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Abstract

Recent advancements in Machine Learning (ML) have substantially accelerated
the material discovery field, yet the utilization of Large Language Models (LLMs)
in the Metal-Organic Frameworks (MOFs) research has received limited attention.
This work leverages LLMs to build a new set of models that accelerate MOF
material discovery. Our strategy relies on pre-training the Granite model using a
single H100 GPU on a combination of selective chemical journals and structural
data from the PubChem database. Our evaluation demonstrates that this pre-
training strategy significantly enhances the performance of LLMs in predicting
MOF properties, especially in limited-resource task scenarios. We hope this work
can motivate future research to explore the potential of LLMs in enhancing material
discovery to build robust and efficient Metal-Organic Frameworks models.

1 Introduction

Metal Organic Frameworks (MOFs) represent a class of porous materials formed through the coordi-
nation of metal ions or clusters referred to as secondary building units (SBUs) linked with organic
ligands to form extended structures via coordination bonds [1] [2]. This material exhibits high poros-
ity, thermal stability, and a wide range of applications in the field of catalysis [3], water treatment [4]
[5] [6], and gas storage [7] [8] [9]. MOFs derive their structural flexibility from the combinations
of metal nodes, organic linkers, and network topologies [8] [10] [11]. This tunability produces
adjustable physicochemical properties and surface functionalities, offering massive potential to tailor
materials for diverse applications. However, the ability to design MOFs with absolute precision and
rational architecture is a challenging task.

Previous studies have employed the Crystal Graph Convolutional Neural Network (CGCNN) [12] to
predict methane adsorption in MOFs, leveraging its architecture specifically considered for crystalline
materials. While CGCNN offers the best performance in property prediction, it depends heavily on
accurate 3D structural information, which is a prerequisite for the model input. This requirement
poses a challenge, as many MOFs contain hundreds or even thousands of atoms, making their crystal
graph representations computationally intensive and memory-inefficient, especially when scaling to
large datasets. In addition, combining the 3D structure with the text representation of MOFs will
increase the latency and decrease the efficiency of MOF-based models.
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High-throughput calculations and traditional density functional theory calculations have advanced
MOF research, but at the same time, they face limitations due to their expensive computational time.
Since MOFs are generally composed of metal nodes, organic linkers, and topologies, MOFid offers
a compact string format that encodes both chemical and structural information [13]. It combines
the Simplified Molecular Input Line Entry System (SMILES) representations [14] for the building
blocks with topology and catenation codes from the Reticular Chemistry Structure Resource (RCSR)
database [15].

This representation of MOF structure in text-based format (MOFid) enables the Machine Learning
(ML) models, which mostly work with text data, to build more efficient MOF models that can predict
MOF properties. This also became possible with the introduction of several large-scale MOFid-based
databases that have been made publicly available, including CoRE MOF 2019 [16], hypothetical
MOF (hMOF) [9], and QMOF [17] [18]. These resources offer detailed atomic structures of MOFs
along with computed properties like CO adsorption capacities and electronic band gaps. This allows
the research community to utilize the Transformer model [19] in building MOF models, as illustrated
in the MOFormer model [20].

In recent years, Generative AI has rapidly evolved with the rise of Large Language Models (LLMs).
Although Large Language Models (LLMs) show great success across diverse fields such as biomedical
[21] and chemistry [22], the material science field, particularly in the domain of Metal-Organic
Frameworks (MOFs), remains relatively understudied. This limitation comes from two challenges.
Primarily, the structural complexity of materials like metal–organic frameworks (MOFs) makes
it difficult to develop text-compatible input representations that accurately capture their intricate
properties. Secondly, there are few available material-specific training data in the field of MOFs.
Thus, most LLMs are overly dependent on a limited set of MOF datasets—namely CoRE MOF 2019,
QMOF, and hMOF for pre-training. Addressing these challenges is crucial for unlocking the full
potential of LLMs in accelerating MOF material discovery.

