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1 Motivation1

Despite recent progress in developing methods for goal-reaching in the online setting (where2

environment interactions are allowed), a number of these methods are either suboptimal in the3

offline setting or suffer from learning difficulties. Prior GCRL algorithms can largely be classified4

into one of three categories: iterated behavior cloning, RL with sparse rewards, and contrastive5

learning. Iterated behavior cloning or goal-conditioned supervised learning approaches [16, 38] have6

been shown to be provably suboptimal [9] for GCRL. Modifying single-task RL methods [33, 18]7

for GCRL with 0-1 reward implies learning a Q-function that predicts the discounted probability8

of goal reaching, which makes it essentially a density model. Modeling density directly is a hard9

problem, an insight which has prompted the development of methods [8] that learn density-ratio10

instead of densities, as classification is an easier problem than density estimation. Contrastive RL11

approaches to GCRL [8, 10, 40] aim to do precisely this and are the main methods to enjoy success12

for applying GCRL in high-dimensional observation spaces. However, when dealing with offline13

datasets, contrastive RL approaches [10, 40] are suboptimal, as they learn a policy that is a greedy14

improvement over the Q-function of the data generation policy. A prior GCRL work [21] explores15

the insight of occupancy matching for GCRL which requires learning a discriminator. Unfortunately,16

errors in learned discriminators can compound and adversely affect the learned policy’s performance,17

especially in the offline setting where these errors cannot be corrected with further interaction with18

the environment. This begs the question: How can we derive a performant GCRL method that learns19

optimal policies from offline datasets of suboptimal quality?20

Going beyond the shortcomings of the previous methods, our proposed method combines the insight21

of formulating GCRL as an occupancy matching problem along with an efficient, discriminator-free22

dual formulation that learns from offline data. The resulting algorithm SMORe forgoes learning23

density functions or classifiers, but instead learns unnormalized densities or scores that allow it to24

produce optimal goal-reaching policies. The scores are learned via a Bellman-regularized contrastive25

procedure that makes our method a desirable candidate for GCRL with high-dimensional observations,26

avoiding the need for density modeling.27

2 SMORe: Score Models for Offline GCRL28

Define a training distribution over goals qtrainpgq and goal-transition distribution qps, a, gq in29

a stochastic MDP as qps, a, gq 9 qtrainpgqEs1„pp¨|s,aq

“

Iϕps1q“g

‰

. Intuitively, the distribution has30

probability mass on each transition that leads to a goal. Let ρ be the offline data distribution and dπg31

denote the visitation distribution induced by goal-conditioned policy πg when the goals are sampled32

from qtrainpgq. To leverage offline data to learn performant goal-reaching policies, we consider a33

surrogate objective to the occupancy matching learning problem by matching mixture distributions:34

min
πg

Df pMixβpdπg , ρqps, a, gq}Mixβpq, ρqps, a, gqq, (1)

where for any two distributions µ1 and µ2, Mixβpµ1, µ2q denotes the mixture distribution with35

coefficient β P p0, 1s defined as Mixβpµ1, µ2q “ βµ1 ` p1 ´ βqµ2. Proposition 2.1 (in appendix)36

shows the matching mixture distribution provably maximizes a lower bound to the Lagrangian37
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Figure 1: Illustration of the SMORe objective where βc “ 1´β: SMORe matches a mixture distribution of current
policy and offline data to a mixture of the goal-transition distribution and offline data in order to find the optimal
goal reaching policy.

relaxation of the max-entropy GCRL objective subject to the constraint that the policy visitation is38

close to the offline data visitation. Theorem 2 presents our core method SMORe, showing that we can39

leverage tools from convex duality to obtain an unconstrained dual problem that does not require40

computing dπg ps, a, gq or sampling from it, while effectively leveraging offline data.41

Theorem 1. (SMORe) The dual problem to the primal occupancy matching objective (Equation 9) is42

given by:43

max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` EMixβpq,ρqrf˚pγPπgSps, a, gq ´ Sps, a, gqqs (2)

´ p1 ´ βqEρrγPπgSps, a, gq ´ Sps, a, gqs,

where f˚ is conjugate function of f , S is the Lagrange dual variable defined as S : S ˆ A ˆ G Ñ R,44

d0 is the initial state distribution and Pπg the transition operator induced by the policy πg defined45

as PπgSps, a, gq :“ Es1„pp¨|s,aq,a1„πgp¨|s1,gqrSps1, a1, gqs. Moreover, as strong duality holds from46

Slater’s conditions the primal and dual share the same optimal solution π˚
g for any offline data47

distribution ρ.48

Our contribution is a novel method for GCRL that is discriminator-free, applicable for a49

number of f -divergences, and robust to low coverage of goals in the offline dataset.50

3 Overview of Empirical Results51

Task Occupancy Matching Behavior cloning Contrastive RL RL+sparse reward
SMORe GoFAR WGCSL GCSL CRL AM IQL

Reacher (‹) 28.40˘0.88 19.74˘1.35 17.57˘0.53 15.87˘1.31 16.44˘0.60 23.26 ˘0.14 11.70 ˘1.97

SawyerReach (‹) 37.67˘0.12 15.34˘0.64 15.15˘0.44 14.25˘0.7 22.32 ˘0.34 23.34˘0.17 35.18 ˘0.29

SawyerDoor (‹) 31.48˘0.46 18.94˘0.01 20.01˘1.55 20.88˘0.22 12.96˘5.19 22.12 ˘0.13 25.52 ˘1.45

FetchReach (‹) 35.08˘ 0.54 28.2 ˘ 0.61 21.9˘ 2.13 20.91 ˘ 2.78 30.07˘0.07 30.1 ˘ 0.32 34.43 ˘ 1.00

FetchPick (‹) 26.47 ˘ 1.34 19.7 ˘ 2.57 9.84 ˘ 2.58 7.58˘1.85 0.42˘0.29 8.94 ˘ 3.09 16.8 ˘ 3.10

FetchPush (‹) 26.83˘ 1.21 18.2 ˘ 3.00 14.7 ˘ 2.65 13.4 ˘ 3.02 2.40 ˘1.28 14.0 ˘ 2.81 22.40 ˘ 0.74

FetchSlide 4.99˘ 0.40 2.47 ˘ 1.44 2.73 ˘ 1.64 1.75 ˘ 1.3 0.0˘0.0 1.46 ˘ 1.38 4.80 ˘ 1.59

HandReach (‹) 18.68 ˘ 3.35 11.5 ˘ 5.26 5.97 ˘ 4.81 1.37 ˘ 2.21 0.0˘0.0 0.0 ˘ 0.0 1.44 ˘ 1.77

CheetahTgtVel-m-e (‹) 136.71 ˘ 10.59 0.0˘ 0.0 0.0˘ 0.0 95.98˘ 15.72 0.0˘0.0 0.0˘ 0.0 100.38˘ 1.22

CheetahTgtVel-r-e (‹) 60.01 ˘ 39.40 0.0˘ 0.0 0.0˘ 0.0 11.56 ˘ 13.47 0.0˘0.0 0.0˘ 0.0 0.0˘ 0.0

AntTgtVel-m-e 154.95˘ 19.44 168.27˘ 9.58 0.0˘ 0.0 164.54˘ 7.69 0.0˘0.0 0.0˘ 0.0 148.17 ˘ 5.43

AntTgtVel-r-e (‹) 126.22˘ 14.40 74.36˘ 15.97 0.0˘ 0.0 104.95˘ 6.00 0.0˘0.0 0.0˘ 0.0 3.06 ˘ 2.64

Table 1: Discounted Return for the offline GCRL benchmark. Results are averaged over 10 seeds.’m-e’ and ’r-e’
stands for medium-expert mixture and random-expert mixture respectively.

Our experiments in Table 2 show across a broad range of offline datasets and environments that52

SMORe outperforms prior offline GCRL baselines. A key property of SMORe is that it learns scores53

through a contrastive procedure, making it a particularly appealing choice for GCRL with large54

observation spaces. Our experiments on image-observation domains in Figure 4 also demonstrate55

that SMORe outperforms baselines that are designed specifically for image-based GCRL. Finally, we56

show in Table 3 that the discriminator-free nature of SMORe allows to be more robust to decreasing57

coverage of goal-reaching policy in the offline dataset.58
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A Appendix158

A.1 Introduction159

A generalist agent must be able to leverage large amounts of offline pre-collected data to learn160

useful skills. Other fields of machine learning like vision and NLP have enjoyed great success by161

designing objectives to learn a general model from large and diverse datasets. In robot learning,162

offline interaction data has become more prominent in the recent past [7], with the scale of the datasets163

growing consistently [36]. Goal-conditioned reinforcement learning (GCRL) offers a principled way164

to acquire a variety of useful skills without the prohibitively difficult process of hand-engineering165

reward functions. In GCRL, the agent learns a policy to accomplish a variety of goals in the166

environment. The rewards are sparse and goal-conditioned: 1 when the agent’s state is in proximity167

to the goal and 0 otherwise. However, the benefit of not requiring the designer to hand-engineer168

dense reward functions can also be a curse, because learning from sparse rewards is difficult. Driving169

progress in fundamental offline GCRL algorithms thus becomes an important aspect of moving170

towards performant generalist agents whose skills scale with data.171

Despite recent progress in developing methods for goal-reaching in the online setting (where172

environment interactions are allowed), a number of these methods are either suboptimal in the173

offline setting or suffer from learning difficulties. Prior GCRL algorithms can largely be classified174

into one of three categories: iterated behavior cloning, RL with sparse rewards, and contrastive175

learning. Iterated behavior cloning or goal-conditioned supervised learning approaches [16, 38] have176

been shown to be provably suboptimal [9] for GCRL. Modifying single-task RL methods [33, 18]177

for GCRL with 0-1 reward implies learning a Q-function that predicts the discounted probability178

of goal reaching, which makes it essentially a density model. Modeling density directly is a hard179

problem, an insight which has prompted the development of methods [8] that learn density-ratio180

instead of densities, as classification is an easier problem than density estimation. Contrastive RL181

approaches to GCRL [8, 10, 40] aim to do precisely this and are the main methods to enjoy success182

