
Scalable DBSCAN with Random Projections

HaoChuan Xu
School of Computer Science

University of Auckland
hxu612@aucklanduni.ac.nz

Ninh Pham
School of Computer Science

University of Auckland
ninh.pham@auckland.ac.nz

Abstract

We present sDBSCAN, a scalable density-based clustering algorithm in high dimen-
sions with cosine distance. sDBSCAN leverages recent advancements in random
projections given a significantly large number of random vectors to quickly identify
core points and their neighborhoods, the primary hurdle of density-based clustering.
Theoretically, sDBSCAN preserves the DBSCAN’s clustering structure under mild
conditions with high probability. To facilitate sDBSCAN, we present sOPTICS, a
scalable visual tool to guide the parameter setting of sDBSCAN. We also extend
sDBSCAN and sOPTICS to L2, L1, χ2, and Jensen-Shannon distances via random
kernel features. Empirically, sDBSCAN is significantly faster and provides higher
accuracy than competitive DBSCAN variants on real-world million-point data
sets. On these data sets, sDBSCAN and sOPTICS run in a few minutes, while the
scikit-learn counterparts and other clustering competitors demand several hours or
cannot run on our hardware due to memory constraints. Our code is available at
https://github.com/NinhPham/sDbscan.

1 Introduction

DBSCAN [1] is one of the most fundamental clustering algorithms with many applications in data
mining and machine learning [2]. It has been featured in several data analysis tool kits, including
scikit-learn in Python, ELKI in Java, and CRAN in R. In principle, DBSCAN connects neighboring
points from nearby high-density areas to form a cluster where the high density is decided by a
sufficiently large number of points in the neighborhood. DBSCAN is parameterized by (ε,minPts)
where ε is the distance threshold to govern the point’s neighborhood and to connect nearby areas; and
minPts is the density threshold to identify high-density areas.

Apart from other popular clustering algorithms, including k-means variants [3, 4] and spectral
clustering [5], DBSCAN is non-parametric. It can find the number of clusters, detect arbitrary
clustering shapes and sizes, and work on any arbitrary distance measure.

Given a distance measure, DBSCAN has two primary steps, including (1) finding the ε-neighborhood
(i.e. points within a radius ε) for every point to discover the density areas surrounding the point and
(2) forming the cluster by connecting neighboring points. The first step is the main bottleneck as
finding ε-neighborhoods for all points requires a worst-case O(n2) time for a data set of n points in
high-dimensions [6, 7]. This limits the applications of DBSCAN on modern million-point data sets.

Another hurdle of (ε,minPts)-DBSCAN is the choice of ε, which highly depends on the data
distribution and distance measure. While minPts is easier to set for smoothing the density estimate,
DBSCAN’s outputs are susceptible to ε, especially in high dimensions where the range of ε is very
sensitive. For instance, when applying DBSCAN with cosine distance on the Pamap2 data set,
changing ε by just 0.005 can diminish the clustering accuracy by 10%. In practice, ones often need to
compute an ε-neighborhood for each point given a large value of ε, and use them to explore the quality
of clustering structures over smaller values of ε. Using large ε causes O(n2) memory bottleneck

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/NinhPham/sDbscan

as the ε-neighborhood of one point might need O(n) space. We observe that on our hardware,
such memory constraint is the primary hurdle limiting the current scikit-learn implementation on
million-point data sets. Therefore, it is essential to not only develop scalable versions of DBSCAN,
but also to provide feasible tools to guide its parameter setting on large-scale data sets.

Prior arts on scaling up DBSCAN. Due to the quadratic time bottleneck of DBSCAN in high-
dimensional space, researchers study efficient solutions to scale up the process of identifying the
neighborhood for each point in exact and approximate manners.

Exact DBSCAN approaches [8, 9, 10] partition the data set into several subsets and iteratively extract
and refine clusters from these subsets by performing additional ε-neighborhood queries on a small set
of important points. Other grid-based methods on L2 [6, 11] efficiently identify neighborhood areas
by confining the neighbor search exclusively to neighboring grids. However, these approaches still
have worst-case quadratic time or their complexity grows exponentially to the dimension. Random
projections [12, 13] have been used to build grid-based or tree-based indexes for faster approximate
ε-neighborhoods on L2, though they do not offer theoretical guarantees on the clustering accuracy.

