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Abstract

Parameter-efficient finetuning (PEFT) is a cru-001
cial technique to adapt large language models002
(LLMs) to downstream tasks. In this paper,003
we study using knowledge graph embeddings004
to improve the effectiveness of PEFT. We pro-005
pose a knowledgeable adaptation method called006
KnowLA. It inserts an adaptation layer into a007
LLM to integrate the embeddings of entities008
that appear in the input text. The adaptation009
layer is trained in combination with LoRA on010
instruction data. Experiments with two popu-011
lar LLMs and three knowledge graphs on six012
datasets demonstrate the effectiveness and ro-013
bustness of KnowLA. We show that KnowLA014
can help activate the relevant parameterized015
knowledge in a LLM to answer a question with-016
out changing its parameters or input prompts.017

1 Introduction018

In the era of large language models (LLMs) with019

billions and possibly trillions of parameters (Du020

et al., 2022; OpenAI, 2023; Touvron et al., 2023a),021

parameter-efficient finetuning (PEFT) stands out022

as a crucial technique enabling the necessary adap-023

tation of LLMs to downstream tasks. PEFT can024

efficiently improve the performance of a LLM on a025

specific task. It freezes most or even all parameters026

of LLMs and only finetunes a small number of pa-027

rameters using limited instruction data. LoRA (Hu028

et al., 2022) is a widely-used PEFT method that029

trains small low-rank adapters to approximate the030

large layers in LLMs. Follow-up work improves031

the efficiency of LoRA by using quantized weights032

(Dettmers et al., 2023). In contrast, our work seeks033

to improve the effectiveness of LoRA while pre-034

serving comparable efficiency.035

Inspired by knowledge-injected pre-trained lan-036

guage models (PLMs), e.g., ERNIE (Zhang et al.,037

2019), we explore knowledge graphs (KGs) to en-038

hance the PEFT of LLMs with LoRA. A KG is a039

large-scale structured knowledge base, containing040

a massive amount of trustworthy knowledge. The 041

typical way of injecting KGs into PLMs in the past 042

several years is incorporating pre-trained entity em- 043

beddings at the input layer of a PLM and finetuning 044

the full model on NLP tasks (Zhang et al., 2019; 045

Peters et al., 2019; Yang et al., 2019; Lauscher 046

et al., 2019; Levine et al., 2020; Liu et al., 2021; Lu 047

et al., 2021; Wang et al., 2022). Knowledge injec- 048

tion has improved many PLMs, e.g., BERT (Devlin 049

et al., 2019) and RoBERTa (Zhuang et al., 2021). 050

However, previous knowledge injection methods 051

require fully tuning PLMs, which is inapplicable 052

to LLMs. Furthermore, these methods are founded 053

on the encoder-based architecture of PLMs, and 054

their effectiveness for recent decoder-based LLMs 055

remains unknown. The following questions thereby 056

arise: Can knowledge injection still enhance the 057

PEFT of LLMs? Also, how can knowledge injection 058

be used to enhance PEFT? 059

To answer the above questions, in this paper, we 060

propose a knowledgeable adaptation method for 061

PEFT, especially for LoRA, called KnowLA. It in- 062

serts an adaptation layer into a pre-trained LLM. 063

The layer integrates external KG embeddings of 064

entities that appear in the input text of the LLM. 065

Entity embeddings and parameters of the LLM are 066

frozen in PEFT. The proposed adaptation layer is 067

trained combined with LoRA on instruction data. 068

The parameters in our adaptation layer are signifi- 069

cantly fewer than those in the LLM and even fewer 070

than those in LoRA. Thus, our KnowLA is also a 071

parameter-efficient method without changing the 072

original parameters of the LLM. 073

We evaluate the effectiveness of KnowLA on 074

six datasets, including commonsense reasoning on 075

CommonsenseQA (Talmor et al., 2019), social in- 076

teraction reasoning on (Sap et al., 2019) and BIG- 077

Bench Hard (Suzgun et al., 2023), single-hop rea- 078

soning of KBQA on WebQuestionSP (Yih et al., 079

2016), and close-book QA on TriviaQA (Joshi 080

et al., 2017) and TruthfulQA (Lin et al., 2022). 081
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According to experimental results, KnowLA can082