for applying GCRL in high-dimensional observation spaces. However, when dealing with offline183

datasets, contrastive RL approaches [10, 40] are suboptimal, as they learn a policy that is a greedy184

improvement over the Q-function of the data generation policy. This begs the question: How can we185

derive a performant GCRL method that learns optimal policies from offline datasets of suboptimal186

quality?187

In this work, we leverage the underexplored insight of formulating GCRL as an occupancy matching188

problem. Occupancy matching between the joint state-action-goal visitation distribution induced189

by the current policy and the distribution over state-actions that transition to goals can be shown to190

be equivalent to optimizing a max-entropy GCRL objective. Occupancy matching has been studied191

extensively in imitation learning [15] and often requires learning a discriminator and using the learned192

discriminator for downstream policy learning through RL. Indeed, a prior GCRL work [21] explores a193

similar insight. Unfortunately, errors in learned discriminators can compound and adversely affect the194

learned policy’s performance, especially in the offline setting where these errors cannot be corrected195

with further interaction with the environment.196

Going beyond the shortcomings of the previous methods, our proposed method combines the insight197

of formulating GCRL as an occupancy matching problem along with an efficient, discriminator-free198

dual formulation that learns from offline data. The resulting algorithm SMORe forgoes learning199

density functions or classifiers, but instead learns unnormalized densities or scores that allow it to200

produce optimal goal-reaching policies. The scores are learned via a Bellman-regularized contrastive201

procedure that makes our method a desirable candidate for GCRL with high-dimensional observations,202

avoiding the need for density modeling. Our experiments represent a wide variety of goal-reaching203

environments – consisting of robotic arms, anthropomorphic hands, and locomotion environments.204

We lay out the following contributions: 1) on the extended offline GCRL benchmark, our results205

demonstrate that SMORe significantly outperforms prior methods in the offline GCRL setting. 2) In206

line with our hypothesis, discriminator-free training makes SMORe particularly robust to decreasing207

goal-coverage in the offline dataset, a property we demonstrate in the experiments. 3) We test SMORe208

for zero-shot GCRL on a prior benchmark [40] for high dimensional vision-based GCRL where209

contrastive RL approaches are the only class of GCRL methods that have been successful, and show210

improved performance over other state-of-the-art baselines.211
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A.2 Problem Formulation212

Goal-Conditioned Reinforcement Learning: We consider an infinite-horizon Markov decision213

process (MDP) [29] M “ pS,A, r, p, d0, γq with state space S , action space A, deterministic rewards214

rps, aq, transition probabilities pps1 | s, aq from state s to s1 given action a, initial state distribution215

d0psq, and discount factor γ P p0, 1q. A policy π : S Ñ ∆pAq outputs a distribution over actions in a216

given state. In goal-conditioned RL, the MDP additionally assumes a goal space G :“ tϕpsq | s P Su,217

where the state-to-goal mapping ϕ : S Ñ G is known. The sparse reward function rps, a, gq as well218

as the policy πpa | s, gq depend on the commanded goal g P G. Given a distribution over desired219

evaluation goals qtestpgq, the objective of goal-conditioned RL is to find a policy πg1 that maximizes220

the discounted return:221

Jpπgq :“ Eg„qtestpgq,s0„d0,at„πgp¨|st,gq

«

8
ÿ

t“0

γtrpst, at, gq

ff

. (3)

We denote by Pπg the transition operator induced by the policy πg defined as PπgSps, a, gq :“222

Es1„pp¨|s,aq,a1„πgp¨|s1,gqrSps1, a1, gqs , for any score function S : S ˆ A ˆ G Ñ R.223

The goal-conditioned discounted state-action occupancy distribution dπps, a | gq of πg is given by:224

dπg ps, a | gq :“ p1 ´ γq

8
ÿ

t“0

γtPrpst “ s, at “ a | s0 „ d0, at „ πgp¨ | st, gq, st`1 „ pp¨ | st, atqq,

(4)
which represents the expected discounted time spent in each state-action pair by the policy πg225

conditioned on the goal g. It follows that πgpa | s, gq “
dπg ps,a|gq

dπg ps|gq
, where dπg ps | gq :“226

ř

sA d
πg ps, a | gq. For complete generality, in GCRL, the distribution of goals the policy is227

trained on often differs from the test goal distribution. To make this distinction clear we define228

the training distribution qtrainpgq, a uniform measure over goals we desire to learn to optimally229

reach during training. We write dπg ps, a, gq “ qtrainpgqdπg ps, a | gq as the joint state-action-goal230

visitation distribution of the policy πg under the training goal distribution. A state-action-goal231

occupancy distribution must satisfy the Bellman flow constraint in order for it to be a valid occupancy2232

distribution for some stationary policy πg , @s P S, a P A, g P G:233

dps, a, gq “ p1 ´ γqd0ps, gqπgpa | s, gq ` γ
ÿ

s1,a1

pps | s1, a1qdps1, a1, gqπgpa | s, gq, (5)

where d0ps, gq “ d0psqqtrainpgq. Finally, given dπg , we can express the learning objective for the234

GCRL agent under the training goal distribution as Jtrainpπgq “ 1
1´γEps,a,gq„dπg rrps, a, gqs.235

Offline GCRL. In offline GCRL, the agent cannot interact with the environment M and is236

equipped with a static dataset of logged transitions D :“ tτiu
N
i“1, where each trajectory τ piq “237

ps
piq
0 , a

piq
0 , r

piq
0 , s

piq
1 , ...; gpiqq with spiq

0 „ d0. The trajectories are not necessarily generated by a238

goal-directed agent and are relabelled with the qtrainpgq during learning. We denote the joint239

state-action-goal distribution of the offline dataset D as ρps, a, gq.240

A.3 Score-models for Offline Goal Conditioned Reinforcement Learning241

In this section, we introduce our method in two parts: First, we build up the equivalence of the GCRL242

objective to the occupancy matching problem in Section A.3.1, and then we derive a discriminator-free243

dual objective for solving the occupancy matching problem using off-policy data in Section A.3.2.244

Finally, we present the algorithm for SMORe under practical considerations in Section A.3.3.245

A.3.1 GCRL as an occupancy matching problem246

Define a goal-transition distribution qps, a, gq in a stochastic MDP as247

qps, a, gq 9 qtrainpgqEs1„pp¨|s,aq

“

Iϕps1q“g

‰

. Intuitively, the distribution has probability mass248

on each transition that leads to a goal. We formulate the GCRL problem as an occupancy matching249

problem by searching for the policy πg that minimizes the discrepancy between its state-action-goal250

occupancy distribution and the goal-transition distribution qps, a, gq:251

Occupancy matching problem: Df pdπg ps, a, gq}qps, a, gqq, (6)
1We use the subscript g to make the policy’s conditioning on g explicit.
2We will use “occupancy” and “visitation” interchangeably.
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Figure 2: Illustration of the SMORe objective where βc “ 1´β: SMORe matches a mixture distribution of current
policy and offline data to a mixture of the goal-transition distribution and offline data in order to find the optimal
goal reaching policy.

whereDf denotes an f -divergence with generator function f . Note that the q distribution is potentially252

unachievable by any goal-conditioned policy πg. Firstly, it does not account for the initial transient253

phase that the policy must navigate to reach the desired goal. Secondly, even if we consider only the254

stationary regime (when γ Ñ 1), it may not be dynamically possible for the policy to continuously255

remain at the goal and rather necessitate cycling around the goal. However, in Proposition 1.1, we256

show that the occupancy matching in Eq. 6 offers a principled objective since it forms a lower bound257

to the max-entropy GCRL problem.258

Proposition 1.1. Consider a stochastic MDP, a stochastic policy π, and a sparse reward function259

rps, a, gq “ Es1„pp¨|s,aqrIpϕps1q “ g, qtrainpgq ą 0qs where I is an indicator function. Define a soft260

goal transition distribution to be qps, a, gq 9 exppα rps, a, gqq. The following bounds hold for any261

f -divergence that upper bounds KL-divergence (eg. χ2, Jensen-Shannon):262

J trainpπgq `
1

α
Hpdπg q ě ´

1

α
Df pdπg ps, a, gq}qps, a, gqq ` C, (7)

where H denotes the entropy, α is a temperature parameter and C is the partition function for263

eRps,a,gq. Furthermore, the bound is tight when f is the KL-divergence.264

Proposition 1.1 extends the insights of formulating GCRL as an imitation learning problem from [21]265

for goal-transition distributions when matching state-action-goal visitations.266

How does converting a GCRL objective to an imitation learning objective make learning easier?267

Estimating the f -divergence still requires estimating the joint policy visitation probabilities268

dπg ps, a, gq, which itself presents a challenging problem. We show in the following section that we269

can leverage convex duality to transform the imitation learning problem into an off-policy optimization270

problem, removing the need to sample from dπg ps, a, gq whilst being able to leverage offline data271

collected from arbitrary sources.272

A.3.2 SMORe: A Dual Formulation for Occupancy Matching273

The previous section establishes GCRL as an occupancy matching problem (Eq. 6) but provides no274

way to use offline data whose joint visitation distribution is given by ρps, a, gq. To leverage offline275

data to learn performant goal-reaching policies, we consider a surrogate objective to the occupancy276

matching learning problem by matching mixture distributions:277

min
πg

Df pMixβpdπg , ρqps, a, gq}Mixβpq, ρqps, a, gqq, (8)

where for any two distributions µ1 and µ2, Mixβpµ1, µ2q denotes the mixture distribution with278

coefficient β P p0, 1s defined as Mixβpµ1, µ2q “ βµ1 ` p1 ´ βqµ2. Proposition 2.1 (in appendix)279

shows the matching mixture distribution3 provably maximizes a lower bound to the Lagrangian280

relaxation of the max-entropy GCRL objective subject to the constraint that the policy visitation is281

close to the offline data visitation. We can rewrite the mixture occupancy matching objective as a282

3Note that Eq. 8 shares the same global optima as the previous occupancy matching objective at dπg ps, a, gq “

qps, a, gq when q is an achievable visitation under some policy and recovers the original objective in Eq. 6 when
β “ 1.

