either ruling
out expensive distance calculations of candidates which
will not improve the priority queue (by cleverly using esti-
mates (Chen et al., 2023), and probabilistically excluding
bad candidates using probabilistic partitioning methods (Lu
et al., 2024)). For broader surveys of this area, see (Clarkson
et al., 2006; Wang et al., 2021).

A related but different line of research studies nearest neigh-
bor search with local attribute constraints (Wang et al.,
2023). In (Wang et al., 2023), the goal is to obtain results
with similar metadata as the query metadata (say color=RED
or brand=NIKE as specified by the user query in a shopping
scenario). In contrast, in our setting, there is no user spec-
ified constraint and the goal is to output relevant vectors
with sufficiently dissimilar metadata. This crucial differ-
ence extends to both the problem formulation as well as the
indexing and search strategies.

2. Preliminaries
Problem definition. Let (X,D) be the underlying metric
space, with distance function D. Let P be our colored point
set. For p ∈ P , we use col[p] to denote its color.

Definition 2.1 (colorful). A set S is colorful if no two points
in S have the same color.

3

Graph-Based Algorithms for Diverse Similarity Search

Definition 2.2 (k′-colorful). A set S is k′-colorful, if within
the multi-set {col[p1], ..., col[pk]}, no color appears more
than k′ times.
Note that for k′-colorful for k′ = 1 is equivalent to the
colorful notion.

Definition 2.3. Given a subset S ⊂ P of size k, and a query
q, for each i ≤ k, we use Si(q) to denote the distance of the
ith closest point in S to q. When q is clear from the context,
we drop q and simply use Si.

Definition 2.4 (Colorful NN). Given a colored point set P ,
the goal of colorful NN is to preprocess P and create a data
structure such that given a query point q, one can quickly
return a colorful subset S ⊂ P of size k such that Sk is
minimized.
Note that, when k = 1, our Colorful NN degenerates to the
standard nearest neighbor search problem.

Definition 2.5 (k′-Colorful NN). Given a colored point set
P , the goal of k′-colorful NN is to preprocess P and create
a data structure such that given a query point q, one can
quickly return a k′-colorful subset S ⊂ P of size k such
that Sk is minimized.

Balls, doubling dimension, and aspect ratio. We use
BD(p, r) to denote a ball centered at p with radius r, i.e.,
BD(p, r) = {u ∈ X : D(u, p) < r}. We will drop the
subscript D if the metric is clear from the context.

We say a point set P has doubling dimension d if for any
point p and radius r, the set B(p, 2r) ∩ P can be covered
by at most 2d balls of radius r.

Lemma 2.6. Consider any point set P ⊂ X with doubling
dimension d.

For any ball B(p, r) centered at some point p ∈ P with
radius r and a constant α, we can cover B(p, r) ∩ P using
at most m ≤ O(αd) balls with radius smaller than r/α, i.e.
B(p, r) ∩ P ⊂

⋃m
i=1 B(pi, r/α) for some p1 . . . pm ∈ X .

We define ∆ = Dmax

Dmin
to be the aspect ratio of the point

set P where Dmax(Dmin, resp.) represents the maximal
(minimal, resp.) distance between any two points in the
point set P .

3. Algorithm for Colorful NN
In this section, for the sake of simplicity of presentation,
we focus on the simplest setting where k′ = 1, and ρ is
the binary metric. The binary setting corresponds to our
main application of seller diversity, and the case of k′ = 1
focuses on retrieving k closest points from the data set such
that all of them have different colors/sellers. The algorithm
that handles the general setting is presented in Section A.

Intuition behind the algorithm. At a high level, the “slow
pre-processing” algorithm of (Indyk & Xu, 2023) uses the

following intuition when pruning the graph: If u and v are
“much closer” to each other than to another point p, then it
is not necessary to connect p to both u and v. This makes
it possible to track the progress of the search procedure
as it identifies points closer to the query point and use the
doubling dimension to bound the degree of the graph and
the total space. Our algorithm retains these insights, but
also requires several new ones, as now we need to show
that the search algorithms can progress while maintaining a
colorful solution. On a high-level, this is established using
the following two intuitions. First, if the colors of u and
v are the same, then again there is no need to connect p to
both of them, and we can use the same pruning as before.
Second, if p is already connected to k points v1, · · · , vk,
all of which are much closer to u compared to p, and that
they all have different colors, then again there is no need to
connect p to u. This is roughly because no solution would
need more than k points of different colors in a relatively
small neighborhood. The main challenge in converting these
intuitions into a formal argument is in showing that such
a graph keeps enough edges for a greedy search algorithm
to converge to an approximately optimal solution for the
colorful NN problem.

3.1. The Preprocessing Algorithm

The indexing algorithm is shown in Algorithm 1. In order to
decide on the vertices that p should be connected to, we sort
all vertices based on their distance from p in the list L and
start connecting p to them. If we have already connected p
to a close-by vertex u that has the same color as v, then we
do not connect p to v anymore. The same holds if we have
already connected p to k near-by vertices all with different
colors. We keep track of this using the array rep[u].

Lemma 3.1. The graph constructed by Algorithm 1 has
degree limit O(k(8α)d log∆).

Proof. Let’s first bound the number of points not removed
by others, then according to Line 10 in Algorithm 1, the
degree bound will be that times k.

We use Ring(p, r1, r2) to denote the points whose distance
from p is larger than r1 but smaller than r2. For each i ∈
[log2 ∆], we consider the Ring(p,Dmax/2

i, Dmax/2
i−1)

separately. According to Lemma 2.6, we can cover
Ring(p,Dmax/2

i, Dmax/2
i−1) ∩ P using at most m ≤

O((8α)d) small balls of radius D(p, u)/(4α) ≥ Dmax

2i+2α . Ac-
cording to the pruning criteria in Line 9, within each small
ball, there will be at most one such point u remaining. This
establishes the degree bound of O(k(8α)d log∆).

3.2. The Search Algorithm

Algorithm 2 shows the search algorithm for the colorful
nearest neighbor search problem. The algorithm is a greedy

4

Graph-Based Algorithms for Diverse Similarity Search

Algorithm 1 Indexing algorithm for colorful NN

1: Input: A set of n points P = {p1, ..., pn}; k is the size
of the output; α is the parameter used for pruning.

2: Output: A directed graph G = (V,E) where V =
{1, ..., n} are associated with the point set P .

3: for each point p ∈ P do
4: Sort all points u ∈ P based on their distance from p

and put them in a list L in that order.
5: while L is not empty do
6: u← argmin

u∈L
D(u, p)

7: Initialize rep[u]← {u}
8: for each point v ∈ L in order do
9: if D(u, v) ≤ D(p, u)/(2α) then

10: if col[v] not shown in rep[u] and |rep[u]| <
k then

11: rep[u]← rep[u] ∪ v
12: end if
13: remove v from L
14: end if
15: end for
16: add edges from p to rep[u]
17: Remove u from L
18: end while
19: end for

algorithm where at each step, the neighbors of the furthest
point from the query are additionally considered as candi-
dates and a greedy solution is constructed among the points
in the current solution and these neighbors. Next, we ana-
lyze the search algorithm and finally prove Theorem 1.1.

Proposition 3.2. Let OPT = {p∗1, ..., p∗k} be a colorful
solution with minimized OPTk (see Definition 2.3), and
ALG = {p1, ..., pk} be the current solution (both ordered
by distance from q). If pk /∈ OPT, there exists a point
p∗ ∈ OPT \ ALG such that ALG \ pk

⋃
p∗ is colorful.

Proof. Observe that throughout the search algorithm, we
maintain the property that ALG is colorful. Note that ALG \
pk has k−1 different colors, and OPT has k different colors.
Thus there should be a point p∗ ∈ OPT whose color is
different from all points in ALG \ pk. Note that such p∗

cannot belong to ALG and thus belongs to OPT \ALG.

Lemma 3.3. There always exists a point p′ ∈ Nout(pk)
(for pk as defined in Line 5) such that (i) ALG \ pk

⋃
p′ is

colorful; and (ii) D(p′, q) ≤ D(pk, q)/α+OPTk(1+1/α)

Proof. According to Proposition 3.2, for any current so-
lution ALG with pk /∈ OPT, there exists a point p∗ ∈
OPT \ ALG such that ALG \ pk ∪ p∗ is colorful. If there
exists an edge from pk to p∗, replacing pk with p∗ is a poten-
tial update. We set p′ = p∗ and D(p′, q) ≤ OPTk satisfies

Algorithm 2 Search algorithm for colorful NN

1: Input: A graph G = (V,E) with Nout(p) being the
out edges of p; query q; number of optimization steps
T .

2: Output: A set of k points ALG.
3: Initialize ALG = {p1, ..., pk} to be any set of k points

with different colors.
4: for i = 1 to T do
5: pk ← the furthest point in ALG from q.
6: U ← Nout(pk) and sort U based on their distance

from q
7: for each point u ∈ U do
8: if ALG \ pk

⋃
u is colorful then

9: ALG← ALG \ pk
⋃
u

10: Break
11: end if
12: end for
13: end for
14: Return ALG

the distance upper bound above.