Instead of finding the ε-neighborhood for every point, DBSCAN++ [14] finds ε-neighborhoods for a
subset of random points chosen through uniform sampling or k-centering methods. sngDBSCAN [15]
approximates the ε-neighborhood for every point by computing the distance between the point to a
subset of random points. Though sampling-based DBSCAN variants are simple and efficient, they
offer statistical guarantees on the clustering accuracy via level set estimation [16] that requires many
strong assumptions on the data distribution. Moreover, selecting suitable parameter values (especially
for ε) for sampling-based approaches is challenging due to the nature of sampling.

DBSCAN’s parameter setting guideline with OPTICS. OPTICS [17] attempts to mitigate the
problem of selecting relevant ε by linearly ordering the data points such that close points become
neighbors in the ordering. Besides the cluster ordering, OPTICS also computes a reachability distance
for each point. The dendrogram provided by OPTICS visualizes the density-based clustering results
corresponding to a broad range of ε, which indicates a relevant range of ε for DBSCAN.

Like DBSCAN, OPTICS requires the ε-neighborhood for every point, leading to an O(n2) time
complexity. In practice, OPTICS often needs a large ε to discover clustering structures on a wide
range of ε. Such large ε demands O(n2) memory as the ε-neighborhood of one point needs O(n)
space. Such memory constraint is infeasible for million-point data sets.

Contribution. Inspired by sampling approaches, we observe that the exact ε-neighborhood for every
point is unnecessary to form and visualize the density-based clustering results. Our approach, named
sDBSCAN, first builds a lightweight random projection-based index with a sufficiently large number
of projection vectors. Utilizing the asymptotic property of the extreme order statistics associated
with some specific random vectors [18], sDBSCAN can select high-quality candidates to identify
ε-neighborhoods with theoretical guarantees. sDBSCAN provably outputs DBSCAN’s clustering
structure similar to DBSCAN on cosine distance under mild conditions from data distribution.
These conditions are much weaker than the ones used on recent sampling-based DBSCAN [14, 15].
Empirically, sDBSCAN runs significantly faster than several competitive DBSCAN variants while
achieving similar DBSCAN clustering accuracy on million-point data sets.

To further facilitate sDBSCAN, we propose sOPTICS, a scalable OPTICS derived from the random
projection-based indexing, to guide the parameter setting. We also extend sDBSCAN and sOPTICS to
other popular distance measures, including L2, L1, χ2, and Jensen-Shannon (JS), that allow random
kernel features [19, 20].

Scalability. Both sDBSCAN and sOPTICS are scalable and multi-thread friendly. Multi-threading
sDBSCAN and sOPTICS take a few minutes to cluster and visualize clustering structures for million-
point data sets while the scikit-learn counterparts cannot run on our hardware. On Mnist8m with 8.1
million points, sDBSCAN gives 38% accuracy (measuring by the normalized mutual information
NMI), running in 15 minutes on a single machine of 2.2GHz 32-core (64 threads) AMD processor
with 128GB of DRAM. In contrast, kernel k-means [21] achieves 41% accuracy with Spark, running
in 15 minutes on a supercomputer with 32 nodes, each of which has two 2.3GHz 16-core (32 threads)
Haswell processors and 128GB of DRAM.

2

2 Preliminary

We briefly describe DBSCAN [1], OPTICS [17], and the connection with approximate near neighbor
search (ANNS). We present a recent advanced random projection method [22, 23] for ANNS on
the extreme setting where the number of random projection vectors is sufficiently large. The data
structures inspired by these approaches can scale up DBSCAN and OPTICS on large-scale data sets.

2.1 DBSCAN

DBSCAN is a density-based approach that links nearby dense areas to form the cluster. For a distance
measure dist(·, ·), DBSCAN has two parameters ε and minPts. Given the data set X, for each point
q ∈ X, DBSCAN executes a range reporting query Bε(q) that finds all points x ∈ X within the
ε-neighborhood of q, i.e. Bε(q) = {x ∈ X | dist(x,q) ≤ ε}. Based on the size of the range query
result, DBSCAN determines q as core if |Bε(q)| ≥ minPts; otherwise, non-core points. We will
call the ε-neighborhood Bε(q) as the neighborhood of q for short.

DBSCAN forms clusters by connecting core points
and their neighborhoods where two core points q1 and
q2 are connected if q1 ∈ Bε(q2). A non-core point
belonging to a core point’s neighborhood will be con-
sidered a border point and share the core point’s label.
Non-core points not belonging to any core point’s
neighborhood will be classified as noise. Indeed,
DBSCAN forms a graph G that connects n points
together [7, 14]. G will have several disconnected
components corresponding to the cluster structure.
Each connected component contains connected core
points and their neighborhoods, as shown in Alg. 1.

