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Abstract

Multilingual models have shown effectiveness
in natural language processing (NLP) tasks,
but their performance often declines for low-
resource languages due to a predominant fo-
cus on high-resource languages during train-
ing. This leads to challenges such as out-
of-vocabulary (OOV) and over-segmentation,
mainly resulting from English-centric tokeniza-
tion methods. Vocabulary expansion using tar-
get language tokens is a common strategy to
address these problems. However, existing re-
search mainly focuses on high-resource settings
and overlooks the potential of vocabulary ex-
pansion to address OOV and over-segmentation
in low-resource languages. To fill this gap, we
introduce VEXMLM, an enhanced version of
XLM-R optimized for low-resource languages
through effective vocabulary expansion. Our
approach involves creating a human-annotated
benchmark dataset and training a language-
specific tokenizer by maintaining semantic co-
herence morphological insights to build com-
prehensive vocabularies and integrating these
tokens into the model via embedding initial-
ization. VEXMLM is evaluated on 19 African
languages with varying scripts and resource
availability across four tasks: Question An-
swering, Named Entity Recognition, Sentiment
Analysis, and Educational Quality Classifica-
tion. Comparative experiments demonstrate
that VEXMLM significantly outperforms base-
line models, XLM-R and Glot500, on low-
resource languages while improving perfor-
mance for high-resource languages. The model,
code, and dataset will be publicly available for
research.

1 Introduction

Multilingual models often use auto-tokenizers that
map unrecognized words to a single <UNK> token
(Liu et al., 2024). The models struggle to distin-
guish between different scripts and lack proper en-
coding for scripts like Geez, causing unrecognized

scripts to <UNK>. These models typically assign
a generic <UNK> token for completely unrecog-
nized scripts or characters, as they cannot decom-
pose these elements further (Xue et al., 2022). Also,
the vocabulary size of multilingual models is gen-
erally small, especially for low-resource languages
(Wang et al., 2019a).

(Sennrich et al., 2016) proposes a method to
tackle the open-vocabulary issue in neural machine
translation (NMT) by encoding rare and unknown
words as subword sequences. Using techniques
like byte pair encoding, this approach breaks down
words into smaller units such as characters or sub-
word segments, improving NMT performance over
traditional dictionary-based methods. For example,
a subword tokenizer might split "doghouse" into
"dog" and "house," even if "doghouse" is not in the
vocabulary. This flexibility has made subword tok-
enizers the standard for text tokenization in recent
years (Hiraoka et al., 2019; Bostrom and Durrett,
2020).

Over-segmentation, typos, variants in spelling
and capitalization, and morphological changes can
all cause the token representation of a word or
phrase to change completely, which can result in
mispredictions (Xue et al., 2022; Ahia et al., 2024).
Furthermore, unknown characters (e.g., from a lan-
guage that was not seen when the subword vocab-
ulary was built) are typically OOV for a subword
model (Xue et al., 2022).

Prior research has focused on tokenization algo-
rithms and optimal vocabulary sizes for machine
translation in English (Ahia et al., 2023b). How-
ever, low-resource languages often have smaller
datasets, causing subword tokenizers trained in
multiple languages to over-segment tokens in these
languages (Ahia et al., 2023a). Likewise, a chal-
lenge in pre-trained multilingual models is limited
vocabulary coverage or the exclusion of languages
during training, resulting in poor representation of
low-resource languages. (Wang et al., 2019a).



Many pre-trained models employ a subword vo-
cabulary, which greatly reduces the issue of out-
of-vocabulary tokens. However, it can still result
in performance decline if domain-specific terms
are overly fragmented or insufficiently represented
due to limited training data (Ebrahimi and Kann,
2021a).

Out-of-vocabulary (OOV) words and over-
segmentation are challenges in pre-trained multilin-
gual models, especially for low-resource languages.
These challenges underscore the need for efficient
strategies to improve these models.

We investigate two main approaches for adapt-
ing a pre-trained language model to new target lan-
guages. The first approach involves fully adapting
the model by replacing the tokenizer and focus-
ing on the performance of the new target language
(Minixhofer et al., 2022; Mundra et al., 2024b).
The second approach extends the model’s language
support by adding new target tokens while pre-
serving the performance of the original language
(Garcia et al., 2021; Liu et al., 2024). While we
explore both approaches, we focus primarily on
the second approach, which involves extending the
tokenizer and initializing the model’s embedding
layer and LM head for the newly added tokens.

This paper aims to (i) evaluate whether the
expansion approach effectively addresses OOV
words and over-segmentation, while ensuring bal-
anced language representation and optimized per-
formance across diverse linguistic contexts, partic-
ularly in low-resource language, and (ii) identify
the best approaches for vocabulary expansion and
initialization to support language adaptation in low-
resource environments, maintaining performance
comparable to source models. The key contribu-
tions are as follows:

* We compiled a human-annotated dataset for
educational quality classification in Tigrinya
and Ambharic, following the approach outlined
in (Lozhkov et al., 2024). Annotators rated
each context on a 1 to 6 scale, based on a
detailed guideline. We calculated the inter-
annotator agreement to ensure annotation reli-
ability, assessing label consistency and qual-
ity. This dataset will serve as a ground truth
for evaluating educational content in these
languages. Using the SentencePiece algo-
rithm, we also trained a language-specific tok-
enizer, ensuring compatibility with the source
model’s tokenizer. Our evaluation of various

multilingual subword-based models shows
that our tokenizer performs particularly well
for languages using the Geez script.