Otherwise, we let u be the point where p∗ was removed
when processing u on line 9 in Algorithm 1. Because p∗

was not connected from pk, either there exists a point in
rep[u] with the same color, or rep[u] has already got k points
with different colors. In the first case, we can set p′ to be
the point in rep[u] with the same color. In the latter case, by
pigeon hole principle, there always exists a color in rep[u]
not shown in ALG \ pk. Therefore, we can find a desired
p′ ∈ rep[u] and it is connected to pk.

We have proved that the p′ we found satisfies the colorful
criteria. Now we will bound its distance upper bound.

D(p′, q) ≤ D(p∗, q) +D(p′, p∗)

≤ D(p∗, q) +D(p′, u) +D(p∗, u)

≤ D(p∗, q) +D(pk, u)/(2α) +D(pk, u)/(2α)
(Line 9 in Algorithm 1)

≤ D(p∗, q) +D(pk, u)/α ≤ D(p∗, q) +D(pk, p
∗)/α

(Because u is ordered earlier than p∗ in Algorithm 1)

≤ D(p∗, q) +D(pk, q)/α+D(p∗, q)/α

≤ D(pk, q)/α+ OPTk(1 + 1/α)

Proof of Theorem 1.1. Regarding the running time, the to-
tal number of edges connected from any point in ALG
is bounded by |U | ≤ O(k(8α)d log∆). In each step,
the algorithm first sorts all these edges connected from
pk ∈ ALG and then checks whether each of them can be
added to the new ALG set. The total time spent per step is
bounded by O(|U | log |U |). The overall time complexity is
Õ
(
k(8α)d log∆

)
per step.

5

Graph-Based Algorithms for Diverse Similarity Search

To analyze the approximation ratio, at time step t, we use
ALGt = {pt1, ..., ptk} to denote the current unordered so-
lution. We denote ALGt

k = max
i∈[k]

D(pti, q). According to

Algorithm 2 and Lemma 3.3, if pi is updated at time step
t, we have D(pti, q) ≤ D(pt−1

i , q)/α + OPTk(1 + 1/α).
By an induction argument, if a point pi is updated by t
times at the end of time step T , we have D(pTi , q) ≤
D(p0

i ,q)
αt + α+1

α−1OPTk.

We now prove that ALGT
k ≤ max

i

D(p0
i ,q)

αT/k + α+1
α−1OPTk.

Let i ∈ [k] be the index achieving the maximal distance
upper bound. For the sake of contradiction, if ALGT

k >
D(p0

i ,q)

αT/k + α+1
α−1OPTk, this means that pTi was updated for at

most T/k − 1 times. By a counting argument, there exists
another index j which was updated for at least T/k + 1
times. However, at the time t when ptj was already updated

for T/k times, D(ptj , q) ≤
D(p0

j ,q)

αT/k +α+1
α−1OPTk < ALGT

k ≤
ALGt

k, so the algorithm wouldn’t have chosen ptj to optimize
because it couldn’t have had the maximal distance at that
time, leading to a contradiction. Therefore, we prove that
ALGT

k ≤ max
i

D(p0
i ,q)

αT/k + α+1
α−1OPTk.

Now we consider the following three cases depending on the
value of the maximal D(p0i , q). This case analysis is similar
to the proof in Theorem 3.4 from (Indyk & Xu, 2023).

Case 1: D(p0i , q) > 2Dmax.

Let p∗k be the point having the maximal distance from q
in an optimal solution OPT. We know that for any p0i ,
we have D(p∗k, q) ≥ D(p0i , q) − D(p0i , p

∗
k) ≥ D(p0i , q) −

Dmax ≥ D(p0i , q)/2. Therefore, the approximation ratio

after T optimization steps is upper bounded by ALGT
k

D(p∗
k,q)
≤

D(p0
i ,q)

D(p∗
k,q)α

T/k + α+1
α−1 ≤

2
αT/k + α+1

α−1 . A simple calculation

shows that we can get a (α+1
α−1 + ϵ) approximate solution in

O(k logα
2
ϵ) steps.

Case 2: D(p0i , q) ≤ 2Dmax and OPTk >
α−1

4(α+1)Dmin.

To satisfy D(p0
i ,q)

αT/k + α+1
α−1OPTk ≤ (α+1

α−1+ϵ)OPTk, we need
D(p0

i ,q)

αT/k ≤ ϵOPTk. Applying the lower bound OPTk ≥
α−1

4(α+1)Dmin, we can get that T ≥ k logα
2(α+1)∆
(α−1)ϵ suffices.

Case 3: D(p0i , q) ≤ 2Dmax and OPTk ≤ α−1
4(α+1)Dmin.

In this case, we must have k = 1, because otherwise
D(p∗k, p

∗
1) ≤ 2D(p∗k, q) < Dmin, violating the definition of

Dmin. Suppose k = 1 and the problem degenerates to the
standard nearest neighbor search problem. After T optimiza-
tion steps, if pT1 is still not the exact nearest neighbor, we
have D(pT1 , q) ≥ D(pT1 , p

∗
1) − OPT1 ≥ Dmin

2 . Applying
the upper bound of D(pT1 , q) and OPT1, we have Dmin

2 ≤

D(pT1 , q) ≤
D(p0

1,q)
αT + α+1

α−1OPT1 ≤ D(p0
1,q)

αT + Dmin

4 . This
can happen only if T ≤ logα

∆
8 .

In conclusion, O(k logα
∆
ϵ) steps suffice to achieve the de-

sired approximation ratio in Theorem 1.1.

We remark that it is easy to verify that for k1 ≥ k2, the
data structure built for the value k = k1 can be used to
search with respect to value k = k2. Thus in applications,
it suffices to only have an upper bound on the value of k at
the data structure construction time.

3.3. High-level Intuition about the Generalizations

Given our results on colorful NN, it is relatively simple to
extend them to the k′-colorful NN version with the same
bounds. One key contribution is to demonstrate that, in the
graph degree bound, the overhead factor k can be reduced
to k/k′ while preserving the approximation quality. This
reduces both the query time bound and the overall space
used by the algorithm. This improvement is tight, in the
following sense: When k′ = 1, we recover the bound for
colorful NN problem, and when k′ = k, we recover the
standard k-NN bound, where no additional factor is needed.

For our algorithm to work with a generic diversity metric ρ,
we use an intuition similar to that in colorful case. However,
instead of pruning an edge from the point p to the point
u when p is already connected to representative vectors
v1, . . . , vk of different colors, we now choose the represen-
tatives based on the diversity metric ρ. We find a diverse
subset of points in the neighborhood of u (e.g., using the
greedy Gonzales algorithm for the k-center problem) and
connect p only to those selected points v1, . . . , vk. Again,
the main challenge is to demonstrate that a greedy search al-
gorithm can converge to an approximately optimal solution,
given the set of edges we retain. The difficulty lies in the
fact that we can only maintain an approximately diverse sub-
set ALG, in contrast to the colorful version, where we only
needed ALG to contain k different colors. As the algorithm
proceeds with further iterations, the technical difficulty lies
in ensuring that the approximation factor does not grow
depending on the number of iterations.

4. Experimental Evaluation
In this section we provide an empirical evaluation of our
methods5. To this end, we first devise a heuristic adaptation
based on our provable algorithms for the k′-colorful NN
problem as in Definition 2.5. As we note below, this problem
itself captures several real-world notions of diversity.

At a high level, the difference between our heuristics

5The code is available at https://github.com/
microsoft/DiskANN/tree/diversity

6

https://github.com/microsoft/DiskANN/tree/diversity
https://github.com/microsoft/DiskANN/tree/diversity

Graph-Based Algorithms for Diverse Similarity Search

Figure 1: Seller distribution in a real-world dataset with 20
million base vectors, where the top 7 sellers constitute more
than 90% of the data.

and our theoretical algorithms is similar to the difference
between the fast- and slow-preprocessing algorithms in
DiskANN (Jayaram Subramanya et al., 2019; Indyk & Xu,
2023)). Indeed, we deploy the same construction as in
the fast-preprocessing variant of DiskANN, but modify the
pruning procedure to insist that any node u has sufficiently
many colorful out-neighbors before an edge (u, v) can get
pruned, in addition to the geometric condition for pruning
as in the original algorithm (Jayaram Subramanya et al.,
2023). The number of colorful edges that are needed before
pruning can occur is given by a tunable parameter m in our
algorithm, and indeed this is the direct heuristic analog of
step 10 in Algorithm 1. This is a very high-level description,
and we refer the interested reader to Appendix B for the
complete pseudo-code of our heuristic algorithms.