enhance the effectiveness of LoRA at the expense083

of a limited number of additional parameters. Fur-084

thermore, even when compared to a larger LoRA085

with a similar number of parameters, KnowLA with086

a smaller LoRA achieves better results.087

We assess the robustness of KnowLA by evalu-088

ating it with two popular foundation models (i.e.,089

LLaMA1 (Touvron et al., 2023a) and LLaMA2090

(Touvron et al., 2023b)), different instruction data091

(instruction-following demonstrations in Alpaca2092

and Vicuna2), various KGs (i.e., WordNet (Miller,093

1995), ConceptNet (Speer et al., 2017) and Wiki-094

data (Vrandecic and Krötzsch, 2014)), and typ-095

ical embedding learning models (i.e., RESCAL096

(Nickel et al., 2011), TransE (Bordes et al., 2013)097

and RotatE (Sun et al., 2019)), combined with two098

PEFT methods (i.e., LoRA (Hu et al., 2022) and099

AdaLoRA (Zhang et al., 2023)). Experiments show100

that KnowLA can offer stable improvements.101

To understand how KnowLA changes the output102

of LLMs, we analyze the results from two per-103

spectives, which show some interesting findings:104

(i) KnowLA with LoRA can align the space of105

the LLM with the KG embedding space, and (ii)106

KnowLA can activate the parameterized potential107

knowledge that originally existed in the LLM, even108

though the used KG does not contain such knowl-109

edge. According to our findings, in some cases, a110

LLM outputs incorrect answers, not because it does111

not know answers, but because its relevant knowl-112

edge is not activated by the input prompt. Our113

KnowLA can help activate its relevant knowledge114

without changing its parameters or input prompts.115

2 Related Work116

2.1 Knowledge Injection for PLMs117

There are three typical knowledge injection meth-118

ods for PLMs. The first method involves KG em-119

beddings at the input layer of PLMs for joint learn-120

ing (Zhang et al., 2019; Wang et al., 2021b; Lu121

et al., 2021). These methods incorporate entity em-122

beddings for classification tasks, and their knowl-123

edge injection module is independent of PLMs.124

This poses challenges for aligning semantic spaces125

of entities and PLMs. These knowledge injection126

methods necessitate updating the entire model of127

PLMs. The second method converts relevant triples128

in KGs into natural-language sentences to augment129

the input text of PLMs (Liu et al., 2020; Sun et al.,130

2020, 2021). The third method introduces adapters131

into PLMs to enable them learn the KG knowledge 132

(Wang et al., 2021a). Our KnowLA relates to the 133

first line of knowledge injection methods. It is also 134

a variant of the third method. However, previous 135

methods are built on PLMs while our method is the 136

first attempt to LLMs. KnowLA does not update 137

the parameters of LLMs. Instead, it introduces a 138

knowledge adapter during parameter-efficient fine- 139

tuning to enhance the LLM’s capabilities not only 140

for natural language understanding tasks. The in- 141

jected entity knowledge can be deeply integrated 142

with the LLM’s knowledge in subsequent decoding 143

steps. 144

2.2 Parameter-efficient Tuning for LLMs 145

Parameter-efficient tuning methods aim to opti- 146

mize LLMs while minimizing the computational 147

resources and data required. Among them, Adapter 148

Tuning (Houlsby et al., 2019) is a lightweight al- 149

ternative that inserts small neural modules called 150

adapters in each layer of the PLMs while keeping 151

the majority of the pre-trained parameters frozen. 152

Inspired by the prompt engineering methods, Prefix 153

Tuning (Li and Liang, 2021) sets adjustable prefix 154

tokens in the input or hidden layers, and only these 155

soft prompts are trained. LoRA (Hu et al., 2022) 156

is a low-rank adaptive method that allows training 157

dense layers indirectly by optimizing low-rank fac- 158

torized matrices that capture changes in dense lay- 159

ers during the adaptation process while keeping the 160

pre-trained weights unchanged. QLoRA (Dettmers 161

et al., 2023) improves LoRA by using NF4 quanti- 162

zation and double quantization techniques. Adalora 163

(Zhang et al., 2023) is an improvement on LoRA, 164

addressing the limitation of the fixed incremen- 165

tal matrix rank r in LoRA, which fails to achieve 166

global optimality. Adalora introduces a method that 167

dynamically allocates rank for downstream tasks, 168

yielding promising results. Our KnowLA follows 169

the research mainstream of the LLM, achieving 170

efficient parameter finetuning with fewer param- 171

eters combined with LoRA. Similarly, during the 172

finetuning process, the parameters of LLMs and 173

entity representations are fixed, allowing only gra- 174

dient backpropagation through the parameters of 175

adapters. This enables the utilization of external 176

knowledge to unleash the potential of LLMs. 177

3 Method 178

Considering that the hidden states in Transformer 179

layers encapsulate the parameterized knowledge 180
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Figure 1: Illustration of knowledgeable adaptation. The
KnowLA layer is inserted between two decoder layers
of a LLM. It consists of knowledge injection and fusion.

