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Abstract001

Multilingual models have shown effectiveness002
in natural language processing (NLP) tasks,003
but their performance often declines for low-004
resource languages due to a predominant fo-005
cus on high-resource languages during train-006
ing. This leads to challenges such as out-007
of-vocabulary (OOV) and over-segmentation,008
mainly resulting from English-centric tokeniza-009
tion methods. Vocabulary expansion using tar-010
get language tokens is a common strategy to011
address these problems. However, existing re-012
search mainly focuses on high-resource settings013
and overlooks the potential of vocabulary ex-014
pansion to address OOV and over-segmentation015
in low-resource languages. To fill this gap, we016
introduce VEXMLM, an enhanced version of017
XLM-R optimized for low-resource languages018
through effective vocabulary expansion. Our019
approach involves creating a human-annotated020
benchmark dataset and training a language-021
specific tokenizer by maintaining semantic co-022
herence morphological insights to build com-023
prehensive vocabularies and integrating these024
tokens into the model via embedding initial-025
ization. VEXMLM is evaluated on 19 African026
languages with varying scripts and resource027
availability across four tasks: Question An-028
swering, Named Entity Recognition, Sentiment029
Analysis, and Educational Quality Classifica-030
tion. Comparative experiments demonstrate031
that VEXMLM significantly outperforms base-032
line models, XLM-R and Glot500, on low-033
resource languages while improving perfor-034
mance for high-resource languages. The model,035
code, and dataset will be publicly available for036
research.037

1 Introduction038

Multilingual models often use auto-tokenizers that039

map unrecognized words to a single <UNK> token040

(Liu et al., 2024). The models struggle to distin-041

guish between different scripts and lack proper en-042

coding for scripts like Geez, causing unrecognized043

scripts to <UNK>. These models typically assign 044

a generic <UNK> token for completely unrecog- 045

nized scripts or characters, as they cannot decom- 046

pose these elements further (Xue et al., 2022). Also, 047

the vocabulary size of multilingual models is gen- 048

erally small, especially for low-resource languages 049

(Wang et al., 2019a). 050

(Sennrich et al., 2016) proposes a method to 051

tackle the open-vocabulary issue in neural machine 052

translation (NMT) by encoding rare and unknown 053

words as subword sequences. Using techniques 054

like byte pair encoding, this approach breaks down 055

words into smaller units such as characters or sub- 056

word segments, improving NMT performance over 057

traditional dictionary-based methods. For example, 058

a subword tokenizer might split "doghouse" into 059

"dog" and "house," even if "doghouse" is not in the 060

vocabulary. This flexibility has made subword tok- 061

enizers the standard for text tokenization in recent 062

years (Hiraoka et al., 2019; Bostrom and Durrett, 063

2020). 064

Over-segmentation, typos, variants in spelling 065

and capitalization, and morphological changes can 066

all cause the token representation of a word or 067

phrase to change completely, which can result in 068

mispredictions (Xue et al., 2022; Ahia et al., 2024). 069

Furthermore, unknown characters (e.g., from a lan- 070

guage that was not seen when the subword vocab- 071

ulary was built) are typically OOV for a subword 072

model (Xue et al., 2022). 073

Prior research has focused on tokenization algo- 074

rithms and optimal vocabulary sizes for machine 075

translation in English (Ahia et al., 2023b). How- 076

ever, low-resource languages often have smaller 077

datasets, causing subword tokenizers trained in 078

multiple languages to over-segment tokens in these 079

languages (Ahia et al., 2023a). Likewise, a chal- 080

lenge in pre-trained multilingual models is limited 081

vocabulary coverage or the exclusion of languages 082

during training, resulting in poor representation of 083

low-resource languages. (Wang et al., 2019a). 084
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Many pre-trained models employ a subword vo-085