Second, we run experiments using our heuristics on sev-
eral different datasets, both real-world as well as synthet-
ically generated. We show how our heuristic consistently
delivers superior recall for a fixed latency budget, across
datasets when compared to a natural baseline of using a
vanilla DiskANN algorithm and enforcing diversity only via
a final post-processing. We stress that both our real-world
datasets are motivated from important shopping scenarios:
the data points represent products and a color of a vector
corresponds to either the seller or the brand of the product.
It is then desirable to output results from a diverse set of sell-
ers/brands (Liaison, 2019). Intuitively, displaying diverse
results would lead to increased competition between the
sellers, and also simultaneously higher click probabilities,
thereby leading to an increase in revenue of the exchange.

4.1. Experiment Setup

All experiments were run on a Linux Machine with AMD
Ryzen Threadripper 3960X 24-Core Processor CPU’s @
2.3GHz with 48 vCPUs and 250 GB RAM. All query
throughput and latency measurements are reported for runs
with 48 threads.

Datasets. We consider two real-world and three semi-
synthetic datasets for evaluation.

Real-world Seller Dataset: Our first real-world seller dataset

Figure 2: Brand cumulative distribution for Amazon dataset,
showing the coverage of the vectors by the brands in sorted
order. The top 10% of brands cover 86% of the vectors.

comprises of 64-dimensional vector embeddings of differ-
ent products from a large advertisement corpus. Each prod-
uct/vector is additionally associated with a seller, which
becomes its color in our setting. There are 20 million base
vectors, around 2500 sellers, and 5000 query vectors. This
distribution is highly skewed, with an extremely small num-
ber (around 7) of sellers constituting more than 90% of
the data, hence naturally motivating the need for enforc-
ing diversity in the search results. The fraction of products
corresponding to the top 20 sellers is shown in Figure 1.

Amazon Automotive Dataset: Our second real-world
dataset is derived from the recently released Amazon
dataset (Simhadri et al., 2024). It comprises of 384-
dimensional vector embeddings of product descriptions
listed on Amazon under the Automotive category. Each
product/vector is additionally associated with a brand,
which becomes the color. There are around 2 million base
vectors and around 85000 brands. The distribution, while
skewed, is far more balanced than the above seller dataset,
with around 10% of the brands accounting for 80% of the
vectors as summarized in Figure 2.

“Skewed” Semi-synthetic Datasets: We also consider the pub-
licly available real-world Arxiv dataset (Embeddings, 2024)
which contains OpenAI embeddings of around 2 million
paper abstracts into 1536 dimensional vectors and the clas-
sical SIFT dataset of 1M vectors in 128 dimensions. These
datasets do not contain any color information, so we syn-
thetically add this information into the data set. Specifically,
for the Arxiv dataset, we generate the color information as
follows: for each vector, with probability 0.9, we assign a
color selected from the set {1, 2, 3} uniformly at random,
and with 0.1 probability we assign a color selected uni-
formly at random from the set {4, . . . , 1000}. Therefore
the number of distinct colors is at most 1000 in this data
set. For the SIFT dataset, we sampled one dominant colors
with probability 0.8 and had a uniform distribution over 999
other colors with probability 0.2.

“Balanced” Semi-synthetic Dataset: Finally, we also consider
another distribution which is globally uniform, but locally

7

Graph-Based Algorithms for Diverse Similarity Search

skewed. Indeed, we use the same SIFT dataset for the vector
data. For colors, we randomly partition the space into one
thousand buckets, using a random hyperplane scheme. We
then assign a unique primary color for each bucket. Now,
each vector within any specific bucket is assigned its primary
color with a high probability of 0.8, and a uniformly random
non-primary color with the remaining probability. It is then
easy to see that the distribution is roughly balanced across
colors from a global perspective, but quite skewed in any
small local neighborhood.

Tasks. For all of the above datasets, we seek to retrieve
k = 100 nearest neighbors. In one extreme scenario, we set
k′ = 1, i.e., all hundred of the returned results need to be
of distinct colors. This type of setting would be relevant in
a retrieval augmented generation setting where documents
are typically chunked into several parts and each part is
vectorized; when the user utters a query, we might want
to retrieve the most relevant set of documents (as opposed
to the most relevant chunks, which might all be from the
same document) to a given query, before passing on these
contents to a large-language model which then answers the
user query. A natural way to enforce this document-level
diversity during retrieval is to treat the document-id of any
vector as its color, and using our diverse search routine.

In another scenario which might have more appeal in shop-
ping or advertisement display, we seek to retrieve k = 100
nearest neighbors, while having k′ = 10, i.e., no more than
ten of the k results may belong to any single color. This
will promote the retrieval to display a diverse set of sellers/
brands in such scenarios, thereby hopefully increasing user
satisfaction and engagement. This can also capture intent
diversity in regular web-search (when we can use a simple
classifier to represent the intent behind the data point as ad-
ditional meta-data, which becomes the color in our setting –
e.g., car or animal for different images of jaguar, ML or EE
concept for transformer, etc.).

Algorithms. Since our algorithms are enhancements of the
DiskANN algorithm, we use that as a natural baseline to
compare against.

Standard DiskANN Build + Post-Processing (Baseline): In
this baseline, we build a regular DiskANN graph without
any diversity constraints. To answer a query, we first invoke
the regular DiskANN search algorithm to retrieve r ≫ k
candidates, again without any diversity constraints. Then
we iterate over the retrieved elements in sorted order of
distances to the query, and greedily include the ones which
do not violate the k′ diversity constraint, until we have k
total elements. The parameter r is tunable at search time,
and higher r yields more candidates, meaning more diverse
candidates can be obtained using the post-processing step.
However, higher r also consumes more search complexity.

Standard DiskANN Build + Diverse Search: In this improve-
ment, we use our diversity-preserving search Algorithm 7
discussed in the Appendix B, but the index construction
remains the standard DiskANN algorithm.

Diverse DiskANN Build + Diverse Search: For our complete
algorithm, we additionally use our diversity-aware index
construction Algorithm 9 (Appendix B) which ensures
sufficient edges are present to nodes of different colors in
any neighborhood.

Parameter setup. For all of the above algorithms, we use
fairly standard parameters of list-size L = 200 and graph-
degree 64 when building the graphs. During search, we vary
the list-size L at search time to get varying quality search
results and plot the recall@1006 vs average query latency.

4.2. Results

Our results are shown in plots of Figures 3, 4, and addition-
ally in Figures 5, and 6 in Appendix C. As one can see, both
of our algorithmic innovations play a crucial role in the over-
all search quality on the real-world dataset. For example,
to achieve 95% recall@100 in the real-world seller dataset,
the baseline approach has latencies upwards of 8ms, while
the improved search algorithm brings it down to ≈ 4.5ms.
Making both build and search diverse further brings it down
to around ≈ 1.5ms, resulting in an improvement of 5X.

The plot in Figure 4 reveals an interesting phenomenon: for
high recalls (say 90%) on the semi-synthetic arXiv dataset,
the post-processing approach has a latency of around 90ms,
while the diverse search algorithm when run on the stan-
dard graph has a latency of around 135ms. This is perhaps
because the standard graph construction might not have
sufficiently many edges between nodes of different colors
to ensure that the diverse search algorithm converges to a
good local optimum. On the other hand, running the diverse
search on the graph constructed keeping diversity in mind
during index construction fares the best, with a latency of
only around 25ms. A similar phenomenon occurs in the
SIFT semi-synthetic dataset (shown in Appendix C) as well.

4.3. Build Diversity Parameter Ablation

In our heuristic graph construction algorithm (see Algo-
rithms 8 and 9), the graph edges are added by considering
both the geometry of the vectors and the corresponding
colors. Loosely, the α-pruning rule of DiskANN dictates

6Recall@100 is the size of the intersection of the algorithm’s
100 returned results with the true 100 closest diverse candidates,
averaged over all queries. The ground-truth set of top 100 diverse
NNs for any query can be computed by iterating over all the vectors
in sorted order of distances to the query, and greedily including
the ones which do not violate the k′ diversity constraint, until we
have accumulated k total elements.

8

Graph-Based Algorithms for Diverse Similarity Search

Figure 3: Recall vs Latency for real-world, Amazon, and ArXiv datasets with k′ = 1.

Figure 4: Recall vs Latency for real-world, Amazon, and ArXiv datasets with k′ = 10.

m Parameter Build Time (s)
1 50
2 53

10 55

Table 1: Build Times w.r.t m Parameter

that an edge (u, v) is blocked by an existing edge (u,w) if
d(w, v) ≤ d(u, v)/α. In the original DiskANN algorithm,
any edge (u, v) which is blocked is not added. In our setting,
we additionally enforce that an edge needs to be blocked
by edges of m different colors to not be added to the graph,
where m is a tuneable parameter. We now perform an ab-
lation capturing the role of m in the graph quality using
the skewed SIFT dataset. Table 1 shows a table with build
times for various indices by varying only the m parameter,
and Figure 7 in Appendix C shows the search quality of
these different indices.