Algorithm 1 DBSCAN
1: Inputs: X, ε,minPts, the set C =
{(q, Bε(q)) |q is core}

2: G← initialize empty graph
3: for each q ∈ C do
4: Add an edge (and possibly vertices) in

G from q to all core points in Bε(q)
5: Add an edge (and possibly vertices)

in G from q to non-core points x ∈
Bε(q) if x is not connected

6: return connected components of G

2.2 OPTICS

OPTICS [17] attempts to mitigate the problem of selecting relevant ε by linearly ordering the data
points such that close points become neighbors in the ordering. For each point q ∈ X, OPTICS
computes a reachability distance from its closest core point. The cluster ordering and reachability
distance of each point are used to construct a reachability-plot dendrogram that visualizes the density-
based clustering results corresponding to a broad range of ε. Valleys in the reachability-plot are
considered as clustering indicators. The OPTICS’s algorithm is detailed in the appendix.

Given a pair (ε,minPts), OPTICS first identifies the core points, the neighborhoods of core points,
and then computes the core distance of every point, defined as below.

coreDist(q) =

{
∞ if q is non-core,
minPts− NN distance otherwise.

Then, OPTICS iterates X, and for each x ∈ X, computes the smallest reachability distance, defined
by x.reach, between x and the processed core points so far. The point with the minimum reachability
distance will be processed first and inserted into the cluster ordering O. The reachability distance
reachDist(x,q) is defined as follows.

reachDist(x,q) =

{
∞ if q is non-core,
max(coreDist(q), dist(x,q)) otherwise.

For a core point q, reachDist(x,q) is dist(x,q) if x is not belonging to minPts−NN of q. Among
several core points whose neighborhood contains x, OPTICS tends to seek the smallest reachability
distance, i.e. x.reach, for x from these core points, which reflects the distance between x and its
nearby cluster. Therefore, points tend to be grouped with its neighborhood to form a cluster. A sharp
decrease of x.reach of the point x in the group indicates that we are processing points in denser
regions, and a slight increase indicates that we are processing points in sparser regions. This creates
valleys on the dendrograms reflecting the number of clusters where points downwards the valley floor
are on denser regions while points upwards the valley head are on sparser regions. By selecting ε to
separate valleys provided by OPTICS, DBSCAN can achieve the peak of accuracy.

3

Time and space complexity. Similar to DBSCAN, the running time of OPTICS is O(n2) makes it
impractical on large-scale data sets. Fast implementations of OPTICS with large values of ε might
require O(n2) memory to store the matrix distance between the core points and their neighborhood
points. Such implementations are infeasible for large n.

2.3 Random projection-based neighborhood preservation

Since the primary bottleneck of DBSCAN is to find core points and their neighborhoods by ex-
ecuting n range queries, reducing the computational cost of this step will significantly improve
the performance. Scaling up DBSCAN poses the need for lightweight indexing data structures,
ideally with linear construction time, to approximately answer n range queries. Heavyweight graph-
based indexes [24, 25] with O(n2) construction time and locality-sensitive hashing (LSH)-based
indexes [23, 26] with subquadratic construction time will dominate the clustering time.

We elaborate on the recent work, called CEOs [22] , that studies extreme order statistics properties of
random projection methods to approximate inner product. Given D random vectors ri ∈ Rd, i ∈ [D],
whose coordinates are randomly selected from the standard normal distribution N(0, 1), and the sign
function sgn(·). CEOs randomly projects x and q onto these D Gaussian random vectors. It studies
the behavior of the projection values on specific random vectors that are closest or furthest to q,
e.g., argmaxri |q

⊤ri|. Given a sufficiently large D, the projection values on the closest or furthest
random vector to q approximately preserve x⊤q. The proof is described in the appendix.

Lemma 1. [22] For two points x,q ∈ Sd−1 and significantly large D random vectors ri, w.l.o.g.
we let r∗ = argmaxri |q

⊤ri|. Then, we have

x⊤r∗
D−→ N

(
sgn(q⊤r∗) · x⊤q

√
2 ln (D) , 1− (x⊤q)2

)
. (1)

As a geometric intuition, for significantly large D random vectors, if r∗ is closest or furthest to q, the
projection values of all points in X onto r∗ tend to preserve their inner product order with q. For a
constant k > 0, Lemma 1 also holds for the top-k closest/furthest vectors to q due to the asymptotic
property of extreme normal order statistics [18, 22]. Therefore, by maintaining a few points that are
closest/furthest to random vectors, we can approximate the neighborhood of each point accurately
and efficiently. We will utilize this observation to significantly reduce the cost of identifying core
points and, hence, the running time of DBSCAN and OPTICS in high dimensions.

