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Abstract
Traditional conformal prediction faces significant
challenges with the rise of streaming data and
increasing concerns over privacy. In this paper,
we introduce a novel online differentially private
conformal prediction framework, designed to con-
struct dynamic, model-free private prediction sets.
Unlike existing approaches that either disregard
privacy or require full access to the entire dataset,
our proposed method ensures individual privacy
with a one-pass algorithm, ideal for real-time,
privacy-preserving decision-making. Theoreti-
cally, we establish guarantees for long-run cover-
age at the nominal confidence level. Moreover, we
extend our method to conformal quantile regres-
sion, which is fully adaptive to heteroscedasticity.
We validate the effectiveness and applicability of
the proposed method through comprehensive sim-
ulations and real-world studies on the ELEC2 and
PAMAP2 datasets.

1. Introduction
Conformal prediction (CP) is a powerful framework for
quantifying predictive uncertainty in machine learning mod-
els. The fundamental principles of CP, meticulously detailed
by Vovk et al. (2005), provided a rigorous basis for the con-
struction of reliable prediction intervals, establishing CP as
the cornerstone of uncertainty quantification. Building on
these theoretical foundations, Balasubramanian et al. (2014)
explored practical adaptations of CP, showcasing its effec-
tiveness in diverse real-world applications and highlighting
its potential to improve decision making in various domains.
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Despite its broad applicability, the deployment of CP, partic-
ularly in domains that involve high-stakes decision-making,
presents two significant challenges that must be addressed:
1. Data Streaming and Concept Drift: Data is received
as continuous streams, accompanied by concept drift, the
phenomenon where data distributions change over time,
which can make traditional CP models, which rely on the
exchangeability assumption, less effective. 2. Data Privacy
Concerns: In domains such as healthcare and financial
risk management, applying CP is often hampered by strin-
gent privacy regulations. These sectors demand methods to
provide accurate uncertainty quantification without compro-
mising individual data privacy. Addressing these challenges
is essential for the broader applicability of CP in real-world
scenarios, especially when critical decisions are at stake and
both data privacy and dynamic data environments must be
taken into account.

In this paper, we introduce the online differentially private
conformal prediction (ODPCP) framework, which leverages
any pre-trained predictive model to construct dynamic dif-
ferentially private prediction sets. Our framework integrates
differential privacy mechanisms to ensure rigorous privacy
protection while maintaining the reliability and adaptability
of conformal prediction methods. In particular, we consider
a scenario in which a data stream {(Xt, Yt)}1≤t≤T is gen-
erated by a dynamic process, allowing the distribution of
(Xt, Yt) to evolve over time. At each time step t, our goal
is to construct a dynamic differentially private prediction
set for the target value Yt using previously observed data
{(Xs, Ys)}s<t, and the newly observed covariates Xt. Our
main contributions can be summarized as follows.

• Online differentially private conformal prediction
framework: This paper presents a novel online differ-
entially private conformal prediction framework that
utilizes any pre-trained model to dynamically generate
private prediction sets. In contrast to existing methods,
our approach guarantees rigorous privacy protection
without requiring access to the entire dataset, making it
well-suited for real-time, privacy-preserving decision-
making in an online manner.

• One-pass algorithm: Our proposed framework is
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an efficient one-pass algorithm that generates private
prediction sets without the need to re-access histori-
cal data, thereby significantly reducing both time and
space complexity.

• Online differentially private conformal quantile pre-
diction framework: We extend our framework to
conformal quantile regression (CQR), addressing het-
eroscedasticity by effectively managing data with vary-
ing levels of volatility. This extension improves both
the accuracy and reliability of predictions in scenarios
where the variability of data changes over time.

The structure of this paper is as follows: Section 2 reviews
related work in this field. Section 3 introduces some key
properties of differential privacy. In Section 4, we present
the proposed online differentially private conformal pre-
diction framework. Section 5 extends our framework to
conformal quantile regression, addressing heteroscedastic-
ity. Finally, in Section 6, we evaluate the performance of our
method through some experiments, including simulations
and two real-world case studies.

2. Related Work
CP has been widely extended to address numerous chal-
lenges, such as data distribution shifts and violations of ex-
changeability (Lei & Candès, 2021; Fannjiang et al., 2022;
Barber et al., 2023; Plassier et al., 2024). Notably, Romano
et al. (2019) and Kiyani et al. (2024) enhanced the reliability
of prediction sets by optimizing the length of prediction in-
tervals. Further developments in federated learning settings
have been introduced by Lu et al. (2023) and Humbert et al.
(2023), while Gasparin & Ramdas (2024a) and Gasparin &
Ramdas (2024b) focused on conformal model aggregation,
proposing novel strategies for efficiently merging uncer-
tainty sets. Additional advancements in CP are discussed
in works such as Bai et al. (2022), Liang et al. (2024), Xie
et al. (2024), and Zecchin et al. (2024).

In recent years, significant advancements have been made
in adapting CP frameworks to online settings, driven by the
growing prevalence of data streams. Gibbs & Candes (2021)
were pioneers in integrating online convex optimization tech-
niques with CP frameworks. Building on this, subsequent
work, such as Feldman et al. (2022); Bhatnagar et al. (2023),
extended CP to support online environments, enabling real-
time updates and adaptive prediction sets. For a more com-
prehensive overview of the latest developments in online
CP, see, for example, (Angelopoulos et al., 2024b; Gibbs &
Candès, 2024; Angelopoulos et al., 2024a). However, these
methods generally lack built-in privacy-preserving mecha-
nisms, leaving sensitive data susceptible to potential leakage
and thereby limiting their applicability in privacy-sensitive
contexts.

Differential Privacy (DP) has become a cornerstone in
safeguarding privacy across a variety of sectors, including
healthcare, information management, and government ser-
vices; see Dankar & El Emam (2013); Wang & Tsai (2022).
Prominent companies such as Google (Erlingsson et al.,
2014), Microsoft (Ding et al., 2017), and the US Census
Bureau (Garfinkel, 2022; Abowd, 2018) have adopted DP
techniques to ensure the protection of individual privacy in
large-scale systems. With the increasing global focus on pri-
vacy, the development of DP algorithms has expanded into
diverse tasks, including, but not limited to, deep learning,
demand learning, and transfer learning; see (Abadi et al.,
2016; Bu et al., 2020; Chen et al., 2022; Ponomareva et al.,
2023; Li et al., 2024). More recent advancements in the
extension of DP can be found in works such as (Li et al.,
2021; De et al., 2022; Nasr et al., 2023; Yang et al., 2024;
Olabim et al., 2024).

The intersection of CP and DP has led to the development of
privacy-preserving prediction sets. Early work, such as that
by Angelopoulos et al. (2022), introduced algorithms that
integrated the exponential mechanism (McSherry & Talwar,
2007) within the CP framework, ensuring privacy by obtain-
ing private quantiles of non-conformity scores. Similarly,
Humbert et al. (2023) extended this concept to one-shot fed-
erated learning, leveraging the exponential mechanism to
guarantee privacy in federated settings. Plassier et al. (2023)
took a different approach by adding noise to the gradient
in order to derive private quantiles and generate DP predic-
tion sets. While these approaches effectively ensure privacy,
they are not directly applicable to online learning environ-
ments, where the need for real-time updates and continuous
adaptation of prediction sets presents unique challenges.

3. Preliminary
In this section, we present basic concepts and some useful
properties of DP.

Definition 3.1 ((Dwork et al., 2006)). Let X be the sample
space for an individual data, a randomized algorithm A:
Xn → R, is (ϵ, δ)-differentially private if and only if for
every pair of adjacent datasets X X ′ ⊂ Xn and for any
measurable event E ⊆ R, the inequality below holds:

Pr(A(X) ∈ E) ≤ eϵ · Pr(A(X ′) ∈ E) + δ,

where we say that two datasets X = {xi}ni=1 and X ′ =
{x′

i}ni=1 are adjacent if and only if they differ by one indi-
vidual datum and the probability measure Pr is induced by
the randomness of A only. When δ = 0, then M is called
pure ϵ-DP.

Specifically, when the dataset contains only a single data
point, i.e., |X| = 1, the mechanism guarantees (ϵ, δ)-local
differential privacy (LDP). This setting considers each data
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point as a separate dataset, offering privacy protection at the
individual level.

Definition 3.2 ((Xiong et al., 2020)). A randomized algo-
rithm A : X → R satisfies (ϵ, δ)-LDP if and only if for
any pair of input individual values x, x′ ∈ X , and for every
measurable event E ⊆ R, the following inequality holds:

Pr(A(x) ∈ E) ≤ eϵ · Pr(A(x′) ∈ E) + δ.

When δ = 0, this reduces to pure ϵ-LDP.

This property ensures that our framework offers privacy
protection at the individual level, safeguarding sensitive
information even when the data consists of just one obser-
vation. Many fundamental algorithms can be rendered DP
by adding noise, appropriately scaled according to the al-
gorithm’s sensitivity. The formal definition of sensitivity is
provided as follows:

Definition 3.3 (ℓp-sensitivity). Let h : Xn → Rd

be a query mapping. For a fixed positive scalar
p, the ℓp-sensitivity of h is defined by ∆p(h) =
supX,X′⊂Xn,adjacent ∥h(X)− h(X ′)∥p.

Building upon the concept of sensitivity, we next introduce
Gaussian Differential Privacy (GDP), a more recent formu-
lation that captures privacy guarantees through hypothesis
testing between adjacent datasets.

Definition 3.4 ((Dong et al., 2022)). Let X be the sample
space and let A : Xn → R be a randomized algorithm. For
all adjacent datasets X,X ′ ∈ Xn, we say that A satisfies µ-
Gaussian Differential Privacy (abbreviated as µ-GDP) if the
trade-off function between A(X) and A(X ′) is pointwise
lower bounded by that of N (0, 1) and N (µ, 1), that is,

T (A(X), A(X ′)) (α) ≥ Gµ(α), ∀α ∈ [0, 1].

For any two probability distributions P and Q on the same
measurable space, the trade-off function T (P,Q) : [0, 1]→
[0, 1] is defined as

T (P,Q)(α) := inf {βϕ : αϕ ≤ α} ,

where ϕ : R → [0, 1] is a measurable rejection rule, and αϕ

and βϕ denote the type I and type II errors, respectively. This
function quantifies the minimum type II error achievable
under a level-α type I error constraint.

The Gaussian trade-off function Gµ is given by

Gµ(α) := Φ
(
Φ−1(1− α)− µ

)
,

where Φ(·) is the standard normal CDF and Φ−1(·) is its
inverse.

The following are commonly used mechanisms that enable
the design of our proposed privacy-preserving algorithm.

Lemma 3.5. (Dwork et al., 2014)

1. Laplace Mechanism: Let h(X) ∈ Rd be a statistic of
the dataset X , with a finite ℓ1-sensitivity ∆1(h). The
Laplace mechanism adds noise to the output of h as
follows:

M(X) = h(X) + ω,

where each component ω1, . . . , ωd of ω ∈ Rd is
independently drawn from the Laplace distribution
Laplace(0,∆1(h)/ϵ). The output of this mechanism
M satisfies ϵ-DP.