5. Conclusion
In this work, we introduced methods to incorporate diver-
sity into the DiskANN graph-based similarity search algo-
rithm. We proposed algorithms that address both binary
diversity measures (the colorful case), as well as the more
general case where an arbitrary metric is used to measure
the diversity. Our algorithm can handle both the primal ver-
sion—where the goal is to find nearest neighbors that meet a
diversity requirement—and the dual version—where, given

a distance threshold, the goal is to retrieve a maximally
diverse set of results within that threshold. Our algorithm
can further allow a more relaxed diversity requirement pa-
rameterized using k′ allowing a limited number of similar
items in the output. All our algorithms come with provable
guarantees, and we further present heuristic adaptations that
integrate easily with existing DiskANN implementations.
We expect that similar strategies can be applied to other
graph-based search methods, such as HNSW, to enhance
result diversity. Finally, we demonstrated the practical effec-
tiveness of our approach through experiments focusing on
the binary diversity case across several application domains.

9

Graph-Based Algorithms for Diverse Similarity Search

Acknowledgements
Piotr Indyk was supported in part by the NSF TRIPODS
program (award DMS-2022448). Haike Xu was supported
by the Mathworks Fellowship. This work was conducted in
part while Piotr Indyk and Sepideh Mahabadi were visitors
at the Simons Institute for the Theory of Computing as part
of the Sublinear Algorithms program.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbar, S., Amer-Yahia, S., Indyk, P., and Mahabadi, S. Real-

time recommendation of diverse related articles. In Pro-
ceedings of the 22nd international conference on World
Wide Web, pp. 1–12, 2013a.

Abbar, S., Amer-Yahia, S., Indyk, P., Mahabadi, S., and
Varadarajan, K. R. Diverse near neighbor problem. In
Proceedings of the twenty-ninth annual symposium on
Computational geometry, pp. 207–214, 2013b.

Aumueller, M., Bernhardsson, E., and Faitfull, A. Ann
benchmarks. https:https://ann-benchmarks.
com, 2024.

Beygelzimer, A., Kakade, S., and Langford, J. Cover trees
for nearest neighbor. In Proceedings of the 23rd inter-
national conference on Machine learning, pp. 97–104,
2006.

Carbonell, J. and Goldstein, J. The use of mmr, diversity-
based reranking for reordering documents and producing
summaries. In Proceedings of the 21st annual interna-
tional ACM SIGIR conference on Research and develop-
ment in information retrieval, pp. 335–336, 1998.

Chen, H.-T. and Choi, E. Open-world evaluation for re-
trieving diverse perspectives. In Proceedings of the 2025
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies (NAACL), Long Papers, 2025.

Chen, P., Chang, W.-C., Jiang, J.-Y., Yu, H.-F., Dhillon, I.,
and Hsieh, C.-J. Finger: Fast inference for graph-based
approximate nearest neighbor search. In Proceedings of
the ACM Web Conference 2023, pp. 3225–3235, 2023.

Clarkson, K. L. et al. Nearest-neighbor searching and metric
space dimensions. Nearest-neighbor methods for learning
and vision: theory and practice, pp. 15–59, 2006.

Embeddings, A. O. Openai embeddings
of arxiv abstracts, 2024. URL https:
//github.com/harsha-simhadri/
big-ann-benchmarks/commit/
df1e53aa3cd9cd29c6a9daf24ce2e64271fa9ed1.

Fu, C., Xiang, C., Wang, C., and Cai, D. Fast approximate
nearest neighbor search with the navigating spreading-
out graph. Proceedings of the VLDB Endowment, 12(5):
461–474, 2019.

Gonzalez, T. F. Clustering to minimize the maximum in-
tercluster distance. Theoretical computer science, 38:
293–306, 1985.

Indyk, P. and Motwani, R. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pp. 604–613, 1998.

Indyk, P. and Xu, H. Worst-case performance of popular
approximate nearest neighbor search implementations:
Guarantees and limitations. In Advances in Neural Infor-
mation Processing Systems, volume 36, pp. 66239–66256,
2023.

Iwasaki, M. and Miyazaki, D. Optimization of indexing
based on k-nearest neighbor graph for proximity search in
high-dimensional data. arXiv preprint arXiv:1810.07355,
2018.

Jayaram Subramanya, S., Devvrit, F., Simhadri, H. V., Kr-
ishnawamy, R., and Kadekodi, R. Diskann: Fast accurate
billion-point nearest neighbor search on a single node.
Advances in Neural Information Processing Systems, 32,
2019.

Jayaram Subramanya, S., Devvrit, F., Simhadri, H. V., Kr-
ishnawamy, R., and Kadekodi, R. Diskann. https:
//github.com/microsoft/DiskANN, 2023.

Krauthgamer, R. and Lee, J. R. Navigating nets: sim-
ple algorithms for proximity search. In Munro, J. I.
(ed.), Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2004, New
Orleans, Louisiana, USA, January 11-14, 2004, pp.
798–807. SIAM, 2004. URL http://dl.acm.org/
citation.cfm?id=982792.982913.

Liaison, S. Google announces site diver-
sity change to search results, 2019. URL
https://www.searchenginejournal.com/
google-site-diversity-change/311557/.

Lu, K., Xiao, C., and Ishikawa, Y. Probabilistic routing for
graph-based approximate nearest neighbor search. In Pro-
ceedings of the 41st International Conference on Machine
Learning, pp. 33177–33195, 2024.

10

https:https://ann-benchmarks.com
https:https://ann-benchmarks.com
https://github.com/harsha-simhadri/big-ann-benchmarks/commit/df1e53aa3cd9cd29c6a9daf24ce2e64271fa9ed1
https://github.com/harsha-simhadri/big-ann-benchmarks/commit/df1e53aa3cd9cd29c6a9daf24ce2e64271fa9ed1
https://github.com/harsha-simhadri/big-ann-benchmarks/commit/df1e53aa3cd9cd29c6a9daf24ce2e64271fa9ed1
https://github.com/harsha-simhadri/big-ann-benchmarks/commit/df1e53aa3cd9cd29c6a9daf24ce2e64271fa9ed1
https://github.com/microsoft/DiskANN
https://github.com/microsoft/DiskANN
http://dl.acm.org/citation.cfm?id=982792.982913
http://dl.acm.org/citation.cfm?id=982792.982913
https://www.searchenginejournal.com/google-site-diversity-change/311557/
https://www.searchenginejournal.com/google-site-diversity-change/311557/

Graph-Based Algorithms for Diverse Similarity Search

Malkov, Y. A. and Yashunin, D. A. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE transactions on
pattern analysis and machine intelligence, 42(4):824–
836, 2018.

Rezaei, M. R. and Dieng, A. B. Vendi-rag: Adaptively
trading-off diversity and quality significantly improves
retrieval augmented generation with llms. arXiv preprint
arXiv:2502.11228, 2025.

Shakhnarovich, G., Darrell, T., and Indyk, P. Nearest-
neighbor methods in learning and vision. MIT press,
2006.

Simhadri, H. V., Aumüller, M., Ingber, A., Douze,
M., Williams, G., Manohar, M. D., Baranchuk, D.,
Liberty, E., Liu, F., Landrum, B., Karjikar, M.,
Dhulipala, L., Chen, M., Chen, Y., Ma, R., Zhang,
K., Cai, Y., Shi, J., Chen, Y., Zheng, W., Wan,
Z., Yin, J., and Huang, B. Big ann benchmarks.
https://github.com/harsha-simhadri/
big-ann-benchmarks/pull/311, 2024.

Wang, M., Xu, X., Yue, Q., and Wang, Y. A comprehen-
sive survey and experimental comparison of graph-based
approximate nearest neighbor search. arXiv preprint
arXiv:2101.12631, 2021.

Wang, M., Lv, L., Xu, X., Wang, Y., Yue, Q., and Ni, J.
An efficient and robust framework for approximate near-
est neighbor search with attribute constraint. Advances
in Neural Information Processing Systems, 36:15738–
15751, 2023.

11

https://github.com/harsha-simhadri/big-ann-benchmarks/pull/311
https://github.com/harsha-simhadri/big-ann-benchmarks/pull/311

Graph-Based Algorithms for Diverse Similarity Search

A. Algorithms for the General Case
In this section we describe our algorithms for the most general case where k′ can take any value between 1 and k, and the
diversity metric ρ is an arbitrary diversity metric. First we start with definitions, additional preliminaries, and our main
theorem statements A.5 and A.6.

A.1. Additional Preliminaries, Problem Formulation, and the Main Theorems

As before, we let (X,D) be the underlying metric space, where D measures the distance between the points. In this section,
we assume that we are given a second metric space (X, ρ) which measures the diversity between the points. As before P is
a subset of n points in X . So for two points p1, p2 ∈ P , ρ(p1, p2) measures their pairwise diversity.

Again, we use BD(p, r) (or just B(p, r) for simplicity of exposition) to denote a ball centered at p with radius r, i.e.,
BD(p, r) = {u ∈ X : D(u, p) < r}. Similarly, we define the ball Bρ(p, r) = {u ∈ X : ρ(u, p) < r}.