¢ We introduce VEXMLM, an extended XLLM-
R model that expands vocabulary to address
OOV issues, over-segmentation, and poor rep-
resentation of low-resource languages. Our
results show that average vocabulary initial-
ization, using the mean and standard deviation
of token embeddings from the original model,
is more effective. New script token embed-
dings are initialized by sampling from a nor-
mal distribution based on the source model’s
script parameters. We fine-tuned VEXMLM
on four tasks and evaluated it across 19 low-
resource languages with diverse scripts, and
VEXMLM outperformed baseline models in
several tasks.

* VEXMLM exceeds baseline models in down-
stream tasks for low-resource languages, such
as Question Answering (QA), Sentiment Anal-
ysis, and Educational Value Classification. It
also enhances performance for high-resource
languages, demonstrating its considerable vo-
cabulary sharing and generalization capabili-
ties across diverse linguistic contexts.

2 Related Work

Multilingual language models often use subword-
based tokenizers, which can cause unwanted be-
haviors in low-resource languages, such as over-
segmentation and the vocabulary bottleneck limit-
ing the representational capabilities of multilingual
models (Limisiewicz et al., 2023; Beinborn and
Pinter, 2023).

(Liang et al., 2023) proposes assigning vocab-
ulary capacity to achieve sufficient coverage for
each language and using a semantically meaning-
ful tokenizer to overcome the issues in multilingual
language models. This approach is computation-
ally expensive. (Mundra et al., 2024a) introduces
Constrained Word2Vec (CW2V) for expanding lan-
guage model vocabularies without needing cross-
lingual embeddings.

(Reimers and Gurevych, 2020) extend exist-
ing sentence embedding models to new languages.
This allows the creation of multilingual versions
from previously monolingual models.

The NLP community has mostly focused on ver-
tical scaling, optimizing models for a few well-
resourced languages, often neglecting horizontal



scaling to include low-resource languages. Vertical
scaling enhances performance for a limited set of
languages but lacks broader multilingual support
(ImaniGooghari et al., 2023). In contrast, horizon-
tal scaling extends model performance to a wider
range of languages, including those with limited
resources. (ImaniGooghari et al., 2023) addressed
this by creating Glot500-m, a model that contin-
ues pretraining across 511 low-resource languages,
marking a significant step forward for low-resource
language representation. Thus OOV words present
significant challenges across various NLP tasks
(Chen et al., 2022; Wang et al., 2019b; Garcia-
Bordils et al., 2022; Lochter et al., 2020; Zhuang
et al., 2023; Shiao et al., 2024; VH and Chacko,
2024; Wang et al., 2019a)

Prior work on addressing OOV issues in multi-
lingual settings, such as BERT, uses subword to-
kenization (e.g., WordPiece) instead of full word
tokenization (Wang et al., 2019a; Jafte, 2017; Pla-
tanios et al., 2018). This breaks unknown words
into known subword units, like "autonomic" being
tokenized as "auto" + "##nom" + "##ic," ensuring
coverage even if the full word is not in the vocabu-
lary. However, subword tokenization still struggles
with the rich inflectional and derivational processes
of morphologically complex languages (Chai et al.,
2024).

Vocabulary-free models like ByT5 (Xue et al.,
2022) and CANINE (Clark et al., 2022) offer
competitive performance compared to subword-
based models but face slower training and inference
speeds. ByT5 is slower than mT5 (Xue et al., 2021),
and CANINE, despite optimizations, still lags be-
hind BERT models (Liang et al., 2023). BBPE
improves translation quality by maximizing vo-
cabulary sharing across languages (Wang et al.,
2020). Recently, (Pagnoni et al., 2024) introduced
the Byte Latent Transformer (BLT), which pro-
cesses raw byte sequences directly, bypassing the
need for tokenization and offering a scalable solu-
tion without fixed vocabulary limitations. Recently,
(Pagnoni et al., 2024) introduced the Byte Latent
Transformer (BLT), an innovative architecture that
eliminates the need for tokenization. Instead, it
processes raw byte sequences directly. This ap-
proach demonstrates the potential for scaling mod-
els trained on raw bytes, bypassing the limitations
of a fixed vocabulary.

2.1 Language Adaptive Pretraining

Language Adaptive Pretraining (LAPT) is a promis-
ing method for adapting multilingual models to
multiple languages simultaneously (Dobler and
de Melo, 2023). (Alabi et al., 2022) demonstrated
its use with XLM-R for 20 African languages,
while (Ebrahimi and Kann, 2021b) and (Wang et al.,
2022a) leveraged resources like the Bible and lex-
icons for model adaptation. (Muller et al., 2021)
improved performance by transliterating unseen
languages into Latin script. (Pfeiffer et al., 2020)
introduced adapter modules to preserve pre-trained
weights, though this incurs computational costs.
However, none of these approaches address out-of-
vocabulary (OOV) issues or over-segmentation in
low-resource languages.

3 Proposed Method

We use XLM-R as the pre-trained model. First, we
outline its pre-training procedure (Section 3.1). We
then explore methods to address out-of-vocabulary
(OOV) issues and improve the representation of
low-resource languages by expanding the vocabu-
lary (Section 3.2). Finally, we present our bench-
mark dataset (Section 4.3), expansion initializa-
tion (Section 3.3), and model initialization (Section
3.4). These methods apply to similar models and
languages.