2. Gaussian Mechanism: Let h(X) ∈ Rd represent a
statistic derived from the dataset X , with ℓ2-sensitivity
∆2(h). The Gaussian mechanism operates by adding
noise to the output of h in the following manner:

M(X) = h(X) + ω,

where each component ω1, . . . , ωd of ω ∈ Rd

is drawn independently from the distribution
N(0, 2(∆2(h)/ϵ)

2 log(1.25/δ)). The output of this
mechanism M satisfies (ϵ, δ)-DP.

3. µ-GDP: Let h(X) ∈ Rd be a statistic computed from
the dataset X , with ℓ2-sensitivity ∆2(h). The Gaussian
Differential Privacy (GDP) mechanism applies noise
to h according to the following:

M(X) = h(X) + ω,

where each component ω1, . . . , ωd of ω ∈ Rd is in-
dependently sampled from N (0, (∆2(h)/µ)

2
). The

output of this mechanism M satisfies µ-GDP.

After presenting the concept of differential privacy and
its underlying mechanisms, we now proceed to outline
key results that demonstrate how privacy guarantees are
preserved across various operations.

Lemma 3.6. (Dwork et al., 2006; 2010)

Post-processing property: Let (Z,Z) be a measurable
space, and let A : Xn → Y be an (ϵ, δ)-DP. If f : Y → Z
is a measurable function, then the composition f ◦A is also
(ϵ, δ)-DP.

Sequential composition: Suppose there are mechanisms
Ai : Xn → Y for i = 1, . . . , k, where each mecha-
nism satisfies (ϵi, δi)-DP. Then the combined mechanism
A : Xn → Y k, which maps x to (A1(x), . . . , Ak(x)), sat-
isfies (

∑k
i=1 ϵi,

∑k
i=1 δi)-DP.

Parallel composition: Let Ai : X
n → Y for i = 1, . . . , k

be mechanisms that each satisfy (ϵi, δi)-DP. If the datasets
x1, . . . , xk ∈ Xn are disjoint, then the combined mech-
anism A : Xn×k → Y k, which maps (x1, . . . , xk) to
(A1(x1), . . . , Ak(xk)), satisfies (maxi ϵi,maxi δi)-DP.
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4. Online differentially private conformal
prediction

Recall that CP constructs prediction regions based on ex-
changeable data {(Xi, Yi)}ni=1 and a pre-trained model f̂ .
The fundamental idea behind CP is to quantify prediction
uncertainty through non-conformity scores S(X,Y ) =
Sf̂ (X,Y ), which capture the discrepancy between obser-
vations and model predictions (e.g., residuals in regression
tasks or prediction confidence in classification tasks). By
computing a quantile threshold from the calibration set, CP
generates prediction regions that ensure the desired coverage
probability, formally expressed as:

P
(
Ynew ∈ C(Xnew)

)
≥ 1− α,

providing a statistically valid characterization of model un-
certainty. Here, 1 − α is the target nominal level, and
(Xnew, Ynew) denotes the new observation.

However, when applied to data streams {(Xt, Yt)}t≥1, the
traditional CP framework faces several challenges. First,
temporal distribution shifts undermine the exchangeability
assumption, which is vital for maintaining valid coverage.
Second, static calibration methods fail to adapt to the dy-
namic nature of evolving data patterns. Third, the batch
quantile computation required by CP becomes computation-
ally expensive and impractical for real-time applications.
In addition to these technical challenges, privacy concerns
have become increasingly critical in modern applications
such as healthcare and finance.

To address these challenges, we propose the ODPCP frame-
work. ODPCP dynamically constructs prediction sets that
adapt to streaming data while ensuring formal differential
privacy guarantees. In contrast to conventional methods, our
framework enforces privacy by perturbing the quantile esti-
mation process itself. Specifically, we estimate the (1− α)-
quantile of non-conformity scores {St} using subgradient-
based updates, injecting noise into each subgradient to en-
sure differential privacy.

At each time step t, we estimate the (1− α)-quantile q̂1−α
t

of the non-conformity scores St by minimizing the pinball
loss:

ℓ1−α(q, St) = (1{q ≥ St} − (1− α)) (q − St) (1)

which has Lipschitz constant L = max{α, 1 − α}. The
corresponding subdifferential is:

∂ℓ1−α(q, St) =

{
1{St ≤ q} − (1− α), q ̸= St

[α− 1, α], q = St

(2)

This yields a subgradient update:

gt = 1{St ≤ q̂1−α
t } − (1− α). (3)

To ensure privacy, we define the privatized subgradient:

ĝt = gt + Zt, Zt ∼ i.i.d. noise. (4)

This mechanism ensures that each update step satisfies dif-
ferential privacy. A conventional approach would apply
stochastic gradient descent (SGD):

q̂1−α
t+1 = q̂1−α

t − ηtgt, (5)

but this requires manual tuning of the learning rate ηt, which
becomes especially problematic in the presence of noise,
as introduced by ĝt. The noise can amplify instability, de-
grade convergence speed, and complicate hyperparameter
selection. To avoid these challenges, we draw inspiration
from the coin-betting framework in parameter-free online
convex optimization (Orabona & Pál, 2016; Cutkosky &
Orabona, 2018; Podkopaev et al., 2024), which enables
adaptive learning without manual tuning of step sizes.
Remark 4.1. Our framework incorporates various mech-
anisms to ensure privacy protection. For instance,
we can add noise to the gradients in the follow-
ing ways: 1. Laplace mechanism: Zt ∼
Laplace(0,∆1(∂ℓ1−α)/ϵt); 2. Gaussian mechanism:
Zt ∼ N(0, 2(∆2(∂ℓ1−α)/ϵt)

2 log(1.25/δt)); 3. µt-GDP:
Zt ∼ N(0, (∆2(∂ℓ1−α)/µt)

2). From the above-perturbed
formula in (4), we observe that each individual has the
flexibility to customize its privacy budget. A special case
happens when we use a uniform privacy budget without
considering different privacy budgets for each individual.
Throughout this paper, we refer to our algorithm as DP.
Nonetheless, its implementation aligns with the principles
of LDP, as privacy is enforced via local perturbation at each
step rather than through a centralized mechanism.

This parameter-free and robust approach reformulates the
learning process as a repeated betting game. In this frame-
work, a bettor wagers a fraction λt of their current wealth
Wt−1 on an outcome ct, which may be adversarially se-
lected. Starting from an initial endowment W0 > 0, the cu-
mulative wealth evolves as Wt = W0+

∑t
i=1 λiWi−1ci. In

our setup, to integrate this framework with privatized quan-
tile estimation, we define the feedback signal as ct := −ĝt,
where ĝt denotes the privatized subgradient. We then em-
ploy the Krichevsky–Trofimov (KT) estimator (Krichevsky
& Trofimov, 1981), which sets the betting fraction as λt =∑t−1

i=1 ci/t = −
∑t−1

i=1 ĝi/t. The signed bet wt := λtWt−1

serves as the current estimate of the privatized (1 − α)-
quantile, denoted q̂1−α

t .

In this setup, we introduce two crucial parameters: the cumu-
lative wealth Wt and the betting ratio λt, both of which are
adaptively adjusted to balance exploration and exploitation
throughout the process. Our proposed algorithm eliminates
the need for manual hyperparameter tuning by automatically
adjusting these two parameters, while also integrating DP
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Algorithm 1 Online private conformal prediction set
Input: Data (Xt, Yt), t = 1, 2, . . .; Prediction model
f̂t(·); Privacy budget parameters ϵt > 0; α ∈ (0, 1);
Constant c > 0; S1 > 0
for t = 2, 3, . . . do

Estimate the privatized quantile :
q̂1−α
t ← Algorithm 2(ϵt−1, α, St−1, c);

Predict and compute the non-conformity score St =
Sf̂t

(Xt, Yt).
end for
Output:
Private prediction sets Ĉt(Xt) = {y : Sf̂t

(Xt, y) ≤
q̂1−α
t }

mechanisms. This design ensures both statistical validity
and privacy protection of the quantile estimates, allowing
the method to efficiently navigate the trade-off between ex-
ploration and exploitation, while maintaining privacy guar-
antees.

To ensure stability in the learning process under the influ-
ence of noise, we introduce a constant c as a lower bound
for the parameter Wt. This lower bound prevents Wt from
becoming too small or negative due to noise perturbations,
which are particularly impactful during the early iterations.
By enforcing this constraint, we facilitate a smooth initial-
ization phase, mitigate the disruptive effects of noise, and
ultimately support the reliable convergence of the algorithm.
Remark 4.2. We conduct a sensitivity analysis for the pro-
posed framework regarding the constant c. As shown in
Figure 1, we observe that, as c increases, the coverage rate
stabilizes, while the interval length grows more rapidly.
For smaller values of c, increasing c results in a moderate
widening of the interval and an improvement in coverage,
enhancing the practical effectiveness of the prediction set.
However, for larger values of c, further increases in interval
length yield diminishing returns in terms of coverage im-
provement, and may even reduce the information content
of the interval. Based on these findings, we recommend
choosing c within the range of 30 to 50, as this range strikes
a trade-off balance between improving coverage and main-
taining the interval’s informational value.

We present the pseudocode of our proposed method in Al-
gorithms 1–2. Algorithm 1 computes the non-conformity
scores, while Algorithm 2 dynamically updates the quantile
estimates in a privacy-preserving manner. Together, these al-
gorithms ensure that the conformal prediction sets maintain
valid coverage guarantees under differential privacy. The fi-
nal output is a private prediction set Ĉt(Xt) that effectively
balances privacy protection and predictive reliability.
Remark 4.3. When the predictive model is trained with
DP, the entire pipeline—from the data to the prediction set

Algorithm 2 Online differentially private quantile
Input: Privacy budget parameter ϵt−1 > 0; Miscoverage
level α ∈ (0, 1); St−1; c > 0
// Initialize parameters (only used on the first call, i.e.,
when t = 2)
Initialize: W0 = 1, λ1 = 0, q̂1−α

1 = 0
Compute gt−1 ∈ ∂ℓ1−α(q, St−1)|q=q̂1−α

t−1
as per Equa-

tion (2)
Perturb the gradient: ĝt−1 = gt−1+Zt−1, where Zt−1 is
the random noise according to different DP mechanisms
Update Wt−1:

Wt−1 = (Wt−2 − ĝt−1q̂
1−α
t−1 ) ∨ c

Update λt:

λt =
t− 1

t
λt−1 −

1

t
ĝt−1

Update q̂1−α
t :

q̂1−α
t = λtWt−1

Save updated state: Wt−1, λt, q̂
1−α
t

function Ĉt(·)—becomes DP. To assess the impact of this,
we compare the algorithm’s performance using both non-
private and DP-trained base models. The corresponding
results are reported in Appendix C.1.2 and Appendix C.2.3.

Theorem 4.4. After t updates, Algorithm 1 satis-
fies max1≤j≤t ϵj-DP, (max1≤j≤t ϵj , max1≤j≤t δj)-DP, or
max1≤j≤t µj-GDP, depending on the privacy mechanism
used, where t ≥ 1.