In this paper, we build a new set of small LLM models to accelerate material discovery in
metal–organic frameworks (MOFs) by continually pre-training the Granite model on combinations
of journal and chemical structured datasets. Our strategy relies on studying the overlooked impact
of chemical corpora selection to enhance the performance of LLM on MOF tasks. The evaluation
of our models shows that we outperform existing Transformer-based models on several MOF tasks.
Moreover, our models show a comparable performance compared to existing multi-models that
incorporate the 3D MOF structure representation. Furthermore, our study also shows the significant
impact of our adapted strategy in enhancing the performance of LLMs in scenarios where we have a
limited supervised finetuning SFT dataset in the MOF domain.

2 Proposed Model

To investigate the impact of continual pre-training of LLMs on the MOF domain, our method consists
of two phases. In the first phase, we have continually pre-train the Granite 3.3 2B instruct model 1 on
different chemical corpora setups. In the second phase, we have fine-tuned our pre-trained models on
the training set of both QMOF and hMOF datasets in Supervised Finetuning (SFT) format.

2.1 PreTraining Phase

To address the limited MOF contextual representation in the Granite model (e.g, SMILES, MOFid),
we performed continual pre-training on a variety of chemical corpora. These chemical corpora
include the PubChem structural dataset [23] as well as MOF-related articles and abstracts sourced
from the PMC Open Access Set [24]. Table 1 shows the different combinations of setups that we used
in the pre-training phase. These diverse setups are designed to uncover the underexplored influence
of corpora choice on enhancing the performance of LLMs on MOF-related tasks.

PMC Open Access Subset The PMC Open Access Subset includes 3.4 million journal articles and
preprints, which have a more permissive license than the regular PMC articles. To select articles
related to the MOF domain, we use a set of keywords such as mof, metal-organic framework, pore size,
CO2 adsorption, CO2/N2 selectivity, CO2/H2O selectivity, CO2/CH4 selectivity, CH4 adsorption,
and CO2 uptake. The final MOF subset consists of 28,525 articles and abstracts. To prepare these

1https://huggingface.co/ibm-granite/granite-3.3-2b-instruct
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Table 1: Details of the chemical corpora setups used in the continual pre-training stage. The size of
the corpora is measured in bytes rather than token count, as the general LLMs tokenizer is not trained
on SMILES representation, which will inflate token count for the PubChem corpora compared to the
Open Access PMC corpora.

Setup Pre-Training Corpora Setup Size

1 PubChem (500K) 254M
2 Open Access PMC (MOF) + PubChem (500K) 1.13GB
3 Open Access PMC (MOF) + PubChem (2M) 1.87GB

articles for the pre-training phase, we use the NLTK sentence tokenizer [25] to split each sentence
into a new line.

PubChem PubChem is the world’s largest collection of freely accessible chemical information. It
includes more than 122M chemical compounds that each have information such as IUPAC name,
SMILES representation, molecular formula, and chemical properties. Our hypothesis assumes that
including the PubChem dataset, which consists of MOF-related properties, such as SMILES name,
could help improve the performance on MOF-related tasks. We prepare the PubChem dataset by
appending related properties, such as SMILES structure, chemical formula, and molecular weight, to
each compound name in one line, as this will help add context to each property.

2.2 FineTuning Phase

We follow the continual pre-training phase with a supervised fine-tuning (SFT) phase, which uses the
training set of QMOF and hMOF datasets in the prompt and output style. The prompt in this case is
represented by the MOFid, where the output is the targeted property.

hMOF: The hypothetical MOFs (hMOF) is a dataset that consists of 137,652 MOFs (102,858 with
MOFid), which capture the gas adsorption properties of CO2 and CH4 in mol kg1 at 0.05, 0.5, and
2.5 bar of pressure. The hMOF consists of 72,000, 15,428, and 15,428 samples in train, validation,
and test splits, respectively [20]. Each sample has a MOFid, and 6 properties including: CO2 and
CH4 adsorption at 0.05, 0.5, and 2.5 bar of pressure. We prepare our hMOF SFT dataset by having
the MOFid in the prompt and all six properties in the target sequence (output), where the title and
value for each property are placed on a new line.