3 Scalable density-based clustering with random projections

We first present simple and scalable DBSCAN, called sDBSCAN, with cosine distance. We then
leverage well-known random feature embeddings [19, 20] to extend our proposed sDBSCAN to other
popular distance measures, including L1 and L2 metrics, and widely used similarity measures for
image data, including χ2 and Jensen-Shannon (JS). We also present sOPTICS to select relevant values
of ε for sDBSCAN. The detailed discussion and complexity of sOPTICS are in the appendix.

3.1 sDBSCAN: A simple and scalable density-based clustering

For each point q ∈ X ⊂ Sd−1, we compute D random projection values q⊤ri where i ∈ [D].
W.l.o.g., we let r∗ = argmaxri |q

⊤ri| = argmaxri q
⊤ri. Lemma 1 indicates that, given a

sufficiently large D, points closest to r∗ tend to have smaller distances to q, and hence are important
to discover q’s neighborhood. Hence, computing the distance between q to the top-m points closest
to r∗ where m = O(minPts) suffices to ensure whether or not q is a core point.

Algorithm 2 shows how we preprocess the data set. For each point q ∈ X, we keep top-k closest
and furthest random vectors. For each random vector ri, we keep top-m closest and furthest points.
Algorithm 3 identifies a core point q and its approximate neighborhood by computing the distance
between q and 2km points associated to the k closest and k furthest random vectors to q. sDBSCAN
and sOPTICS are essential DBSCAN and OPTICS using the outputs of Algorithm 3 as inputs.

Scalability. Given m = O(minPts), sDBSCAN and sOPTICS need O(k · minPts) distance
computations, compared to O(n) of the exact solution, to identify a core point q and its neighborhood

4

Algorithm 2 Preprocessing
1: Inputs: X ⊂ Sd−1, D random vectors ri, k,m = O(minPts)
2: for each q ∈ X, compute and store top-k closest and top-k furthest vectors ri to q.
3: for each random vector ri, compute and store top-m closest and top-m furthest points to ri.

Algorithm 3 Finding core points and their approximate neighborhoods
1: Inputs: X ⊂ Sd−1, D random vectors ri, k, ε,m = O(minPts)

2: Initialize an empty set B̃ε(q) for each q ∈ X
3: for each q ∈ X do
4: for each ri from top-k closest (or furthest) random vectors of q do
5: for each x from top-m closest (or furthest) points of ri do
6: if dist(x,q) ≤ ε then
7: Insert x into B̃ε(q) and insert q into B̃ε(x)
8: for each q ∈ X do
9: if |B̃ε(q)| ≥ minPts then

10: Output q as a core point and B̃ε(q) as an approximate Bε(q) for DBSCAN (Alg. 1)
11: Output dist(x,q) for each x ∈ B̃ε(q) for OPTICS (Alg. 6)

Algorithm 4 sDBSCAN
1: Inputs: X ⊂ Sd−1, D random vectors ri, ε, minPts
2: Call Algorithm 2 for preprocessing with m = O(minPts)

3: Call Algorithm 3 to find the set C = {(q, B̃ε(q)) |q is identified as core}
4: Call DBSCAN given the output C from Algorithm 3

Algorithm 5 sOPTICS
1: Inputs: X ⊂ Sd−1, D random vectors ri, ε, minPts
2: Call Algorithm 2 for preprocessing with m = O(minPts)

3: Call Algorithm 3 to find the set C = {(q, B̃ε(q),

{dist(x,q) for each x ∈ B̃ε(q)}) |q is identified as core}
4: Use the minPts−NN distance between q and x ∈ B̃ε(q) as coreDist(q) for each identified

core point q
5: Call OPTICS (Alg. 6) given the output C from Algorithm 3

subset B̃ε(q) ⊆ Bε(q). The memory usage to store B̃ε(q) is also bounded by O(k ·minPts). This
makes sDBSCAN and sOPTICS scalable regarding both time and space complexity.