extracted by the LLM (Li et al., 2023), we propose181

to fuse entity embeddings in a KG with the hidden182

states of a LLM during PEFT. KnowLA inserts an183

adaptation layer into a LLM, as shown in Figure 1.184

Given a KG and its pre-trained KG embeddings,185

for an input question Q = {qi}ti=1 to a LLM,186

where qi corresponds to a set of entities C(qi) in the187

KG, and each entity ci belongs to C(qi) with the188

corresponding pre-trained embedding ei ∈ R100.189

Our key idea is to enhance PEFT by injecting the190

parameterized ei from the KG into qi appearing in191

the text. This method can be divided into three mod-192

ules: (i) Decoder layer, which learns and propa-193

gates the semantic information within the sentences.194

(ii) Knowledge mapping, which maps the entity195

embeddings from a KG to the LLaMA2 space and196

infuses it corresponding to the specific words in197

the question. (iii) Knowledge fusion, which further198

integrates the entity embedding with the textual199

representation. Given the powerful abilities, popu-200

larity and open-source nature of the LLaMA fam-201

ily (Touvron et al., 2023a,b), we currently consider202

it the foundation to build our KnowLA.203

3.1 LLM Encoding204

Given a LLM, e.g., LLaMA2, it first encodes the205

input text to get embeddings for prompts and ques-206

tions. Specifically, given the prompt p, the LLM207

first converts it into Q = {[s], p, [/s]}. The decoder208

of the LLM tokenizes Q with the bytepair encod-209

ing (BPE) algorithm (Sennrich et al., 2016), using210

the implementation from SentencePiece (Kudo and211

Richardson, 2018). After tokenization, Q turns into212

{hi}ki=1 ∈ Rd1 . We take it as the input to the LLM.213

3.2 Knowledge Mapping and Injection214

The text representation of the L-th decoding layer215

in the LLM is denoted by hl. In the knowledge216

mapping module, to align with the pre-norm mode217

adopted by the decoder and mitigate the issues of 218

gradient vanishing or exploding, we apply RM- 219

SNorm (Zhang and Sennrich, 2019) to the input hl 220

received by the decoder. We also map the semantic 221

space of entity embeddings to the semantic space 222

of the LLM for transformation, aiming to improve 223

knowledge injection and integration. 224

The BPE encoding method employed by many 225

LLMs would let each token have multiple sub- 226

tokens after encoding. Let the number of tokens be 227

p, which can be represented as {hl
i}

p
i=1. The corre- 228

sponding entities are denoted by C(qi). To better 229

calculate the relevance between different entities 230

and the given word, we unify the representations 231

of the p sub-tokens as ui using mean pooling: 232

ui = AvgPooling(hl
1, . . . ,h

l
p). (1) 233

Since LLMs are employed for handling complex 234

natural language tasks, it is essential to have input 235

dimensions sufficiently large to accommodate the 236

intricacies. To enhance the expressive ability of 237

entity representation ei and align with the semantic 238

space of LLaMA2, we expand its dimension to 239

enrich the representation of ei: 240

ei = Wd

(
SwiGLU(Wu ei + bu)

)
, (2) 241

where Wu ∈ Rd3×d2 , Wd ∈ Rd1×d3 and bu ∈ Rd3 242

are trainable weight parameters. SwiGLU (Shazeer, 243

2020) is a activation function. 244

3.3 Knowledge Fusion 245

To prevent the LLM from encountering unfamiliar 246

entities during finetuning in downstream tasks, as 247

well as to ensure the extracted entities are relevant 248

to the input tokens, we follow (Yang et al., 2019) to 249

introduce a knowledge sentinel e. We also calculate 250

its similarity β with each token: 251

ui =
∑
j

αij ej + β e, (3) 252

hi = θ SwiGLU
(
Wm[ui;ui] + bm

)
+ hi, (4) 253

where αij represents the relevance between the i- 254

th token and the j-th entity. Here we limit that: 255∑
j αij + β = 1. θ serves as a trainable bal- 256

ancing factor to equalize the impact of KG and 257

text. Wm ∈ R2d1×d1 and bm ∈ Rd1 are trainable 258

weight parameters. hi represents the final repre- 259

sentation of knowledge injection and serves as the 260

output of the current adapter, which is then passed 261

as input to the next layer of the decoder. 262
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Similar to other parameter-efficient modules like263