This theorem rigorously establishes the privacy guarantees
of Algorithm 1 under different DP mechanisms. Our exper-
imental results align well with the theoretical guarantees
stated in Theorem 4.4, as demonstrated in Appendix C.2.6.

Theorem 4.5. Let the target miscoverage level be fixed at
α ∈ (0, 1/2). Assume that the non-conformity scores are
bounded, such that St ∈ [0, D] for all t = 1, 2, . . . , where
D > 0 is a finite constant. Then, the proposed procedure
described in Algorithm 1 satisfies the following long-run
coverage guarantee:

lim
T→∞

∣∣∣∣∣ 1T
T∑

t=1

I
(
Yt ∈ Ĉt(Xt)

)
− (1− α)

∣∣∣∣∣ = 0. (6)

Theorem 4.5 establishes that the proposed method ensures
valid long-run coverage guarantees, regardless of the under-
lying predictive model and whether privacy constraints are
present. However, privately trained models often suffer re-
duced predictive accuracy due to injected noise. Additional
results in Appendix C.1.2 and Appendix C.2.3 show that
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Figure 1. Sensitivity analysis of different values of c on the cover-
age rate and interval length under the µ-GDP setting. The constant
c is varied from 1 to 200 in steps of 2. For clarity, the results
presented here are based on the Setting 2 dataset. The figures are
arranged from left to right, corresponding to Case 1 through Case 6.
Each simulation is run for T = 10,000 time steps.

such models typically yield larger non-conformity scores,
leading to wider prediction intervals.

5. Online differentially private conformal
quantile regression

In this section, we extend our framework to incorporate
CQR (Romano et al., 2019), enabling our method to effec-
tively address heteroscedasticity and improve its adaptability
to varying data volatility.

To begin, we recall the concept of the conditional distribu-
tion function, F (y|X = x), which represents the probability
that Y is less than or equal to a certain value y given that
X = x. The corresponding α-th conditional quantile func-
tion is denoted as qα(x). To construct the prediction set, we
define two quantiles: αlo = α/2 and αhi = 1− α/2, where
α ∈ (0, 1) represents the miscoverage level. The prediction
interval is then given as follows:

C(x) = [qαlo(x), qαhi(x)]

We estimate q̂αlo(x) and q̂αhi(x) using quantile regression
and the non-conformity score here is defined as

St := max {q̂αlo(Xt)− Yt, Yt − q̂αhi(Xt)}

for each time point t, which captures the discrepancy be-
tween the observed target value and the predicted quantiles,
reflecting how far the observation deviates from the expected
range. Using this non-conformity score, the prediction in-
terval for Yt at time t is constructed as:

Ĉt(Xt) =
[
q̂αlo(Xt)− q̂1−α

t , q̂αhi(Xt) + q̂1−α
t

]
.

We continue to compute gt using ∂ℓ1−α(q, St), preserving
the iterative structure of the algorithm. This approach dy-
namically adjusts the length of the prediction interval based
on the behavior of the non-conformity score St. When St

is less than q̂1−α
t , there are two possible cases: If St is

negative, it indicates that the observed value Yt falls within
the prediction interval Ĉt(Xt). If St is positive, it suggests
that Yt lies either to the left of q̂αlo(Xt) or to the right of
q̂αhi(Xt), but the distance between Yt and the nearest end-
point of the interval remains less than q̂1−α

t . In both cases,
it follows that Yt ∈ Ĉt(Xt). Consequently, the value of gt
will be positive, and the prediction interval will be moder-
ately reduced. Conversely, when St exceeds q̂1−α

t , Yt lies
outside the prediction interval, either to the left of q̂αlo(Xt)
or to the right of q̂αhi(Xt). This implies that the distance
between Yt and the nearest endpoint exceeds q̂1−α

t , meaning
Yt /∈ Ĉt(Xt). In this case, the value of gt will be negative,
and the algorithm will appropriately expand the interval
width.

This process allows our algorithm to adapt the length of the
prediction interval in real-time, ensuring that it is both accu-
rate and efficient. By dynamically adjusting the prediction
set based on the behavior of St, the algorithm maintains its
reliability and convergence, even in the presence of evolv-
ing data streams. This ensures that our method can provide
correct predictions while simultaneously preserving privacy
guarantees, making it suitable for applications in dynamic
and privacy-sensitive environments. The details of this algo-
rithm can be summarized in Algorithm 3 in the Appendix.

6. Experiments
In this section, we present an empirical evaluation of our
proposed method, comparing its performance with a non-
private baseline (Podkopaev et al., 2024), referred to as
”Original”. This experimental setup consists of two com-
ponents. First, we conduct simulations on synthetic data to
evaluate the performance of the proposed method. Second,
we assess the method’s effectiveness on real-world datasets.

Notice that the main contribution of this paper is the de-
velopment of a privacy-preserving method based on the
conformal prediction framework. Our focus is on how to
incorporate privacy protection into the conformal prediction
setting, rather than on designing or training the private pre-
dictor itself. Therefore, in the subsequent experiments, we
do not treat the private predictor as a necessary condition,
allowing us to isolate and highlight the core functionality
of the proposed method. For conciseness, the main text
focuses on the results obtained using the µ-GDP mechanism
(via Gaussian noise), while the results of using ϵ-DP with
Laplace noise, as well as detailed experiments on setting 1
and the ELEC2 dataset, are provided in the Appendix.
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6.1. Simulations

We evaluate performance via the following two data genera-
tion settings:

Setting 1: We generate N = 10, 000 samples (Xt, Yt),

Yt = X⊤
t β + εt, β = (1, 0.5, 1, 0, 0)⊤,

and consider two cases:

• Case 1: Xt
iid∼ N (0, I5), εt

iid∼ N (0, 1);

• Case 2: Xt
iid∼ N (0,Σ), where Σij = 0.5|i−j|, εt

iid∼
N (0, 1).

Setting 2: Similar to Setting 1, where the coefficients β(t)

change at t = 2500 and t = 7500:

β(1:2500) = (1, 0.5, 1, 0, 0)⊤,

β(2501:7500) = (0,−1,−0.5,−1, 0)⊤,
β(7501:10000) = (0, 0, 1, 0.5, 1)⊤.

We also consider the following cases:

• Case 1: Xt
iid∼ N (0, I5), εt

iid∼ N (0, 1);

• Case 2: Xt
iid∼ N (0,Σ), where Σij = 0.5|i−j|, εt

iid∼
N (0, 1);

• Case 3: Xt
iid∼ N (0, I5), εt

iid∼ t(3);

• Case 4: Xt
iid∼ N (0,Σ), where Σij = 0.5|i−j|, εt

iid∼
t(3);

• Case 5: Xt
iid∼ N (0, I5), εt = X2

t1 · ζt, where ζt
iid∼

N (0, 1);

• Case 6: Xt
iid∼ N (0,Σ), where Σij = 0.5|i−j|, εt =

X2
t1 · ζt, where ζt

iid∼ N (0, 1).

These cases are designed to systematically evaluate the ro-
bustness of our method along three key dimensions: (i)
covariate structure (independent vs. correlated designs), (ii)
noise distribution (Gaussian, heavy-tailed, and heteroscedas-
tic), and (iii) temporal dynamics (static vs. time-varying
coefficients). Setting 1 corresponds to a static environment
with fixed regression coefficients, while Setting 2 introduces
changepoints to emulate dynamic, nonstationary conditions.
This design ensures a comprehensive and realistic assess-
ment of our method under a wide range of practical scenar-
ios.

As shown in Tables 1–2 and Figure 2 and Figure 14, both the
proposed ODPCP method and ODPCQR demonstrate con-
sistent and reliable performance across the six different sim-
ulated scenarios. Specifically, both methods exhibit stable

Table 1. Long-Run Coverage
∑T

t=1 I{Yt ∈ Ĉt(Xt)}/T , and the
standard deviation (scaled by a factor of 1,000), are reported for
the Setting 2 dataset with µ-GDP, averaged over 200 independent
trials . To minimize the impact of early-stage noise and the initial
instability of the algorithm, the first 100 data points are excluded
from the analysis. C represents cases and M represents methods.

C/M Original µ = 2 µ = 1 µ = 0.5

1/CP 0.889 (0.29) 0.886 (5.3) 0.874 (10) 0.850 (19)
1/CQR 0.890 (1.2) 0.895 (4.5) 0.895 (8.9) 0.895 (18)

2/CP 0.888 (0.28) 0.886 (4.7) 0.874 (9.4) 0.841 (17)
2/CQR 0.891 (1.4) 0.895 (4.4) 0.895 (8.4) 0.896 (17)

3/CP 0.889 (0.32) 0.887 (5.3) 0.874 (10) 0.846 (18)
3/CQR 0.892 (1.6) 0.897 (4.4) 0.897 (8.6) 0.898 (17)

4/CP 0.888 (0.33) 0.886 (5.2) 0.872 (10) 0.834 (18)
4/CQR 0.893 (1.5) 0.896 (4.4) 0.895 (8.3) 0.895 (17)

5/CP 0.889 (0.37) 0.886 (5.3) 0.874 (10) 0.848 (18)
5/CQR 0.892 (1.7) 0.896 (4.2) 0.896 (8.2) 0.898 (17)

6/CP 0.888 (0.35) 0.886 (4.9) 0.874 (9.6) 0.839 (17)
6/CQR 0.891 (1.8) 0.895 (4.2) 0.895 (8.0) 0.895 (16)

coverage rates and appropriately scaled prediction interval
lengths, underscoring their adaptability and effectiveness in
tackling complex structures. These results highlight the ro-
bustness of both algorithms in providing privacy-preserving,
reliable prediction intervals under challenging conditions.

Figure 2 and Figure 14 illustrate that the trends of the pro-
posed private algorithms closely mirror those of the Origi-
nal algorithm. Specifically, when the privacy parameter µ
is large (indicating weaker privacy protection), the perfor-
mance of the private algorithms becomes nearly indistin-
guishable from that of the Original algorithm, with coverage
rates and prediction interval lengths aligning closely. This
suggests that as the noise introduced by the privacy mecha-
nism diminishes, its effect on the algorithm’s performance
becomes negligible. Even with stronger privacy protection
(e.g., µ = 0.5), the private algorithms maintain a similar
trend to the Original algorithm, albeit with greater variabil-
ity in coverage and interval width, indicating that a balance
between privacy and prediction accuracy is being struck.
Meanwhile, at changepoints, both the coverage rates and
prediction interval lengths experience significant fluctua-
tions, with coverage rates sharply decreasing and interval
lengths expanding considerably. Despite these disruptions,
both algorithms promptly stabilize, demonstrating their re-
silience. As the value of µ decreases (indicating stronger pri-
vacy protection), the coverage rates of our proposed method
decrease, and the prediction interval lengths become larger,
accompanied by more pronounced fluctuations. This un-
derscores the growing effect of noise on the algorithm’s
stability as the level of privacy protection increases.

In scenarios characterized by high noise and strong privacy
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Table 2. Long-Run Width and standard deviation (scaled by 10)
are reported for the Setting 2 dataset with µ-GDP, consistent with
Table 1.