The following definitions recap the discussion in the introduction.
Definition A.1 (C-diverse). Let S be a set of points in X . We say S is C-diverse if for any two points p1, p2 ∈ S, we have
ρ(p1, p2) ≥ C.

Note that the colorful setting, corresponds to the diversity metric ρ being uniform. That is, we can set ρ(pi, pj) = 0 when
col[pi] = col[pj], and set ρ(pi, pj) = 1 otherwise. Then, we retrieve the colorful notion of diversity: a set S of size k is
colorful iff it is 1-diverse. We further generalize this notion to allow the set to contain at most k′ > 1 points that are similar
to each other.
Definition A.2 ((k′, C)-diverse). Let S be a set of points in X . We say S is (k′, C)-diverse if for any point p ∈ S, we have
|Bρ(p, C) ∩ S| ≤ k′. Note that being (1, C)-diverse is equivalent to the notion of C-diverse.

We consider two dual variants of the diverse nearest neighbor search problem, both of which use two approximation factors:
c > 1 is the “dissimilarity” approximation factor with respect to D, and a > 1 is the “diversity” approximation factor with
respect to ρ.
Definition A.3 (Primal Diverse NN). Given a point set P , diversity value C, and the value k′ ≤ k, the goal of Primal
Diverse NN is to preprocess P and create a data structure such that given a query point q, one can quickly return the closest
set S ⊂ P of size k that is (k′, C)-diverse. Here closeness of a set S is measured by Sk (See Definition 2.3).

In the approximate variant, for any q ∈ X , if OPT is a (k′, C)-diverse set of k points which minimizes OPTk, then the data
structure outputs ALG that is (k′, C/a)-diverse such that ALGk ≤ c · OPTk.
Definition A.4 (Dual Diverse NN). Given a point set P , a radius R, and the value k′ ≤ k, the goal of Dual Diverse NN is to
preprocess P and create a data structure such that given a query point q, one can quickly return a set S ⊂ P of size k that lie
within the radius R, while maximizing the diversity.

Formally, for any q ∈ X , let BP (q,R) be the set of points in P within distance R from q, and let OPT be a (k′, C)-diverse
set of k∗ = min(k, |BP (q,R)|) points from BP (q,R) that maximizes C. Then the data structure outputs ALG of size k∗

that is (k′, C/a)-diverse such that ALGk∗ ≤ cR.

As described in the introduction, the problem addressed in the prior work (Abbar et al., 2013b) is the dual diverse NN
problem, where the only consider k′ = 1.

Results. Our main theoretical result is captured by the following theorems, which specifies the approximation and running
time guarantees for our algorithms solving the primal and dual versions of the diverse nearest neighbor problem.
Theorem A.5 (Primal Diverse ANN). Let OPT = {p∗1, ..., p∗k} be a (k′, C)-diverse solution that minimizes OPTk. Given
the graph constructed by Algorithm 3, the search Algorithm 4 finds a (k′, C/12)-diverse solution ALG with ALGk ≤(

α+1
α−1 + ϵ

)
OPTk in O

(
k logα

∆
ϵ

)
steps, where each step takes O

(
(k3/k′)(8α)d log∆

)
time. The data structure uses

space O(n(k/k′)(8α)d log∆).

Theorem A.6 (Dual Diverse ANN). Given the graph constructed by Algorithm 3, the search Algorithm 5 finds a (k′, C/24)-

diverse NN solution ALG satisfying ALGk ≤
(

α+1
α−1 + ϵ

)
· R in Õ

(
(k4/k′)(8α)d log2 ∆

ϵ

)
time, if there exists a (k′, C)-

diverse solution OPT with OPTk ≤ R.

12

Graph-Based Algorithms for Diverse Similarity Search

A.2. Algorithm

The preprocessing algorithm. The indexing algorithm, which is the same for both the primal and dual versions of the
problem, is shown in Algorithm 3. Line 12 of the algorithm uses the greedy algorithm of (Gonzalez, 1985), defined below.

Algorithm 3 Indexing algorithm for diverse NN

1: Input: A set of n points P = {p1, ..., pn}; k is the size of the output; k′ is the parameter in the diversity definition; α is
the parameter used for pruning.

2: Output: A directed graph G = (V,E) where V = {1, ..., n} are associated with the point set P .
3: for each point p ∈ P do
4: Sort all points u ∈ P based on their distance from p and put them in a list L in that order
5: while L is not empty do
6: u← argmin

u∈L
D(u, p)

7: Initialize bag[u]← {u}
8: for each point v ∈ L in order do
9: if D(u, v) ≤ D(p, u)/(2α) then

10: bag[u]← bag[u] ∪ v
11: remove v from L
12: end if
13: end for
14: rep[u]← use the greedy algorithm of Gonzales to choose k/k′ points in bag[u] to approximately maximize the

minimum pairwise diversity.
15: add edges from p to rep[u]
16: Remove u from L
17: end while
18: end for

Gonzales’ greedy algorithm. Given a set of n points and a parameter m, the algorithm picks m points as follows. The first
point is chosen arbitrarily. Then, in each of the next m−1 steps, the algorithm picks the point whose minimum distance w.r.t.
ρ to the currently chosen points is maximized. It is known (Gonzalez, 1985) that this algorithm provides a 2-approximation
for the problem of picking a subset of size m which maximizes the minimum pairwise diversity distance between the picked
points. Moreover, the picked set has an anti-cover property which we will discuss in Proposition A.10.

Primal Search Algorithm. Algorithm 4 shows the search algorithm for the primal version of diverse nearest neighbor. The
algorithm is analyzed in Section A.3. The initialization step of line 3, can be done using the following algorithm.

The initialization step. Given a set P of n points equipped with metric distance ρ, and parameters k′ and k, and lower
bound diversity C, the goal is to pick a subset S ⊆ P of size k which is (k′, C/4) diverse or otherwise output that no
(k′, C)-diverse subset S exists. We use the following algorithm

• Initialize SOL = ∅

• While there exists a point p ∈ P such that the ball B = Bρ(p, C/4) has k′ points in it, (i.e., |B ∩ P | > k′),

– Add an arbitrary subset of B ∩ P of size k′ to SOL.
– Remove all points in 2B = Bρ(p, C/2) from P .

• Add all remaining points in P to SOL.

• If |SOL| ≥ k, return an arbitrary subset of it of size k, otherwise return ‘no solution’.

Lemma A.7 (Initialization). If P has a subset OPT of size k that is (k′, C)-diverse, our initialization algorithm finds a
(k′, C/4)-diverse subset of size k.

Proof. Note that it is straightforward to see why the set SOL that we get at the end is (k′, C/4)-diverse. This is because first
of all, each time we pick k′ points in a ball B and add them to SOL, we make sure that no additional point will ever be

13

Graph-Based Algorithms for Diverse Similarity Search

Algorithm 4 Search algorithm for primal diverse NN

1: Input: A graph G = (V,E) with Nout(p) denoting the out edges of p; query q, number of optimization steps T ;
diversity lower bound C.

2: Output: A set of k points ALG.
3: Initialize ALG = {p1, ..., pk} to be a set of k points that are (k′, C/12)-diverse using the initialization step proved in

Lemma A.7.
4: for i = 1 to T do
5: U ←

⋃
p∈ALG

(Nout(p) ∪ p), and sort U based on their distance from q

6: ALG← the closest k − 1 points in ALG
7: for each point u ∈ U in order do
8: if ALG

⋃
u is (k′, C/12)-diverse then

9: ALG← ALG ∪ u
10: end if
11: if |ALG| = k then
12: Break
13: end if
14: end for
15: end for
16: Return ALG

picked in 2B and thus within distance C/4 of the points we pick there will be at most k′ points in the end. Second, at the
end, every remaining ball of radius C/4 has less than or equal to k′ points in it. Therefore, we can pick all such points in the
solution and everything we picked will be (k′, C/4) diverse.

Next we argue that we are in fact able to pick at least k points in total which completes the argument. We do it by following
the procedure of our algorithm and comparing it with OPT. At each iteration of the while loop that we remove P ∩ 2B, we
add exactly k′ points from P ∩ 2B to our solution SOL. Now note that the optimal solution OPT cannot have more than k′

points in 2B because by triangle inequality any pair of points in 2B have distance at most C, and picking more than k′

points in this ball contradicts the fact that OPT is (k′, C) diverse. Thus we can have an one-to-one mapping from each point
in OPT ∩ 2B to the k′ points in P ∩ 2B added to SOL. At the end of the while iteration, we know any unmapped point in
OPT still exists in P , so we just map it to itself. By doing this, we can have an one-to-one mapping from OPT to SOL,
which means that |SOL| ≥ |OPT| = k.

Dual Search Algorithm. Algorithm 5 shows the search algorithm for the dual version of the diverse nearest neighbor
problem. We provide the analysis in Section A.4.