Multi-threading. Like DBSCAN, the main computational bottlenecks of sDBSCAN and sOPTICS
are identifying core points and approximating their neighborhood. Fortunately, Algorithm 2 and 3 are
fast and parallel-friendly. We only need to add #pragma omp parallel directive on the for loops
to run in multi-threads. This enables sDBSCAN and sOPTICS to deal with million-point data sets in
minutes while the scikit-learn counterparts take hours or cannot finish due to the memory constraints.

3.2 Theoretical analysis of sDBSCAN

In practice, setting m = O(minPts) suffices to identify core points and approximate their neigh-
borhoods to ensure the quality of sDBSCAN. However, to theoretically guarantee the quality of
sDBSCAN, we need to adjust m based on the data distribution since ensuring the density-based
clustering quality without any information about the data distribution is hard [14, 15].

As in the unit sphere, if L2(x,q) ≤ ε then x⊤q ≥ 1 − ε2/2, we make a change in our algorithm.
For each random vector ri, we maintain two sets Si = {x ∈ X |x⊤ri ≥ (1− ε2/2)

√
2 ln (D)} and

Ri = {x ∈ X |x⊤ri ≤ −(1 − ε2/2)
√
2 ln (D)}, instead of keeping only top-m closest/furthest

points. In other words, for each random vector ri, the value of m is set adaptively to the data

5

distributed around ri. For a point q and its closest random vector r∗, if we compute L2(x,q) for
all x ∈ S∗ where S∗ = {x ∈ X |x⊤r∗ ≥ (1 − ε2/2)

√
2 ln (D)}, then any x ∈ Bε(q) is found

with a probability at least 1/2 due to the Gaussian distribution in Eq. (1). By computing the distance
between q and all points in Si or Ri corresponding to the top-k closest/furthest random vectors ri of
q, we can boost this probability to s = 1− (1/2)

2k due to the asymptotic independence among these
2k vectors [18, 22].

By connecting core points and their associated border points, DBSCAN outputs an ε-neighborhood
graph with l disconnected components G1, G2, . . . , Gl corresponding to l density-based clusters
C1, C2, . . . , Cl. Hence, by maintaining Si and Ri for each vector ri, sDBSCAN forms a subgraph
G′

i ⊆ Gi, i = 1, . . . , l, by sampling each edge of Gi with probability at least s. We now use the
following lemma [27] to guarantee the connectivity of subgraphs G′

i provided by sDBSCAN.

Lemma 2. Let G be a graph of n vertices with min-cut t and 0 < δ < 1. There exists a universal
constant c such that if s ≥ c(log (1/δ)+log (n))

t , then with probability at least 1 − δ, the graph G′

derived by sampling each edge of G with probability s is connected.

Since DBSCAN connects core points, there exists a constant t > 0 such that, for any pair of nearby
core points q1,q2, if L2(q1,q2) ≤ ε, then Bε(q1) and Bε(q2) share at least t common core points.
We assume that t will not be small to ensure that the density-based clusters will not become arbitrarily
thin anywhere. Given that DBSCAN produces l disconnected graphs G1, G2, . . . , Gl, it is clear that
t will be the lower bound of the min-cut of any Gi. By applying Lemma 2 on each Gi, we state our
main result.

Theorem 1. Let G1, G2, . . . , Gl be connected subgraphs produced by DBSCAN where each Gi

corresponds to a cluster Ci with ni core points. Assume that any pair of nearby core points q1,q2,
if L2(q1,q2) ≤ ε, then Bε(q1) and Bε(q2) share at least t common core points. There exists a

constant c such that if t
(
1− (1/2)

2k
)
≥ c (log (1/δ) + log (ni)) for i ∈ [l], sDBSCAN will recover

G1, G2, . . . , Gl as clusters with probability at least 1− δ.

Theorem 1 indicates that when the cluster Ci of ni core points is not thin anywhere, i.e. the common
neighborhood of any two nearby core points has at least t = O(log (ni)) core points, sDBSCAN
can recover Ci with probability 1− 1/ni. While our statistical guarantee is inspired by [15], we do
not need any strong assumption about the data distribution as used in [15]. However, it comes with
the cost of maintaining larger neighborhoods around the random vector ri (i.e. Si, Ri) that causes
significant computational resources.

In practice, a core point q is often surrounded by many other core points in a dense cluster. Therefore,
instead of maintaining the sets Si, Ri for each random vector ri, we can keep the top-m points of
these sets where m = O(minPts). This practical setting substantially reduces the memory usage
and running time of sDBSCAN without degrading clustering results. The next subsection justifies it.