QMOF: The QMOF data set contains quantum-chemical properties for metal–organic frameworks
(MOFs), which contains 20,375 (7,466 with MOFid) along with the label of a density functional-based
tight-binding (DFTB) [26] [27], which calculates the band gap in Electron Volts (eV). The QMOF
dataset consists of 5,226, 1,119, and 1,119 samples in train, validation, and test splits, respectively
[20]. In alignment with the hMOF dataset configuration, we set the MOFid as our prompt and the
band gap value as our targeted output.

2.3 Baseline Models and Evaluation Metrics

Our baseline models include the following state-of-the-art MOF models: Crystal Graph Convolutional
Neural Network (CGCNN) [12], Smooth Overlap of Atomic Positions (SOAP) [28] [29] [30], and
MOFormer [20]. These three models are the top-performing models on both QMOF and hMOF tasks
as reported by [20]. In addition, to study the impact of our pre-training strategies where other design
factors (e.g, architecture, base-scale) are fixed in the experimental setup, we evaluate our pre-trained
models against Granite 3.3 2B, the foundation model that we use during the pre-training phase.

For the evaluation metrics, we adopted the same standards in the literature [20] by using the mean
absolute error (MAE) to evaluate both QMOF and hMOF. We use the validation set of QMOF and
hMOF to find the best hyperparameters (e.g., batch size, learning rate) during the fine-tuning phase.
Then, we adopted these hyperparameters to report our results on the test set. Table 3 shows more
details about our hyperparameter choices for both the pre-training and fine-tuning phases.
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Table 2: The Mean Absolute Error (MAE) results of our pre-trained models against our baseline
models on the test set of QMOF (eV) and hMOF (mol/kg) datasets. We use the reported results by
[20] for our baseline models. PubChem: 500K chemical compounds, PubChem+: 2M chemical
compounds.

QMOF CO2 bar (hMOF) CH4 bar (hMOF)

Model SFT eV 0.05 0.5 2.5 0.05 0.5 2.5

CGCNN Full 0.256 0.110 0.330 0.645 0.025 0.099 0.258
SOAP Full 0.424 0.115 0.339 0.666 0.022 0.106 0.239
MOFormer Full 0.367 0.158 0.545 0.982 0.033 0.161 0.384
Granite 3.3 2B Instruct Full 0.338 0.119 0.366 0.640 0.019 0.102 0.243

- PMC + PubChem Full 0.308 0.120 0.366 0.635 0.019 0.102 0.244
- PMC + PubChem+ Full 0.314 0.127 0.401 0.694 0.035 0.174 0.272
- PubChem Full 0.329 0.119 0.364 0.638 0.019 0.100 0.243

Granite 3.3 2B 1K 0.513 0.285 1.145 2.397 0.043 0.283 0.778
- PMC + PubChem 1K 0.430 0.158 0.494 0.900 0.025 0.137 0.333

Granite 3.3 2B 3K 0.396 0.199 0.616 1.254 0.029 0.162 0.410
- PMC + PubChem 3K 0.348 0.150 0.465 0.850 0.024 0.130 0.315

Granite 3.3 2B 10K - 0.156 0.480 0.878 0.024 0.130 0.317
- PMC + PubChem 10K - 0.142 0.484 0.784 0.023 0.146 0.293

3 Results and Discussions

The first section of Table 2 shows the results of our models against our baseline models on QMOF
and hMOF tasks. In the following sections of the table, we show the evaluation of our pre-trained
models against the Granite model, where we use different subsets of the SFT training set (e.g, 1K, 3K,
10K) instead of using the full training set of QMOF and hMOF. This setup will help us to understand
the impact of the pre-training phase in scenarios where the SFT dataset is limited in size.

As shown in the first section of Table 2, our model (PMC + PubChem), which was continually
pre-trained on a collection of MOF-related articles from the PMC Open Access set and 500k chemical
compounds from PubChem data, achieves superior performance on the QMOF task, outperforming
all the text-based models, including Granite, MOFormer, and SOAP. Our model (PMC + PubChem)
also outperforms the CGCNN model on several hMOF tasks, even though the CGCNN incorporates
the 3D MOF structure. The results also show that the gap in performance between our model (PMC +
PubChem) and other text-based models is larger on the QMOF than the hMOF task. This performance
gap is because the QMOF dataset consists of only 5.2K samples in the train set against 72K samples
for hMOF. These findings highlight that our continual pre-training strategies are particularly effective
in scenarios where the SFT dataset is limited in scale.