C/M Original µ = 2 µ = 1 µ = 0.5

1/CP 5.18 (0.45) 5.23 (0.95) 5.46 (2.5) 7.69 (23)
1/CQR 5.11 (0.46) 5.18 (0.85) 5.25 (1.7) 5.90 (12)

2/CP 6.49 (0.60) 6.56 (1.1) 6.84 (3.1) 9.68 (33)
2/CQR 6.39 (0.68) 6.48 (1.0) 6.55 (1.9) 7.24 (13)

3/CP 6.22 (0.60) 6.32 (1.4) 6.67 (3.8) 9.93 (40)
3/CQR 6.22 (0.72) 6.33(1.3) 6.42 (2.4) 7.08 (10)

4/CP 7.45 (0.77) 7.53 (1.5) 7.88 (3.8) 11.48 (58)
4/CQR 7.40 (0.79) 7.48 (1.3) 7.55 (2.4) 8.28 (27)

5/CP 5.81 (0.87) 5.90 (1.8) 6.21 (4.5) 8.95 (61)
5/CQR 5.85 (1.1) 5.96 (1.6) 6.05 (2.8) 7.08 (10)

6/CP 7.04 (0.87) 7.13 (1.9) 7.47 (4.6) 10.26 (30)
6/CQR 7.04 (1.1) 7.16 (1.6) 7.24 (2.9) 7.86 (9.8)

protection, the proposed ODPCQR demonstrates superior
performance compared to ODPCP, exhibiting both higher
coverage rates and shorter prediction intervals. This indi-
cates that ODPCQR is more adaptable to changes in µ. No-
tably, the coverage rates of the proposed ODPCQR between
the two changepoints slightly exceed the target coverage
rate of 0.9. Furthermore, its coverage even surpasses that
of the non-private algorithm. This improvement can be at-
tributed to the compensatory effect of the larger prediction
intervals induced by the added noise, which helps to ensure
better coverage. In conclusion, the simulation results affirm
that both algorithms deliver consistent and reliable perfor-
mance in the complex data environment of Setting 2. They
exhibit remarkable adaptability and robustness, effectively
handling a variety of challenging scenarios. These outcomes
highlight the capacity of the proposed methods to maintain
performance even under conditions of data variability and
noise.

Moreover, our methods exhibit negligible sensitivity to the
choice of initial parameters (λ1,W0), as demonstrated in
Figure 16, where the coverage and interval width curves
under different initializations are nearly indistinguishable.
In addition, we compare our method with an offline private
baseline—Private Prediction Sets (DPCP) (Angelopoulos
et al., 2022). As shown in Table 11, both methods achieve
comparable coverage. However, ODPCP produces signifi-
cantly narrower prediction sets, highlighting its efficiency
in the online setting under privacy constraints.

6.2. PAMAP2 physical activity monitoring dataset

In this subsection, we assess the performance of the pro-
posed method using the PAMAP2 physical activity moni-
toring dataset (Reiss, 2012). This dataset includes measure-
ments from 9 subjects engaged in various physical activities,

Figure 2. Simulation results for Setting 2 (Cases 1, 3, and 5, top
to bottom) with µ-GDP: The mean prediction interval coverage
and width of our proposed algorithms and the Original algorithm
are computed over 200 independent trials. For stability, the first
200 time points are excluded from the analysis, and the displayed
curves are smoothed using a rolling average with a window size of
50 time points.

with data recorded from three inertial measurement units
(IMUs) placed on the wrist, chest, and ankle, as well as
heart rate (HR) monitoring data. For the analysis, we focus
on the heart rate data from subject 102 as the target response
variable. Heart rate is a highly individualized physiological
signal that reflects an individual’s health status and activity
levels, making it particularly sensitive and critical in health-
related contexts. Consequently, safeguarding the privacy of
such data is essential for real-world applications.

We refer to our prediction strategy as adaptive lagged fea-
ture regression (ALFR), where a regression model is re-
trained at each time step using a recent history of lagged
features to capture short-term temporal dependencies. In our
implementation, we instantiate ALFR using a third-order
autoregressive (AR(3)) model, following the setup of An-
gelopoulos et al. (2023). This design allows the model to
adapt to non-stationary physiological signals.

In terms of coverage, we observe that the rolling coverage
of our proposed algorithm improves as the privacy protec-
tion parameter µ decreases. Specifically, when µ = 1, the
rolling coverage exhibits the highest volatility, while the
ODPCP variant without privacy noise achieves minimal
volatility and stabilizes around the target confidence level
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Figure 3. PAMAP2 dataset: The upper panel displays the rolling
coverage and rolling width, each averaged over a rolling window
of 200 time points. The lower panel shows the long-run cover-
age,

∑T
t=1 I{Yt ∈ Ĉt(Xt)}/T and the long-run interval width,

both averaged over 200 repetitions. For stability, the first 2000
time points are excluded from the analysis. The displayed curves
are smoothed using a rolling average with a window size of 50
time points. “Non-private” refers to the version of our proposed
ODPCP algorithm without privacy noise.

of 1 − α = 0.9. In contrast, the rolling coverage of the
Original algorithm shows four distinct drops: the first two
reduce coverage to approximately 0.3, while the subsequent
two drops lower it to around 0.7. These fluctuations are
closely associated with sudden changes in the data, as de-
picted in Figure 4, where sharp shifts at corresponding time
points lead to the failure of the Original algorithm to adjust
promptly, causing a sharp decline in coverage. However, the
magnitude of the latter two drops is notably smaller than the
first two, as the algorithm becomes more stable over time
and better accommodates abrupt changes in the data. In
comparison, our proposed method incorporates a truncation
parameter c, which helps to stabilize coverage during data
shifts. In terms of long-run coverage, all methods eventually
converge to similar levels, indicating comparable steady-
state performance.

Regarding interval width, the Original algorithm outper-
forms our proposed algorithm, with the rolling interval
width exhibiting the highest stability, and the long-run inter-
val width ultimately converging to the smallest value. On
the PAMAP2 dataset, our algorithm follows a similar trend
as observed in previous datasets: the perturbation intro-
duced by the privacy mechanism significantly increases the
volatility of the interval width, resulting in a larger long-run
interval width. This indicates that, while the privacy protec-
tion mechanism enhances the stability of coverage, it comes
at the cost of wider prediction intervals, thereby reducing
the precision of the predictions. To provide a more intuitive

Figure 4. The trend of heart rate variation

understanding of the resulting prediction intervals for heart
rate, we include a visualization in Figure 21. Additional
classification results on the PAMAP2 dataset are provided
in Appendix C.4 to further demonstrate the versatility of our
method.

7. Conclusion
In this paper, we introduced the online differentially private
conformal prediction framework, which is designed to gen-
erate dynamic, model-free private prediction sets while en-
suring robust privacy guarantees. Our approach operates as
a one-pass algorithm, which eliminates the need for storing
or re-accessing historical data, making it particularly well-
suited for real-time, privacy-sensitive applications. More-
over, we extended our framework to incorporate conformal
quantile regression, enabling the construction of adaptive
prediction intervals in heteroscedastic settings. To assess
the effectiveness of our proposed framework, we conducted
extensive experiments, including both simulations and real-
world case studies using the ELEC2 and PAMAP2 datasets.
The results showed that our method provides reliable predic-
tion set coverage, while effectively preserving privacy, even
in the face of data distribution shifts and evolving patterns
over time.
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Appendix

A. Algorithm of online differentially private conformal quantile
We extend our framework to incorporate Conformal Quantile Regression. The algorithm generates valid conformal quantile
regression sets Ĉt(Xt) that simultaneously guarantee differential privacy and coverage probability.

Algorithm 3 Online differentially private conformal quantile regression set
1: Input: Data (Xt, Yt), t = 1, 2, . . .; Prediction models q̂αlo(·) and q̂αhi(·); Privacy budget parameters ϵt > 0; α ∈ (0, 1);

Constant c > 0; S1 > 0
2: for t = 2, 3, . . . do
3: Estimate the privatized quantile:
4: q̂1−α

t ← Algorithm 2(ϵt−1, α, St−1, c)
5: Predict and compute the non-conformity score:
6: St = max {q̂αlo(Xt)− Yt, Yt − q̂αhi(Xt)}
7: end for
8: Output: Private prediction sets:

Ĉt(Xt) =
[
q̂αlo(Xt)− q̂1−α

t , q̂αhi(Xt) + q̂1−α
t

]
.

B. Proofs
Proof of Theorem 4.4. For the sake of simplicity, we demonstrate that Algorithm 1 satisfies max1≤j≤t ϵj-DP when using
the Laplace mechanism. A similar argument holds for other DP mechanisms.

To make the argument more intuitive, we rewrite the update rule in Algorithm 2 as:

q̂1−α
t+1 =

(
t

t+ 1
λt −

1

t+ 1
ĝt

)
·
(
Wt−1 −

(
ĝtq̂

1−α
t

)
∨ c
)
,

where the privatized gradient is given by

ĝt = ∂ℓ1−α(q, St)
∣∣
q=q̂1−α

t
+ Zt, Zt ∼ Laplace

(
0,

∆1(∂ℓ1−α)

ϵt

)
.

For t = 2, the initial estimate q̂1−α
1 is deterministic, and thus the output q̂1−α

2 is ϵ1-DP by the standard Laplace mechanism
and the post-processing property in Lemma 3.6. Since Algorithm 1 accesses the private quantile estimates only through
Algorithm 2, its output constitutes a post-processing of differentially private computations. Hence, the prediction set Ĉ2(X2)
is also ϵ1-DP.

For t = 3, since the update depends only on the disjoint data point S2 and the previous output q̂1−α
2 , which is already private.

By the parallel composition property in Lemma 3.6, the overall mechanism remains max{ϵ1, ϵ2}-DP. Applying the same
argument inductively yields that Algorithm 1 is max1≤j≤t ϵj-DP over t update steps.

Proof of Theorem 4.5. 1. For simplicity, we prove this theorem in the context of µ-GDP, noting that similar arguments can
be extended to other mechanisms.In long-term iterations, the wealth process Wt, inspired by the Kelly criterion, exhibits a
growth trend to asymptotic infinity even in adversarial environments. Consequently, there exists a time T after which the
practical constraint of c naturally vanishes, leaving the optimization process governed by the adaptive mechanism(Orabona
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& Pál, 2016; Cutkosky & Orabona, 2018). For theoretical simplicity, we omit c in our analysis. Observe that Zi follows

a normal distribution, i.e., Zi ∼ N

(
0,
(

∆2(h)
µi

)2)
for i ≥ 1. Under the assumption that the nonconformity scores are

bounded, specifically, Si ≤ D for all i = 1, 2, . . . , the following statements hold:

(a) Suppose that for some i ≥ 1, the predicted radius q̂1−α
i exceeds the upper bound D, i.e., q̂1−α

i > D. Given that
q̂1−α
i = λi ·Wi−1 and the wealth is nonnegative (Wi−1 ≥ 0), it follows that λi > 0. Moreover, the corresponding

(sub)gradient is given by
gi = α− I{Yi /∈ Ĉi(Xi)} = α− I{Si > q̂1−α

i } = α,

and the perturbed gradient is
ĝi = α+ Zi.