3.1 Multilingual Models

XLM-R is a transformer-based (Vaswani et al.,
2017) multilingual masked language model with
state-of-the-art performance on cross-lingual un-
derstanding tasks. It is pre-trained on text in 100
languages, making it a highly scalable model (Con-
neau et al., 2020). This large-scale pre-training
allows XLM-R to learn a rich representation of
language that can be fine-tuned for specific down-
stream tasks. The model’s architecture is based on
the RoBERTa (Liu et al., 2020) architecture, which
is a variant of the BERT (Devlin et al., 2019) model.
This architecture is highly effective for language
modeling tasks, and the addition of multilingual
pre-training data has further improved its perfor-
mance (Conneau et al., 2020).

Recent research has focused on adapting large
language models (LLMs) to support low-resource
languages, noting that multilingual capabilities
improve with adding more languages. (Wang
et al., 2019a) explore vocabulary expansion, while
(Ebrahimi and Kann, 2021a) adapt pre-trained mul-



tilingual models to nearly 1600 languages using
the New Testament, showing that continued pre-
training yields the best results despite limited re-
sources. (Alabi et al., 2022) adapt XLM-R to 17
African languages and three widely spoken African
languages to enhance cross-lingual transfer learn-
ing, and (Wang et al., 2022b) extend LLMs to low-
resource languages using bilingual lexicons. Ad-
ditionally, (ImaniGooghari et al., 2023) propose
Glot500-m, trained on a 600GB corpus covering
over 500 languages, demonstrating that expand-
ing LLMs improves knowledge transfer from high-
resource to low-resource languages. While these
methods expand language coverage, challenges
such as noise, corpus size for underrepresented
languages, over-segmentation, script encoding, and
tokenization still need attention.

3.2 Vocabulary Expansion and Adaptation

Vocabulary expansion often requires adapting a pre-
trained model to a new task, which can be challeng-
ing due to differences in vocabulary, syntax, and
semantics between the original training data and the
target languages (Conneau et al., 2020). Typically,
language models (LMs) are trained with a fixed vo-
cabulary, often consisting of around 50,000 tokens
(Ushio et al., 2023). A major limitation to adapting
models to new languages is the vocabulary, which
often fails to cover unseen scripts (Downey et al.,
2024; Pfeiffer et al., 2020) or tokenizes target text
inefficiently (Ahia et al., 2023b). (Muller et al.,
2021) demonstrate that script is a critical factor in
predicting transfer success.

Various methods have been suggested to address
this problem, including adapting by replacing the
tokenizer (Minixhofer et al., 2022; Mundra et al.,
2024b), adapting by adding the new target tokens
while maintaining the original language’s perfor-
mance (Garcia et al., 2021; Liu et al., 2024).

To address OOV issues and tokenization chal-
lenges in multilingual models for low-resource lan-
guages, we implement vocabulary expansion strate-
gies. This involves integrating separately trained
vocabularies from the Geez script and initializ-
ing the model’s embedding layer for the new to-
kens. Since new tokens lack pre-trained embed-
dings, the embedding matrix is resized to include
them, while existing token embeddings remain un-
changed. This helps the model better manage vo-
cabulary expansion and enhances its ability to gen-
eralize across different target languages by fine-
tuning VEXMLM for those languages.

3.3 Average Initialization

We adopt the same vocabulary expansion prob-
lem formulation as (Mundra et al., 2024b; Hewitt,
2021). We conclude the average of the existing
embeddings as the default initialization for new
word embeddings for pre-trained language models
is effective for better performance. Let 6 be the
parameters of a pre-trained neural source language
model LM§, and let V* = {v{,v3,..., v, } be the
vocabulary of LMg. We will refer to V* as the
source vocabulary. Let e € R¢ be the sub-word
embedding for word ¢ € V°. Let £° denote the
language modeling head’s (henceforth LM head)
embedding matrix of LM and this is our source
embedding matrix. The probability of occurrence
of the next word w; given the previous word se-
quence wy : i — 1, pg(w;jwy : i — 1), is given
by

exp(h;_y€y,)

ngvs exp(h;'—_le;f)’

where h;_1 = ¢(wy : i — 1; LMS) € R%is the
neural representation of the prefix using LM}

In vocabulary expansion, we add n’ new sub-
words ¢ V* forming the target vocabulary V! =
{vt v&, ... v/} This implies we need a new word
embedding ez for each j € V! comprising in E'.
The new language model LM/, has parameters
0 = 0 U {el;j € V'}. The output distribution
of LM}, given by pp(w;|wy : i — 1) is defined
similarly as pg(w;|wy : 7 — 1) but with the normal-
ization factor involving V¢ U V.

Our goal is to find initializations for £ such that
the extended model not only retains its previous
behavior but also can lead to good downstream per-
formance for the languages corresponding to the
new vocabulary with minimal continual pretraining.
Note that in our notations so far we have only men-
tioned the LM head, but just as the LM head has an
expansion (E,,..,), the input embedding matrix
also has an expansion (Eitnput). This is trivial if both
matrices are shared but in case they are not, we also
need to find initializations for the latter. Following
(Hewitt, 2021), we can use the same approach to

e e e 1. t t
initialize Einput as we do for £\ .