cabulary, which greatly reduces the issue of out-086

of-vocabulary tokens. However, it can still result087

in performance decline if domain-specific terms088

are overly fragmented or insufficiently represented089

due to limited training data (Ebrahimi and Kann,090

2021a).091

Out-of-vocabulary (OOV) words and over-092

segmentation are challenges in pre-trained multilin-093

gual models, especially for low-resource languages.094

These challenges underscore the need for efficient095

strategies to improve these models.096

We investigate two main approaches for adapt-097

ing a pre-trained language model to new target lan-098

guages. The first approach involves fully adapting099

the model by replacing the tokenizer and focus-100

ing on the performance of the new target language101

(Minixhofer et al., 2022; Mundra et al., 2024b).102

The second approach extends the model’s language103

support by adding new target tokens while pre-104

serving the performance of the original language105

(Garcia et al., 2021; Liu et al., 2024). While we106

explore both approaches, we focus primarily on107

the second approach, which involves extending the108

tokenizer and initializing the model’s embedding109

layer and LM head for the newly added tokens.110

This paper aims to (i) evaluate whether the111

expansion approach effectively addresses OOV112

words and over-segmentation, while ensuring bal-113

anced language representation and optimized per-114

formance across diverse linguistic contexts, partic-115

ularly in low-resource language, and (ii) identify116

the best approaches for vocabulary expansion and117

initialization to support language adaptation in low-118

resource environments, maintaining performance119

comparable to source models. The key contribu-120

tions are as follows:121

• We compiled a human-annotated dataset for122

educational quality classification in Tigrinya123

and Amharic, following the approach outlined124

in (Lozhkov et al., 2024). Annotators rated125

each context on a 1 to 6 scale, based on a126

detailed guideline. We calculated the inter-127

annotator agreement to ensure annotation reli-128

ability, assessing label consistency and qual-129

ity. This dataset will serve as a ground truth130

for evaluating educational content in these131

languages. Using the SentencePiece algo-132

rithm, we also trained a language-specific tok-133

enizer, ensuring compatibility with the source134

model’s tokenizer. Our evaluation of various135

multilingual subword-based models shows 136

that our tokenizer performs particularly well 137

for languages using the Geez script. 138

• We introduce VEXMLM, an extended XLM- 139

R model that expands vocabulary to address 140

OOV issues, over-segmentation, and poor rep- 141

resentation of low-resource languages. Our 142

results show that average vocabulary initial- 143

ization, using the mean and standard deviation 144

of token embeddings from the original model, 145

is more effective. New script token embed- 146

dings are initialized by sampling from a nor- 147

mal distribution based on the source model’s 148

script parameters. We fine-tuned VEXMLM 149

on four tasks and evaluated it across 19 low- 150

resource languages with diverse scripts, and 151

VEXMLM outperformed baseline models in 152

several tasks. 153

• VEXMLM exceeds baseline models in down- 154

stream tasks for low-resource languages, such 155

as Question Answering (QA), Sentiment Anal- 156

ysis, and Educational Value Classification. It 157

also enhances performance for high-resource 158

languages, demonstrating its considerable vo- 159

cabulary sharing and generalization capabili- 160

ties across diverse linguistic contexts. 161

2 Related Work 162

Multilingual language models often use subword- 163

based tokenizers, which can cause unwanted be- 164

haviors in low-resource languages, such as over- 165

segmentation and the vocabulary bottleneck limit- 166

ing the representational capabilities of multilingual 167

models (Limisiewicz et al., 2023; Beinborn and 168

Pinter, 2023). 169

(Liang et al., 2023) proposes assigning vocab- 170

ulary capacity to achieve sufficient coverage for 171

each language and using a semantically meaning- 172

ful tokenizer to overcome the issues in multilingual 173

language models. This approach is computation- 174

ally expensive. (Mundra et al., 2024a) introduces 175

Constrained Word2Vec (CW2V) for expanding lan- 176

guage model vocabularies without needing cross- 177

lingual embeddings. 178

(Reimers and Gurevych, 2020) extend exist- 179

ing sentence embedding models to new languages. 180

This allows the creation of multilingual versions 181

from previously monolingual models. 182

The NLP community has mostly focused on ver- 183

tical scaling, optimizing models for a few well- 184

resourced languages, often neglecting horizontal 185
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scaling to include low-resource languages. Vertical186