Our comparative analysis of the three pre-trained models reveals that the combination of PMC
articles and the PubChem dataset (500K) serves as the most effective pre-training setup, consistently
outperforming the alternatives. Using the PubChem dataset alone decreases performance significantly
on QMOF. Additionally, our results demonstrate that scaling the PubChem dataset to 2M chemical
compounds (PubChem+) leads to a noticeable decline in performance on the QMOF task. The decline
in performance is attributed to the fact that adding more structured datasets, such as PubChem, to the
pre-training corpora decreased the impact of the Open PMC dataset on the contextual representation,
as it has a lower ratio in the pre-training dataset. This conclusion is further validated by the pre-
training results obtained when using the PubChem dataset alone. Moreover, our results indicate that
changes in pre-training corpora have minimal influence on the hMOF task. These results show that in
scenarios where we have a large SFT dataset, the continual pre-training stage may not be needed.
However, in scenarios where the SFT dataset is limited in size, as in the case of QMOF, pre-training
LLMs on a combination of PMC and PubChem datasets helps address this limitation in the SFT
dataset.

To further evaluate this hypothesis, Table 2 presents a comparative analysis of our pretrained models
and the Granite model across SFT training subsets of 1K, 3K, and 10K samples, instead of using the
full QMOF (5.2K) and hMOF (72K) dataset. The results with this evaluation setup confirm our early
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hypothesis, which we concluded on the QMOF task. The results show a significant gap in margin
between Granite and our pre-trained models across all tasks. However, this margin decreases when
we use 10K examples from the hMOF training set. These results suggest that having a moderate <5K
samples in the training set of SFT tasks could be better to evaluate the MOF contextual representation
in LLMs. These findings could influence the research community’s decision when building future
benchmarks for the material discovery field.

4 Conclusion

This study presents a targeted strategy for constructing small-scale language models for MOF appli-
cations, emphasizing the role of curated pre-training datasets. The results show that we outperform
existing state-of-the-art MOF frameworks across multiple tasks in both the QMOF and hMOF bench-
marks, which shows the potential of LLMs in addressing the MOF field. In addition, focusing more
on enhancing the quality of the pre-training dataset could eventually increase the generalization of
the LLMs across various tasks in the material discovery and MOF fields, especially in cases where
the SFT dataset is limited. For future work, we are planning to increase the scale of our pre-trained
models and investigate the impact of including the 3D structure of MOFs with Multi-Model LLMs.
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Table 3: Hyperparameter choices for both pre-training and Supervised Finetuning SFT phases.
Packing refers to the feature where multiple sequences are packed in the same batch, which improves
the efficiency of the training process.

Setting Pre-Training Setup Supervised Finetuning Setup

Batch Size 1 16
Learning Rate 5e-5 3e-5
Max Sequance Length 4096 512
Epoch 1 4
Packing True False
Neftune Noise Alpha 5 5
Gradient Checkpointing True True

A PreTraining and FineTuning Hyperparameters

The hyperparameter setup for pre-training and fine-tuning is detailed in Table 3. Our environmental
setup uses a single H100 80GB GPU for both pre-training and fine-tuning, where we use the
Transformers [31], Transformer Reinforcement Learning (TRL) [32], and Flash attention2 [33] [34]
libraries. During pre-training, although we maintained a batch size of 1, we extended the maximum
sequence length to 4096. This was achieved with the packing feature enabled, a choice made to
ensure sequences are fully occupied rather than padded with tokens. In contrast, for the Supervised
Fine-Tuning (SFT) phase, the packing feature was disabled. This adjustment was complemented by
increasing the batch size to 16 and reducing the maximum sequence length to 512. This strategy was
employed considering that the vast majority of instances in our QMOF and HMOF datasets have
sequence lengths below 512. We made this choice of disabling the packing feature as we find that
adapting this approach improves the performance and stability in the SFT phase.
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