3.4 Model Initialization

To adapt XLM-R for 19 low-resource languages
with diverse scripts including Geez-script lan-
guages (e.g., Amharic and Tigrinya), we first clas-
sify the model’s tokens by their Unicode block to

€]

po(wilwy i —1) =



map them to their respective scripts. For each script,
we calculate the mean and standard deviation of its
token embeddings in the original embedding space.
New embeddings for Geez-script tokens are then
generated by sampling from a multivariate Gaus-
sian distribution parameterized by these statistics.
The new embeddings are integrated with the orig-
inal embedding matrix, and the model is resized
to accommodate the extended vocabulary, ensur-
ing continuity of prior capabilities while enabling
improved performance on tasks involving the new
script.

4 Experimental Setup

Instead of creating an entirely new vocabulary, our
experiment uses a simple and effective approach to
expand the source model’s token set by incorporat-
ing 30k new tokens from the Geez Script languages.
The model’s embedding layer and LM head are ini-
tialized for these additional tokens, followed by
continuous pretraining. This process produces the
VEXMLM model, which is then fine-tuned to en-
hance performance across 19 target languages in
four downstream tasks. you can see from Figure 2
for the extended vocabulary.

4.1 Experimental Details

Through vocabulary expansion, XLM-R has been
extended to create VEXMLM, a novel variant
specifically designed to enhance support for low-
resource languages and resolve challenges asso-
ciated with out-of-vocabulary (OOV) tokens and
tokenization errors.

VEXMLM maintains the core architecture of the
XLM-RoBERTa-base, featuring 12 layers, a hidden
size of 768, and the ability to handle sequences up
to 514 tokens long.

Key aspects of VEXMLM include: ELU activa-
tion function, Layer normalization epsilon of le-
05, Special token IDs: BOS (0), EOS (2), PAD (1),
attention heads in 12 hidden layers. The model
underwent a three-epoch extension while main-
taining its "XLM-RoBERTa" classification to en-
hance cross-lingual performance, especially for
low-resource languages. Afterward, VEXMLM
was fine-tuned for tasks such as sentiment analy-
sis, question answering, multilingual named entity
recognition, and educational value classification.
Its performance was benchmarked against models
like XLM-R and Glot500, which also include low-
resource languages. This approach aims to leverage

VEXMLM'’s expanded linguistic capabilities and
improve performance on cross-lingual tasks, par-
ticularly for underrepresented languages in Geez
Script.

4.2 Tokenizer and Languages

Tokenizer

In multilingual settings, subword tokenization can
be inefficient due to segmentation mismatches and
over-segmentation in low-resource languages (Sun
et al., 2023a). Factors such as pretraining data size
and writing systems contribute to inconsistent to-
kenization across languages (Ahia et al., 2023a).
Over-tokenization increases sentence length and
leads to unknown (UNK) tokens (Zhang et al.,
2022). Geez Script languages, with their distinct
morphological structures, are especially affected by
over-segmentation (Ahia et al., 2023a). To improve
performance for Geez Script languages, we aim
to reduce token usage using a SentencePiece tok-
enizer (Kudo and Richardson, 2018) and analyze
the morphological structure of out-of-vocabulary
(OOV) words specific to their script.

Languages

We start by training a tokenizer tailored for Geez
Script languages to address over-segmentation in
multilingual tokenization. Then, our extended
model, VEXMLM, is fine-tuned on 19 low-
resource languages with diverse scripts across four
downstream tasks.

4.3 Datasets and Tasks

Finally, we evaluate the VEXMLM model on 19
low-resource languages and four tasks.
(1) Text classification task: that aims to assign pre-
defined labels (e.g., sentiment, score value, etc) to
a given text (Sun et al., 2023b).
(A). Educational quality classification Dataset :
We created a benchmark dataset of 1,500 human-
annotated samples for Educational Quality classi-
fication in Ambharic and Tigrinya, in collaboration
with the community. The dataset includes struc-
tured data from public educational blogs, collected
in two stages: first, diverse online text snippets
were gathered from manuals and blogs, and sec-
ond, they were annotated on a scale of 1 to 6 based
on educational quality. Details and samples are
provided in B.

(B) Multilingual sentiment analyses: We used
AfriSenti,a sentiment analysis dataset for low-



resource African languages, containing over 110K
annotated tweets in 14 languages, for detail of the
languages (Muhammad et al., 2023).

(2) Multilingual NER: We used the
MasakhaNER dataset (Adelani et al., 2021) and
Tigriyna (Yohannes and Amagasa, 2022)dataset
both, offer NER tasks for 11 low-resourced African
languages.

(3)Question and Answer: TIGQA dataset (Tek-
lehaymanot et al., 2024) which offers a question-
answering expertly annotated dataset. Addition-
ally, used the Amharic(AmQA) dataset (Taffa et al.,
2024).

Model Training

To train VEXMLM, we first implement vocabu-
lary expansion refer to the section 3.2. Next, we
finetune XLM-R, Glot500, and the extended model
VEXMLM. We evaluate VEXMLM on four subdo-
main tasks, which include Named Entity Recogni-
tion(NER), Question Answering(QA), Educational
quality classification(EQC), and Sentiment Analy-
sis(SA), see Table 3 with results.