LoRA (Hu et al., 2022), KnowLA achieves the264

alignment between KG knowledge and textual se-265

mantics by freezing the LLM during finetuning.266

Alternatively, it can be used in conjunction with267

LoRA to achieve efficient learning of LLMs with a268

limited number of parameters. The effectiveness of269

this module is shortly discussed in the experiments.270

4 Experiments271

We seek to answer the following research questions272

through our experiments and analyses:273

• What about the effectiveness of KnowLA for274

different tasks? What about its robustness275

against different LLMs and KGs?276

• Is the improved performance related to the in-277

creased number of trainable parameters? Can278

injecting random noise embeddings also im-279

prove the effectiveness of LoRA?280

• Why can KnowLA collaborate with LoRA to281

improve LLMs? Is it also applicable to other282

LoRA variants such as AdaLoRA?283

4.1 Baseline LLMs and Implementation284

We consider the following LLMs with 7B parame-285

ters as baselines in our main experiments.286

• LLaMA2 is a group of open-source LLMs287

trained on public datasets with trillions of to-288

kens. We use the LLaMA2-7B model.289

• Alpaca2 is a LLaMA2 variant finetuned with290

52,000 instruction-following demonstrations291

using LoRA (Hu et al., 2022).292

In the main experiments, we use the instruction293

data of Alpaca2 to finetune LLaMA2 with LoRA294

and our KnowLA. Our KnowLA layer is inserted295

between the 31st and 32nd layers of LLaMA2. We296

also consider LLaMA1 and the instruction data of297

Vicuna2 (Chiang et al., 2023) in Sect. (4.10).298

For a fair comparison, we use the official hyper-299

parameters and instruction data of Alpaca to fine-300

tune LLaMA2-7B to get Alpaca2 and Alpaca2-KG.301

To study the impact of the number of trainable pa-302

rameters, we train two LoRA models with different303

ranks: r = 16 and r = 32. We keep the input304

prompts the same for different models in experi-305

ments. All models are finetuned on A800 GPUs.306

4.2 Datasets and Settings307

We consider three types of tasks: multi-choice QA,308

Closed-book QA, and truthful QA. We use Com-309

monsenseQA (Talmor et al., 2019) and SIQA (Sap 310

et al., 2019) as the multiple-Choice QA datasets, 311

and choose 15 challenging multi-choice tasks from 312

BIG-Bench Hard (BBH) (Suzgun et al., 2023). We 313

use WebQuestionSP (Yih et al., 2016) and Trivi- 314

aQA (Joshi et al., 2017) for Closed-book QA eval- 315

uation. We also use TruthfulQA (Lin et al., 2022) 316

to evaluate whether KnowLA is truthful in gen- 317

erating answers to questions. To assess the direct 318

improvement of our KnowLA to enhance PEFT, we 319

do not introduce other relevant models and employ 320

zero-shot settings for all tasks. 321

• In CommonsenseQA, each sample consists 322

of a question, five candidate answers, and the 323

correct answer. To run LLMs for Common- 324

senseQA, we adopt the same experimental set- 325

tings as in (Shwartz et al., 2020) and consider 326

it as a text completion problem. 327

• SIQA is a QA dataset for testing social com- 328

monsense intelligence, where each sample 329

consists of a question, three candidate an- 330

swers, and the correct answer. To evaluate 331

prompt-based methods, we do not use the pro- 332

vided knowledge in the dataset. The settings 333

are the same as in CommonsenseQA. 334

• WebQuestionSP is a KBQA dataset that en- 335

hances the original WebQuestion dataset by 336

annotating each answer with corresponding 337

SPARQL queries and removing ambiguous, 338

unclear, or unanswerable questions. Here we 339

treat it as a closed-book QA task. 340

• TriviaQA includes 95K question-answer 341

pairs authored by trivia enthusiasts, that pro- 342

vide high-quality distant supervision for an- 343

swering the questions. 344

• BBH is a popular aggregated benchmark that 345

focuses on tasks challenging for LLMs. In or- 346

der to compare scores of different methods on 347

correct answers, we selected fifteen multiple- 348

choice QA datasets from this benchmark. 349

• TruthfulQA is a benchmark to measure 350

whether a language model is truthful in gener- 351

ating answers to questions. 352

4.3 KGs and Configurations 353

We use WordNet (Miller, 1995), ConceptNet 354

(Speer et al., 2017), and Wikidata (Vrandecic and 355

Krötzsch, 2014) as the KGs in our method. 356

• WordNet is a lexical KG in English. Nouns, 357

4



CommonsenseQA SIQA BIG-Bench Hard

#Params Accuracy Score Accuracy Score Accuracy Score

LLaMA2 (7B) 7B 45.37 36.40 46.42 40.58 26.95 24.87
Alpaca2 (r = 16) +0.24% 56.18 46.21 52.30 46.04 28.93 25.42
Alpaca2 (r = 32) +0.49% 57.20 46.63 52.76 46.15 28.79 25.36

KnowLA (random) +0.48% 57.49 47.82 52.61 46.56 29.26 25.34
KnowLA (WordNet) +0.48% 58.07 48.35 53.22 46.76 30.00 25.39
KnowLA (ConceptNet) +0.48% 58.39 48.19 53.22 46.81 30.19 25.29
KnowLA (Wikidata) +0.48% 57.90 47.39 53.21 46.64 29.39 25.42