scaling enhances performance for a limited set of187

languages but lacks broader multilingual support188

(ImaniGooghari et al., 2023). In contrast, horizon-189

tal scaling extends model performance to a wider190

range of languages, including those with limited191

resources. (ImaniGooghari et al., 2023) addressed192

this by creating Glot500-m, a model that contin-193

ues pretraining across 511 low-resource languages,194

marking a significant step forward for low-resource195

language representation. Thus OOV words present196

significant challenges across various NLP tasks197

(Chen et al., 2022; Wang et al., 2019b; Garcia-198

Bordils et al., 2022; Lochter et al., 2020; Zhuang199

et al., 2023; Shiao et al., 2024; VH and Chacko,200

2024; Wang et al., 2019a)201

Prior work on addressing OOV issues in multi-202

lingual settings, such as BERT, uses subword to-203

kenization (e.g., WordPiece) instead of full word204

tokenization (Wang et al., 2019a; Jaffe, 2017; Pla-205

tanios et al., 2018). This breaks unknown words206

into known subword units, like "autonomic" being207

tokenized as "auto" + "##nom" + "##ic," ensuring208

coverage even if the full word is not in the vocabu-209

lary. However, subword tokenization still struggles210

with the rich inflectional and derivational processes211

of morphologically complex languages (Chai et al.,212

2024).213

Vocabulary-free models like ByT5 (Xue et al.,214

2022) and CANINE (Clark et al., 2022) offer215

competitive performance compared to subword-216

based models but face slower training and inference217

speeds. ByT5 is slower than mT5 (Xue et al., 2021),218

and CANINE, despite optimizations, still lags be-219

hind BERT models (Liang et al., 2023). BBPE220

improves translation quality by maximizing vo-221

cabulary sharing across languages (Wang et al.,222

2020). Recently, (Pagnoni et al., 2024) introduced223

the Byte Latent Transformer (BLT), which pro-224

cesses raw byte sequences directly, bypassing the225

need for tokenization and offering a scalable solu-226

tion without fixed vocabulary limitations. Recently,227

(Pagnoni et al., 2024) introduced the Byte Latent228

Transformer (BLT), an innovative architecture that229

eliminates the need for tokenization. Instead, it230

processes raw byte sequences directly. This ap-231

proach demonstrates the potential for scaling mod-232

els trained on raw bytes, bypassing the limitations233

of a fixed vocabulary.234

2.1 Language Adaptive Pretraining 235

Language Adaptive Pretraining (LAPT) is a promis- 236

ing method for adapting multilingual models to 237

multiple languages simultaneously (Dobler and 238

de Melo, 2023). (Alabi et al., 2022) demonstrated 239

its use with XLM-R for 20 African languages, 240

while (Ebrahimi and Kann, 2021b) and (Wang et al., 241

2022a) leveraged resources like the Bible and lex- 242

icons for model adaptation. (Muller et al., 2021) 243

improved performance by transliterating unseen 244

languages into Latin script. (Pfeiffer et al., 2020) 245

introduced adapter modules to preserve pre-trained 246

weights, though this incurs computational costs. 247

However, none of these approaches address out-of- 248

vocabulary (OOV) issues or over-segmentation in 249

low-resource languages. 250

3 Proposed Method 251

We use XLM-R as the pre-trained model. First, we 252

outline its pre-training procedure (Section 3.1). We 253

then explore methods to address out-of-vocabulary 254

(OOV) issues and improve the representation of 255

low-resource languages by expanding the vocabu- 256

lary (Section 3.2). Finally, we present our bench- 257

mark dataset (Section 4.3), expansion initializa- 258

tion (Section 3.3), and model initialization (Section 259

3.4). These methods apply to similar models and 260

languages. 261

3.1 Multilingual Models 262

XLM-R is a transformer-based (Vaswani et al., 263

2017) multilingual masked language model with 264

state-of-the-art performance on cross-lingual un- 265

derstanding tasks. It is pre-trained on text in 100 266

languages, making it a highly scalable model (Con- 267

neau et al., 2020). This large-scale pre-training 268

allows XLM-R to learn a rich representation of 269

language that can be fine-tuned for specific down- 270

stream tasks. The model’s architecture is based on 271

the RoBERTa (Liu et al., 2020) architecture, which 272

is a variant of the BERT (Devlin et al., 2019) model. 273

This architecture is highly effective for language 274

modeling tasks, and the addition of multilingual 275

pre-training data has further improved its perfor- 276

mance (Conneau et al., 2020). 277

Recent research has focused on adapting large 278

language models (LLMs) to support low-resource 279

languages, noting that multilingual capabilities 280

improve with adding more languages. (Wang 281

et al., 2019a) explore vocabulary expansion, while 282

(Ebrahimi and Kann, 2021a) adapt pre-trained mul- 283
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tilingual models to nearly 1600 languages using284