Baselines

In addition to VEXMLM, we establish the follow-
ing baseline models for comparison:

¢ XLM-R (Conneau et al., 2020)
* Glot500 (ImaniGooghari et al., 2023)

5 Results and Evaluation

We utilized a comprehensive evaluation strategy
for both intrinsic and extrinsic metrics. The intrin-
sic evaluation encompassed Parity (fairness across
languages) (Petrov et al., 2024), Fertility (token
efficiency) (Rust et al., 2021), and Compression
(text reduction) (Goldman et al., 2024). Addi-
tionally, we analyzed language and script cover-
age, with a focus on low-resource languages, as
well as Out-Of-Vocabulary (OOV) handling and
over-tokenization. For the extrinsic evaluation, we
compared our model, VEXMLM, with seven mul-
tilingual subword-based tokenizer models using
Geez Script languages such as Amharic, Tigrinya,
and Tigre, demonstrating that our model tokenized
with fewer tokens. Furthermore, we fine-tuned the
model on 19 low-resource languages and evaluated
its performance across four downstream tasks.
Figure 4 compares the parameter count and vo-
cabulary size of XLM-R, VEXMLM, and Glot500.

VEXMLM, an enhanced version of XLLM-R, boasts
301 million parameters and 280k tokens, which en-
hances representation for languages that use the
Geez script. XLM-R contains 279 million param-
eters and 250k tokens, while Glot500 provides
broader linguistic coverage with 350 million pa-
rameters and 400k tokens. VEXMLM maintains
a balance between model size and linguistic effi-
ciency.

Parity is a metric that assesses the fairness of a
tokenizer in processing equivalent sentences across
different languages. Table 1 illustrates the com-
parative performance of models in low-resource
languages versus English at the sentence level.
VEXMLM consistently shows the best overall par-
ity across most languages, indicating its superior
ability to perform in these contexts relative to the
English baseline. While Glot500 excels in Tigrinya
and Ambharic, its performance is less consistent
across other languages, and XLM-R exhibits lower
parity scores, signifying greater difficulty in han-
dling low-resource languages.

VEXMLM, provides the most balanced perfor-
mance by minimizing the disparity between En-
glish and low-resource languages, it also offers
more compact encoding for Tigrinya and Amharic.
Overall, VEXMLM achieves near-parity with En-
glish in Afar, Oromo, Afrikaans, German, and Ara-
bic, although Glot500 surpasses it in Amharic.

Language Models
XLM-R | Glot500 | VEXMLM

Tigrinya | 1.36 1.20 0.27
Ambharic | 0.82 0.90 0.39
Ge’ez 0.45 0.31 0.73
Tigre 0.82 0.88 0.89
Harari 0.41 0.14 0.88
Gurage 0.62 0.12 0.89
Afar 0.54 0.30 0.90
Oromo 1.27 0.90 0.93
Afrikaans | 1.18 1.30 0.96
German 1.09 1.10 0.98
Arabic 1.27 1.30 1.16

Table 1: Comparative Performance of Models in Parity
Across Different Languages Versus English at the Sen-
tence Level.

Fertility (Rust et al., 2021) is a metric that as-
sesses the number of tokens produced relative to the
original text, helping evaluate the granularity and



efficiency of tokenization. In Figure 1 VEXMLM
shows strong specialization in less-resourced lan-
guages like Amharic and Tigrinya, making it highly
effective for tasks in those languages. Glot500
demonstrates a well-rounded ability across all three
languages, especially excelling in English, while
XLM-R shows potential but struggles with the lin-
guistic diversity in Amharic and Tigrinya.

_— XLM-R
VEXMLM
mm Glot500

Fertility Scores

05

English Amharic
Languages

Tigrinya

Figure 1: Comparison of Fertility Score Across Three
Languages.

Compression (Goldman et al., 2024) Compres-
sion is a reliable intrinsic indicator of tokenization
quality, we evaluate how efficiently a tokenizer
reduces the text length while maintaining informa-
tion quality and effectiveness. Figure 3 assesses
the trade-off between reducing the token count
and preserving the meaningful content of the text.
Moreover, in Table 1 the 0.27 score suggests that
VEXMLM employs a more compact tokenization
strategy for Tigrinya compared to English. The
lower token count implies that the model can en-
code the same information using fewer tokens, po-
tentially indicating a more effective representation
of the language’s structure and patterns.

Language and Script Analysis: In this analy-
sis, we examine languages, more spoken countries,
and scripts in Low-Resource African Languages
(see Table 5 in B for details). In out-of-vocabulary
analyses at the word level,

VEXMLM addressed XLM-R’s limitations for
Ge’ez script languages while maintaining or im-
proving performance for other scripts.

OOV Word Analysis: We evaluate our model
against a baseline at the word level, focusing on
how out-of-vocabulary (OOV) words are handled
across scripts and languages. Addressing the OOV
issue is crucial in multilingual contexts. For ex-
ample, in Named Entity Recognition (NER) tasks
for 11 low-resource African languages, most er-
rors stem from OOV words (see Table 2). The

Comparative Analysis of Vocabulary Size Across Languages for Different Models
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Figure 2: Comparative Analysis of Sample Vocabu-
lary Size Across Different Scripts and Languages Using
XLM-R and VEXMLM.

original XLLM-R model shows significantly lower
accuracy for OOV words compared to non-OOV
words in these languages. In contrast, the expanded
VEXMLM model shows notable improvement in
OOV word accuracy, especially for Amharic and
Tigrinya.

Language XLM-R VEXMLM
Non- | OOV | Non- | OOV
oov ooV

amh 98.1 91.1 98.1 92.2

tig 78.1 96.1 89.5 98.2

hau 97.0 90.2 97.2 95.6

ibo 97.8 91.9 97.7 94.5

kin 98.8 84.9 99.0 93.4

lug 98.8 91.3 96.4 94.8

luo 97.8 91.4 98.6 95.2

pcm 98.6 89.6 97.5 97.0

swa 98.2 80.2 93.9 95.2

wol 92.5 89.1 98.7 93.0

yor 91.6 81.8 92.8 89.1

Average | 95.2 81.43 | 96.3 94.3

Table 2: Evaluation of OOV word accuracy in NER
tasks for 11 low-resource African languages, comparing
the performance of the original XLM-R model and the
expanded VEXMLM model.