If ĝi < 0, then ,
Wi = Wi−1(1− λiĝi) > Wi−1.

It is known that,

λi+1 =
i

i+ 1
λi −

1

i+ 1
ĝi.

At this stage, it is unclear whether λi is greater or smaller than λi+1, making it impossible to determine the relationship
between q̂1−α

i+1 and q̂1−α
i .

If ĝi > 0, then, conversely,
Wi = Wi−1(1− λiĝi) < Wi−1.

We thus obtain:
λi+1 =

i

i+ 1
λi −

1

i+ 1
ĝi.

At this point, we can infer that λi+1 < λi, which implies that q̂1−α
i+1 > q̂1−α

i , resulting in:

q̂1−α
i+1 = λi+1Wi < q̂1−α

i .

Consequently, since α > 0, the probability that ĝ > 0 exceeds 1
2 . As a result, the overall trend is decreasing, which

implies that the predicted radius eventually stabilizes and remains bounded by D.

(b) Suppose that for some i ≥ 1, we have q̂1−α
i ≥ 0 but q̂1−α

i+1 < 0. This implies that there must exist some k such that
q̂1−α
i+k > 0. Indeed, since si ≥ 0, it follows that λi ≥ 0, whereas q̂1−α

i+1 < 0 implies that λi+1 < 0. Thus, we conclude:

0 > λi+1 =
i

i+ 1
λi −

1

i+ 1
ĝi,

which implies that ĝi > 0. Given that Si+1 ≥ 0, it follows that:

gi+1 = α− I{Si+1 > q̂1−α
i+1 } = α− 1, ĝi+1 = α− 1 + Zi+1.

Consequently, we derive:

λi+2 =
i+ 1

i+ 2
λi+1 −

1

i+ 2
ĝi+1

=
i+ 1

i+ 2
· i

i+ 1
λi −

i+ 1

i+ 2
· 1

i+ 1
ĝi −

1

i+ 2
ĝi+1

=
i

i+ 2
λi −

1

i+ 2
(ĝi + ĝi+1).

=
i

i+ 2
λi −

1

i+ 2
(2α− 1 + Zi + Zi+1) or =

i

i+ 2
λi −

1

i+ 2
(2α− 2 + Zi + Zi+1).

In either case, we obtain,

gi + gi+1 = 2α− 1 < 0 and gi + gi+1 = 2α− 2 < 0,

14
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assuming α < 0.5 as a mild condition. Thus, λi generally exhibits an increasing trend. We conclude that there exists
some k such that

λi+k > 0,

and hence,
q̂1−α
i+k > 0.

2. Since for any t ≥ 1, Wt = 1−
∑t

i=1 q̂
1−α
i ĝi ≥ 0, Hence,

t∑
i=1

q̂1−α
i ĝi ≤ 1.

Therefore,

t∑
i=1

ĝiq̂
1−α
i =

t∑
i=1

(gi + Zi)q̂
1−α
i · 1{q̂1−α

i > D}+
t∑

i=1

(gi + Zi)q̂
1−α
i · 1{q̂1−α

i ∈ [0, D]}

+

t∑
i=1

(gi + Zi)q̂
1−α
i · 1{q̂1−α

i < 0}

=

t∑
i=1

giq̂
1−α
i · 1{q̂1−α

i > D}+
t∑

i=1

giq̂
1−α
i · 1{q̂1−α

i ∈ [0, D]}

+

t∑
i=1

giq̂
1−α
i · 1{q̂1−α

i < 0}+
t∑

i=1

Ziq̂
1−α
i · 1{q̂1−α

i > D}

+

t∑
i=1

Ziq̂
1−α
i · 1{q̂1−α

i ∈ [0, D]}+
t∑

i=1

Ziq̂
1−α
i · 1{q̂1−α

i < 0}.

We know if q̂1−α
i > D, then we have that gi = α > 0, and if q̂1−α

i < 0, then gi = α− 1 < 0. Hence,

t∑
i=1

ĝiq̂
1−α
i ≥

t∑
i=1

giq̂
1−α
i · 1{q̂1−α

i ∈ [0, D]}+
t∑

i=1

Ziq̂
1−α
i · 1{q̂1−α

i > D}

+

t∑
i=1

Ziq̂
1−α
i · 1{q̂1−α

i ∈ [0, D]}+
t∑

i=1

Ziq̂
1−α
i · 1{q̂1−α

i < 0}

≥ −Dt+

t∑
i=1

Ziq̂
1−α
i .

We have shown that −Dt+
∑t

i=1Ziq̂
1−α
i ≤

∑t
i=1 q̂

1−α
i gi ≤ 1, and hence,∣∣∣∣∣

t∑
i=1

q̂1−α
i gi

∣∣∣∣∣ ≤ max

{
1, Dt+

∣∣∣∣∣
t∑

i=1

Ziq̂
1−α
i

∣∣∣∣∣
}
≤ Dt+

∣∣∣∣∣
t∑

i=1

Ziq̂
1−α
i

∣∣∣∣∣+ 1. (7)

Next, we bound the distance between the consecutive predicted radii. Note that:

q̂1−α
t+1 = −

∑t
i=1 ĝi
t+ 1

(
1−

t∑
i=1

ĝiq̂
1−α
i

)
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= −
∑t

i=1 ĝi
t+ 1

(
1−

t−1∑
i=1

ĝiq̂
1−α
i

)
+ ĝtq̂

1−α
t

∑t
i=1 ĝi
t+ 1

= −
∑t−1

i=1 ĝi
t+ 1

(
1−

t−1∑
i=1

ĝiq̂
1−α
i

)
− ĝt

t+ 1

(
1−

t−1∑
i=1

ĝiq̂
1−α
i

)
+

ĝtq̂
1−α
t

∑t
i=1 ĝi

t+ 1

=
t

t+ 1
q̂1−α
t +

1

t+ 1

(
−ĝt + ĝt

t−1∑
i=1

ĝiq̂
1−α
i + ĝtq̂

1−α
t

t∑
i=1

ĝi

)
,

Thus,

q̂1−α
t+1 − q̂1−α

t =
1

t+ 1

(
−q̂1−α

t − ĝt + ĝt

t−1∑
i=1

ĝiq̂
1−α
i + ĝtq̂

1−α
t

t∑
i=1

ĝi

)
.

q̂1−α
t+1 − q̂1−α

t =
1

t+ 1

(
− q̂1−α

t − gt −Zt + ĝt

t−1∑
i=1

ĝiq̂
1−α
i

+ gtq̂
1−α
t

t∑
i=1

gi + gtq̂
1−α
t

t∑
i=1

Zi

+ Ztq̂
1−α
t

t∑
i=1

Zi + Ztq̂
1−α
t

t∑
i=1

gi

)
.

It then follows that:∣∣q̂1−α
t+1 − q̂1−α

t

∣∣ ≤ 1

t+ 1

∣∣∣∣∣− q̂1−α
t − gt + ĝt

t−1∑
i=1

ĝiq̂
1−α
i + gtq̂

1−α
t

t∑
i=1

gi

∣∣∣∣∣
+

1

t+ 1

∣∣∣∣∣−Zt + gtq̂
1−α
t

t∑
i=1

Zi + Ztq̂
1−α
t

t∑
i=1

Zi + Ztq̂
1−α
t

t∑
i=1

gi

∣∣∣∣∣.
Combining this with the fact that s1 = 0 ∈ [0, D], the result from step 1, and (7), we obtain:

|q̂1−α
t+1 − q̂1−α

t | ≤ 1

t+ 1

(
D + 1 +D(t− 1) +

∣∣∣∣∣
t−1∑
i=1

Ziq̂
1−α
i

∣∣∣∣∣+ 1 +Dt

)

+
1

t+ 1

∣∣∣∣Zt + gtq̂
1−α
t

t∑
i=1

Zi + Ztq̂
1−α
t

t∑
i=1

Zi + Ztq̂
1−α
t

t∑
i=1

gi

∣∣∣∣
≤ 2D + 1 +

1

t+ 1

(
|Zt|+

∣∣∣∣∣gtq̂1−α
t

t∑
i=1

Zi

∣∣∣∣∣+
∣∣∣∣∣Ztq̂

1−α
t

t∑
i=1

Zi

∣∣∣∣∣
+

∣∣∣∣∣Ztq̂
1−α
t

t∑
i=1

gi

∣∣∣∣∣+
∣∣∣∣∣
t−1∑
i=1

Ziq̂
1−α
i

∣∣∣∣∣
)
.

we can directly apply the Cauchy-Schwarz inequality to absolute values and squares, namely:∣∣∣∣∣
t−1∑
i=1

Ziq̂
1−α
i

∣∣∣∣∣ ≤
(

t−1∑
i=1

Z2
i

) 1
2
(

t−1∑
i=1

(q̂1−α
t )2

) 1
2

.

16



Online Differentially Private Conformal Prediction for Uncertainty Quantification

Thus,

≤ 2D + 1 +
1

t+ 1

(∣∣∣∣Zt

∣∣∣∣+D

∣∣∣∣ t∑
i=1

Zi

∣∣∣∣+D

∣∣∣∣Zt

t∑
i=1

Zi

∣∣∣∣+D

∣∣∣∣Zt

t∑
i=1

gi

∣∣∣∣+ ((t− 1)
1
2D
)(t−1∑

i=1

Z2
i

) 1
2 )

.

|q̂1−α
t | ≤ 3D + 1 +

1

t+ 1

(∣∣∣∣Zt

∣∣∣∣+D

∣∣∣∣ t∑
i=1

Zi

∣∣∣∣+D

∣∣∣∣Zt

t∑
i=1

Zi

∣∣∣∣+D

∣∣∣∣Zt

t∑
i=1

gi

∣∣∣∣+ ((t− 1)
1
2D
)(t−1∑

i=1

Z2
i

) 1
2 )

.

We analyze the asymptotic behavior of each term as t→∞.

i. Constant term: The term 3D + 1 is independent of t and remains constant.

ii. The term 1
t+1 |Zt|:

Since Zt ∼ N

(
0,
(

∆2(h)
µt

)2)
, we have

E[|Zt|] =
∆2(h)

µt

√
2

π
.

Thus, the expectation of this term is
1

t+ 1
E[|Zt|] = O

(
1

t+ 1

)
,

which vanishes as t→∞.

iii. The term 1
t+1D

∣∣∣∑t
i=1Zi

∣∣∣:
Notice that the expectation satisfies

E

[∣∣∣∣∣
t∑

i=1

Zi

∣∣∣∣∣
]
= O(

√
t).

Thus, we obtain
1

t+ 1
DO(

√
t) = O

(
D
√
t

t+ 1

)
.

As t→∞, this term vanishes at a rate of O(D/
√
t).

iv. The term 1
t+1D

∣∣∣Zt

∑t
i=1Zi

∣∣∣:
Using the Cauchy-Schwarz inequality:

E

[∣∣∣∣∣Zt

t∑
i=1

Zi

∣∣∣∣∣
]
≤

√√√√√E[Z2
t ] · E

( t∑
i=1

Zi

)2
 = O

(√
t
)
.