the New Testament, showing that continued pre-285

training yields the best results despite limited re-286

sources. (Alabi et al., 2022) adapt XLM-R to 17287

African languages and three widely spoken African288

languages to enhance cross-lingual transfer learn-289

ing, and (Wang et al., 2022b) extend LLMs to low-290

resource languages using bilingual lexicons. Ad-291

ditionally, (ImaniGooghari et al., 2023) propose292

Glot500-m, trained on a 600GB corpus covering293

over 500 languages, demonstrating that expand-294

ing LLMs improves knowledge transfer from high-295

resource to low-resource languages. While these296

methods expand language coverage, challenges297

such as noise, corpus size for underrepresented298

languages, over-segmentation, script encoding, and299

tokenization still need attention.300

3.2 Vocabulary Expansion and Adaptation301

Vocabulary expansion often requires adapting a pre-302

trained model to a new task, which can be challeng-303

ing due to differences in vocabulary, syntax, and304

semantics between the original training data and the305

target languages (Conneau et al., 2020). Typically,306

language models (LMs) are trained with a fixed vo-307

cabulary, often consisting of around 50,000 tokens308

(Ushio et al., 2023). A major limitation to adapting309

models to new languages is the vocabulary, which310

often fails to cover unseen scripts (Downey et al.,311

2024; Pfeiffer et al., 2020) or tokenizes target text312

inefficiently (Ahia et al., 2023b). (Muller et al.,313

2021) demonstrate that script is a critical factor in314

predicting transfer success.315

Various methods have been suggested to address316

this problem, including adapting by replacing the317

tokenizer (Minixhofer et al., 2022; Mundra et al.,318

2024b), adapting by adding the new target tokens319

while maintaining the original language’s perfor-320

mance (Garcia et al., 2021; Liu et al., 2024).321

To address OOV issues and tokenization chal-322

lenges in multilingual models for low-resource lan-323

guages, we implement vocabulary expansion strate-324

gies. This involves integrating separately trained325

vocabularies from the Geez script and initializ-326

ing the model’s embedding layer for the new to-327

kens. Since new tokens lack pre-trained embed-328

dings, the embedding matrix is resized to include329

them, while existing token embeddings remain un-330

changed. This helps the model better manage vo-331

cabulary expansion and enhances its ability to gen-332

eralize across different target languages by fine-333

tuning VEXMLM for those languages.334

3.3 Average Initialization 335

We adopt the same vocabulary expansion prob- 336

lem formulation as (Mundra et al., 2024b; Hewitt, 337

2021). We conclude the average of the existing 338

embeddings as the default initialization for new 339

word embeddings for pre-trained language models 340

is effective for better performance. Let θ be the 341

parameters of a pre-trained neural source language 342

model LM s
θ , and let Vs = {vs1, vs2, . . . , vsn} be the 343

vocabulary of LM s
θ . We will refer to Vs as the 344

source vocabulary. Let esi ∈ Rd be the sub-word 345

embedding for word i ∈ Vs. Let Es denote the 346

language modeling head’s (henceforth LM head) 347

embedding matrix of LM s
θ and this is our source 348

embedding matrix. The probability of occurrence 349

of the next word wi given the previous word se- 350

quence w1 : i − 1, pθ(wi|w1 : i − 1), is given 351

by 352

pθ(wi|w1 : i− 1) =
exp(h⊤i−1e

s
wi
)∑

j∈Vs exp(h⊤i−1e
s
j)
, (1) 353

where hi−1 = ϕ(w1 : i− 1;LM s
θ ) ∈ Rd is the 354

neural representation of the prefix using LM s
θ . 355

In vocabulary expansion, we add n′ new sub- 356

words /∈ Vs forming the target vocabulary Vt = 357

{vt1, vt2, . . . , v′tn}. This implies we need a new word 358

embedding etj for each j ∈ Vt comprising in Et. 359

The new language model LM t
θ′ has parameters 360

θ′ = θ ∪ {etj ; j ∈ Vt}. The output distribution 361

of LM t
θ′ given by pθ′(wi|w1 : i − 1) is defined 362

similarly as pθ(wi|w1 : i− 1) but with the normal- 363

ization factor involving Vs ∪ Vt. 364

Our goal is to find initializations for Et such that 365

the extended model not only retains its previous 366

behavior but also can lead to good downstream per- 367

formance for the languages corresponding to the 368

new vocabulary with minimal continual pretraining. 369

Note that in our notations so far we have only men- 370

tioned the LM head, but just as the LM head has an 371

expansion (Et
lmhead), the input embedding matrix 372

also has an expansion (Et
input). This is trivial if both 373

matrices are shared but in case they are not, we also 374

need to find initializations for the latter. Following 375

(Hewitt, 2021), we can use the same approach to 376

initialize Et
input as we do for Et

lmhead. 377

3.4 Model Initialization 378

To adapt XLM-R for 19 low-resource languages 379

with diverse scripts including Geez-script lan- 380

guages (e.g., Amharic and Tigrinya), we first clas- 381

sify the model’s tokens by their Unicode block to 382
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map them to their respective scripts. For each script,383

we calculate the mean and standard deviation of its384

token embeddings in the original embedding space.385

New embeddings for Geez-script tokens are then386

generated by sampling from a multivariate Gaus-387

sian distribution parameterized by these statistics.388

The new embeddings are integrated with the orig-389

inal embedding matrix, and the model is resized390

to accommodate the extended vocabulary, ensur-391

ing continuity of prior capabilities while enabling392

improved performance on tasks involving the new393

script.394

4 Experimental Setup395

Instead of creating an entirely new vocabulary, our396

experiment uses a simple and effective approach to397

expand the source model’s token set by incorporat-398

ing 30k new tokens from the Geez Script languages.399

The model’s embedding layer and LM head are ini-400

tialized for these additional tokens, followed by401

continuous pretraining. This process produces the402

VEXMLM model, which is then fine-tuned to en-403

hance performance across 19 target languages in404

four downstream tasks. you can see from Figure 2405

for the extended vocabulary.406

4.1 Experimental Details407

Through vocabulary expansion, XLM-R has been408

extended to create VEXMLM, a novel variant409

specifically designed to enhance support for low-410

resource languages and resolve challenges asso-411

ciated with out-of-vocabulary (OOV) tokens and412

tokenization errors.413

VEXMLM maintains the core architecture of the414

XLM-RoBERTa-base, featuring 12 layers, a hidden415

size of 768, and the ability to handle sequences up416

to 514 tokens long.417

Key aspects of VEXMLM include: ELU activa-418

tion function, Layer normalization epsilon of 1e-419

05, Special token IDs: BOS (0), EOS (2), PAD (1),420

attention heads in 12 hidden layers. The model421

underwent a three-epoch extension while main-422

taining its "XLM-RoBERTa" classification to en-423

hance cross-lingual performance, especially for424

low-resource languages. Afterward, VEXMLM425

was fine-tuned for tasks such as sentiment analy-426

sis, question answering, multilingual named entity427

recognition, and educational value classification.428

Its performance was benchmarked against models429

like XLM-R and Glot500, which also include low-430

resource languages. This approach aims to leverage431

VEXMLM’s expanded linguistic capabilities and 432

improve performance on cross-lingual tasks, par- 433

ticularly for underrepresented languages in Geez 434

Script. 435

4.2 Tokenizer and Languages 436

Tokenizer 437

In multilingual settings, subword tokenization can 438

be inefficient due to segmentation mismatches and 439

over-segmentation in low-resource languages (Sun 440

et al., 2023a). Factors such as pretraining data size 441

and writing systems contribute to inconsistent to- 442

kenization across languages (Ahia et al., 2023a). 443

Over-tokenization increases sentence length and 444

leads to unknown (UNK) tokens (Zhang et al., 445

2022). Geez Script languages, with their distinct 446

morphological structures, are especially affected by 447

over-segmentation (Ahia et al., 2023a). To improve 448

performance for Geez Script languages, we aim 449

to reduce token usage using a SentencePiece tok- 450

enizer (Kudo and Richardson, 2018) and analyze 451

the morphological structure of out-of-vocabulary 452

(OOV) words specific to their script. 453

Languages 454

We start by training a tokenizer tailored for Geez 455

Script languages to address over-segmentation in 456

multilingual tokenization. Then, our extended 457

model, VEXMLM, is fine-tuned on 19 low- 458

resource languages with diverse scripts across four 459

downstream tasks. 460

4.3 Datasets and Tasks 461

Finally, we evaluate the VEXMLM model on 19 462

low-resource languages and four tasks. 463

(1) Text classification task: that aims to assign pre- 464

defined labels (e.g., sentiment, score value, etc) to 465

a given text (Sun et al., 2023b). 466

(A). Educational quality classification Dataset : 467

We created a benchmark dataset of 1,500 human- 468

annotated samples for Educational Quality classi- 469

fication in Amharic and Tigrinya, in collaboration 470

with the community. The dataset includes struc- 471

tured data from public educational blogs, collected 472

in two stages: first, diverse online text snippets 473

were gathered from manuals and blogs, and sec- 474

ond, they were annotated on a scale of 1 to 6 based 475

on educational quality. Details and samples are 476

provided in B. 477

(B) Multilingual sentiment analyses: We used 478

AfriSenti,a sentiment analysis dataset for low- 479
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resource African languages, containing over 110K480