8



convex program with linear constraints [22, 24]:283

max
πg,d

´Df pMixβpd, ρqps, a, gq}Mixβpq, ρqps, a, gqq

s.t dps, a, gq “ p1 ´ γqd0ps, gqπpa|sq ` γ
ř

s1PS dps1, a1, gqpps|s1, a1qπpa1|s1, gq, @s P S. (9)

An illustration of this objective can be found in Figure 2. Effectively, we have simply rewritten284

Eq. 8 into an equivalent problem by considering an arbitrary probability distribution dps, a, gq in285

the optimization objective, only to later constrain it to be a valid probability distribution induced by286

some policy πg using the Bellman-flow constraints. The motivation behind this construction of the287

primal form is that we have made computing the Lagrangian-dual easier as this objective is convex288

with linear constraints. Theorem 2 shows that we can leverage tools from convex duality to obtain an289

unconstrained dual problem that does not require computing dπg ps, a, gq or sampling from it, while290

effectively leveraging offline data.291

Theorem 2. The dual problem to the primal occupancy matching objective (Equation 9) is given by:292

max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` EMixβpq,ρqrf˚pγPπgSps, a, gq ´ Sps, a, gqqs (10)

´ p1 ´ βqEρrγPπgSps, a, gq ´ Sps, a, gqs,

where f˚ is conjugate function of f and S is the Lagrange dual variable defined as S : S ˆAˆG Ñ293

R. Moreover, as strong duality holds from Slater’s conditions the primal and dual share the same294

optimal solution π˚
g for any offline transition distribution ρ.295

To our knowledge, the closest prior works to our proposed method are GoFAR [21] and Dual-RL [32].296

GoFAR considers the special case of KL-divergence for the imitation formulation and derives a dual297

objective that requires learning the density ratio ρps,gq

qps,gq
in the form of a discriminator and using this298

as a pseudo-reward. This leads to compounding errors in the downstream RL optimization when299

learning the density ratio is challenging, e.g. in the case of low coverage between ρps, a, gq and300

qps, a, gq. We show this phenomenon experimentally in Section A.4.3. Dual-RL [32] uses convex301

duality for matching visitation distribution of realizable expert demonstrations and does not deal302

with the GCRL setting. Our contribution is a novel method for GCRL that is discriminator-free,303

applicable for a number of f -divergences, and robust to low coverage of goals in the offline dataset.304

Sampling from the goal-transition distribution: Goal relabelling is an effective technique to305

address reward sparsity by widening the training goal distribution qtrainpgq. It utilizes knowledge306

about reaching other goals, possibly unrelated to test goals, to help in reaching the test distribution307

of goals qtestpgq. In the most general case, qtrainpgq can be set to a uniform distribution over308

goals corresponding to all the states in the offline data. A common method, Hindsight Experience309

Replay (HER) [3] chooses a training goal distribution that depends on the current sampled state from310

the offline dataset as well as the data-collecting policies. In this setting, the sampling distribution311

used for training Eq 10, ρps, a, gq, can no longer be factorized into ρps, aq and qtrainpgq, as goals312

are conditionally dependent on state-actions. However, our formulation can naturally account for313

learning from such relabelled data as the SMORe objective in Eq 10 is derived considering the joint314

distribution ρps, a, gq. In this setting, we construct our goal transition distribution qps, a, gq as the315

uniform distribution over all transitions that lead to the goals selected by the HER procedure — in316

practice, this amounts to first selecting g through HER and then selecting ts, au that transitions to317

the selected goal from the offline dataset to get a sample ts, a, gu from goal transition distribution.318

We emphasize that relabelling does not change the test distribution of goals, which is an immutable319

property of the environment.320

A.3.3 Practical Algorithm321

To devise a stable learning algorithm we consider the Pearson χ2 divergence. Pearson χ2 divergence322

has been found to lead to distribution matching objectives that are stable to train as a result of a323

smooth quadratic generator function f [13, 2, 32]. Our dual formulation SMORe simplifies to the324

following objective:325

maxπg minS

Decrease score at transitions under current policy πg
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

βp1 ´ γqEps,gq„d0,a„πgp¨|s,gqrSps, a, gqs ` βγEps,a,gq„q,s1„pp¨|s,aq,a1„πgp¨|s1,gq

“

Sps1, a1, gq
‰

´ βEps,a,gq„qrSps, a, gqs
loooooooooooomoooooooooooon

Increase score at the proposed goal transition distribution

`0.25Eps,a,gq„Mixβpq,ρq

“

pγSps1, πgps1q, gq ´ Sps, a, gqq2
‰

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

Smoothness/Bellman regularization

. (11)
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Equation 11 suggests a contrastive procedure, maximizing the score at the goal-transition326

distribution and minimizing the score at the offline data distribution under the current327

policy with Bellman regularization. The Bellman regularization has the interpretation of328

discouraging neighboring S values from deviating far and smoothing the score landscape.329

Instantiating with KL divergence results in an objective with similar intuition while330

resembling an InfoNCE [26] objective. Although Propositions 1.1 and 2.1 suggest that331

KL divergence gives an objective that is a tighter bound to the GCRL objective, prior332

work has found KL divergence to be unstable in practice [32, 14] for dual optimization.333

Algorithm 1: SMORe
1: Init Sϕ, Mψ , and πθ
2: Params: expectile τ , mixture ratio β,

temperature α
3: Let D “ pρ “ tps, a, s1, gqu be an offline

dataset and q be goal-transition distribution
4: for t “ 1..T iterations do
5: Train Sϕ via Eq. 13
6: Train Mψ via Eq. 12
7: Update πθ via Eq. 14
8: end for

It is important to note that S-function is not334

grounded to any rewards and does not serve as a335

probability density of reaching goals, but is rather336

a score function learned via a Bellman-regularized337

contrastive learning procedure.338

We now derive a practical approach for SMORe in339

the offline GCRL setting. We use parameterized340

functions: Sϕps, a, gq, Mψps, gq, πθpa|s, gq. The341

offline learning regime necessitates measures to342

constrain the learning policy to the offline data343

support in order to prevent overestimation due344

to maximizing πg in Eq. 11 over potentially345

out-of-distribution actions. Inspired by prior work [18], we use implicit maximization to constrain346

the learning algorithm to learn expectiles using the observed empirical samples. More concretely, we347

use expectile regression:348

min
ψ

Lpψq :“ Eps,a,gq„ρrLτ2pMψps, gq ´ Sϕps, a, gqqs, (12)

where Lτ2puq “ |τ ´ 1pu ă 0q|u2. Intuitively, this step implements the maximization w.r.t π by using349

expectile regression. With the above practical considerations, our objective for learning Sϕ reduces350

to:351

min
ϕ

Lpϕq :“ βp1 ´ γqEps,gq„D,a„πgp¨|a,gqrSϕps, πgpsq, gqs ` βγEps,a,gq„q,s1„pp¨|s,aq

“

Sϕps1, πgps1q, gq
‰

´ βEps,a,gq„qrSϕps, a, gqs ` Eps,a,gq„Mixβpq,ρq

“

pγMψps1, gq ´ Sϕps, a, gqq2
‰

,
(13)

where we have set the offline data distribution as our initial state distribution. Finally, the policy is352

extracted via advantage-weighted regression that learns in-distribution actions maximizing the score353

Sps, a, gq:354

min
θ

Lpθq :“ Eps,a,gq„ρrexppαpSϕps, a, gq ´Mψps, gqqq logpπθpa|s, gqqs, (14)

where α is the temperature parameter. Algorithm 1 details the practical implementation.355

A.4 Experiments356

Our experiments study the effectiveness of proposed GCRL algorithm SMORe on a set of simulated357

benchmarks against other GCRL methods that employ behavior cloning, RL with sparse reward,358

and contrastive learning. We also analyze if SMORe is robust to environment stochasticity — a359

number of prior methods are based on an assumption of deterministic dynamics. Then, we study if the360

discriminator-free nature of SMORe is indeed able to prevent performance degradation in the face of low361

expert coverage in offline data. Finally, we analyze if SMORe’s score-modeling approach helps SMORe362

scale to a vision-based manipulation offline GCRL benchmark, as density modeling and discriminator363

learning become increasingly difficult with high-dimensional observations. Hyperparameter ablations364

can be found in Appendix E.365

A.4.1 Experimental Setup366

Our experiments will use a suite of simulated goal-conditioned tasks extending the tasks from367

previous work [21, 28]. In particular we consider the following environments: Reacher,368

Robotic arm environments - [SawyerReach, SawyerDoor, FetchReach, FetchPick, FetchPush,369

FetchSlide], Anthropomorphic hand environment - HandReach and Locomotion environments370
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-[CheetahTgtVel-me,CheetahTgtVel-re,AntTgtVel-me,AntTgtVel-re]. Tasks in all371

environments are specified by a sparse reward function. Depending on whether the task involves372

object manipulation, the goal distribution is defined over valid configurations in robot or object space.373

The offline dataset for manipulation tasks consists of transitions collected by a random policy or374

mixture of 90% random policy and 10% expert policy. For locomotion tasks, we generate our dataset375

using the D4RL benchmark [12], combining a random or medium dataset with 30 episodes of expert376

data. Note that the policies used to collect the expert locomotion datasets have a different objective377

than the tasks here, which are to achieve and maintain a particular desired velocity.378

A.4.2 Offline Goal-conditioned RL benchmark379

Baselines. We compare to state-of-art offline GCRL algorithms, consisting of both regression-based380

and actor-critic methods. The occupancy-matching based methods are: (1) GoFar [21], which derives381

a dual objective for GCRL based on a coverage assumption. The behavior cloning based methods382

are: (1) GCSL [16], which incorporates hindsight relabeling in conjunction with behavior cloning to383

clone actions that lead to a specified goal, and (2) WGCSL [39], which improves upon GCSL by384

incorporating discount factor and advantage weighting into the supervised policy learning update.385

Contrastive RL [10] generalizes C-learning [8] and represents contrastive GCRL approaches. The386

RL with sparse reward methods are (1) IQL [18] where we use a state-of-the-art offline RL method387

repurposed for GCRL along with HER [3] goal sampling, and (2) ActionableModel (AM) [4], which388

incorporates conservative Q-Learning [19] as well as goal-chaining on top of an actor-critic method.389

The results for all baselines are tuned individually, particularly the best HER ratio was searched390

among t0.2, 0.5, 0.8, 1.0u for each task. SMORe shares the same network architecture for baselines391

and uses a mixture ratio of β “ 0.5. Each method is trained for 10 seeds. Complete architecture and392

hyperparameter table as well as additional training details are provided in Appendix D.393

FetchReach: Robustness to noise

Di
sc
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Noise Level
Figure 3: SMORe is robust in stochastic environments.
With increasing noise, SMORe still outperforms prior
methods.