Thus, the term becomes
1

t+ 1
DO

(√
t
)
= O

(
D√
t

)
.

v. The term 1
t+1D

∣∣∣Zt

∑t
i=1 gi

∣∣∣:
Given |gi| ≤ 1 for all i, we have

∑t
i=1 gi = O(t). Then:

E

[∣∣∣∣∣Zt

t∑
i=1

gi

∣∣∣∣∣
]
≤ E[|Zt|] ·O(t) = O(t).
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Thus,
1

t+ 1
DO(t) = O(D).

vi. The term 1
t+1 (t− 1)

1
2D
(∑t−1

i=1 Z2
i

) 1
2

:

By Jensen’s inequality and
∑t−1

i=1 Z2
i ∼

(
∆2(h)
µ1

)2
χ2
t−1:

E

(t−1∑
i=1

Z2
i

) 1
2

 = O(
√
t),

yielding
1

t+ 1
O(D

√
t) = O(D).

Combining all terms:

|q̂1−α
t | ≤ 3D + 1 +O

(
D

t+ 1

)
+O

(
D√
t

)
+O

(
D√
t

)
+O(D) +O(D).

As t→∞, all vanishing terms disappear, leaving:

|q̂1−α
t | = O(D).

Thus, |q̂1−α
t | asymptotically remains bounded by O(D). Thus, as t→∞, the growth rate of |q̂1−α

t | stabilizes at the order
of O(D), indicating that |q̂1−α

t | remains bounded.

3. Assume that the long-term coverage guarantee fails, i.e., there exists κ > 0 such that:

lim sup
T→∞

∣∣∣∣∣ 1T
T∑

t=1

I{Yt /∈ Ĉt(Xt)} − α

∣∣∣∣∣ ≥ κ.

From the definition of gt = α− I{Yt /∈ Ĉt(Xt)} and ĝt = gt + Zt, we have:

1

T

T∑
t=1

I{Yt /∈ Ĉt(Xt)} = α− 1

T

T∑
t=1

gt.

Substituting this into the coverage failure condition:

lim sup
T→∞

∣∣∣∣∣− 1

T

T∑
t=1

gt

∣∣∣∣∣ ≥ κ =⇒ lim sup
T→∞

1

T

∣∣∣∣∣
T∑

t=1

gt

∣∣∣∣∣ ≥ κ.

Since ĝt = gt + Zt, we can write:
1

T

T∑
t=1

ĝt =
1

T

T∑
t=1

gt +
1

T

T∑
t=1

Zt.

By the Law of Large Numbers for zero-mean noise (E[Zt] = 0, Var(Zt) <∞):

1

T

T∑
t=1

Zt → 0 almost surely as T →∞.

Thus, the coverage failure implies:

lim sup
T→∞

1

T

∣∣∣∣∣
T∑

t=1

ĝt

∣∣∣∣∣ ≥ κ.
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and then

q̂1−α
T+1 = λT+1WT =

1

T + 1

∣∣∣∣∣
T∑

t=1

ĝt

∣∣∣∣∣ ·WT .

If 1
T

∣∣∣∑T
t=1 ĝt

∣∣∣ ≥ κ infinitely often, then for such T :

|q̂1−α
T+1| ≥

T

T + 1
κ ·WT .

From the wealth bound WT ≥ 1
K

√
T
exp

(
T
4

(
1
T

∑T
t=1 ĝt

)2)
(Orabona & Pál, 2016):

|q̂1−α
T+1| ≥

κ
√
T

K(T + 1)
exp

(
T

4
κ2

)
= O

(
1√
T

exp

(
Tκ2

4

))
.

This implies |q̂1−α
T+1| → ∞ as T →∞, contradicting the boundedness of st derived earlier. We have completed the proof of

this theorem.

C. Additional experiments
C.1. Simulation results for Setting 1

In this subsection, we provide simulation results for Setting 1.

C.1.1. SENSITIVITY ANALYSIS RESULTS FOR c

In Figure 5, we analyze the variations in coverage and interval length for different values of c with µ-GDP. These findings
are in agreement with the results presented in the main text.

Figure 5. We simulate the coverage rate and interval length for different values of c under the µ-GDP setting. The value of c ranges from 1
to 200 with an interval of 2. The results are based on the Setting 1 dataset. From left to right, the figures correspond to Case 1 and Case 2.
For each case, we set the step length t to 10000.

In Figure 6, we analyze the variations in coverage and coverage length for different values of c with ϵ-DP. Compared to the
results obtained with the µ-GDP, both exhibit nearly identical trends.
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Figure 6. We simulate the coverage rate and interval length for different values of c under the ϵ-DP setting. The value of c ranges from 1
to 200 with an interval of 2. The results are based on the Setting 1 dataset. From left to right, the figures correspond to Case 1 and Case 2.
For each case, we set the step length t to 10000.

Table 3. Long-run coverage
∑T

t=1 I{Yt ∈ Ĉt(Xt)}/T for the Setting 1 dataset, averaged over 200 independent trials with Gaussian
noise, using both non-private and private base models. The first 50 data points are omitted to reduce the impact of early-stage instability.

Case Base Model Original µ = 2 µ = 1 µ = 0.5

1 SGD 0.890 0.887 0.876 0.866
LDPSGD 0.890 0.888 0.875 0.857

2 SGD 0.890 0.887 0.876 0.866
LDPSGD 0.890 0.888 0.874 0.856

C.1.2. ADDITIONAL SIMULATION RESULTS FOR THE PRIVATELY TRAINED MODEL

We apply SGD and LDPSGD as the non-private and private base models, respectively, within the ODPCP framework, and
present the corresponding results.

In Table 3, Table 4, and Figure 7, we report the experimental results of ODPCP under the µ-GDP mechanism, using both
non-private and private base models. The results show that the injected noise in LDPSGD leads to larger non-conformity
scores compared to SGD, resulting in wider prediction intervals. Nevertheless, the coverage rate remains nearly unaffected.

In Table 5, Table 6, and Figure 8, we report the experimental results of ODPCP under the ϵ-DP mechanism. The results are
nearly identical to those under µ-GDP. However, due to the larger magnitude of Laplace noise, the overall fluctuations in
coverage and interval width are slightly greater than those observed with Gaussian noise.

C.1.3. COMPARISON BETWEEN ODPCP AND ODPCQR

In Table 7, Table 8, and Figure 9, we present the experimental results of ODPCP and ODPCQR under the µ-GDP noise
mechanism. Regarding coverage, unlike Setting 2, neither algorithm experiences a sharp decline due to the absence of
changepoints, instead maintaining coverage levels around 1− α = 0.9 with minor fluctuations. In terms of interval length,
both algorithms initially exhibit larger fluctuations but stabilize over time, demonstrating strong performance with stable
and consistent prediction intervals in the later stages.

In Table 9, Table 10, and Figure 10, we present the experimental results of ODPCP and ODPCQR under the ϵ-DP noise
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Table 4. Long-run width for the Setting 1 dataset, averaged over 200 independent trials with Gaussian noise, using both non-private and
private base models. The first 50 data points are omitted to reduce the impact of early-stage instability.

Case Base Model Original µ = 2 µ = 1 µ = 0.5

1 SGD 3.23 3.26 3.42 4.93
LDPSGD 5.05 5.16 5.43 7.90

2 SGD 3.23 3.26 3.42 4.92
LDPSGD 4.93 5.03 5.29 7.69

Table 5. Long-run coverage
∑T

t=1 I{Yt ∈ Ĉt(Xt)}/T for the Setting 1 dataset, averaged over 200 independent trials with Laplace noise,
using both non-private and private base models. The first 100 data points are omitted to reduce the impact of early-stage instability.

Case Base Model Original ϵ = 2 ϵ = 1 ϵ = 0.5

1 SGD 0.890 0.884 0.869 0.866
LDPSGD 0.890 0.884 0.859 0.852

2 SGD 0.890 0.885 0.869 0.866
LDPSGD 0.890 0.884 0.859 0.853

mechanism. Since Laplace noise has a heavier tail distribution compared to Gaussian noise, the resulting perturbations are
more substantial, leading to slightly more pronounced fluctuations in coverage. Similarly, in terms of interval length, the
fluctuations are more noticeable under Laplace noise, yet the model still exhibits a relatively high level of convergence.

C.2. Additional simulation results for Setting 2

Here, we present additional simulation results for Setting 2.

C.2.1. SENSITIVITY ANALYSIS RESULTS FOR c

In Figure 11 we analyze the variations in coverage and interval length for different values of c. These findings are in
agreement with the results presented in the main text.

C.2.2. COMPARISON BETWEEN ODPCP AND DPCP

DPCP is an offline approach for constructing prediction sets under differential privacy, requiring access to the full calibration
dataset. However, due to its static model, it is not suitable for streaming data or distribution shifts, such as changepoints.
As shown in Table 11, while DPCP achieves slightly higher coverage, our method (ODPCP) consistently yields narrower
prediction intervals, particularly under strong privacy constraints. This highlights the favorable privacy–efficiency trade-off
offered by ODPCP in the online setting.

C.2.3. ADDITIONAL SIMULATION RESULTS FOR THE PRIVATELY TRAINED MODEL

We apply SGD and LDPSGD as the non-private and private base models, respectively, within the ODPCP framework, and
present the corresponding results.

Table 12, Table 13, and Figure 12 present the simulation results for Setting 2 with µ-GDP, reporting the coverage rate and
interval length for the ODPCP algorithm under six different scenarios. These results are based on differentially private and
non-private base models.

The experimental findings indicate that the injected noise in LDPSGD leads to larger non-conformity scores compared to
SGD, resulting in wider prediction intervals. Nevertheless, the coverage rate remains nearly unaffected.

Table 14,Table 15 and Figure 13 present the simulation results for Setting 2 with ϵ−DP , showing the coverage rate and
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Figure 7. Simulation results for Setting 1 with µ-GDP. The mean prediction interval coverage and width of our proposed algorithms, along
with the Original version, are evaluated over 200 independent trials across two cases, using both non-private and private base models. To
ensure stability, the first 200 time points are excluded from the analysis, and the displayed curves are smoothed using a rolling average
with a window size of 50.

interval length for the ODPCP algorithm under six different scenarios, using both non-private and private base models.
The results are nearly identical to those under µ-GDP. However, due to the larger magnitude of Laplace noise, the overall
fluctuations in coverage and interval width are slightly greater than those observed with Gaussian noise.

C.2.4. COMPARISON BETWEEN ODPCP AND ODPCQR

Figure 14 presents the complementary results for Cases 2, 4, and 6, which, together with Figure 2 (Cases 1, 3, and 5),
constitute the complete results of Setting 2 under the µ-GDP mechanism. Table 16 ,Table 17 and Figure 15 present the
simulation results for Setting 2 with ϵ−DP . Compared to the results with Gaussian noise, the Laplace noise results exhibit
greater fluctuations in coverage rate and interval length. However, in vertical comparison, the results are nearly identical to
those with Gaussian noise, and we will not elaborate further; please refer to the main text.