Over-tokenization: The distribution of lan-
guages in the corpus impacts tokenization, with
dominant languages remaining intact and under-
represented languages being excessively tokenized.
This over-tokenization increases sentence length
and results in unknown (UNK) tokens (Talat et al.,
2022). Using fewer tokens to represent input data
can improve inference speed, reduce costs, and en-
hance utility (Liang et al., 2023). This approach



also helps the model manage longer contexts and
mitigates over-tokenization in low-resource lan-
guages (Rust et al., 2021).

Figure 3 displays the average token count gener-
ated by various multilingual models on our Geez
Script(Ambharic, Tigriyna) benchmark dataset. As
shown, VEXMLM outperforms other subword-
based multilingual tokenizers, significantly reduc-
ing the average input sequence length.

Number of Tokens per Model

Gpt-40
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Model

Figure 3: We compare our model with other multilin-
gual tokenizers based on the number of tokens generated.
Fewer tokens indicate higher efficiency, as they repre-
sent the text more compactly.

Downstream performance: Table 3 compares
the performance of XLM-R, VEXMLM, and
Glot500 models on four different downstream NLP
tasks: Educational quality classification (EQC),
Sentiment Analysis (SA), Named Entity Recogni-
tion (NER), and Question Answering (QA). The
results are presented in terms of accuracy (Acc), Ex-
act match(EM), and F1 score (F1), reflecting cross-
lingual transfer after fine-tuning. VEXMLM'’s su-
perior generalization capabilities on the dataset in
section 4.3.

Tasks XLM-R | VEXMLM| Glot500
SA (Acc) | 0.77 0.80 0.46
EQC(Acc) | 0.96 0.98 0.70
NER 0.75 0.78 0.92
(Acc)

QA (EM) | 0.66 0.87 0.74

QA (F1) 0.78 0.90 0.78

Table 3: compares the performance of XLM-R,

VEXMLM, and Glot500 on four NLP tasks: Senti-
ment Analysis (SA), Educational Quality Classification
(EQC), Named Entity Recognition (NER), and Question
Answering (QA). Evaluation metrics include accuracy
for SA, EQC, and NER, and Exact Match (EM) and
F1-score for QA.

5.1 Discussions

Addressing the OOV issue in multilingual settings
is important. Using the NER task as an example,
we find that most errors occur at OOV positions
(Table 2). Both XLM-R and VEXMLM perform
well on non-OOV words, but XLLM-R shows much
lower accuracy for OOV words. VEXMLM sig-
nificantly improves OOV word accuracy, resulting
in overall better performance by reducing OOV er-
rors. Additionally, VEXMLM outperforms other
multilingual tokenizers in efficiency, particularly
for low-resource languages, reducing the token
count by 12.94% (Figure 3). This reduction leads
to shorter input sequences, easing computational
load and memory usage. VEXMLM’s efficient
tokenization addresses over-tokenization in Geez
Script languages like Amharic and Tigrinya, avoid-
ing fragmentation and meaning loss. Lastly, Sec-
tions 3.3 and 3.4 discuss how initialization affects
model performance. Using the average of exist-
ing embeddings for new word embeddings is more
effective, improving expansion performance (see
Section 3.3). Grammarly, ChatGPT, were utilized
to improve language clarity and refine phrasing in
our original content.

6 Conclusion

We introduce VEXMLM, a model that enriches
the vocabulary of the XLLM-R tokenizer by incor-
porating language-specific tokenization methods.
This approach preserves semantic coherence and
utilizes morphological insights to develop extended
vocabularies from Geez script languages, we effec-
tively initialize the model’s embedding layer to
support the new tokens. VEXMLM is evaluated
on 19 African languages with diverse scripts and
exceeds, particularly for Geez script languages like
Ambharic and Tigrinya. Also, languages that share
similar characters or token structures alike benefit
from this model, mainly given the variability in
tokenization. For instance, the token "BPE" can be
represented as either ("BP", "E") or ("B", "PE"),
and this adaptability aids other low-resource lan-
guages with comparable scripts.

Achieving an average accuracy score of 94.3
across 11 low-resource languages, VEXMLM sig-
nificantly reduces the number of tokens for Geez
script languages. We assess token efficiency using
metrics such as fertility and average token count.
We believe this work will greatly contribute to NLP
for low-resource languages.



Limitations:

Despite the extensiveness of our work, it faces the
following limitations.

First, Our vocabulary expansion Method was
based solely on data from Amharic and Tigrinya,
which may have limited generalizability. While
token overlap was observed, the unique charac-
teristics of 19 low-resource languages highlight
the need for further validation and potential adjust-
ments in tokenization strategies.

Second, while the Ge’ez script is the basis for
several other languages, Ge’ez itself lacks native
speakers who can offer essential linguistic insights,
unlike languages such as Amharic and Tigrinya.
Moreover, no computational linguistic research on
Ge’ez has been conducted to date. Consequently,
there may be inaccuracies or improperly formu-
lated sentences when performing sentence-level
parity comparisons for this language.