Table 2 reports the discounted return obtained394

by the learned policy with a sparse binary task395

reward. (‹) denotes statistically significant396

improvement over the second best method under397

a two-sample t-test. This metric allows us398

to compare the algorithms on a finer scale to399

understand which methods reach the goal as fast400

as possible and stay in the goal region thereafter401

for the longest time. Additional results on402

metrics like success rate and final distance to403

goal can be found in the appendix. These404

additional metrics do not take into consideration405

how precisely and consistently a goal is being406

reached. In Table 2, we see that SMORe enjoys407

a high-performance gain consistently across all408

tasks in the extended offline GCRL benchmark.409

Robustness to environment stochasticity: We consider a noisy version of the FetchReach410

environment in this experiment. Gaussian zero-mean noise is added to generate different variants411

of the environment with standard deviations of t0.5, 1.0, 1.5u. Datasets for these environments412

are obtained from prior work [21]. As we see in Figure 3, SMORe is robust to stochasticity413

in the environment, outperforming baselines in terms of discounted return. Behavior cloning414

based approaches assume deterministic dynamics and are therefore over-optimistic in stochastic415

environments.416

A.4.3 Robustness of Occupancy-Matching Methods to Decreasing Expert Coverage417

We posit that the discriminator-free nature of SMORe makes it more robust to decreasing goal coverage,418

as it does not suffer from cascading errors stemming from a learned discriminator. In this section, we419

set out to test this hypothesis by decreasing the amount of expert data in the offline goal-reaching420

dataset. We compare with GoFAR in Table 3 due to the similarity between methods and GoFAR’s421

restrictive assumption on coverage of expert data in the suboptimal dataset. Comparison against all422

the baselines can be found in Appendix E.423

Our hypothesis holds true as we see in Table 3, the performance of the discriminator-based method424

GoFar rapidly decays as expert data is decreased in the offline dataset – 28.4% with 2.5% and 36.15%425
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Task Occupancy Matching Behavior cloning Contrastive RL RL+sparse reward
SMORe GoFAR WGCSL GCSL CRL AM IQL

Reacher (‹) 28.40˘0.88 19.74˘1.35 17.57˘0.53 15.87˘1.31 16.44˘0.60 23.26 ˘0.14 11.70 ˘1.97

SawyerReach (‹) 37.67˘0.12 15.34˘0.64 15.15˘0.44 14.25˘0.7 22.32 ˘0.34 23.34˘0.17 35.18 ˘0.29

SawyerDoor (‹) 31.48˘0.46 18.94˘0.01 20.01˘1.55 20.88˘0.22 12.96˘5.19 22.12 ˘0.13 25.52 ˘1.45

FetchReach (‹) 35.08˘ 0.54 28.2 ˘ 0.61 21.9˘ 2.13 20.91 ˘ 2.78 30.07˘0.07 30.1 ˘ 0.32 34.43 ˘ 1.00

FetchPick (‹) 26.47 ˘ 1.34 19.7 ˘ 2.57 9.84 ˘ 2.58 7.58˘1.85 0.42˘0.29 8.94 ˘ 3.09 16.8 ˘ 3.10

FetchPush (‹) 26.83˘ 1.21 18.2 ˘ 3.00 14.7 ˘ 2.65 13.4 ˘ 3.02 2.40 ˘1.28 14.0 ˘ 2.81 22.40 ˘ 0.74

FetchSlide 4.99˘ 0.40 2.47 ˘ 1.44 2.73 ˘ 1.64 1.75 ˘ 1.3 0.0˘0.0 1.46 ˘ 1.38 4.80 ˘ 1.59

HandReach (‹) 18.68 ˘ 3.35 11.5 ˘ 5.26 5.97 ˘ 4.81 1.37 ˘ 2.21 0.0˘0.0 0.0 ˘ 0.0 1.44 ˘ 1.77

CheetahTgtVel-m-e (‹) 136.71 ˘ 10.59 0.0˘ 0.0 0.0˘ 0.0 95.98˘ 15.72 0.0˘0.0 0.0˘ 0.0 100.38˘ 1.22

CheetahTgtVel-r-e (‹) 60.01 ˘ 39.40 0.0˘ 0.0 0.0˘ 0.0 11.56 ˘ 13.47 0.0˘0.0 0.0˘ 0.0 0.0˘ 0.0

AntTgtVel-m-e 154.95˘ 19.44 168.27˘ 9.58 0.0˘ 0.0 164.54˘ 7.69 0.0˘0.0 0.0˘ 0.0 148.17 ˘ 5.43

AntTgtVel-r-e (‹) 126.22˘ 14.40 74.36˘ 15.97 0.0˘ 0.0 104.95˘ 6.00 0.0˘0.0 0.0˘ 0.0 3.06 ˘ 2.64

Table 2: Discounted Return for the offline GCRL benchmark. Results are averaged over 10 seeds.’m-e’ and ’r-e’
stands for medium-expert mixture and random-expert mixture respectively.

Task 5 % expert data 2.5 % expert data 1 % expert data
SMORe GoFAR SMORe GoFAR SMORe GoFAR

Reacher 22.43˘3.46 16.86 ˘1.26 17.92 ˘ 0.93 12.20˘0.81 19.61˘ 1.56 11.52 ˘ 0.52

SawyerReach 36.35˘0.37 13.20 ˘1.36 36.74˘0.62 11.57 ˘1.79 35.44 0.27 9.34˘ 0.17

SawyerDoor 32.82˘0.88 20.07˘0.01 25.69˘0.21 19.54˘1.32 23.78˘2.88 18.04 ˘1.80

FetchReach 36.00˘ 0.01 27.66 ˘ 0.55 35.58 ˘ 0.47 27.84 ˘ 0.82 35.97 ˘ 0.25 28.01 ˘ 0.20

FetchPick 26.43˘ 1.95 16.21 ˘ 1.46 26.17˘ 3.37 3.21 ˘ 2.22 15.38 ˘ 1.52 0.31 ˘ 0.31

FetchPush 23.81˘ 0.37 18.2 ˘ 3.00 22.75˘1.08 5.17 ˘ 2.01 19.04˘ 2.79 4.23˘ 3.96

FetchSlide 4.05˘ 1.12 1.08 ˘ 0.06 3.11 ˘ 1.61 0.96 ˘ 0.73 3.50˘ 0.97 0.86 ˘ 1.22

Average Performance 25.98 16.18 23.99 11.49 21.81 10.33
Avg. Perf. Drop 0 0 -7.6% -28.4% -16% -36.15%

Table 3: Discounted Return for the offline GCRL benchmark with 5%, 2.5% and 1% expert data in offline
dataset. Results are averaged over 10 seeds.

with 1% expert data(i.e. optimal policy’s coverage) respectively. SMORe shows a much slower decay426

in performance, 7.6% with 2.5% and 16% with 1% expert data, attesting to the method’s robustness427

under decreasing expert coverage in the offline dataset.428

A.4.4 Offline GCRL with image observations429

SMORe provides an effective algorithm for offline GCRL in high-dimensional observation spaces430

by learning unnormalized scores using a contrastive procedure as opposed to prior works that learn431

normalized densities [8] which are difficult to learn or density ratios [10, 40] which do not optimize432

for the optimal goal-conditioned policy in the offline GCRL setting. Similar to prior work [10], we433

consider the following structure in S-function parameterization to learn performant and generalizable434

policies: Sps, a, gq “ ϕps, aqTψpgq. The S-function can be interpreted as the similarity between the435

two representations given by ϕ and ψ. Our network architecture for both representations is similar436

to [40] and is kept the same across all baselines to ensure a fair comparison of the underlying GCRL437

method.438

We use the offline GCRL benchmark from [41] which learns goal-reaching policies from an439

image-observation dataset of 250K transitions with the horizon ranging from 50-100. The benchmark440

adds another layer of complexity by testing on goals absent from the dataset — the dataset contains441

Su
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Figure 4: Evaluation on simulated manipulation tasks with image observations. The left image shows the starting
state at the top and the goal at the bottom for evaluation tasks. SMORe outperforms prior methods on all the
tasks we considered.
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primitive behaviors like picking up objects and pushing drawers but no behavior that completes the442

compound task we consider from the initial state. The observations and goals are 48x48x3 RGB443

images.444

Baselines We compare to the best performing GCRL algorithms from Section 1 as well as a recent445

state-of-the-art work, stable contrastive RL [40]. Stable contrastive RL features a number of446

improvements over contrastive RL by changing design decisions in neural network architecture,447

layer normalization, and data augmentation. Since our objective is to compare the quality of the448

underlying GCRL algorithm, we keep these design decisions consistent across the board.449

Results Figure 4 shows the success rate on a variety of unseen tasks for all the methods. SMORe450

achieves the highest success rate across all the methods, even for the most challenging task of pick,451

place and closing the drawer. We note that our results differ from [40] for the baselines as we apply452

the same design decisions for all methods whereas [40] focuses on ablating design decisions.453

A.5 Related Works454

Offline Goal Conditioned Reinforcement Learning. Learning to achieve goals in the environment455

optimally forms the basis of goal-condition RL problems. Studies in cognitive science [23] underscore456

the importance goal-achieving plays in human development. Offline GCRL approaches are typically457

catered to designing learning algorithms for addressing the sparsity of reward function in the458

offline setting. One of the most successful techniques in this setting has been hindsight relabelling.459