C.2.5. ROBUSTNESS TO INITIALIZATION

We evaluate the sensitivity of our method to the choice of initialization parameters (λ1,W0). As shown in Figure 16, the
performance remains virtually unchanged across a wide range of initialization settings. This confirms that the algorithm is
highly robust and does not rely on careful tuning of initial values.
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Table 6. Long-run width for the Setting 1 dataset, averaged over 200 independent trials with Laplace noise, using both non-private and
private base models. The first 100 data points are omitted to reduce the impact of early-stage instability.

Case Base Model Original ϵ = 2 ϵ = 1 ϵ = 0.5

1 SGD 3.22 3.30 3.80 7.65
LDPSGD 5.05 5.22 5.93 12.43

2 SGD 3.22 3.30 3.80 7.71
LDPSGD 4.93 5.09 5.80 12.30

Table 7. Long-Run Coverage
∑T

t=1 I{Yt ∈ Ĉt(Xt)}/T , and the standard deviation (scaled by a factor of 1,000), are reported for the
Setting 1 dataset with Gaussian noise, averaged over 200 independent trials .To minimize the impact of early-stage noise and the initial
instability of the algorithm, the first 100 data points are excluded from the analysis.

Case Method Original µ = 2 µ = 1 µ = 0.5

1 CP 0.890(0.26) 0.888 (5.1) 0.877(10) 0.867 (19)
CQR 0.900 (1.7) 0.900(4.7) 0.900(9.3) 0.899(19)

2 CP 0.890 (0.27) 0.888(5.2) 0.877 (10) 0.867(19)
CQR 0.900 (2.0) 0.900(4.6) 0.899(9.2) 0.899(14)

C.2.6. EFFECT OF DYNAMIC PRIVACY BUDGET ALLOCATION

As shown in Table 18, the random allocation of per-step privacy budgets (µt ∼ U(0.5, 2.0)) yields nearly identical long-run
coverage and interval width to the fixed high-budget case (µt = 2.0) across all synthetic settings. This indicates that
the maximum value of µt effectively dominates the resulting predictive uncertainty. In parallel, Figure 17 illustrates the
asymptotic stability of ODPCP under increasing time horizons (T = 104 to 105) across three configurations. The random-µ
trajectory closely follows the fixed-high-µ baseline, further confirming that long-run behavior is determined by maxt µt, in
alignment with Theorem 4.4.

C.3. ElEC2 results

We evaluate the performance of our proposed algorithm using the ELEC2 dataset (Harries, 1999), which records electricity
demand and pricing in the state of New South Wales, Australia, from May 1996 to December 1998. For this analysis, we
focus exclusively on NSWdemand, which represents electricity demand in New South Wales. This variable is a critical
indicator of market dynamics, directly reflecting fluctuations in electricity demand over time. Electricity demand data is
inherently sensitive, as it captures both market trends and individual user behavior. In particular, large-scale historical
demand data can be exploited to infer user behavior or predict future market trends, raising potential privacy concerns
related to both commercial interests and personal privacy.

To mitigate these privacy risks, we apply our proposed method to this dataset. This ensures that individual or market-level
information cannot be inferred, either directly or indirectly, during the data analysis process. In particular, we consider an
autoregressive model of order 3 (AR(3)) to model the electricity demand data. A rolling window of size 200 is employed
to compute dynamic coverage rates and prediction interval widths at each time step. The level of privacy protection is
controlled by the parameter µ, and we evaluate the model under two privacy budgets µ = 1, 2.The results are reported in
Figure 18.

In terms of coverage, our proposed algorithm, compared to its Original algorithm, exhibits greater volatility in both long-run
and rolling coverage as the level of privacy protection increases. Specifically, under different privacy protection parameters
(µ = 1, 2), the rolling coverage fluctuates around the target confidence level of 1 − α = 0.9, with more pronounced
variations than the Original algorithm. This effect is especially noticeable for µ = 1, where the introduction of stronger
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Figure 8. Simulation results for Setting 1 with ϵ-DP. The mean prediction interval coverage and width of our proposed algorithms, along
with the Original algorithm, are evaluated over 200 independent trials across two cases, using both non-private and private base models.
To ensure stability, the first 500 time points are excluded from the analysis, and the displayed curves are smoothed using a rolling average
with a window size of 50.

privacy protection leads to increased random perturbations, resulting in more significant fluctuations in coverage. Hence,
higher levels of privacy protection tend to destabilize the coverage. For long-run coverage, as the time steps increase,
the coverage volatility of the Original algorithm gradually decreases and stabilizes around the target confidence level. In
contrast, our proposed algorithm with privacy protection shows greater volatility in the early stages, particularly for µ = 1.
However, this volatility decreases over time, with the coverage eventually converging to a stable value, albeit at a slower rate
than Original algorithm.

With respect to the interval width, the rolling interval width of our proposed algorithm exhibits more significant fluctuations
in the early stages but stabilizes as time progresses, eventually oscillating around the interval width of the Original algorithm.
In terms of long-run interval width, all methods converge to stable values. However, the introduced noise due to privacy
protection alters the final stable width. Specifically, when the privacy protection parameter µ is smaller (e.g., µ = 1),
the long-run interval width is noticeably larger than under other settings, with its Original version achieving the smallest
interval width. This suggests that the noise perturbation introduced by the privacy protection mechanism results in a more
conservative prediction interval, reducing the precision of the interval and thus its effectiveness in capturing the true values.

Figure 19 presents the results for the ElEC2 dataset under Laplace noise. The width and coverage exhibit larger fluctuations
compared to Gaussian noise, with the results oscillating around those of the Original version. As the time step t increases,
stability improves and fluctuations decrease, a trend that is more pronounced in the rolling width.
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Table 8. Long-Run Width, and the Standard Deviation (Scaled by 10), are reported for the Setting 1 dataset with Gaussian noise, averaged
over 200 independent trials. To minimize the impact of early-stage noise and the initial instability of the algorithm, the first 100 data
points are excluded from the analysis.

Case Method Original µ = 2 µ = 1 µ = 0.5

1 CP 3.22(0.27) 3.25(0.57) 3.42(1.7) 4.87 (15)
CQR 3.31(0.34) 3.33(0.55) 3.39(1.2) 4.00 (12)

2 CP 3.22(0.27) 3.26(0.56) 3.42 (1.7) 5.18 (42)
CQR 3.31(0.32) 3.33 (0.52) 3.39(1.0) 4.00 (23)

Table 9. Long-Run Coverage
∑T

t=1 I{Yt ∈ Ĉt(Xt)}/T and the standard deviation (scaled by a factor of 1,000) are reported for the
Setting 1 dataset with Laplace noise. To minimize the impact of early-stage noise and the initial instability of the algorithm, the first 100
data points are excluded from the analysis.

Case Method Original ϵ = 2 ϵ = 1 ϵ = 0.5

1 CP 0.890 (0.27) 0.884 (6.9) 0.868 (13) 0.865(25)
CQR 0.900 (1.7) 0.900(6.3) 0.800 (12) 0.899(25)

2 CP 0.890 (0.27) 0.884 (7.2) 0.868 (14) 0.866(27)
CQR 0.900 (2.00) 0.900 (6.7) 0.900(13) 0.899(27)

C.4. Additional PAMAP2 results

We evaluate ODPCP on activity classification using the PAMAP2 dataset, categorizing activities into three classes (resting,
light, vigorous) based on heart rate and sensor data. An XGBoost model provides predictions, with ODPCP generating
private prediction sets at each time step t. Figure 20 shows ODPCP’s broad applicability to discrete prediction problems,
maintaining strong empirical coverage and adaptive behavior under privacy constraints. Figure 22 presents the results
for the PAMAP2 Physical Activity Monitoring Dataset under Laplace noise. The width and coverage exhibit larger
fluctuations compared to Gaussian noise. However, as the algorithm progresses, the fluctuations decrease, demonstrating
good convergence. Despite these fluctuations, the overall performance remains outstanding.
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Figure 9. Simulation results for Setting 1 with µ-GDP: The mean prediction interval coverage and width of our proposed algorithms,
along with those of the Original algorithm, are evaluated over 200 independent trials across two cases. For stability, the first 200 time
points are excluded from the analysis, and the displayed curves are smoothed using a rolling average with a window size of 50 time points.

Table 10. Long-Run Width and the Standard Deviation (Scaled by 10) are reported for the Setting 1 dataset with Laplace noise. To
minimize the impact of early-stage noise and the initial instability of the algorithm, the first 100 data points are excluded from the analysis.

Case Method Original ϵ = 2 ϵ = 1 ϵ = 0.5

1 CP 3.22(0.28) 3.30(0.86) 3.79(4.8) 7.6 (48)
CQR 3.31(0.34) 3.34(0.75) 3.51(3.7) 5.21(34)

2 CP 3.22(0.27) 3.30(0.84) 3.82(4.6) 9.4(149)
CQR 3.31(0.32) 3.35(0.75) 3.51(2.9) 6.36(111)
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Figure 10. Simulation results for Setting 1 with ϵ-DP: The mean prediction interval coverage and width for our proposed algorithms,
along with the Original algorithm, are evaluated over 200 independent trials across two cases. To ensure stability, the first 500 time points
are excluded from the analysis, and the displayed curves are smoothed using a rolling average with a window size of 50 time points.
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Figure 11. We simulate the coverage rate and interval length for different values of c under the ϵ-DP setting. The value of c ranges from 1
to 200 with an interval of 2. Here, we present the results for the Setting 2 dataset. From left to right, the figures correspond to the six data
settings, Case 1 to Case 6. The step length is set to t = 10000 for all cases.

Table 11. Comparison between ODPCP (our method) and DPCP (Angelopoulos et al., 2022) under Setting 2, across six simulation cases.
Both methods target a nominal coverage level of 90% (α = 0.1). The total sample size is N = 10,000.

Case Method
ϵ = 2 ϵ = 1

Coverage Width Coverage Width

1
ODPCP 0.885 3.65 0.868 4.20
DPCP 0.905 5.58 0.911 5.68

2
ODPCP 0.885 3.70 0.868 4.26
DPCP 0.906 7.16 0.911 7.28

3
ODPCP 0.885 5.04 0.863 5.81
DPCP 0.906 6.66 0.911 6.80

4
ODPCP 0.885 5.11 0.864 5.89
DPCP 0.906 8.03 0.912 8.24

5
ODPCP 0.884 4.50 0.869 4.96
DPCP 0.907 6.31 0.912 6.49

6
ODPCP 0.884 4.59 0.869 5.04
DPCP 0.903 7.69 0.908 7.89
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Table 12. Long-run coverage
∑T

t=1 I{Yt ∈ Ĉt(Xt)}/T for the Setting 2 dataset, averaged over 200 independent trials with µ-GDP, using
both non-private and private base models. The first 50 data points are omitted to reduce the impact of early-stage instability.