Third, we did not report the perplexity metric,
as our primary focus was to assess whether our
approach addresses challenges related to out-of-
vocabulary (OOV) tokens, over-segmentation, and
the representation of new languages. We argue
that metrics such as parity, fertility, and compres-
sion are sufficient to answer the research question,
without the need to rely on perplexity. Finally,
human-annotated resource data was only prepared
for Amharic and Tigrinya. Developing similar re-
sources for additional low-resource languages is
crucial for further advancements, highlighting this
as future work for other researchers.
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A Educational Quality Classification
Dataset

The scarcity of labeled data is a particularly no-
table issue in low-resource languages. With this
in mind, we collect human-annotated educational
content evaluation data for training and evaluating
multilingual models in two low-resource languages,
Ambharic and Tigriyna, carried out from October
2024 up to December 2024. Community-driven
annotator primarily from Ethiopia and is actively
involved in data development. All the collected
content is sourced from public educational blogs.
Community-driven efforts achieve this by creating
a human-annotated dataset. Annotators assessed
the educational value of each context on a scale
from 1 to 6 following a detailed annotation guide-
line. This dataset is intended to train and evaluate
educational quality classifier models.

Language Selection

To compile the dataset, we employ a methodol-
ogy akin to that used in the original FineWeb-Edu
datasets (Penedo et al., 2024). We focus on two
specific languages, Tigrinya and Ambharic, to estab-
lish a ground truth dataset for assessing educational
value in low-resource languages.

FineWeb-Edu comprises 1.3 trillion tokens,
specifically optimized for educational content, and
significantly surpasses all openly available web-
based datasets in several reasoning- and knowledge-
intensive benchmarks, including MMLU, ARC,
and OpenBookQA (Penedo et al., 2024). Un-
like FineWeb, which relies solely on web con-
tent scraped through Common Crawl and often
includes unstructured, noisy, and low-quality ma-
terial. Unlike the FineWeb-Edu datasets (Penedo
et al., 2024), we enhance our dataset with struc-
tured data from online manuals and public educa-
tional blogs to improve quality and diversity. While
the initial annotations were generated using a large
language model (LLM), we refined and verified
these annotations through human annotation to en-
sure accuracy and reliability.

As shown in Table 4, we compiled a dataset for
educational quality classification using a variety
of academic blogs and manual excerpts as context
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Statistic Value
Total Contexts in Ambharic 750
Total Contexts in Tigriyna 750
Total Contexts in Both Languages 1500
Total Words in Amharic 39,477
Total Words in Tigriyna 44,210
Total Words (Both Languages) 83,687
Total Unique Tokens 25,795

Table 4

for Amharic and Tigrinya languages. This anno-
tated dataset will serve as a reliable ground truth
for researchers working with these low-resource
languages, providing an invaluable resource for de-
veloping and evaluating models that distinguish
educational content from other types of online ma-
terial.

Preprocessing

After collecting the row texts, we perform several
preprocessing steps. First, we eliminate any re-
maining texts in other languages using a FastText-
based language identifier (Bojanowski et al., 2017).
Additionally, we filter out texts containing abusive
language by applying straightforward rule-based
heuristics. To maintain high-quality text content,
we remove entries containing URLs or emojis. Fi-
nally, tokenized text was split into sentences and
further into individual words.

Annotation

Each text entry in the dataset was annotated by five
coders, with each coder selecting one or more la-
bels from six category classes. The coders who par-
ticipated in this task were volunteers contributing
to a community engagement effort. The annotation
process was carried out using the open-source tool
Argilla (Team, n.d.) as you see in Fig

B Annotation Guidline

Guidelines for Rating Educational Value of the
Content. It comprises six categories: None,
Minimal, Basic, Good, Excellent Problematic
Content Rate the content using the following
criteria:

[1] No Educational Value:
Definition: No educational purpose whatsoever.
Purely entertainment, advertisements, or personal



content with nothing to learn.

Examples: Social media conversations about daily
life Online shopping product listings Advertise-
ment pages Personal blog posts about someone’s
day Forum discussions about entertainment
Comment sections Sports match reports.

[2] Minimal Educational Value:

Definition: Contains a few facts or pieces of
information, but the content is mostly non-
educational. Information is incidental or not the
main focus. Examples: News article that mentions
some historical facts A travel blog with basic
information about a location Product review with
some technical details Company website with brief
industry information Recipe that briefly explains
a cooking technique Entertainment article with
occasional facts.

[3] Basic Educational Content:

Definition: Attempts to explain or teach something,
though the information might be scattered or
disorganized. Mixed with non-educational content.
Examples: A basic how-to guide with ads Simple
Wikipedia-style article Blog post explaining a
concept but lacking depth Amateur tutorial video
transcript Brief explanation of a scientific concept
Quick overview of a historical event.

[4] Good Educational Content:
Definition: Has a clear teaching purpose and well-
organized information. Suitable for learning but
may have minor limitations. Examples: Detailed
tutorial with clear steps Well-written educational
blog post Comprehensive guide to a topic Clear ex-
planation of a scientific process Structured learning
material Educational website article with examples.

[5] Excellent Educational Content:

Definition: Outstanding teaching material with a
clear structure and thorough explanations. Includes
helpful examples and lacks distracting content.
Examples: Professional educational resource
Well-crafted learning module In-depth guide with
clear examples Comprehensive educational article
High-quality teaching material Expert explanation
with practical applications.