Table 1: QA results on CommonsenseQA, SIQA, and BBH. For KnowLA, the rank of LoRA is r = 16.

verbs, adjectives, and adverbs are arranged358

into synsets, each denoting a separate notion.359

• ConceptNet is a multi-lingual KG of things360

people know and computers should know.361

• Wikidata is a comprehensive repository of362

structured knowledge across diverse domains.363

It encompasses various entity types, including364

individuals, places, concepts, and more.365

For KG embedding, we follow (Zhang et al.,366

2019) and pre-train entity embeddings through367

TransE (Bordes et al., 2013) as external knowledge.368

The maximum number of relevant entities selected369

for each textual token in a question is set to 5.370

4.4 Experiments on Multi-choice QA371

We evaluate the effectiveness and robustness of372

KnowLA on multi-choice QA compared with373

LLaMA2, Alpaca2 (r = 16) and Alpaca2 (r =374

32) which has similar trainable parameters with375

KnowLA. Following (Shwartz et al., 2020), we376

compute scores using cross entropy which indicates377

the confidence of each model for correct answers.378

We evaluate the impact of WordNet, ConceptNet,379

and Wikidata on QA performance. Additionally,380

we introduce randomly initialized embeddings to381

assess the quality of KG entity embeddings.382

The accuracy results are shown in Table 1. Our383

KnowLA has shown the best performance across384

three datasets combined with LoRA. Additionally,385

Alpaca2 (r = 32) outperformed Alpaca2 (r =386

16) on all three datasets, because more trainable387

parameters typically lead to improved performance.388

Moreover, our method with LoRA (r = 16)389

achieves better performance, indicating that our390

model can better integrate with PEFT methods,391

surpassing the LoRA with the same parameters.392

Specifically, when combined with ConceptNet, it393

achieves an increase from 56.18% to 58.39% on394

CommonsenseQA, from 52.30% to 53.22% on395

SIQA and 28.93% to 30.19% on BBH. Due to the 396

fact that ConceptNet stores rich entity knowledge 397

and a greater number of relation types compared to 398

WordNet, its entity embeddings can better enhance 399

LLaMA2’s reasoning ability. This suggests that the 400

more extensive the entity coverage in KnowLA, the 401

more significant the increase becomes. 402

Simultaneously, the performance of KnowLA 403

(random) is inferior to KnowLA (KG), highlighting 404

the greater utility of entity knowledge in KGs for 405

LLMs. Based on the score of each model on the cor- 406

rect answers, it can be seen that after incorporating 407

the KnowLA, all models assign a higher confidence 408

to the correct answers. Therefore, KnowLA can 409

offer a certain degree of improvement for LLMs in 410

commonsense reasoning. 411

4.5 Experiments on Closed-book QA 412

In this experiment, we evaluate KnowLA using We- 413

bQuestionSP and TriviaQA. Following the answer 414

matching strategy in (Tan et al., 2023), we utilize 415

the subtree labels provided by the constituent tree 416

to extract all noun phrases from the textual answers, 417

calculate their similarities, and determine the cor- 418

rectness of answers exceeding a certain threshold. 419

The results are shown in Table 2. We find that 420

Alpaca2 (r = 16) has a better performance than 421

Alpaca2 (r = 32). The reason may be that more pa- 422

rameters in LoRA prone to overfitting in the closed- 423

book QA task. On TriviaQA, KnowLA combined 424

with WordNet improves the results from 68.70% 425

to 69.27%, while combined with ConceptNet, the 426

performance is further enhanced to 69.40%. This 427

indicates that the parameterized entity embeddings 428

can enrich the textual representations. The exper- 429

imental results demonstrate that this knowledge- 430

enhanced textual representation after finetuning 431

with LoRA can help mitigate the hallucination 432

problem of LLaMA2 to some extent. 433

On WebQuestionSP, KnowLA (WordNet) and 434
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Methods WebQuestionSP TriviaQA

Alpaca2 (r = 16) 67.55 68.70
Alpaca2 (r = 32) 67.43 67.97

KnowLA (random) 67.68 69.34
KnowLA (WordNet) 67.43 69.27
KnowLA (ConceptNet) 68.12 69.40
KnowLA (Wikidata) 67.49 68.92

Table 2: QA results on WebQuestionSP and TriviaQA.
For KnowLA, the rank of LoRA is r = 16.

Methods BLEU Rouge-1 Rouge-2 Rouge-L

Alpaca2 (r = 16) 0.1657 0.4094 0.2831 0.3892
Alpaca2 (r = 32) 0.1637 0.4048 0.2802 0.3851

KnowLA (random) 0.1677 0.4110 0.2850 0.3897
KnowLA (WordNet) 0.1714 0.4143 0.2874 0.3927
KnowLA (ConceptNet) 0.1747 0.4190 0.2922 0.3975
KnowLA (Wikidata) 0.1703 0.4135 0.2895 0.3931

Table 3: Results on TruthfulQA. For KnowLA, the rank
of LoRA is r = 16.