annotated tweets in 14 languages, for detail of the481

languages (Muhammad et al., 2023).482

(2) Multilingual NER: We used the483

MasakhaNER dataset (Adelani et al., 2021) and484

Tigriyna (Yohannes and Amagasa, 2022)dataset485

both, offer NER tasks for 11 low-resourced African486

languages.487

(3)Question and Answer: TIGQA dataset (Tek-488

lehaymanot et al., 2024) which offers a question-489

answering expertly annotated dataset. Addition-490

ally, used the Amharic(AmQA) dataset (Taffa et al.,491

2024).492

Model Training493

To train VEXMLM, we first implement vocabu-494

lary expansion refer to the section 3.2. Next, we495

finetune XLM-R, Glot500, and the extended model496

VEXMLM. We evaluate VEXMLM on four subdo-497

main tasks, which include Named Entity Recogni-498

tion(NER), Question Answering(QA), Educational499

quality classification(EQC), and Sentiment Analy-500

sis(SA), see Table 3 with results.501

Baselines502

In addition to VEXMLM, we establish the follow-503

ing baseline models for comparison:504

• XLM-R (Conneau et al., 2020)505

• Glot500 (ImaniGooghari et al., 2023)506

5 Results and Evaluation507

We utilized a comprehensive evaluation strategy508

for both intrinsic and extrinsic metrics. The intrin-509

sic evaluation encompassed Parity (fairness across510

languages) (Petrov et al., 2024), Fertility (token511

efficiency) (Rust et al., 2021), and Compression512

(text reduction) (Goldman et al., 2024). Addi-513

tionally, we analyzed language and script cover-514

age, with a focus on low-resource languages, as515

well as Out-Of-Vocabulary (OOV) handling and516

over-tokenization. For the extrinsic evaluation, we517

compared our model, VEXMLM, with seven mul-518

tilingual subword-based tokenizer models using519

Geez Script languages such as Amharic, Tigrinya,520

and Tigre, demonstrating that our model tokenized521

with fewer tokens. Furthermore, we fine-tuned the522

model on 19 low-resource languages and evaluated523

its performance across four downstream tasks.524

Figure 4 compares the parameter count and vo-525

cabulary size of XLM-R, VEXMLM, and Glot500.526

VEXMLM, an enhanced version of XLM-R, boasts 527

301 million parameters and 280k tokens, which en- 528

hances representation for languages that use the 529

Ge,ez script. XLM-R contains 279 million param- 530

eters and 250k tokens, while Glot500 provides 531

broader linguistic coverage with 350 million pa- 532

rameters and 400k tokens. VEXMLM maintains 533

a balance between model size and linguistic effi- 534

ciency. 535

Parity is a metric that assesses the fairness of a 536

tokenizer in processing equivalent sentences across 537

different languages. Table 1 illustrates the com- 538

parative performance of models in low-resource 539

languages versus English at the sentence level. 540

VEXMLM consistently shows the best overall par- 541

ity across most languages, indicating its superior 542

ability to perform in these contexts relative to the 543

English baseline. While Glot500 excels in Tigrinya 544

and Amharic, its performance is less consistent 545

across other languages, and XLM-R exhibits lower 546

parity scores, signifying greater difficulty in han- 547

dling low-resource languages. 548

VEXMLM, provides the most balanced perfor- 549

mance by minimizing the disparity between En- 550

glish and low-resource languages, it also offers 551

more compact encoding for Tigrinya and Amharic. 552

Overall, VEXMLM achieves near-parity with En- 553

glish in Afar, Oromo, Afrikaans, German, and Ara- 554

bic, although Glot500 surpasses it in Amharic. 555

Language Models
XLM-R Glot500 VEXMLM

Tigrinya 1.36 1.20 0.27
Amharic 0.82 0.90 0.39
Ge’ez 0.45 0.31 0.73
Tigre 0.82 0.88 0.89
Harari 0.41 0.14 0.88
Gurage 0.62 0.12 0.89
Afar 0.54 0.30 0.90
Oromo 1.27 0.90 0.93
Afrikaans 1.18 1.30 0.96
German 1.09 1.10 0.98
Arabic 1.27 1.30 1.16

Table 1: Comparative Performance of Models in Parity
Across Different Languages Versus English at the Sen-
tence Level.

Fertility (Rust et al., 2021) is a metric that as- 556

sesses the number of tokens produced relative to the 557

original text, helping evaluate the granularity and 558
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efficiency of tokenization. In Figure 1 VEXMLM559

shows strong specialization in less-resourced lan-560

guages like Amharic and Tigrinya, making it highly561

effective for tasks in those languages. Glot500562

demonstrates a well-rounded ability across all three563

languages, especially excelling in English, while564

XLM-R shows potential but struggles with the lin-565

guistic diversity in Amharic and Tigrinya.566

Figure 1: Comparison of Fertility Score Across Three
Languages.