A.3. Analysis of the Primal Diverse NN Algorithm

In this section, we prove Theorem A.5 that gives the approximation and running time guarantees for Algorithm 3 and
Algorithm 4.

Lemma A.8. The graph constructed by Algorithm 3 has degree limit O((k/k′)(8α)d log∆).

Proof. Let’s first bound the number of points not removed by others, then according to Line 14-15 in Algorithm 3, the
degree bound will be that times k/k′.

We use Ring(p, r1, r2) to denote the points whose distance from p is larger than r1 but smaller than r2. For each
i ∈ [log2 ∆], we consider the Ring(p,Dmax/2

i, Dmax/2
i−1) separately. According to Lemma 2.6, we can cover

Ring(p,Dmax/2
i, Dmax/2

i−1) ∩ P using at most m ≤ O((8α)d) small balls with radius Dmax

2i+2α . According to the
pruning criteria in Line 9, within each small ball, there will be at most one point remaining. This establishes the degree
bound of O((k/k′)(8α)d log∆).

Lemma A.9. Suppose OPT = {p∗1, ..., p∗k} is a (k′, C)-diverse solution with minimized OPTk, and let ALG = {p1, ..., pk}
be the current solution (ordered by distance from q). If pk /∈ OPT, there exists a point p∗ ∈ OPT \ ALG such that
|Bρ(p

∗, C/2) ∩ (ALG \ pk)| < k′ and ALG \ pk
⋃
p∗ is (k′, C/4)-diverse.

14

Graph-Based Algorithms for Diverse Similarity Search

Proof. Recall that we use Bρ(p, r) to denote the ball in the (X, ρ) metric space. Because pk /∈ OPT, we have OPT =
OPT \ALG ̸= ∅. We repeatedly perform the following operation until OPT gets empty: select a point p from OPT, and let
z = Bρ(p, C) ∩ OPT, and remove z from OPT. By doing this, we can get a list of points {p∗1, ..., p∗m} and a partition of
OPT \ ALG = z1 ∪ z2... ∪ zm. By definition, we have the following properties:

• {p∗1, ..., p∗m} ∩ ALG = ∅

• zi ∩ zj = ∅ for i ̸= j

•
∑

i |zi| = |OPT \ ALG| = |ALG \ OPT|

Now let wi = Bρ(p
∗
i , C/2) ∩ (ALG \ pk \ OPT). Because all the Bρ(p

∗
i , C/2) balls are disjoint,

∑
i |wi| ≤ |ALG \ pk \

OPT| < |OPT \ ALG| =
∑

i |zi|, there must exist an i such that |wi| < |zi|. For that i, we have that |Bρ(p
∗
i , C/2) ∩

(ALG \ pk)| is equal to

=|Bρ(p
∗
i , C/2) ∩ (ALG ∩ OPT)|+ |Bρ(p

∗
i , C/2) ∩ (ALG \ pk \ OPT)| (Because pk /∈ OPT)

=|Bρ(p
∗
i , C/2) ∩ (ALG ∩ OPT)|+ |wi|

<|Bρ(p
∗
i , C/2) ∩ (ALG ∩ OPT)|+ |zi|

≤|Bρ(p
∗
i , C/2) ∩ (ALG ∩ OPT)|+ |Bρ(p

∗
i , C) ∩ (OPT \ ALG)|

≤|Bρ(p
∗
i , C) ∩ (ALG ∩ OPT)|+ |Bρ(p

∗
i , C) ∩ (OPT \ ALG)|

=|Bρ(p
∗
i , C) ∩ OPT|

≤k′

Therefore, we get Bρ(p
∗
i , C/2) ∩ (ALG \ pk) < k′. Now, for any point p ∈ Bρ(p

∗
i , C/4), |Bρ(p, C/4) ∩ (ALG \ pk)| ≤

|Bρ(p
∗
i , C/2) ∩ (ALG \ pk)| < k′, so we know that ALG \ pk ∪ p∗i is (k′, C/4)-diverse.

The following is the well-known anti-cover property of the greedy algorithm of Gonzales whose proof we include for the
sake of completeness.

Proposition A.10. In Line 14 of Algorithm 3, let rep[u] be the output of greedily choosing k/k′ points in bag[u] maximizing
minimum pairwise diversity. If a point p ∈ bag[u] \ rep[u], we have min

v∈rep[u]
ρ(p, v) ≤ min

v1,v2∈rep[u]
ρ(v1, v2).

Proof. For the sake of contradiction, suppose min
v∈rep[u]

ρ(p, v) > min
v1,v2∈rep[u]

ρ(v1, v2), and the pairwise diversity minimizer

is achieved by min
v1,v2∈rep[u]

ρ(v1, v2) = ρ(x, y). Without loss of generality, we assume x is added to rep[u] before y. At the

time step t when y was added to rept[u], min
v∈rept[u]

ρ(y, v) = ρ(x, y) and min
v∈rept[u]

ρ(p, v) ≥ min
v∈rep[u]

ρ(p, v) > ρ(x, y), so y

wouldn’t have been chosen by the greedy algorithm. Therefore, we have derived a contradiction.

Lemma A.11. There always exists a point p′ connected from some point w ∈ ALG such that

1. ALG \ pk
⋃
p′ is (k′, C/12)-diverse

2. D(p′, q) ≤ D(pk, q)/α+ OPTk(1 + 1/α)

Proof. According to Lemma A.9, for any current solution ALG with pk /∈ OPT, there exists a point p∗ ∈ OPT \ ALG such
that ALG \ pk ∪ p∗ is (k′, C/4)-diverse. Let w ∈ ALG be the closest point to p∗. If there exists an edge from w to p∗,
replacing pk with p∗ is a potential update. We set p′ = p∗ and D(p′, q) ≤ OPTk satisfies the distance upper bound above.

Otherwise, we let u be the point where p∗ ∈ bag[u] but not selected into rep[u]. For any point p′ ∈ bag[u], D(p′, u) <
D(w, u)/(2α), so D(p′, p∗) < D(w, u)/α < D(w, p∗). This means that all points in bag[u] are closer to p∗ than w, so
they can’t belong to ALG. In the following, we consider two cases depending on whether min

v∈rep[u]
ρ(p∗, v) ≥ C/3. In each

case, we will find a desired p′ ∈ rep[u] and it is connected to w.

15

Graph-Based Algorithms for Diverse Similarity Search

1. min
v∈rep[u]

ρ(p∗, v) < C/3: In this case, there exists another point p′ ∈ rep[u] with D(p∗, p′) ≤ D(p∗, u) +D(u, p′) ≤

D(w, u)/α and ρ(p∗, p′) < C/3. Because |Bρ(p
∗, C/2)

⋂
(ALG \ pk)| < k′, we have |Bρ(p

′, C/6)
⋂
(ALG \ pk)| ⊆

|Bρ(p
∗, C/2)

⋂
(ALG \ pk)| < k′, so the addition of such p′ satisfies that ALG \ pk ∪ p′ is (k′, C/12)-diverse.

2. min
v∈rep[u]

ρ(p∗, v) ≥ C/3: In this case, according to Proposition A.10, we have rep[u] = {z1, ..., zk/k′} ⊆

B(u,D(u,w)/(2α)) all with diversity distance at least C/3 from each other. Therefore, for any pi ∈ ALG \ pk,
there can’t exist two zj and zj′ s.t. ρ(pi, zj) < C/6 and ρ(pi, zj′) < C/6. By a counting argument, we can find at
least one zi s.t. |Bρ(zi, C/6) ∩ (ALG \ pk)| < k′. Finally, we let p′ = zi where ALG \ pk ∪ p′ is (k′, C/12)-diverse.

We have proved that the p′ we found satisfies the (k′, C/12)-diverse criteria. Now we will bound its distance upper bound.

D(p′, q) ≤ D(p∗, q) +D(p′, p∗) ≤ D(p∗, q) +D(p′, u) +D(p∗, u)

≤ D(p∗, q) +D(w, u)/(2α) +D(w, u)/(2α) (Line 9 in Algorithm 3)
≤ D(p∗, q) +D(w, u)/α

≤ D(p∗, q) +D(w, p∗)/α (Because u is ordered earlier than p∗)
≤ D(p∗, q) +D(w, q)/α+D(p∗, q)/α ≤ D(pk, q)/α+ OPTk(1 + 1/α)

Proof of Theorem A.5. Regarding the running time, the total number of edges connected from any point in ALG is bounded
by |U | ≤ O((k2/k′)(8α)d log∆). In each step, the algorithm first sorts all these edges and then checks whether each
of them can be added to the new ALG set. The total time spent per step is O(k|U | + |U | log |U |). Usually, we assume
k ≫ log |U |, and we can have the overall time complexity to be O

(
(k3/k′)(8α)d log∆

)
per step.