Hindsight-experience relabelling (HER) [17, 3] suggests relabelling any experience with some460

commanded goal to the goal that was actually achieved in order to leverage generalization. HER461

has been investigated in the setting of learning from demonstrations [6] and exploration [11] to462

validate its effectiveness. A number of prior works [16, 38, 5, 6, 20, 27, 34] have investigated using463

goal-conditioned behavior cloning, a strategy that uses relabelling to learn goal-conditioned policies,464

as a way to learn performant policies. Eysenbach et al. [9] shows that this line of work has a limitation465

of learning suboptimal policies that do not consistently improve over the policy that collected the466

dataset. The simplest strategy of applying single-task RL to the problem of multi-task goal reaching467

requires learning a Q-function which represents normalized densities over the state-action space.468

Contrastive RL [10, 8, 40] emerged as another alternative for GCRL which relabels trajectories and,469

rather than use that relabelling to learn policies, learns a Q-function using a contrastive procedure.470

While these approaches learn optimal policies in the online setting, they fall behind in the offline471

setting where they only learn a policy that greedily improves over theQ-function of the data collecting472

policy. Our work learns optimal policies by presenting an off-policy objective that solves GCRL473

and furthermore learns scores (or unnormalized densities) that alleviate the learning challenges of474

normalized density estimation.475

Distribution matching. Our approach is inspired by the distribution matching approach [15, 25, 31,476

35, 32] prominent in imitation learning. Ghasemipour et al. [15], Ni et al. [25] takes the problem of477

imitating an expert demonstrator in the environment and converts it into a problem of distribution478

matching between the current policy’s state-action visitation distribution and the expert policy’s479

visitation distribution. Indeed, prior work [21] creates one such distribution matching problem and480

presents a new optimization problem for GCRL in the form of an off-policy dual [24, 32]. Such an481

off-policy dual is very appealing for the offline RL setup, as optimizing for this dual only requires482

sampling from the offline data distribution. A limitation of their dual construction is the fact that483

they require learning a discriminator and use that discriminator as the pseudo-reward for solving the484

GCRL objective. Our approach presents a new construction for GCRL as a distribution matching485

along with a dual construction that leads to a more performant discriminator-free off-policy approach486

for GCRL.487

A.6 Conclusion488

Prior work in performant online goal-conditioned RL often relies on iterated behavior cloning489

or contrastive RL. However, these approaches are suboptimal for the offline setting. Existing490

methods specifically derived for offline GCRL require learning a discriminator and using it as491

a pseudo-reward, enabling compounding errors that make the resulting policy ineffective. We492

present an occupancy-matching approach to offline GCRL that provably optimizes a lower bound493

to the regularized GCRL objective. Our method is discriminator-free, applicable to a number of494

f -divergences, and learns unnormalized scores over actions at a state to reach the goal. We show that495
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these positive aspects of our algorithm allow us to empirically outperform prior methods, stay robust496

under decreasing goal coverage, and scale to high-dimensional observation space for GCRL.497

B Supplementary Materials498

B.1 Theory499

In this section, we first show the equivalence of the GCRL problem and the distribution-matching500

objective of imitation learning. Then, we show how the mixture distribution objective relates to501

offline GCRL objective. Finally, we derive the dual objective for mixture distribution matching that502

leads to our method SMORe.503

B.1.1 Reduction of GCRL to distribution matching504

Proposition 1.1. Consider a stochastic MDP, a stochastic policy π, and a sparse reward function505

rps, a, gq “ Es1„pp¨|s,aqrIpϕps1q “ g, qtrainpgq ą 0qs where I is an indicator function. Define a soft506

goal transition distribution to be qps, a, gq 9 exppα rps, a, gqq. The following bounds hold for any507

f -divergence that upper bounds KL-divergence (eg. χ2, Jensen-Shannon):508

J trainpπgq `
1

α
Hpdπg q ě ´

1

α
Df pdπg ps, a, gq}qps, a, gqq ` C, (7)

where H denotes the entropy, α is a temperature parameter and C is the partition function for509

eRps,a,gq. Furthermore, the bound is tight when f is the KL-divergence.510

Proof. This proof is adapted from [21] for goal transition distributions and state-action distributions.511

Let Z “
ş

eRps,a,gq ds da dg and α ą 0 be the temperatue parameter. Note that qps, a, gq “512

erps,a,gq where r is defined in the proposition, strictly generalizes the original definition qps, a, gq “513

qtrainpgqEs1„pp¨|s,aqrIpϕps1q “ gqs and recovers it when α Ñ 8. Starting with the true GCRL514

objective:515

αJpπgq “ Edπg rαRps, a, gqs (15)

“ Edπg

”

log eαRps,a,gq
ı

(16)

“ Edπg

„

logp
eαRps,a,gq

Z

dπg ps, a, gq

dπg ps, a, gq
Zq

ȷ

(17)

“ Edπg

„

logp
qps, a, gq

dπg ps, a, gq
Zq

ȷ

` Edπg rlog dπg s (18)

“ ´DKLpdπg ps, a, gq}qps, a, gqq ´ Hpdπg q ` logpZq (19)

Rearranging terms we get:516

Jpπgq `
1

α
Hpdπg q “ ´

1

α
DKLpdπg ps, a, gq}qps, a, gqq ` C (20)

For any f -divergence that upper bounds the KL divergence we have:517

Jpπgq `
1

α
Hpdπg q “ ´

1

α
DKLpdπg ps, a, gq}qps, a, gqq `C ě ´

1

α
Df pdπg ps, a, gq}qps, a, gqq `C

(21)
518

A (dataset) regularized GCRL objective: Define a regularized objective for GCRL as follows:519

Jofflinepπq “ α1Edπ
”

erps,a,gq
ı

` α2Edπps,a,gqrρps, a, gqs. (22)

The above offline objective mimics the classical offline RL objective [37, 24] in constraining the520

visitation of the learned policy, as the second objective is minimized when dπps, a, gq “ ρps, a, gq.521

Also, a constraint of Edπps,a,gqrρps, a, gqs ą 1 ´ δ implies that dπps, a, gq has atleast 1 ´ δ coverage522

of the offline data distribution.523

Proposition 2.1 derives the connection between the offline GCRL objective and SMORe:524
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Proposition 2.1. Consider a stochastic MDP, a stochastic policy π, and a sparse reward function525

rps, a, gq “ Es1„pp¨|s,aq

“

Ipϕps1q “ g, qtrainpgq ą 0q
‰

where I is an indicator function, define a soft526

goal transition distribution to be qps, a, gq 9 exppα rps, a, gqq the following bounds hold for any527

f -divergence that upper bounds KL-divergence (eg. χ2, Jensen-Shannon):528

log Jofflinepπgq ` HpMixβpd, ρqps, a, gqq ` C ě ´Df pMixβpd, ρqps, a, gq}Mixβpq, ρqps, a, gqq,
(23)

where H denotes the entropy, α is a temperature parameter, α1 “ β2, α2 “ βp1 ´ βqZ and C is a529

positive constant. Furthermore, the bound is tight when f is the KL-divergence.530

Proof. We first consider the following two objectives for GCRL and show that they are equivalent.531

This reduction will later help in proving a connection to mixture occupancy matching. We consider532

α “ 1 w.l.o.g. Here are two objectives we consider:533

Jpπq “ Edπ rrps, a, gqs (24)
534

J 1pπq “ Edπ
”

erps,a,gq
ı

(25)

In GCRL reward functions are sparse and binary. We show the equivalence of first two objectives in535

find the optimal goal conditioned policy via two arguments. First, notice that the rewards for goal536

transition states for objective J 1pπq is e and 1 for all other transitions. This is in contrast to Jpπq537

which considers a reward function 1 at goal transitions states and 0 otherwise. Under our assumption538

of infinite horizon discounted MDP, we can translate the rewards while keeping the optimal policy539

same in MDP considered by J 1pπq to e´ 1 at goal transitions states and 0 otherwise. Further we can540

scale the rewards by 1{pe´ 1q and recover and MDP with same optimal policy that has reward of 1541

at goal-transition states and 0 otherwise. This concludes the equivalence of maximizing J 1pπq as an542

alternative to Jpπq while recovering the same optimal policy.543

We now consider a regularized (pessimistic/offline) GCRL problem with the shifted reward functions544

erps,a,gq that maximizes the reward while ensuring the policy visitation stays close to offline data545

visitation in χ2 divergence.546

Jofflinepπq “ α1Edπ
”

erps,a,gq
ı

` α2Edπps,a,gqrρps, a, gqs. (26)

With a particular instantiation of hyperparameters we show that the Jofflinepπq objective can be547

simplified to an equivalent objective J 1
offlinepπq by setting α1 “ β2 and α2 “ βp1 ´ βqZ where Z548

is the partition function for erps,a,gq over entire S ˆ A ˆ G.549

J 1
offlinepπq “ EMixβpd,ρqps,a,gq

”

βerps,a,gq ` p1 ´ βqρps, a, gq.Z
ı

(27)

J 1
offlinepπq “ EMixβpd,ρqps,a,gq

”

βerps,a,gq ` p1 ´ βqρps, a, gq.Z
ı

(28)

“ β2Edπ
”

erps,a,gq
ı

` βp1 ´ βqZEdπ rρps, a, gqs (29)

` p1 ´ βqEdO
”

βerps,a,gq ` p1 ´ βqρps, a, gq.Z
ı

β (30)

(31)
550

“ β2Edπ
”

erps,a,gq
ı

` βp1 ´ βqZEdπ rρps, a, gqs ` C 1 (32)

“ Jofflinepπq ` C 1 (33)

Now that we have shown J 1
offlinepπq ” Jofflinepπq and hence solving the same optimization551

problem, we proceed to derive connections with mixture occupancy matching which follows through552

an application of Jensen’s inequality:553
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log J 1
offlinepπq “ logEMixβpd,ρqps,a,gq

”

βerps,a,gq ` p1 ´ βqρps, a, gq.Z
ı

(34)

ě EMixβpd,ρqps,a,gq

”

logpβerps,a,gq ` p1 ´ βqρps, a, gq.Zq

ı

(35)