KnowLA (Wikidata) produces similar results. Also,435

the two Alpaca2 models with different ranks per-436

form similarly. This suggests that the reasoning437

ability of Alpaca2 performs well on this task, and438

the performance does not change significantly af-439

ter knowledge enhancement with KnowLA. We440

attribute this bottleneck to the model size and the441

training data of LLaMA2 and Alpaca2.442

4.6 Experiments on TruthfulQA443

In this experiment, we use TruthfulQA to mea-444

sure whether our method is truthful in generating445

answers to questions. Here, we evaluate the con-446

tent generated by the models using the best answer447

provided by the TruthfulQA, along with the com-448

monly used metrics BLEU, Rouge-1, Rouge-2, and449

Rouge-L. The results are shown in Table 3.450

Alpaca2 (r = 32) still shows lower performance451

than Alpaca2 (r = 16). This further substantiates452

our conclusion that larger parameters do not neces-453

sarily guarantee the accuracy and reliability of the454

model’s output. KnowLA (ConceptNet) performs455

the best among these models, which indicates that456

the integration of our method with LoRA can miti-457

gate the hallucination problem of LLaMA2 to some458

extend and generate more high-quality content.459

Besides, we observe that KnowLA (ConceptNet)460

outperforms KnowLA (WordNet) in all evaluation461

tasks, and KnowLA (WordNet), in turn, surpasses462

KnowLA (Wikidata). This further indicates that463

the entity knowledge within ConceptNet is more464

suitable for both LoRA and LLaMA2.465

4.7 Case Study 466

We present some improved results of Alpaca2 by in- 467

corporating WordNet, ConceptNet, and Wikidata in 468

KnowLA in Figure 3. In Case 1, we discover that 469

after integrating ConceptNet and WordNet with 470

KnowLA, the response precisely describes the cor- 471

rect answers. The contents generated by KnowLA 472

(ConceptNet) and KnowLA (WordNet) are very 473

similar. The content generated by Alpaca2 not 474

only missed significant answers but also misinter- 475

preted the song “Can’t Hold Me Down” in the ques- 476

tion. Therefore, we believe that KnowLA helps the 477

model better understand questions. 478

By examining the answers of three models in 479

Case 2, it can be observed that Alpaca2 does not 480

provide an accurate and relevant response, which is 481

similar to the content generated by KnowLA (Wiki- 482

data). They both generate deceptive answers. How- 483

ever, after incorporating ConceptNet, KnowLA ac- 484

curately provides the correct answer in the response. 485

According to Table 2, we believe that the enhance- 486

ment is not accidental. Moreover, by examining the 487

token-to-entity linking results, we find that the an- 488

swer entity “Boojum” does not exist in ConceptNet. 489

Therefore, we conclude that the KnowLA can stim- 490

ulate the underlying reasoning abilities of LLMs 491

incorporating with LoRA. 492

4.8 Why Knowledgeable Adaptation Works? 493

In this section, we explore why KnowLA works 494

with LoRA in two aspects: the semantic space 495

alignment of entity embeddings and LLaMA2 and 496

the knowledge recall of LLaMA2. 497

4.8.1 Perspective of Space Alignment 498

Our KnowLA incorporates a pre-trained LLM and 499

pre-trained KG embeddings for instruction tuning 500

with LoRA. We hereby investigate whether the 501

two heterogeneous representation spaces of the KG 502

and LLM are aligned, to understand how KnowLA 503

works. The results are illustrated in Figure 4, where 504

the last column represents the entity “sentinel”. We 505

first acquire the representations of the input tokens 506

in a specific layer, e.g., the 31st layer. Then, we 507

retrieve the top five similar entity embeddings in 508

the KG for each token. Next, to establish the rele- 509

vance of each token and its corresponding entities, 510

we calculate the attention weights between them. 511

A larger weight suggest a stronger semantic corre- 512

lation between the token and the mapped entity. 513

For LLaMA2 (left part of Figure 4), the similar- 514

ity between entity embeddings and textual repre- 515
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Figure 2: The heatmap indicates the knowledge extraction capabilities between the introduction of KnowLA and
Alpaca2, which is calculated by averaging the changes in cosine similarities of the last tokens from 95000 queries
across all FFN layers. The x-axis denotes the 32 layers of LLaMA2.