To analyze the approximation ratio, at time step t, we use ALGt = {pt1, ..., ptk} to denote the current unordered solution.
We denote ALGt

k = max
i∈[k]

D(pti, q). According to Algorithm 4 and Lemma A.11, if pi is updated at time step t, we have

D(pti, q) ≤ D(pt−1
i , q)/α+ OPTk(1 + 1/α). By an induction argument, if a point pi is updated by t times at the end of

time step T , we have D(pTi , q) ≤
D(p0

i ,q)
αt + α+1

α−1OPTk.

We now prove that ALGT
k ≤ max

i

D(p0
i ,q)

αT/k + α+1
α−1OPTk. Let i ∈ [k] be the index achieving the maximal distance upper

bound. For the sake of contradiction, if ALGT
k >

D(p0
i ,q)

αT/k + α+1
α−1OPTk, this means that pTi was updated for at most T/k − 1

times. By a counting argument, there exists another index j which was updated for at least T/k + 1 times. However, at the

time t when ptj was already updated for T/k times, D(ptj , q) ≤
D(p0

j ,q)

αT/k + α+1
α−1OPTk < ALGT

k ≤ ALGt
k, so the algorithm

wouldn’t have chosen ptj to optimize cause it couldn’t have had the maximal distance at that time, leading to a contradiction.

Therefore, we prove that ALGT
k ≤ max

i

D(p0
i ,q)

αT/k + α+1
α−1OPTk.

Now we consider the following three cases depending on the value of the maximal D(p0i , q). The case analysis here is
similar to the proof in Theorem 3.4 from (Indyk & Xu, 2023).

Case 1: D(p0i , q) > 2Dmax. Let p∗k be the point having the maximal distance from q in an optimal solution OPT. We
know that for any p0i , we have D(p∗k, q) ≥ D(p0i , q) − D(p0i , p

∗
k) ≥ D(p0i , q) − Dmax ≥ D(p0i , q)/2. Therefore, the

approximation ratio after T optimization steps is upper bounded by ALGT
k

D(p∗
k,q)
≤ D(p0

i ,q)

D(p∗
k,q)α

T/k + α+1
α−1 ≤

2
αT/k + α+1

α−1 . A

simple calculation shows that we can get a (α+1
α−1 + ϵ) approximate solution in O(k logα

2
ϵ) steps.

Case 2: D(p0i , q) ≤ 2Dmax and OPTk > α−1
4(α+1)Dmin. To satisfy D(p0

i ,q)

αT/k + α+1
α−1OPTk ≤ (α+1

α−1 + ϵ)OPTk, we need
D(p0

i ,q)

αT/k ≤ ϵOPTk. Applying the lower bound OPTk ≥ α−1
4(α+1)Dmin, we can get that T ≥ k logα

2(α+1)∆
(α−1)ϵ suffices.

Case 3: D(p0i , q) ≤ 2Dmax and OPTk ≤ α−1
4(α+1)Dmin. In this case, we must have k = 1, because otherwise

D(p∗k, p
∗
1) ≤ 2D(p∗k, q) < Dmin,violating the definition of Dmin. Suppose k = 1 and the problem degenerates to the

standard nearest neighbor search problem. After T optimization steps, if pT1 is still not the exact nearest neighbor, we have

16

Graph-Based Algorithms for Diverse Similarity Search

D(pT1 , q) ≥ D(pT1 , p
∗
1)−OPT1 ≥ Dmin

2 . Applying the upper bound of D(pT1 , q) and OPT1, we have Dmin

2 ≤ D(pT1 , q) ≤
D(p0

1,q)
αT + α+1

α−1OPT1 ≤ D(p0
1,q)

αT + Dmin

4 . This can happen only if T ≤ logα
∆
8 .

A.4. Analysis for the Dual Diverse NN Algorithm

In this section we analyze Algorithm 5.

Algorithm 5 Search algorithm for dual diverse NN

1: Input: A graph G = (V,E) with Nout(p) denoting the out edges of p; query q; distance bound R; distance approxima-
tion error ϵ.

2: Output: A set of k points ALG.
3: Use binary search to find a maximal C such that the initialization step proved in Lemma A.7 outputs a (k′, C)-diverse

set ALG = {p1, ..., pk}
4: C ← 4C
5: while max

p∈ALG
D(p, q) > (α+1

α−1 + ϵ) ·R do

6: C ← C/2
7: for i = 1 to c · k logα ∆

ϵ do
8: U ←

⋃
p∈ALG

(Nout(p) ∪ p) and sort U based on their distance from q

9: ALG← the closest k − 1 points in ALG
10: for each point u ∈ U in order do
11: if ALG

⋃
u is (k′, C/12)-diverse then

12: ALG← ALG ∪ u
13: Break
14: end if
15: end for
16: end for
17: end while
18: Return ALG

Proof of Theorem A.6. After applying the binary search to the initialization algorithm in Lemma A.7, we get an initial
(k′, C)-diverse solution and we know there doesn’t exist a (k′, 4C)-diverse solution. Therefore, we set C = 4C to be the
upper bound on the maximal diversity we can achieve.

Then our Algorithm 5 is basically adding a binary search to Algorithm 4. Invoking the analysis from Theorem A.5, if
there exists a (k′, C)-diverse solution OPT = {p∗1, ..., p∗k} with OPTk ≤ R, we can find a (k′, C/12)-diverse solution

ALG = {p1, ..., pk} with ALGk ≤
(

α+1
α−1 + ϵ

)
· R in O(k logα

∆
ϵ) steps where each step takes Õ((k3/k′)(8α)d log∆)

time. As a result, each time when the algorithm enters the while loop on Line 5 in Algorithm 5, we know that there doesn’t
exist a (k′, C)-diverse solution with maximal distance smaller than R. When we exit the while loop, the current C value is
at least 1/2 of the optimal C value, and the current ALG solution we get is at least (k′, C/24)-diverse.

B. Algorithm Implementation
To conduct our experiments, we provide the heuristic algorithm that we designed for the k′-colorful nearest neighbor
problem, based on the provable algorithms provided in the main paper. The provable indexing algorithm (3) has a
runtime which is quadratic in the size of the data set and is slow in practice. This situation mimics the original DiskANN
algorithm (Jayaram Subramanya et al., 2019), where the “slow preprocessing” algorithm has provable guarantees (Indyk &
Xu, 2023) but quadratic running time, and was replaced by a heuristic “fast preprocessing” algorithm used in the actual
implementation (Jayaram Subramanya et al., 2023). Here, Algorithm 9 offers a fast method tailored for the k′-colorful case,
using several heuristics to improve the runtime. In the following section, we present the pseudocode for the procedures:
search, index build, and the pruning procedure required for the index build.

17

Graph-Based Algorithms for Diverse Similarity Search

Diverse Search. Our diverse search procedure, is a greedy graph-based local search method. In our search method, in
each step, we maintain a list of best and diverse nodes, ensuring that at most k′ points are selected in the list per color. In
each iteration of our search algorithm, we choose the best unexplored node and examine its out neighbors. From the union
of our current list and the out neighbors, we select the best diverse set of nodes while satisfying the k′-colorful diversity
constraint—meaning no color can have more than k′ points in the updated list. To identify the optimal diverse set from the
union, we use a priority queue designed to accommodate the diversity constraint. Below, we present the pseudocode for this
diverse priority queue.

Algorithm 6 Insert (p, d, c) into DiversePriorityQueue (Q, L, k′)

1: Input: Current queue Q, tuple (p, d, c) of (point, distance, color) for new insertion, maximum size L of the queue,
maximum size k′ per color.

2: Output: Updated queue Q after inserting (p, d, c) which maintains the best set of at most L points and at most k′ points
of each color.

3: Let count(c)← number of elements in Q with the color c.
4: Let maxDist(c)← maximum distance of an element in Q with color c.
5: if count(c) < k′ or d < maxDist(c) then
6: Insert (p, d, c) into Q
7: if count(c) > k′ then
8: Remove the element with the maximum distance in Q having color c.
9: end if

10: end if
11: if |Q| > L then
12: Remove the element with the maximum distance in Q.
13: end if

Building on the previous explanation of the diverse priority queue, we outline the description of our diverse search procedure
as follows.

Algorithm 7 DiverseSearch(G, s, q, k′, k, L)

1: Input: A directed graph G, start node s, query q, max per color parameter k′, search list size L.
2: Output: A set of k points such that there are at most k′ points from any color.
3: Initialize DiversePriorityQueue L ← {(s,D(s, q), col[s])} with color parameter k′ and size parameter L.
4: Initialize a set of expanded nodes V ← ∅
5: while L \ V ̸= ∅ do
6: Let p∗ ← argmin

p∈L\V
D(p, q)

7: V ← V ∪ {p∗}
8: Insert {(p,D(p, q), col[p]) : p ∈ Nout(p

∗)} to L
9: end while

10: Return [top k NNs from L;V]

Diverse Prune. A key subroutine in our index-building algorithm is the prune procedure. Given a node p and a set of
potential outgoing edges V , the standard prune procedure removes an edge to a vertex w if there exists a vertex u such that
an edge p→ u exists and the condition D(u,w) ≤ D(p,w)

α is satisfied. Intuitively, this means that to reach w, we would
first reach u, thus making multiplicative progress and eliminating the need for the edge p→ w, which contributes to the
sparsity of the graph.