(36)
554

“ EMixβpd,ρqps,a,gqrlogpβqps, a, gq ` p1 ´ βqρps, a, gqqs ` logZ (37)

“ ´DKLrMixβpd, ρqps, a, gq}Mixβpq, ρqps, a, gqs ´ HpMixβpd, ρqps, a, gqq ` logZ (38)

For any f -divergence that upperbounds the KL divergence since Z ě 1 we have:555

log J 1
offlinepπq `

1

α
HpMixβpd, ρqps, a, gqq ě ´

1

α
Df pMixβpd, ρqps, a, gq}Mixβpq, ρqps, a, gqq

(39)

Further simplifying using Eq 33:556

log Jofflinepπq `
1

α
HpMixβpd, ρqps, a, gq ` C ě ´

1

α
Df pMixβpd, ρqps, a, gq}Mixβpq, ρqps, a, gqq

(40)

557

Optimizing the mixture distribution matching objective of SMORe maximizes a variant of offline GCRL558

objective where the entropy for distribution Mixβpd, ρqps, a, gq is jointly maximized. Therefore we559

have shown that the minimizing discrepancy of mixture distribution occupancy maximizes a lower560

bounds to an offline variant of maxent GCRL objective.561

B.2 Convex Conjugates and f -divergences562

We first review the basics of duality in reinforcement learning. Let f : R` Ñ R be a convex function.563

The convex conjugate f˚ : R` Ñ R of f is defined by:564

f˚pyq “ supxPR`
rxy ´ fpxqs. (41)

The convex conjugates have the important property that f˚ is also convex and the convex conjugate565

of f˚ retrieves back the original function f . We also note an important relation regarding f and f˚:566

pf˚q
1

“ pf 1q´1, where the 1 notation denotes first derivative.567

Going forward, we would be dealing extensively with f -divergences. Informally, f -divergences [30]568

are a measure of distance between two probability distributions. Here’s a more formal definition:569

Let P and Q be two probability distributions over a space Z such that P is absolutely continuous570

with respect to Q 4. For a function f : R` Ñ R that is a convex lower semi-continuous and fp1q “ 0,571

the f -divergence of P from Q is572

Df pP || Qq “ Ez„Q

„

f

ˆ

P pzq

Qpzq

˙ȷ

. (42)

Table 4 lists some common f -divergences with their generator functions f and the conjugate functions573

f˚.574

B.3 SMORe: Dual objective for Offline Goal conditioned reinforcement learning575

In this section, we derive the dual objective for solving the multi-task occupancy problem formulation576

for GCRL. First, we derive the original variant of SMORe for the GCRL problem and later derive the577

action-free SMORe variant for the interested readers.578

Theorem 2. The dual problem to the primal occupancy matching objective (Equation 9) is given by:579

max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` EMixβpq,ρqrf˚pγPπgSps, a, gq ´ Sps, a, gqqs (10)

´ p1 ´ βqEρrγPπgSps, a, gq ´ Sps, a, gqs,

where f˚ is conjugate function of f and S is the Lagrange dual variable defined as S : S ˆAˆG Ñ580

R. Moreover, as strong duality holds from Slater’s conditions the primal and dual share the same581

optimal solution π˚
g for any offline transition distribution ρ.582

4Let z denote the random variable. For any measurable set Z Ď Z , Qpz P Zq “ 0 implies P pz P Zq “ 0.
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Divergence Name Generator fpxq Conjugate f˚pyq

KL (Reverse) x log x epy´1q

Squared Hellinger p
?
x´ 1q2

y
1´y

Pearson χ2 px´ 1q2 y `
y2

4

Total Variation 1
2 |x´ 1| y if y P r´ 1

2 ,
1
2 s otherwise 8

Jensen-Shannon ´px` 1q logpx`1
2 q ` x log x ´ log p2 ´ eyq

Table 4: List of common f -divergences.

Proof. Recall that: Mixβpd, ρqps, a, gq :“ βdps, a, gq ` p1´βqρps, a, gq and Mixβpq, ρqps, a, gq :“583

βqps, a, gq ` p1 ´ βqρps, a, gq. Mixβpd, ρqps, a, gq denotes the mixture between the current584

agent’s joint-goal visitation distribution with an offline transition dataset potentially suboptimal585

and Mixβpq, ρqps, a, gq is the mixture between the expert’s visitation distribution with arbitrary586

experience from the offline transition dataset. Minimizing the divergence between these visitation587

distributions still solves the occupancy problem, i.e dπg “ q when q is achievable. We start with the588

primal formulation from Eq 9 for mixture divergence regularization:589

max
dps,a,gqě0,πpa|sq

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq

s.t dps, a, gq “ p1 ´ γqρ0ps, gq.πpa|s, gq ` γπpa|s, gq
ÿ

s1,a1

dps1, a1, gqpps|s1, a1q.

Applying Lagrangian duality and convex conjugate (41) to this problem, we can convert it to an590

unconstrained problem with dual variables Sps, a, gq defined for all s, a P S ˆ A ˆ G:591

max
π,dě0

min
Sps,a,gq

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq

`
ÿ

s,a,g

Sps, a, gq

˜

p1 ´ γqd0ps, gq.πpa|s, gq ` γ
ÿ

s1,a1

dps1, a1, gqpps|s1, a1qπpa|s, gq ´ dps, a, gq

¸

(43)
“ max
π,dě0

min
Sps,a,gq

p1 ´ γqEd0ps,gq,πpa|s,gqrSps, a, gqs

` Es,a,g„d

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qSps1, a1, gq ´ Sps, a, gq

ff

(44)

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq (45)

592

593

“ max
π,dě0

min
Sps,a,gq

βp1 ´ γqEd0ps,gq,πpa|s,gqrSps, a, gqs

` βEs,a,g„d

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qSps1, a1, gq ´ Sps, a, gq

ff

` p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qSps1, a1, gq ´ Sps, a, gq

ff

´ p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1, gqSps1, a1, gq ´ Sps, a, gq

ff

(46)

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq (47)
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Now using the fact that strong duality holds in this problem we can swap the inner max and min594

resulting in:595

“ max
π

min
Sps,a,gq

max
Mixβpd,ρqps,a,gqě0

βp1 ´ γqEd0ps,gq,πpa|s,gqrSps, a, gqs

` βEs,a,g„d

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qSps1, a1, gq ´ Sps, a, gq

ff

` p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qSps1, a1, gq ´ Sps, a, gq

ff

´ p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1, gqSps1, a1, gq ´ Sps, a, gq

ff

(48)

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq (49)
(50)

We can now apply the convex conjugate (Eq. (41)) definition to obtain a closed form for the inner596

maximization problem simplifying to:597

max
πpa|s,gq

min
Sps,a,gq

βp1 ´ γqEd0ps,gq,πpa|s,gqrSps, a, gqs

` Es,a,g„Mixβpq,ρqps,a,gq

«

f˚pγ
ÿ

s1,a1

pps1|s, a, gqπpa1|s1qSps1, a1, gq ´ Sps, a, gqq

ff

´ p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1,a1

pps1|s, a, gqπpa1|s1qSps1, a1, gq ´ Sps, a, gq

ff

(51)

This completes our derivation of the SMORe objective. Since strong duality holds (objective convex,598

constraints linear and feasible), SMORe and the primal mixture occupancy matching share the same599

global optima π˚
g .600

B.4 Action-free SMORe: Dual-V objective for offline goal conditioned reinforcement learning601

The primal problem in Equation 9 is over-constrained. The objective determines the visitation602

distribution d uniquely under a fixed policy. It turns out we can further relax this constraint to get an603

objective that results in the same optimal solution [1] π˚
g by rewriting our primal formulation as:604

max
dps,a,gqě0

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq

s.t
ÿ

a

dps, a, gq “ p1 ´ γqρ0ps, gq ` γ
ÿ

s1,a1

dps1, a1, gqpps|s1, a1q. (52)

Theorem 3. Let yps, a, gq “ γEs1„pp¨|s,aqrSps1, gqs ´ Sps, gq. The action-free dual problem to the605

multi-task mixture occupancy matching objective (Equation 52) is given by:606

min
Sps,gq

βp1 ´ γqEd0ps,gqrSps, gqs

`Es,a,g„Mixβpq,ρqps,a,gq

“

max
`

0, pf 1q´1 pyps, a, gqq
˘

yps, a, gq ´ f
`

max
`

0, pf 1q´1 pyps, a, gqq
˘˘‰

´ p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

where S is the lagrange dual variable defined as S : S ˆ G Ñ R . Moreover, strong duality holds607

from Slater’s conditions the primal and dual share the same optimal solution π˚
g for any offline608

transition distribution dO.609

Proof. Proceeding as before and applying Lagrangian duality and convex conjugate (41) to this610

problem, we can convert it to an unconstrained problem with dual variables Sps, gq defined for all611

s, g P S ˆ G:612
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max
dě0

min
Sps,gq

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq

`
ÿ

s,g

Sps, gq

˜

p1 ´ γqd0ps, gq ` γ
ÿ

s1,a1,g

dps1, a1, gqpps|s1, a1, gq ´
ÿ

a

dps, a, gq

¸

(53)

“ max
dě0

min
Sps,gq

p1 ´ γqEd0ps,gqrSps, gqs

` Es,a,g„d

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qSps1, gq ´ Sps, gq

ff

(54)

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq (55)

613

614

“ max
dě0

min
Sps,gq

βp1 ´ γqEd0ps,gqrSps, gqs

` βEs,a,g„d

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

` p1 ´ βqEs,a,g„dO

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

´ p1 ´ βqEs,a,g„dO

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

(56)

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq (57)

Now using the fact that strong duality holds in this problem we can swap the inner max and min615

resulting in:616

“ min
Sps,gq

max
Mixβpd,ρqps,a,gqě0

βp1 ´ γqEd0ps,gqrSps, gqs

` βEs,a,g„d

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

` p1 ´ βqEs,a,g„dO

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

´ p1 ´ βqEs,a,g„dO

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

(58)

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq (59)

Unlike previous case where constraints uniquely define a valid d for any given π, in this case we617

need to take into account the hidden constraint d ě 0 or equivalently Mixβpd, ρqps, a, gq ě 0.618