Case 1: Who is featured on Puff Daddy's Can't Hold Me
Down?
Answer:Mase
Alpaca2: Puff Daddy's 1997 single "Can't Hold Us
Down" features R&B singers Faith Evans and 112. It was
released as the second single from Puff Daddy's debut
album, No Way Out.
KnowLA (ConceptNet): The song "Can't Hold Me
Down" by Puff Daddy features R&B singer Faith Evans
and rapper Mase. The song was released in 1997 as the lead
single from Puff Daddy's debut studio album, NoWay Out.
KnowLA (WordNet): The song "Can't Hold Me Down"
by Puff Daddy features R&B singer Faith Evans, rapper
Mase, and R&B singer 112. It was released in 1997 as the
lead single from Puff Daddy's debut album, No Way Out.

Case 2: In Lewis Carroll's poem The Hunting of the Snark,
what did the elusive, troublesome snark turn into to fool hunters?
Answer: Boojum
Alpaca2: The elusive, troublesome snark was able to fool the
hunters by transforming itself into a variety of shapes and forms.
The snark was able to take the shape of a dragon, a boa constrictor,
a rhinoceros, a hippopotamus, a crocodile, and a camel.
KnowLA (ConceptNet): The snark was able to fool hunters by
transforming into a variety of shapes and forms. The snark first
turned into a Boojum, a creature that could only be seen by
those who believed in it.
KnowLA (Wikidata): The snark was able to fool the hunters
by transforming into a variety of shapes and forms. The snark
was able to take the shape of a beetle, a butterfly, a snake, a
fish, a bird, and a mouse, all in an attempt to escape the hunters.

Figure 3: Examples of Alpaca2 and KnowLA (KG) for TriviaQA.

Figure 4: The similarity heatmap between the output
representations of text tokens and their corresponding
entity embeddings. The x-axis denotes the top-5 similar
entities with tokens in the y-axis. (a) The left heatmap
presents the similarity of LLaMA2 without finetuning,
while (b) the right heatmap presents the similarity after
finetuning with our KnowLA (ConceptNet).

sentation is random, without any specific pattern.516

However, after applying KnowLA, the obtained517

results demonstrate higher accuracy on the most518

relevant entities (e1 in the x-axis). For token “un-519

derrated”, the relevant entities found in the Con-520

ceptNet are “underrated”, “underrate”, etc. After521

the finetuning process, the token ’underrated’ has522

displayed the highest correlation with the entity523

“underrated”. This indicates that KnowLA can al-524

leviate the gap between the KG and LLM spaces525

using instruction tuning with LoRA.526

4.8.2 Perspective of Knowledge Recall 527

We hereby investigate the role of KnowLA in acti- 528

vating LLMs’ knowledge. According to (Li et al., 529

2023; Geva et al., 2021; Meng et al., 2022), the 530

feed-forward network (FFN) layers, which consti- 531

tute two-thirds of a LLM’s parameters, primarily 532

extracts its own knowledge. So, we explore the 533

impact of KnowLA on the FFN layers, to see how 534

KnowLA influences these layers in extracting the 535

knowledge stored in the LLM. 536

We compute the differences between the hidden 537

state representations of the last token before and 538

after each FFN layer in the LLM. And we analyze 539

the trends in differences of all 32 layers after insert- 540

ing the KnowLA. We utilize the 95,000 questions 541

from TriviaQA as queries to explore the knowledge 542

stored in the FFN layers of LLaMA2 (7B). The last 543

token in each input query aggregates information 544

from the query. According to (Li et al., 2023), there 545

is a positive correlation between the similarity of 546

hidden states and the consistency of knowledge. 547

Intuitively, we believe that higher differences in 548

representations can indicate the model’s ability to 549

extract more information from FFN layers. There- 550

fore, we extract the representations of the last token 551

before and after each FFN layer and compute their 552
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CSQA SIQA BBH
Accuracy Score Accuracy Score Accuracy Score

RESCAL 58.39 46.71 52.10 44.91 27.50 25.96
TransE 58.39 48.19 53.22 46.81 30.19 25.29
RotatE 57.58 46.05 52.00 44.65 27.31 24.94

Table 4: The impact of KG embedding learning models
on CommonsenseQA, SIQA, and BBH, which are pre-
trained on ConceptNet for LLaMA2.