However, to account for diversity, the outgoing edges from the node must also be diverse and enable access to multiple
colors. To address this requirement, we modify the standard prune procedure to incorporate the diversity constraint. The
details of our revised algorithm are provided next.

Diverse Index. Our indexing algorithm follows the same approach as the DiskANN “fast preprocessing” heuristic
implementation (Jayaram Subramanya et al., 2023), but we replace the search and prune procedures in their implementation

18

Graph-Based Algorithms for Diverse Similarity Search

Algorithm 8 DiversePrune(p,V, α,R,m)

1: Input: A point p, set V , prune parameter α, degree parameter R, and diversity parameter m.
2: Output: A subset V ′ ⊆ V of cardinality at most R to which edges are added.
3: Sort all points u ∈ V based on their distances from p and add them to list L in that order.
4: Initialize sets blockers[u]← ∅ for each u ∈ V .
5: while L is not empty do
6: u← argmin

u∈L
D(u, p)

7: V ′ ← V ′ ∪ {u} and L ← L \ {u}
8: if |V ′| = R then
9: break

10: end if
11: for each point w ∈ L do
12: if D(u,w) ≤ D(p, w)/α then
13: blockers[w]← blockers[w] ∪ {col(u)}
14: if |blockers[w]| = m or col(u) = col(w) then
15: L ← L \ {w}
16: end if
17: end if
18: end for
19: end while
20: Return V ′

with our diverse search and diverse prune procedures. The details of our index-building procedure are provided below.

Algorithm 9 DiverseIndex(P, α, L,R,m)

1: Input: A set of n points P = {p1, . . . , pn}, prune parameter α, search list size L, degree parameter R, and diversity parameter m.
2: Output: A directed graph G over P with out-degree at most R.
3: Let s denote the estimated medoid of P .
4: Initialize G with start node s.
5: for each pi ∈ P do
6: Let [L;V]← DiverseSearch (G, s, pi, k

′ = L/m,L,L)
7: Let V ′ = DiversePrune (pi,V, α,R,m).
8: Add node pi to G and set Nout(pi) = V ′ (out-going edges from pi to V ′).
9: for p ∈ Nout(pi) do

10: Update Nout(p)← Nout(p) ∪ {pi}.
11: if |Nout(p)| > R then
12: Run DiversePrune(p,Nout(p), α,R,m) to update out-neighbors of p.
13: end if
14: end for
15: end for

C. Additional Plots
In this section we include the plots that were removed from the main body due to the space constraint.

C.1. Remaining Plots from Section 4.2

Here we include the results plots for the two datasets SIFT-Skewed and SIFT-Balanced with k′ = 1 and k′ = 10 in Figures
5 and 6.

C.2. Plots from Parameter Ablation Section 4.3

Here we include the plots for Recall versus Latency, for various diversity parameter m.

D. DiskANN Overview
In this section we give an overview of the DiskANN procedures. For the full description the reader is referred to the original
paper (Jayaram Subramanya et al., 2019).

19

Graph-Based Algorithms for Diverse Similarity Search

Figure 5: Recall vs Latency for SIFT-Skewed (left) and SIFT-Balanced (right) datasets with k′ = 1.

Figure 6: Recall vs Latency for SIFT-Skewed (left) and SIFT-Balanced (right) datasets with k′ = 10.

The DiskANN data structure utilizes a directed graph G with vertices V corresponding to a set of points P . Once the graph
is constructed, the search procedure begins from a specific vertex s to answer a given query q. In the following, we provide
a description of the search and insertion process.

The search procedure (Algorithm 11), GreedySearch(s, q, L), takes the following parameters: the starting vertex s, the
query point q, and the queue size L. It executes a best-first search using a queue of bounded length L, continuing until the
L vertices v with the smallest values of D(v, q) seen so far are all scanned. Upon completion, it returns a list of vertices
ordered by increasing distance from q, where the first vertex (or the first k vertices) are answers for the query. Note that the
procedure will always run for at least L steps, as long as the graph is connected. The total running time of the procedure is
bounded by the number of steps multiplied by the out-degree bound of the graph G.

The construction of the graph G = (V,E) is carried out through repeated calls to a procedure named RobustPruning
(Algorithm 10). Given a vertex v, a set of vertices U (to be defined later), and parameters α > 1 and R, the procedure
RobustPruning(v, U, α,R) operates as follows. First, the set U is sorted in ascending order of distance to v. The algorithm
then iterates through this sorted list. Upon processing a new vertex u, it removes all other vertices w from U for which
D(u,w) · α < D(v, w). Finally, the vertex v is connected to all remaining vertices in U that have not been removed.

The starting point of the DiskANN data structure construction algorithm is the following simple procedure: for each vertex
v, execute RobustPruning(v, U, α,R) with U = V and R = n. In other words, robust pruning is performed on every
vertex in the graph. We call this approach slow preprocessing (Algorithm 13), as a naive implementation incurs a time
complexity of O(n3). Despite the high construction cost, (Indyk & Xu, 2023) demonstrate that this method reliably produces
a graph whose degree grows only logarithmically with the graph’s aspect ratio (under the assumption of constant doubling
dimension), while ensuring that the greedy search procedure executes in polylogarithmic time.

Since the slow-preprocessing-algorithm is too slow in practice, the authors of (Jayaram Subramanya et al., 2019) propose a

20

Graph-Based Algorithms for Diverse Similarity Search

Figure 7: Recall vs Latency for SIFT-Skewed dataset with k′ = 10 (left) and k′ = 1 (right) by varying the diversity
parameter m during index construction. Higher m implies more diversity.

faster heuristic method to construct the graph G, which we call fast preprocessing method (Algorithm 12). Initially, the
graph G is set to a random R-regular graph. Then, the construction of the graph G = (V,E) proceeds incrementally. The
algorithm makes two passes over the point set in a random order. For each vertex v encountered, it computes a candidate
set U = GreedySearch(s, xv, L) (starting from some vertex s), and applies the pruning procedure on U rather than the
entire vertex set V , i.e., it executes RobustPruning(v, U, α,R). Once pruning is complete, the algorithm inserts edges
(v, u) and (u, v) for all u ∈ U retained by the pruning step. If the degree of any vertex u ∈ U exceeds the threshold R,
its outgoing neighbors are also pruned via RobustPruning(u,Nout(u), α,R). This heuristic method is implemented and
empirically evaluated in (Jayaram Subramanya et al., 2019).

Algorithm 10 RobustPruning(i, U, α,R)

1: Input Vertex i, candidate neighbor set U , pruning parameter α, degree limit R(default R is n if not given)
2: Result Update Nout(i), the set of out-neighbors of i
3: U ← U ∪Nout(i)
4: Nout(i)← ∅
5: while U ̸= ∅ and |Nout(i)| < R do
6: v ← argminv∈U D(xv, xi)
7: Nout(i)← Nout(i) ∪ v
8: U ← U \ v
9: U ← {v′ ∈ U : D(xv, xv′) · α > D(xi, xv′)}

10: end while

21

Graph-Based Algorithms for Diverse Similarity Search

Algorithm 11 GreedySearch(s, q, L)

1: Input Graph G = (V,E), seed s, query point q, queue length limit L
2: Output visited vertex list U
3: A← {s}
4: U ← ∅
5: while A \ U ̸= ∅ do
6: v ← argminv∈A\U D(xv, q)
7: A← A ∪Nout(v)
8: U ← U ∪ v
9: if |A| > L then

10: A← top L closest vertices to q in A
11: end if
12: end while
13: sort U in increasing distance from q
14: return U

Algorithm 12 DiskANN indexing algorithm (with fast preprocessing)

1: Input Point set P = {x1...xn}, degree limit R, queue length L
2: Output A proximity graph G = (V,E) where V = {1..n} are associated with point sets P .
3: G← randomly sample a R-regular graph on vertex set V = {1..n}
4: s← vertex for the point closest to the centroid of P
5: for k = 1 to 2 do
6: σ ← a random permutation of [1...n]
7: for i = 1 to n do
8: U ← GreedySearch(s, xσ(i), L)
9: RobustPruning(σ(i), U, α,R)

10: for vertex j in Nout(σ(i)) do
11: Nout(j)← Nout(j) ∪ σ(i)
12: if |Nout(j)| > R then
13: RobustPruning(j,Nout(j), α,R)
14: end if
15: end for
16: end for
17: end for

Algorithm 13 DiskANN indexing algorithm (with slow preprocessing)

1: Input Vertex set P = {x1...xn}, parameters: degree limit R
2: Output A proximity graph G = (V,E) where V = {1..n} are associated with point sets P .
3: s← vertex for the point closest to the centroid of P
4: for i = 1 to n do
5: Nout(i)← RobustPruning(i, V, α,R)
6: end for

22