To incorporate the non-negativity constraints we consider the inner maximization separately and619

derive a closed-form solution that adheres to the non-negativity constraints. Recall yps, a, gq “620

Es1„pps,aqrSps1, gqs ´ Sps, gq.621

max
Mixβpd,ρqps,a,gqě0

Es,a,g„Mixβpd,ρqps,a,gq

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq

We can now construct the Lagrangian dual to incorporate the constraint Mixβpd, ρqps, a, gq ě 0 in its622

equivalent form wps, a, gq ě 0 and obtain the following where w ∆
“

Mixβpd,ρqps,a,gq

Mixβpq,ρqps,a,gq
:623
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max
wps,a,gq

max
λě0

Es,a„Mixβpq,ρqps,a,gqrwps, a, gqyps, a, gqs ´ EMixβpq,ρqps,a,gqrfpwps, a, gqqs `
ÿ

s,a,g

λpwps, a, gq ´ 0q

(60)

Since strong duality holds, we can use the KKT constraints to find the solutions w˚ps, a, gq and624

λ˚ps, a, gq.625

1. Primal feasibility: w˚ps, a, gq ě 0 @ s, a626

2. Dual feasibility: λ˚ ě 0 @ s, a627

3. Stationarity: Mixβpq, ρqps, a, gqp´f 1pw˚ps, a, gqq ` yps, a, gq ` λ˚ps, a, gqq “ 0 @ s, a628

4. Complementary Slackness: pw˚ps, a, gq ´ 0qλ˚ps, a, gq “ 0 @ s, a629

Using stationarity we have the following:630

f 1pw˚ps, a, gqq “ yps, a, gq ` λ˚ps, a, gq @ s, a, g (61)

Now using complementary slackness, only two cases are possible w˚ps, a, gq ě 0 or λ˚ps, a, gq ě 0.631

Combining both cases we arrive at the following solution for this constrained optimization:632

w˚ps, aq “ max
´

0, f 1´1
pyps, a, gqq

¯

(62)

Using the optimal closed-form solution (w˚) for Mixβpd, ρqps, a, gq of the inner optimization in633

Eq. (58) we obtain634

min
Sps,aq

βp1 ´ γqEd0psqrSps, gqs

` Es,a,g„Mixβpq,ρqps,a,gq

“

max
`

0, pf 1q´1 pyps, a, gqq
˘

yps, a, gq ´ αf
`

max
`

0, pf 1q´1 pyps, a, gqq
˘˘‰

´ p1 ´ αqEs,a„ρ

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qSps1, gq ´ Sps, gq

ff

(63)

For deterministic dynamics, this reduces to the action-free SMORe objective:635

min
Sps,aq

βp1 ´ γqEd0psqrSps, gqs

` Es,a„Mixβpq,ρqps,a,gq

“

max
`

0, pf 1q´1 pyps, a, gqq
˘

yps, a, gq ´ f
`

max
`

0, pf 1q´1 pyps, a, gqq
˘˘‰

´ p1 ´ βqEs,a„ρ

“

γSps1, gq ´ Sps, gq
‰

(64)

where yps, a, gq “ γSps1, gq ´ Sps, gq.636

Note that we no longer need actions in the offline dataset to learn an optimal goal conditioned score637

function. This score function can be used to learn presentation in action-free datasets as well as for638

transfer of value function across differing action-modalities where agents share the same observation639

space (eg. images as observations).640

641

C SMORe algorithmic details642

C.1 SMORe with common f -divergences643

a. KL divergence644

We consider the reverse KL divergence and start with the general SMORe objective:645

max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` Es,a,g„Mixβpq,ρqps,a,gqrf˚pγPπgSps, a, gq ´ Sps, a, gqqs

´ p1 ´ βqEs,a,g„ρrγPπgSps, a, gq ´ Sps, a, gqs (65)
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Plugging in the conjugate f˚ for reverse KL divergence we get:646

max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` Es,a,g„Mixβpq,ρqps,a,gq

”

epγPπgSps,a,gq´Sps,a,gqq
ı

´ p1 ´ βqEs,a,g„ρrγPπgSps, a, gq ´ Sps, a, gqs (66)

Using the telescoping sum for the last term in the objective above, we can simplify it as follows:647

max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` Es,a,g„Mixβpq,ρqps,a,gq

”

epγPπgSps,a,gq´Sps,a,gqq
ı

` p1 ´ βqEs,g„d0,a„ρp¨|s,gqrSps, a, gqs (67)

With the initial state distribution d0 set to the offline dataset distribution ρ, and Since our initial state648

distribution is the same as offline data distribution, we get:649

max
πg

min
S
βp1 ´ γqEρ,πg

rSps, a, gqs ` Es,a,g„Mixβpq,ρqps,a,gq

”

epγPπgSps,a,gq´Sps,a,gqq
ı

` p1 ´ βqEρrSps, a, gqs (68)

Collecting terms together we get:650

max
πg

min
Q

EρrEa„πrβp1 ´ γqSps, a, gqs ` Ea„ρrp1 ´ βqSps, a, gqss

` Es,a,g„Mixβpq,ρqps,a,gq

”

epγPπgSps,a,gq´Sps,a,gqq
ı

(69)

The objective for SMORe with reverse KL divergence pushes down the "score" of offline dataset651

transitions selectively (without pushing down score of the goal-transition distribution) while652

minimizing the term resembling bellman regularization that also encourages increasing score at653

the mixture dataset jointly over the offline dataset as well as the goal transition distribution.654

b. Pearson chi-squared divergence655

We consider the Pearson χ2 and start with the general SMORe objective:656

max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` Es,a,g„Mixβpq,ρqps,a,gqrf˚pγPπgSps, a, gq ´ Sps, a, gqqs

´ p1 ´ βqEs,a,g„ρrγPπgSps, a, gq ´ Sps, a, gqs (70)

With the initial state distribution d0 set to the offline dataset distribution ρ, and plugging in the657

conjugate f˚ for Pearson χ2 divergence we get:658

max
πg

min
S
βp1´γqEd0,πg

rSps, a, gqs`0.25Es,a,g„Mixβpq,ρqps,a,gq

“

pγPπgSps, a, gq ´ Sps, a, gqq2
‰

`Es,a,g„Mixβpq,ρqps,a,gqrpγPπgSps, a, gq ´ Sps, a, gqqs´p1´βqEs,a,g„ρrγPπgSps, a, gq ´ Sps, a, gqs

(71)

Using the fact that Mixβpq, ρqps, a, gq “ βqps, a, gq ` p1 ´ βqρps, a, gq, we can further simplify the659

above equation to:660

max
πg

min
S
βp1´γqEd0,πg

rSps, a, gqs`0.25Es,a,g„Mixβpq,ρqps,a,gq

“

pγPπgSps, a, gq ´ Sps, a, gqq2
‰

` βEs,a,g„qrpγP
πgSps, a, gq ´ Sps, a, gqqs (72)

Collecting terms together we get:661
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max
πg

min
S
βp1 ´ γqEρ,πg

rSps, a, gqs ` βEs,g„q,a„πg
rγPπgSps, a, gqs

´ βEs,a,g„qrSps, a, gqs ` 0.25Es,a,g„Mixβpq,ρqps,a,gq

“

pγPπgSps, a, gq ´ Sps, a, gqq2
‰

(73)

Observing the equation above, we note that the first two terms decrease score at offline data distribution662

as well as the goal transition distribution when actions are sampled according to the policy πg.663

Simultaneously the third term pushes score up for the ts, a, gu tuples that are sampled from goal664

transition distribution. Finally the last term encouraged enforces a bellman regularization enforcing665

smoothness is the scores of neighbouring states.666

D SMORe experimental details667

Environments: For the offline GCRL experiments we consider the benchmark used in prior work668

GoFar and extend it with locomotion tasks. For the manipulations tasks we consider the Fetch669

environment and a dextrous shadow hand environment. Fetch environments [28] consists of a670

manipulator with seven degrees of freedom along with a parallel gripper. The set of environments671

get a sparse reward of 1 when the goal is within 5 cm and 0 otherwise. The action space is 4672

dimensional (3 dimension cartesian control + 1 dimension gripper control). The shadow hand is673

24 DOF manipulator with 20-dimensional action space. The goal is 15-dimension specifying the674

position for each of the five fingers. The tolerance for goal reaching is 1 cm. For the locomotion675

environments, the task is to achieve a particular velocity in the x direction and stay at the velocity. For676

HalfCheetah, the target velocity is set to 11.0 and for Ant the target velocity is 5.0. For locomotion677

environments, the tolerance for goal reaching if 0.5. The MuJoCo environments used in this work are678

licensed under CC BY 4.0.679

Offline Datasets: We use existing datasets from the offline GCRL benchmark used in [21] for all680

manipulation tasks except Reacher, SawyerReach, and SawyerDoor. For Reacher, SawyerReach, and681

SawyerDoor we use existing datasets from [39]. These datasets are comprised on x% random data682

and (100-x)% expert data depending on the coverage over goals reached in individual datasets. We683

create our own datasets for locomotion by using ’random/medium/medium-replay’ data as our offline684

(suboptimal) data combined with 30 trajectories from corresponding ’expert’ datasets. The datasets685

used from D4RL are licensed under Apache 2.0.686

Baselines: To benchmark and analyze the performance of our proposed methods for offline imitation687

learning with suboptimal data, we consider the following representative baselines in this work: GoFAR688

[21], WGCSL [39], GCSL [16], and Actionable Models [4], Contrastive RL [8] and GC-IQL [18].689

GoFAR is a dual occupancy matching approach to GCRL that formulates it as a weighted regression690

problem. WGCSL and GSCL use goal-conditioned behavior cloning with goal relabelling as the691

base algorithms and WGCL uses weights to learn improved policy over GCSL. Actionable models692

uses conservative learning with goal chaining to learn goal-reaching behaviours using offline datasets.693

Contrastive RL treats GCRL as a classification problem - contrastive goals that are achieved in694

trajectory from random goals. Finally, GC-IQL extends the single task offline RL algorithm IQL to695

GCRL.696

The open-source implementations of the baselines GoFAR, WGCSL, GCSL, Actionable models,697

Contrastive RL and IQL are provided by the authors [21] and employed in our experiments. We use698

the hyperparameters provided by the authors, which are consistent with those used in the original699

GoFAR paper, for all the MuJoCo locomotion and manipulation environments. We implement700

contrastive learning using the code from Contrastive RL repository. GC-IQL is implemented using701

code from author’s implementation found here.702

Architecture and Hyperparameters For the baselines, we use tuned hyperparameters from previous703

works that were tuned on the same set of tasks and datasets. Implementation for SMORe shares the704

same network architecture as baselines. GoFAR additionally requires training a discriminator. For all705

experiments, all methods are trained for 10 seeds with each training run. Fetch manipulation tasks706

are trained for 400k minibatch updates of size 512 whereas all other environments training is done707

for 1M minibatch updates. The architectures and hyperparameters for all methods are reported in708

Table 5.709
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Hyperparameter Value
Policy updates npol 1
Policy learning rate 3e-4
Value learning rate 3e-4
MLP layers (256,256)
LR decay schedule cosine
Discount factor 0.99
LR decay schedule cosine
Batch Size 512
Mixture ratio β 0.5
Expectile τ [0.65,0.7,0.8,0.85]

Table 5: Hyperparameters for SMORe.