Compression (Goldman et al., 2024) Compres-567

sion is a reliable intrinsic indicator of tokenization568

quality, we evaluate how efficiently a tokenizer569

reduces the text length while maintaining informa-570

tion quality and effectiveness. Figure 3 assesses571

the trade-off between reducing the token count572

and preserving the meaningful content of the text.573

Moreover, in Table 1 the 0.27 score suggests that574

VEXMLM employs a more compact tokenization575

strategy for Tigrinya compared to English. The576

lower token count implies that the model can en-577

code the same information using fewer tokens, po-578

tentially indicating a more effective representation579

of the language’s structure and patterns.580

Language and Script Analysis: In this analy-581

sis, we examine languages, more spoken countries,582

and scripts in Low-Resource African Languages583

(see Table 5 in B for details). In out-of-vocabulary584

analyses at the word level,585

VEXMLM addressed XLM-R’s limitations for586

Ge’ez script languages while maintaining or im-587

proving performance for other scripts.588

OOV Word Analysis: We evaluate our model589

against a baseline at the word level, focusing on590

how out-of-vocabulary (OOV) words are handled591

across scripts and languages. Addressing the OOV592

issue is crucial in multilingual contexts. For ex-593

ample, in Named Entity Recognition (NER) tasks594

for 11 low-resource African languages, most er-595

rors stem from OOV words (see Table 2). The596

Figure 2: Comparative Analysis of Sample Vocabu-
lary Size Across Different Scripts and Languages Using
XLM-R and VEXMLM.

original XLM-R model shows significantly lower 597

accuracy for OOV words compared to non-OOV 598

words in these languages. In contrast, the expanded 599

VEXMLM model shows notable improvement in 600

OOV word accuracy, especially for Amharic and 601

Tigrinya.

Language XLM-R VEXMLM
Non-
OOV

OOV Non-
OOV

OOV

amh 98.1 91.1 98.1 92.2
tig 78.1 96.1 89.5 98.2
hau 97.0 90.2 97.2 95.6
ibo 97.8 91.9 97.7 94.5
kin 98.8 84.9 99.0 93.4
lug 98.8 91.3 96.4 94.8
luo 97.8 91.4 98.6 95.2
pcm 98.6 89.6 97.5 97.0
swa 98.2 80.2 93.9 95.2
wol 92.5 89.1 98.7 93.0
yor 91.6 81.8 92.8 89.1
Average 95.2 81.43 96.3 94.3

Table 2: Evaluation of OOV word accuracy in NER
tasks for 11 low-resource African languages, comparing
the performance of the original XLM-R model and the
expanded VEXMLM model.

602

Over-tokenization: The distribution of lan- 603

guages in the corpus impacts tokenization, with 604

dominant languages remaining intact and under- 605

represented languages being excessively tokenized. 606

This over-tokenization increases sentence length 607

and results in unknown (UNK) tokens (Talat et al., 608

2022). Using fewer tokens to represent input data 609

can improve inference speed, reduce costs, and en- 610

hance utility (Liang et al., 2023). This approach 611

7



also helps the model manage longer contexts and612

mitigates over-tokenization in low-resource lan-613

guages (Rust et al., 2021).614

Figure 3 displays the average token count gener-615

ated by various multilingual models on our Geez616

Script(Amharic, Tigriyna) benchmark dataset. As617

shown, VEXMLM outperforms other subword-618

based multilingual tokenizers, significantly reduc-619

ing the average input sequence length.620

Figure 3: We compare our model with other multilin-
gual tokenizers based on the number of tokens generated.
Fewer tokens indicate higher efficiency, as they repre-
sent the text more compactly.

Downstream performance: Table 3 compares621

the performance of XLM-R, VEXMLM, and622

Glot500 models on four different downstream NLP623

tasks: Educational quality classification (EQC),624

Sentiment Analysis (SA), Named Entity Recogni-625

tion (NER), and Question Answering (QA). The626

results are presented in terms of accuracy (Acc), Ex-627

act match(EM), and F1 score (F1), reflecting cross-628

lingual transfer after fine-tuning. VEXMLM’s su-629

perior generalization capabilities on the dataset in630

section 4.3.631

Tasks XLM-R VEXMLM Glot500
SA (Acc) 0.77 0.80 0.46
EQC(Acc) 0.96 0.98 0.70
NER
(Acc)

0.75 0.78 0.92

QA (EM) 0.66 0.87 0.74
QA (F1) 0.78 0.90 0.78

Table 3: compares the performance of XLM-R,
VEXMLM, and Glot500 on four NLP tasks: Senti-
ment Analysis (SA), Educational Quality Classification
(EQC), Named Entity Recognition (NER), and Question
Answering (QA). Evaluation metrics include accuracy
for SA, EQC, and NER, and Exact Match (EM) and
F1-score for QA.