Case Base Model Original µ = 2 µ = 1 µ = 0.5

1 SGD 0.890 0.888 0.876 0.865
LDPSGD 0.890 0.888 0.874 0.854

2 SGD 0.890 0.888 0.876 0.865
LDPSGD 0.890 0.888 0.875 0.855

3 SGD 0.890 0.888 0.875 0.860
LDPSGD 0.890 0.887 0.871 0.846

4 SGD 0.890 0.888 0.875 0.860
LDPSGD 0.890 0.887 0.871 0.847

5 SGD 0.890 0.887 0.876 0.864
LDPSGD 0.890 0.888 0.874 0.854

6 SGD 0.890 0.887 0.876 0.865
LDPSGD 0.890 0.888 0.874 0.855

Table 13. Long-run width for the Setting 2 dataset, averaged over 200 independent trials with µ-GDP, using both non-private and private
base models. The first 50 data points are omitted to reduce the impact of early-stage instability.

Case Base Model Original µ = 2 µ = 1 µ = 0.5

1 SGD 3.57 3.61 3.78 5.43
LDPSGD 5.42 5.54 5.83 8.46

2 SGD 3.62 3.66 3.85 5.50
LDPSGD 5.35 5.45 5.74 8.28

3 SGD 4.89 4.97 5.26 7.67
LDPSGD 6.65 6.72 7.09 10.2

4 SGD 4.95 5.04 5.33 7.75
LDPSGD 6.58 6.65 7.01 10.0

5 SGD 4.42 4.46 4.58 6.24
LDPSGD 5.97 6.11 6.44 9.15

6 SGD 4.51 4.55 4.66 6.33
LDPSGD 5.90 6.04 6.35 8.98
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Figure 12. Simulation results for Setting 2 with µ-GDP: The mean prediction interval coverage and width of our proposed algorithms,
along with the Original algorithm, are evaluated over 200 independent trials across six cases (from left to right), using both non-private and
private base models. To ensure stability, the first 200 time points are excluded from the analysis, and the displayed curves are smoothed
using a rolling average with a window size of 50.

30



Online Differentially Private Conformal Prediction for Uncertainty Quantification

Table 14. Long-Run Coverage
∑T

t=1 I{Yt ∈ Ĉt(Xt)}/T for the Setting 2 dataset, averaged over 200 independent trials with Laplace
noise, using both non-private and private base models. To reduce the excessive disturbance caused by early noise and algorithm instability,
the first 100 data points are omitted, without affecting the convergence results.

Case Base Model Original ϵ = 2 ϵ = 1 ϵ = 0.5

1 SGD 0.891 0.885 0.868 0.864
LDPSGD 0.890 0.884 0.858 0.849

2 SGD 0.891 0.885 0.868 0.864
LDPSGD 0.890 0.884 0.859 0.851

3 SGD 0.890 0.885 0.863 0.859
LDPSGD 0.890 0.883 0.851 0.840

4 SGD 0.890 0.885 0.864 0.860
LDPSGD 0.890 0.883 0.851 0.841

5 SGD 0.890 0.884 0.869 0.864
LDPSGD 0.890 0.883 0.858 0.848

6 SGD 0.890 0.884 0.869 0.863
LDPSGD 0.890 0.884 0.859 0.850

Table 15. Long-Run Width for the Setting 2 dataset, averaged over 200 independent trials with Laplace noise, using both non-private and
private base models. To reduce the excessive disturbance caused by early noise and algorithm instability, the first 100 data points are
omitted, without affecting the convergence results.

Case Base Model Original ϵ = 2 ϵ = 1 ϵ = 0.5

1 SGD 3.56 3.65 4.20 8.30
LDPSGD 5.42 5.59 6.34 13.1

2 SGD 3.61 3.70 4.26 8.43
LDPSGD 5.35 5.52 6.27 13.0

3 SGD 4.88 5.04 5.81 11.7
LDPSGD 6.66 6.76 7.80 17.3

4 SGD 4.95 5.11 5.89 12.0
LDPSGD 6.59 6.70 7.73 17.0

5 SGD 4.42 4.50 4.96 9.41
LDPSGD 5.97 6.18 6.93 14.0

6 SGD 4.51 4.59 5.04 9.55
LDPSGD 5.90 6.11 6.84 14.0
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Figure 13. Simulation results for Setting 2 with ϵ-DP: The mean prediction interval coverage and width of our proposed algorithms, along
with the Original algorithm, are evaluated over 200 independent trials across six cases (from left to right), using both non-private and
private base models. To ensure stability, the first 500 time points are excluded from the analysis, and the displayed curves are smoothed
using a rolling average with a window size of 50 time points.
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Figure 14. Simulation results for Setting 2 (Cases 2, 4, and 6, top to bottom) with µ-GDP: The mean prediction interval coverage and
width of our proposed algorithms and the Original algorithm are computed over 200 independent trials. For stability, the first 200 time
points are excluded from the analysis, and the displayed curves are smoothed using a rolling average with a window size of 50 time points.
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Table 16. Long-Run Coverage
∑T

t=1 I{Yt ∈ Ĉt(Xt)}/T and the standard deviation (scaled by a factor of 1,000) are reported for the
Setting 2 dataset with Laplace noise. To minimize the impact of early-stage noise and the initial instability of the algorithm, the first 50
data points are excluded from the analysis.

Case Method Original ϵ = 2 ϵ = 1 ϵ = 0.5

1 CP 0.889 (0.29) 0.883 (6.9) 0.857 (13) 0.845 (25)
CQR 0.890 (1.2) 0.895 (6.2) 0.895 (13) 0.894 (25)

2 CP 0.888 (0.28) 0.882 (7.0) 0.851 (13) 0.836 (25)
CQR 0.891 (1.4) 0.895 (6.4) 0.895 (12) 0.894 (25)

3 CP 0.889 (0.31) 0.884 (8.7) 0.853 (16) 0.845 (24)
CQR 0.892 (1.6) 0.897 (6.9) 0.897 (14) 0.898 (28)

4 CP 0.889 (0.26) 0.883 (8.7) 0.848 (16) 0.833 (29)
CQR 0.893 (1.5) 0.896 (5.6) 0.896 (11) 0.896 (22)

5 CP 0.889 (0.36) 0.883 (7.0) 0.856 (13) 0.844 (25)
CQR 0.892 (1.7) 0.896 (5.6) 0.896 (12) 0.895 (23)

6 CP 0.889 (0.35) 0.882 (7.0) 0.851 (12) 0.834 (24)
CQR 0.891 (1.8) 0.895 (5.8) 0.896 (10) 0.897 (20)

Table 17. Long-Run Width and the Standard Deviation (Scaled by 10) are reported for the Setting 2 dataset with Laplace noise. To
minimize the impact of early-stage noise and the initial instability of the algorithm, the first 100 data points are excluded from the
analysis.

Case Method Original ϵ = 2 ϵ = 1 ϵ = 0.5

1 CP 5.19 (0.37) 5.31 (1.2) 6.13 (8.9) 12.4 (83)
CQR 5.11 (0.46) 5.21 (1.0) 5.48 (6.3) 7.48 (38)

2 CP 6.49 (0.65) 6.63 (1.8) 7.60 (10) 15.3 (104)
CQR 6.39 (0.68) 6.49 (1.5) 6.77 (6.5) 8.91 (39)

3 CP 6.21 (0.62) 6.41 (2.5) 7.41 (11) 14.8 (84)
CQR 6.22 (0.72) 6.34 (1.8) 6.58 (5.0) 8.61 (37)

4 CP 7.46 (0.80) 7.67 (2.8) 8.84 (13) 21.8 (379)
CQR 7.40 (0.79) 7.52 (1.6) 7.69 (3.6) 11.8 (184)

5 CP 5.79 (0.97) 5.96 (2.5) 6.85 (10) 13.5 (87)
CQR 5.85 (1.1) 5.97 (2.0) 6.27 (6.9) 8.46 (41)

6 CP 7.05 (1.1) 7.23 (2.9) 8.24 (12) 16.5 (119)
CQR 7.04 (1.1) 7.19 (2.3) 7.48 (6.8) 9.44 (34)
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Figure 15. Simulation results for Setting 2 with ϵ-DP: The mean prediction interval coverage and width for our proposed algorithms, along
with the Original algorithm, are computed over 200 independent trials across six cases (from left to right), using both non-private and
private base models. To ensure stability, the first 500 time points are excluded from the analysis, and the displayed curves are smoothed
using a rolling average with a window size of 50 time points.
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Figure 16. Effect of initialization (λ1,W0) on coverage and interval width over a time horizon of T = 10,000.Curves under different
initialization settings almost completely overlap, indicating high robustness to initialization.

Table 18. Long-run coverage and width under three privacy noise settings: fixed µ = 0.5, fixed µ = 2.0, and randomly sampled
µ ∼ Uniform(0.5, 2.0). Results are averaged over 200 runs with T = 20,000.

Case Metric µ = 2 µ ∈ [0.5, 2] µ = 0.5

1 Coverage 0.895 0.887 0.872
Width 3.32 3.39 4.35

2 Coverage 0.894 0.886 0.870
Width 3.33 3.40 4.35

3 Coverage 0.894 0.885 0.860
Width 4.69 4.82 6.01

4 Coverage 0.894 0.886 0.861
Width 4.72 4.84 6.13

5 Coverage 0.894 0.886 0.870
Width 4.29 4.31 5.02

6 Coverage 0.894 0.884 0.869
Width 4.30 4.32 4.92

Figure 17. Asymptotic behavior of coverage and width under three privacy settings: fixed µ = 0.5, fixed µ = 2.0, and randomly sampled
µ ∼ U(0.5, 2.0). Results show that the long-run performance under random µ closely follows that of fixed µ = 2.0, indicating that the
maximum µt largely determines the privacy–utility trade-off.
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Figure 18. ElEC2 dataset with µ-GDP: The upper panel illustrates the rolling coverage and rolling interval width, each averaged over a
rolling window of 200 time points. For lower panel, we present the long-run coverage, defined as

∑T
t=1 I{Yt ∈ Ĉt(Xt)}/T , and the

long-run interval width, both averaged over 200 repetitions. For stability, the first 2000 time points are excluded from the analysis. For
improved clarity and to mitigate fluctuations, the displayed curves are smoothed using a rolling average with a window size of 50 time
points.
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Figure 19. ElEC2 Results with ϵ-DP.The first row shows the rolling coverage and rolling width, averaged over a rolling window of 200
time points. The second row displays the long-run coverage

∑T
t=1 I{Yt ∈ Ĉt(Xt)}/T and the long-run interval width, averaged over

200 repetitions. For stability, the first 2000 time points are excluded from the analysis. The displayed curves are smoothed by taking a
rolling average with a window of 50 time points.
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Figure 20. Multi-class classification experiment on subject 103 from the PAMAP2 dataset with a rolling window size of 200.

Figure 21. To improve visualization, we expanded each prediction interval by ±5 % on both ends (relative to its original length), under the
setting of µ = 1. Only intervals that originally covered the true value are shown.
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Figure 22. PAMAP2 with ϵ-DP.The first row shows the rolling coverage and rolling width, averaged over a rolling window of 200 time
points. The second row displays the long-run coverage

∑T
t=1 I{Yt ∈ Ĉt(Xt)}/T and the long-run interval width, averaged over 200

repetitions. For stability, the first 2000 time points are excluded from the analysis. The displayed curves are smoothed by taking a rolling
average with a window of 50 time points.
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