Task Behavior cloning Contrastive RL RL+sparse reward
WGCSL GCSL CRL AM IQL

Reacher 15.30 ˘0.58 14.01 ˘0.36 16.62 ˘2.09 23.68˘0.58 8.86 ˘ 0.61

SawyerReach 14.06 ˘0.08 12.05˘1.23 23.03˘1.17 23.37˘2.29 36.19 ˘ 0.01

SawyerDoor 16.79˘0.75 18.29˘0.94 12.26 ˘3.94 16.63 ˘0.76 29.31˘ 0.88

FetchPick 6.87˘ 0.77 6.54 ˘ 1.85 0.21˘ 0.29 0.45 ˘ 0.32 15.24˘ 1.27

FetchPush 10.62˘ 0.98 12.38 ˘ 1.10 3.60 ˘ 0.59 2.74 ˘ 0.70 19.95 ˘ 1.94

FetchSlide 2.62˘ 1.15 2.03 ˘ 0.01 0.41˘ 0.03 0.31 ˘ 0.31 3.25 ˘ 1.02

Table 6: Discounted Return for the offline GCRL benchmark with 5% expert data. Results are averaged over 10
seeds.

E Additional experiments710

E.1 Results on offline GCRL benchmark with varying expert coverage in offline dataset711

We ablate the effect of dataset quality on the performance of an offline GCRL method in this sections.712

Table 6, 7, 8 show performance of all methods with 5%, 2.5% and 1% expert data in the offline713

dataset respectively.714

E.2 Success Rate and Final distance to goal on Manipulation tasks715

Table 10 and Table 11 reports the success rate and final distance to goal metrics on manipulation716

tasks.717

E.3 Robustness of mixture distribution parameter β718

We find that SMORe is quite robust to the mixture distribution parameter β except in the environment719

FetchPush where β “ 0.5 is the most peformant. Table 9 shows this result empirically.720

721

Task Behavior cloning Contrastive RL RL+sparse reward
WGCSL GCSL CRL AM IQL

Reacher 13.03˘0.56 12.17 ˘0.8 19.63 ˘3.09 24.78˘0.23 4.44˘ 0.70

SawyerReach 11.455˘1.37 11.34˘1.18 25.35 ˘0.8 25.19˘0.61 35.73 ˘ 0.22

SawyerDoor 16.79˘0.29 13.20˘0.53 14.78 ˘5.29 16.59 ˘1.39 16.87 ˘ 4.21

FetchPick 4.39˘ 1.35 4.99 ˘ 0.11 0.21˘ 0.29 0.24˘ 0.27 11.79 ˘ 1.78

FetchPush 8.01˘ 1.96 8.04˘ 0.34 3.60˘ 0.59 2.02˘ 0.48 19.66 ˘ 1.69

FetchSlide 2.33˘ 0.23 2.37 ˘ 0.83 0.44 ˘ 0.016 0.45˘ 0.44 1.83˘ 1.31

Table 7: Discounted Return for the offline GCRL benchmark with 2.5% expert data. Results are averaged over
10 seeds.
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Task Behavior cloning Contrastive RL RL+sparse reward
WGCSL GCSL CRL AM IQL

Reacher 13.56˘0.69 12.27 ˘1.45 17.94˘3.71 24.89˘0.34 4.28 ˘ 0.92

SawyerReach 10.71 ˘0.69 11.79˘1.46 25.61˘0.39 25.54˘0.95 31.31 ˘ 2.08

SawyerDoor 15.18 ˘0.81 11.89˘1.51 10.26˘4.61 18.04˘1.8 17.11 ˘ 4.45

FetchPick 1.89 ˘ 1.22 3.30 ˘ 0.66 0.42 ˘ 0.29 0.41 ˘ 0.22 7.90 ˘ 1.22

FetchPush 6.44 ˘ 3.64 6.43 ˘ 0.56 1.69 ˘ 1.56 2.63˘ 3.04 7.11 ˘ 2.60

FetchSlide 1.77 ˘ 0.24 1.11˘ 0.26 0.0 ˘ 0.0 0.10 ˘ 0.11 0.80 ˘ 0.48

Table 8: Discounted Return for the offline GCRL benchmark with 1% expert data. Results are averaged over 10
seeds.

Task β “ 0.5 β “ 0.7 β “ 0.8 β “ 0.9

FetchReach 35.08 ˘ 0.54 36.57 ˘ 0.20 36.59˘ 0.30 36.30˘ 0.30

FetchPick 26.47˘ 0.34 27.04˘ 0.81 27.43˘ 0.97 27.89 ˘ 1.19

FetchPush 26.83 ˘ 1.21 16.20˘ 1.11 11.50˘ 1.19 13.85˘ 5.53

FetchSlide 4.99˘ 0.40 3.76˘ 0.75 3.43˘ 2.4 4.10˘ 1.20

Table 9: Discounted Return for the offline GCRL benchmark with varying mixture coefficients in offline dataset.
Results are averaged over 10 seeds.

Task Occupancy Matching Behavior cloning Contrastive RL RL+sparse reward
SMORe GoFAR WGCSL GCSL CRL AM IQL

Reacher 0.875˘0.07 0.90˘0.01 0.97˘0.014 0.92 ˘0.08 0.76˘0.74 1.0˘0.1 0.26 ˘ 0.06

SawyerReach 0.98˘0.014 0.75˘0.04 1.0˘0.0 0.98˘0.02 0.98˘0.018 1.0˘0.1 0.81 ˘ 0.01

SawyerDoor 0.875˘0.038 0.5˘0.12 0.78 ˘0.10 0.5˘0. 12 0.22˘0.11 0.3˘0.11 0.84 ˘ 0.06

FetchReach 1.0˘ 0.0 1.0 ˘ 0.0 1.0˘ 0.0 0.98 ˘ 0.05 1.0˘ 0.0 1.0˘ 1.0 1.0 ˘ 0.0

FetchPick 0.925 ˘ 0.045 0.84 ˘ 0.09 0.54˘ 0.16 0.54 ˘ 0.20 0.42 ˘ 0.29 0.78 ˘ 0.15 0.86 ˘ 0.11

FetchPush 0.90˘ 0.07 0.88˘ 0.09 0.76˘ 0.12 0.72 ˘ 0.15 0.06˘ 0.03 0.67˘ 0.14 0.65 ˘ 0.052

FetchSlide 0.315˘ 0.07 0.18 ˘ 0.12 0.18˘ 0.14 0.17˘ 0.13 0.0 ˘ 0.0 0.11˘ 0.09 0.26˘ 0.057

HandReach 0.47˘ 0.11 0.40 ˘ 0.20 0.25˘ 0.23 0.047˘ 0.10 0.0˘ 0.0 0.0 ˘ 0.0 0.0 ˘ 0.0

Table 10: Success Rate for the offline GCRL benchmark with 10% expert data. Results are averaged over 10
seeds.

Task Occupancy Matching Behavior cloning Contrastive RL RL+sparse reward
SMORe GoFAR WGCSL GCSL CRL AM IQL

Reacher 0.02˘0.01 0.03˘0.01 0.011˘0.01 0.016 ˘0.00 0.05˘0.03 0.013˘0.00 0.12˘ 0.005

SawyerReach 0.008˘0.004 0.04˘0.00 0.004˘0.00 0.00˘0.00 0.01˘0.01 0.01 ˘0.00 0.053 ˘ 0.004

SawyerDoor 0.02˘0.029 0.18˘0.00 0.011˘0.00 0.017˘0.01 0.14˘0.07 0.06 ˘0.01 0.019 ˘ 0.01

FetchReach 0.004˘ 0.0012 0.018˘ 0.003 0.007˘ 0.0043 0.008 ˘ 0.008 0.007 ˘ 0.001 0.007 ˘ 0.001 0.002˘ 0.001

FetchPick 0.04˘ 0.018 0.036 ˘ 0.013 0.094˘ 0.043 0.108˘ 0.06 0.25 ˘ 0.025 0.04˘ 0.02 0.04˘ 0.012

FetchPush 0.03˘ 0.003 0.033˘ 0.008 0.041˘ 0.02 0.042˘ 0.018 0.15˘ 0.036 0.07˘0.039 0.05˘ 0.006

FetchSlide 0.09˘ 0.012 0.12 ˘ 0.02 0.173˘ 0.04 0.204˘ 0.051 0.42˘ 0.05 0.198˘ 0.059 0.09˘ 0.013

HandReach 0.039˘ 0.0108 0.024˘ 0.009 0.035 ˘ 0.012 0.038˘ 0.013 0.04 ˘ 0.005 0.037 ˘0.004 0.08 ˘ 0.005

Table 11: Final distance to goal for the offline GCRL benchmark with 10% expert data. Results are averaged
over 10 seeds.
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