[6] Problematic Content
Definition: Unreadable or corrupted text, inappro-
priate content, or machine-generated nonsense.
Examples: Text in a different language than
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expected Garbled characters or formatting Al-
generated spam content Inappropriate or offensive
material Broken/partial webpage content Content
that’s too technical to evaluate.
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Figure 4: Vocabulary size of the models



a liturgical language
in the Ethiopian Ortho-
dox Church

Language Country Script
Algerian Arabic (arq) Algeria Arabic
Ambharic (ama) Ethiopia Geez
Hausa (hau) Nigeria, Niger, Ghana, | Arabic
Cameroon, Benin,
Togo, Chad, Sudan
Igbo (ibo) Nigeria,  Equatorial | Latin
Guinea, Barbados,
Cuba, Jamaica
Kinyarwanda (kin) Rwanda Latin
Moroccan Arabic/Darija (ary) | Morocco Arabic
Mozambique Portuguese (pt- | Mozambique Latin
MZ7)
Nigerian Pidgin (pcm) Nigeria Latin
Oromo (orm) Ethiopia Latin
Swahili (swa) Kenya, Tanzania, | Latin
Uganda, Democratic
Republic of the Congo
(DRC), Mozambique
Tigrinya (tir) Eretiria, ethiopia and | Ge’ez
mainly in Australia and
America
Twi (twi) Ghana Latin
Xithonga (tso) Mozambique Latin
Yoruba (yor) Nigeria, Benin, Togo Latin
Kinyarwanda Rwanda Latin
Luganda Uganda Latin
Luo Kenya, Tanzania Luo Lakeside
Naija Pidgin Nigeria (also spoken | Latin
in some West African
countries)
Wolof Senegal, Gambia, Mau- | Latin
ritania
Gurage Ethiopia Geez
Harari Ethiopia Ethiopic
Afar Ethiopia Ge’ez
Tigre Eritrea Ge’ez
Ge’ez now primarily used as | Ge’ez

Table 5: Languages, Countries, and Scripts in Low Re-

source African Languages
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1

Context Label

HEC A7°%F AOAPT T72UCE NNt TUCE HIRLEC DeF NACNO+ PT
ANPL+ Né-t 17 .NA7% HEA® GM-8 AR At GM-8 64T HAP TIUCEHT APETOTTY
TRUHT NTR AQT AOAPT FTRUCE NTPN4h NThNZAN NCIL 14 34T NT=YAN
NEGTT +DELCTY HIFT 1750 NCohe

HLC AT°AT AOAPT TFUCE NNt TFUCE HIRALLC DR NRCNO+ PT
ANPE+ N1 17 2.NA7T HPEL GM-8 A= At GM-8 64T HAP TIUCET TPETOTT
FoUHY Nk AT AOAPT TFUCE NTPN4A NTBHNZNN NCH, 91424 NF°YA

2 NBYTY +MSLCTT KIFT TG40 BNCH:

-

Figure 5: EQC Dataset Samples for Tigriyna

Context Label

PAD AF B NFCNDNDE NAAS NHTRANT AGR1F O-ND 19505 ATAATT FATIRA UAD-E AATOR: dOndh
MO 5 FRINCE COP GATRT ATRFH @+ NTNZHAT ME TANNT heIAAN ME TN NIAN DF
AN ArbAAS ATEFS Uik PATAATT SANTTIR KIEHP BAII4A NHYU NET BIEHNAD: AUAS ATAATT
TOHAALP WETATD- It v CRENGT R OOENG FIOULHE A bt TH bf ROV MH+ Ui WETA AR
BFAA: Hd NEMET NTRAGHT ATEMTIAM- PRT JEA AN NTRID TRaRP PYNANTF 1H TNC: PIEA AN
@80, NATHY NATHY 9219T §F O29° ME i) wis Nde ASPHCHE haPaen 24T AHODR T/ +HA
NARM EOAMT PhZan 909 INE e TG0 LbAds: FF4T P10 OnBRVT TRPANE 97 PUA NAINAT T°PH
KTEIPT YR 9°7 PUA AIETRITHS PADT +hSPTT Reb,MF ATRIPY ATETSCT HETHTTR FE4AT HoTP
RPPID Y

ATEEP hBH To046 AL TIFAT ATAT hAL hMehiar ANNNPRS IATRI Ui IC hISF Nk ACT TeT
IG5 PIYPHNA LG ATBANT ATHID 10 POn65eG PR JRAT NhGNSNT F91HE RTPAPT NHIME
PMAE eTheT APNGCS PO9ATH TN A1 4 FILTT 100 NKIEED: PBAT MO T Onmitst
NANEC-Y1945 NARETT ATRTRET T8 KICT RIETL ALY A PRI NMCrT ATRE9R8 ME,
AAFE_RAN NPAMA AICT KIETOLE tAGEA: RTEAPT MO 2Ch £H OMPT SmAT PAREFTYE IFY9R
PRGN NCH o877 &8 AeMMAe HE BB MPt FATR PRI M T2MAT ATIPAZT® +9ohzd=: BNPER 79
AALLRTD: MEF A PO-ND NPNSRS HIME ACTHRS +MAHO: KFEEPT ATCANNE PIRITTF 0mdt
TEAT HAT® KIGTTY AP RPRET CFan: POx6be +IA NPT MOFT ATTNSFT OOYMAT S9ANT Py -
NARAMTT A DMCEE NEPAN sedeied PANTONT CoLPTF AGAD 2HATT N7 NAm NATTE Kido-

2 BAPRLN, ABEARA N NABA PLLLIET® «PNIn ATITRAT PEMTIR METT hiv:

Figure 6: EQC Dataset Samples for Amharic
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