5.1 Discussions 632

Addressing the OOV issue in multilingual settings 633

is important. Using the NER task as an example, 634

we find that most errors occur at OOV positions 635

(Table 2). Both XLM-R and VEXMLM perform 636

well on non-OOV words, but XLM-R shows much 637

lower accuracy for OOV words. VEXMLM sig- 638

nificantly improves OOV word accuracy, resulting 639

in overall better performance by reducing OOV er- 640

rors. Additionally, VEXMLM outperforms other 641

multilingual tokenizers in efficiency, particularly 642

for low-resource languages, reducing the token 643

count by 12.94% (Figure 3). This reduction leads 644

to shorter input sequences, easing computational 645

load and memory usage. VEXMLM’s efficient 646

tokenization addresses over-tokenization in Geez 647

Script languages like Amharic and Tigrinya, avoid- 648

ing fragmentation and meaning loss. Lastly, Sec- 649

tions 3.3 and 3.4 discuss how initialization affects 650

model performance. Using the average of exist- 651

ing embeddings for new word embeddings is more 652

effective, improving expansion performance (see 653

Section 3.3). Grammarly, ChatGPT, were utilized 654

to improve language clarity and refine phrasing in 655

our original content. 656

6 Conclusion 657

We introduce VEXMLM, a model that enriches 658

the vocabulary of the XLM-R tokenizer by incor- 659

porating language-specific tokenization methods. 660

This approach preserves semantic coherence and 661

utilizes morphological insights to develop extended 662

vocabularies from Geez script languages, we effec- 663

tively initialize the model’s embedding layer to 664

support the new tokens. VEXMLM is evaluated 665

on 19 African languages with diverse scripts and 666

exceeds, particularly for Geez script languages like 667

Amharic and Tigrinya. Also, languages that share 668

similar characters or token structures alike benefit 669

from this model, mainly given the variability in 670

tokenization. For instance, the token "BPE" can be 671

represented as either ("BP", "E") or ("B", "PE"), 672

and this adaptability aids other low-resource lan- 673

guages with comparable scripts. 674

Achieving an average accuracy score of 94.3 675

across 11 low-resource languages, VEXMLM sig- 676

nificantly reduces the number of tokens for Geez 677

script languages. We assess token efficiency using 678

metrics such as fertility and average token count. 679

We believe this work will greatly contribute to NLP 680

for low-resource languages. 681
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Limitations:682

Despite the extensiveness of our work, it faces the683

following limitations.684

First, Our vocabulary expansion Method was685

based solely on data from Amharic and Tigrinya,686

which may have limited generalizability. While687

token overlap was observed, the unique charac-688

teristics of 19 low-resource languages highlight689

the need for further validation and potential adjust-690

ments in tokenization strategies.691

Second, while the Ge’ez script is the basis for692

several other languages, Ge’ez itself lacks native693

speakers who can offer essential linguistic insights,694

unlike languages such as Amharic and Tigrinya.695

Moreover, no computational linguistic research on696

Ge’ez has been conducted to date. Consequently,697

there may be inaccuracies or improperly formu-698

lated sentences when performing sentence-level699

parity comparisons for this language.700

Third, we did not report the perplexity metric,701

as our primary focus was to assess whether our702

approach addresses challenges related to out-of-703

vocabulary (OOV) tokens, over-segmentation, and704

the representation of new languages. We argue705

that metrics such as parity, fertility, and compres-706

sion are sufficient to answer the research question,707

without the need to rely on perplexity. Finally,708

human-annotated resource data was only prepared709

for Amharic and Tigrinya. Developing similar re-710

sources for additional low-resource languages is711

crucial for further advancements, highlighting this712

as future work for other researchers.713
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A Educational Quality Classification1117

Dataset1118

The scarcity of labeled data is a particularly no-1119

table issue in low-resource languages. With this1120

in mind, we collect human-annotated educational1121

content evaluation data for training and evaluating1122

multilingual models in two low-resource languages,1123

Amharic and Tigriyna, carried out from October1124

2024 up to December 2024. Community-driven1125

annotator primarily from Ethiopia and is actively1126

involved in data development. All the collected1127

content is sourced from public educational blogs.1128

Community-driven efforts achieve this by creating1129

a human-annotated dataset. Annotators assessed1130

the educational value of each context on a scale1131

from 1 to 6 following a detailed annotation guide-1132

line. This dataset is intended to train and evaluate1133

educational quality classifier models.1134

Language Selection1135

To compile the dataset, we employ a methodol-1136

ogy akin to that used in the original FineWeb-Edu1137

datasets (Penedo et al., 2024). We focus on two1138

specific languages, Tigrinya and Amharic, to estab-1139

lish a ground truth dataset for assessing educational1140

value in low-resource languages.1141

FineWeb-Edu comprises 1.3 trillion tokens,1142

specifically optimized for educational content, and1143

significantly surpasses all openly available web-1144

based datasets in several reasoning- and knowledge-1145

intensive benchmarks, including MMLU, ARC,1146

and OpenBookQA (Penedo et al., 2024). Un-1147

like FineWeb, which relies solely on web con-1148

tent scraped through Common Crawl and often1149

includes unstructured, noisy, and low-quality ma-1150

terial. Unlike the FineWeb-Edu datasets (Penedo1151

et al., 2024), we enhance our dataset with struc-1152

tured data from online manuals and public educa-1153

tional blogs to improve quality and diversity. While1154

the initial annotations were generated using a large1155

language model (LLM), we refined and verified1156

these annotations through human annotation to en-1157

sure accuracy and reliability.1158

As shown in Table 4, we compiled a dataset for1159

educational quality classification using a variety1160

of academic blogs and manual excerpts as context1161

Statistic Value
Total Contexts in Amharic 750
Total Contexts in Tigriyna 750
Total Contexts in Both Languages 1500
Total Words in Amharic 39,477
Total Words in Tigriyna 44,210
Total Words (Both Languages) 83,687
Total Unique Tokens 25,795