cosine similarity. After calculating the token simi-553

larities, we further evaluate the KnowLA’s capacity554

to extract richer knowledge. The capacity is cal-555

culated by subtracting the similarities obtained by556

KnowLA from those obtained by Alpaca2. The557

results are shown in Figure 2.558

The red color indicates that the representation559

of the last token, after introducing the KnowLA560

and undergoing the FFN layers, exhibits a greater561

change compared to that of Alpaca2. Conversely,562

the blue color indicates the opposite. We think the563

representations with greater changes capture more564

internal knowledge.565

After introducing entity embeddings, we observe566

that our KnowLA enables the LLM to extract richer567

knowledge at the FFN layers. In contrast, the568

LLaMA2 extracts less knowledge than Alpaca2.569

Additionally, according to (Geva et al., 2021), the570

lower layers of the model’s FFN tend to capture571

shallow patterns, while higher layers learn more572

semantic patterns. Our framework demonstrates573

enhanced knowledge extraction capabilities at the574

higher layers. We attribute the superior results575

over Alpaca2 to the improvement in the ability to576

capture semantic patterns. By examining the dif-577

ferences in similarity across the last 16 layers, we578

find that ConceptNet is maximized across the three579

KGs. KnowLA (ConceptNet) performs the best on580

TriviaQA. This further emphasizes that the intro-581

duction of ConceptNet substantially extracts more582

knowledge stored internally in the LLaMA2.583

4.9 Impact of KG Embedding Models584

We study the impact of embedding learning models585

used to learn entity embeddings for KnowLA. We586

obtain entity embeddings of ConceptNet by three587

representative KG embedding models: RESCAL588

(Nickel et al., 2011), TransE (Bordes et al., 2013),589

and RotatE (Sun et al., 2019). We show the re-590

sults of KnowLA with these embeddings on CSQA,591

SIQA and BBH datasets in Table 4.592

We can observe that the entity embeddings ob-593

tained through TransE have achieved favorable re-594

Methods Accuracy Score

LLM side
Alpaca1 56.59 46.03
KnowLA (LLaMA1) 57.74 46.81

Data side
Vicuna2 51.52 42.31
KnowLA (Vicuna2) 53.56 49.09

PEFT side
Alpaca2 (AdaLoRA) 57.58 46.67
KnowLA (AdaLoRA) 57.66 46.30

Table 5: The results with different LLMs, instruction
data, and PEFT methods on CommonsenseQA

sults. This is attributed to the fact that the embed- 595

dings generated by TransE are more suitable for 596

LLaMA2. RotatE employs complex vector repre- 597

sentation for entities and achieves subpar results 598

on LLaMA2. This suggests that aligning the com- 599

plex space of entities with the semantic space of 600

LLaMA2 during finetuning is challenging, leading 601

to a loss of original entity information. 602

4.10 Robustness of KnowLA 603

We evaluate the robustness of KnowLA against 604

three factors: On the foundation model side, we use 605

LLaMA1 (Touvron et al., 2023a) as a LLM. On the 606

instruction data side, we finetune LLaMA2 using 607

the Vicuna multi-round dialog data (Chiang et al., 608

2023) to get Vicuna2 and KnowLA (Vicuna2). On 609

the PEFT method side, we use AdaLoRA (Zhang 610

et al., 2023) to replace LoRA and get Alpaca2 611

(AdaLoRA) and KnowLA (AdaLoRA). 612

Table 5 presents the performance of the above 613

models on the commonsense reasoning dataset 614

CommonsenseQA. We can observe that the three 615

KnowLA variants still outperform baselines. This 616

experiment shows that KnowLA is robust and can 617

bring stable improvement when combined with dif- 618

ferent LLMs, instruction data, and PEFT methods. 619

5 Conclusion 620

In this paper, we propose a knowledgeable adap- 621

tation method KnowLA. It can be integrated with 622

LoRA and injects entity knowledge into the LLM 623

during the PEFT process. Our experiments demon- 624

strated that, compared to Alpaca2 which is fine- 625

tuned with LoRA alone, KnowLA exhibits better 626

performance on six commonly used datasets. Also, 627

the entity embeddings pre-trained by TransE are 628

more compatible with LLaMA2. We find that the 629

introduction of KnowLA enables the LLM to acti- 630

vate more diverse knowledge related to semantic 631

patterns from the FFN layers, thereby achieving an 632

improvement in its performance. 633
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Limitations634

Currently, our work only incorporates one KG to635

enhance PEFT. As KGs are incomplete by nature,636

integrating multiple KGs into our method may fur-637

ther improve performance with knowledge fusion638

and transfer. Recent work (Huang et al., 2022) re-639

veals that multi-source KG embeddings are more640

expressive than the embeddings of a single KG. We641

plan to study multi-source KnowLA in future work.642

Besides, we have not attempted other LLMs such643

as ChatGLM (Zeng et al., 2023) in this work. In the644

future, we will consider how to efficiently inject645

KG knowledge with smaller parameters. Mean-646

while, we have observed that, with the introduction647

of random perturbations, LLaMA2 seems to outper-648

form Alpaca2 on some tasks. This discovery may649

provide interesting directions for future research.650

Ethical Considerations651

LLMs may produce incorrect and potentially bi-652

ased content. Experiments show that our method653

can alleviate this problem to a certain extent, but it654

is inevitable that the LLM will generate offensive655

answers. Therefore, extreme caution should be ex-656

ercised if deploying such systems in user-facing657

applications. All datasets and models used in this658

work are publicly available under license.659
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