Table 4

for Amharic and Tigrinya languages. This anno- 1162

tated dataset will serve as a reliable ground truth 1163

for researchers working with these low-resource 1164

languages, providing an invaluable resource for de- 1165

veloping and evaluating models that distinguish 1166

educational content from other types of online ma- 1167

terial. 1168

Preprocessing 1169

After collecting the row texts, we perform several 1170

preprocessing steps. First, we eliminate any re- 1171

maining texts in other languages using a FastText- 1172

based language identifier (Bojanowski et al., 2017). 1173

Additionally, we filter out texts containing abusive 1174

language by applying straightforward rule-based 1175

heuristics. To maintain high-quality text content, 1176

we remove entries containing URLs or emojis. Fi- 1177

nally, tokenized text was split into sentences and 1178

further into individual words. 1179

Annotation 1180

Each text entry in the dataset was annotated by five 1181

coders, with each coder selecting one or more la- 1182

bels from six category classes. The coders who par- 1183

ticipated in this task were volunteers contributing 1184

to a community engagement effort. The annotation 1185

process was carried out using the open-source tool 1186

Argilla (Team, n.d.) as you see in Fig 1187

B Annotation Guidline 1188

Guidelines for Rating Educational Value of the 1189

Content. It comprises six categories: None, 1190

Minimal, Basic, Good, Excellent Problematic 1191

Content Rate the content using the following 1192

criteria: 1193

1194

[1] No Educational Value: 1195

Definition: No educational purpose whatsoever. 1196

Purely entertainment, advertisements, or personal 1197
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content with nothing to learn.1198

Examples: Social media conversations about daily1199

life Online shopping product listings Advertise-1200

ment pages Personal blog posts about someone’s1201

day Forum discussions about entertainment1202

Comment sections Sports match reports.1203

1204

[2] Minimal Educational Value:1205

Definition: Contains a few facts or pieces of1206

information, but the content is mostly non-1207

educational. Information is incidental or not the1208

main focus. Examples: News article that mentions1209

some historical facts A travel blog with basic1210

information about a location Product review with1211

some technical details Company website with brief1212

industry information Recipe that briefly explains1213

a cooking technique Entertainment article with1214

occasional facts.1215

1216

[3] Basic Educational Content:1217

Definition: Attempts to explain or teach something,1218

though the information might be scattered or1219

disorganized. Mixed with non-educational content.1220

Examples: A basic how-to guide with ads Simple1221

Wikipedia-style article Blog post explaining a1222

concept but lacking depth Amateur tutorial video1223

transcript Brief explanation of a scientific concept1224

Quick overview of a historical event.1225

1226

[4] Good Educational Content:1227

Definition: Has a clear teaching purpose and well-1228

organized information. Suitable for learning but1229

may have minor limitations. Examples: Detailed1230

tutorial with clear steps Well-written educational1231

blog post Comprehensive guide to a topic Clear ex-1232

planation of a scientific process Structured learning1233

material Educational website article with examples.1234

1235

[5] Excellent Educational Content:1236

Definition: Outstanding teaching material with a1237

clear structure and thorough explanations. Includes1238

helpful examples and lacks distracting content.1239

Examples: Professional educational resource1240

Well-crafted learning module In-depth guide with1241

clear examples Comprehensive educational article1242

High-quality teaching material Expert explanation1243

with practical applications.1244

1245

[6] Problematic Content1246

Definition: Unreadable or corrupted text, inappro-1247

priate content, or machine-generated nonsense.1248

Examples: Text in a different language than1249

expected Garbled characters or formatting AI- 1250

generated spam content Inappropriate or offensive 1251

material Broken/partial webpage content Content 1252

that’s too technical to evaluate. 1253

Figure 4: Vocabulary size of the models
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Language Country Script
Algerian Arabic (arq) Algeria Arabic
Amharic (ama) Ethiopia Geez
Hausa (hau) Nigeria, Niger, Ghana,

Cameroon, Benin,
Togo, Chad, Sudan

Arabic

Igbo (ibo) Nigeria, Equatorial
Guinea, Barbados,
Cuba, Jamaica

Latin

Kinyarwanda (kin) Rwanda Latin
Moroccan Arabic/Darija (ary) Morocco Arabic
Mozambique Portuguese (pt-
MZ)

Mozambique Latin

Nigerian Pidgin (pcm) Nigeria Latin
Oromo (orm) Ethiopia Latin
Swahili (swa) Kenya, Tanzania,

Uganda, Democratic
Republic of the Congo
(DRC), Mozambique

Latin

Tigrinya (tir) Eretiria, ethiopia and
mainly in Australia and
America

Ge’ez

Twi (twi) Ghana Latin
Xithonga (tso) Mozambique Latin
Yoruba (yor) Nigeria, Benin, Togo Latin
Kinyarwanda Rwanda Latin
Luganda Uganda Latin
Luo Kenya, Tanzania Luo Lakeside
Naija Pidgin Nigeria (also spoken

in some West African
countries)

Latin

Wolof Senegal, Gambia, Mau-
ritania

Latin

Gurage Ethiopia Geez
Harari Ethiopia Ethiopic
Afar Ethiopia Ge’ez
Tigre Eritrea Ge’ez
Ge’ez now primarily used as

a liturgical language
in the Ethiopian Ortho-
dox Church

Ge’ez

Table 5: Languages, Countries, and Scripts in Low Re-
source African Languages
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Figure 5: EQC Dataset Samples for Tigriyna

Figure 6: EQC Dataset Samples for Amharic
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