3.3 From theory to practice

We observe that for any core point q regarding (ε,minPts), |Bε(q)| is often substantially larger
than minPts. We will present heuristics to improve the performance of sDBSCAN.

Identify core points with m = O(minPts). Given a core point q, we denote by x ∈ Bε(q)
and y ∈ X \ Bε(q) any close and far away points to q regarding the distance threshold
ε. W.l.o.g., we assume that r∗ = argmaxri q

⊤ri, and let X = x⊤r∗, Y = y⊤r∗ be the
projection values of x,y on r∗, respectively. From Eq. (1), X − Y follows a Gaussian

distribution whose variance is bounded by
(√

1− (x⊤q)
2
+

√
1− (y⊤q)

2

)2

. Let αxy =(
x⊤q− y⊤q

)
/

(√
1− (x⊤q)

2
+

√
1− (y⊤q)

2

)
and α∗ = argminx∈Bε(q),y∈X\Bε(q) αxy. As

Lemma 1 holds for k closest/furthest random vectors, assume that the event any point x ∈ Bε(q) is
ranked higher than all y ∈ X \Bε(q) is independent, Lemma 3 justifies that m = minPts suffices
to identify q as a core point. The proof based on the tail bound of the Gaussian variable X − Y and
the union bound is left in the appendix.

6

Lemma 3. Given D = n1/kα2
∗ for a given core point q ∈ X ⊂ Sd−1 where |Bε(q)| ≥ minPts,

maintaining top-minPts points associated to k closest/furthest vectors to q ensures |B̃ε(q)| ≥
minPts, B̃ε(q) ⊆ Bε(q) with probability at least (1− 1/n)minPts ∼ e−minPts/n.

Lemma 3 holds given the dependence of D on the data distribution around q (i.e. α∗). We empirically
observe that the distance gap between q and points inside and outside Bε(q) is significant, making
α2
∗ large. Hence, setting D = 1, 024, k = {5, 10} suffices to identify core points and enrich their

neighborhoods, achieving high clustering quality on many real-world data sets.

sDBSCAN-1NN to cluster misidentified border points. As sDBSCAN focuses on identifying
core points and approximating their neighborhoods, it misclassifies border points as noise. As the
neighborhood size of detected core points is upper bound by 2km, sDBSCAN might suffer accuracy
loss on data sets with a significantly large number of border points. Denote by C and C the set of
clustered core points and noisy points found by sDBSCAN, we propose a simple heuristic to classify
any x ∈ C. We will build a nearest neighbor classifier (1NN) where training points are sampled
from C, and scale up this classifier with the CEOs-based estimation approach [22, Alg. 1]. We call
sDBSCAN with the approximate 1NN heuristic as sDBSCAN-1NN.

In particular, for each sampled core point q ∈ C, we recompute their random projection values with
the stored D random vector ri as we do not keep these values after preprocessing. For each noisy
point x ∈ C, we retrieve the precomputed top-k closest/furthest vectors and use the projection values
of q at these top-k vectors to estimate x⊤q. To ensure this heuristic does not affect sDBSCAN time
where |C| ≈ |C| ≈ n/2, we sample 0.01n core points from C to build the training set. Empirically,
sDBSCAN time dominates this heuristic time, and the extra space usage to store 0.01nD projection
values is negligible.

Remark. sDBSCAN quickly finds core points and assigns cluster labels for non-core points using
a lightweight index. In contrast, LSH-based approaches [23, 28] need several LSH tables or multi-
probes [29] that cause significant space or time overheads. Also, it seems non-trivial for multi-probe
LSH to achieve DBSCAN’s accuracy with guarantees as the collision probability of multi-probes is
hard to control. Assigning label for identified non-core points with LSH seems non-trivial as these
points might collide with many core points from different clusters.

Extend to other distance measures. We extend sDBSCAN to other popular distance measures,
including L2, L1, χ2, and Jensen-Shannon (JS) via popular randomized kernel features [19, 20]. In
particular, we study fast randomized feature mapping f : Rd 7→ Rd′

such that E
[
f(x)⊤f(q)

]
=

K(x,q) where K are Gaussian, Laplacian, χ2, and JS kernels. As we execute random projections on
the constructed random features for each point and compute dist(x,y) using the original data, we
only need a small extra space to store the randomness associated with f . These embeddings’ extra
costs are negligible compared to sDBSCAN. Detailed discussion is left in the appendix.

Reduce the random projection costs. We will use the Structured Spinners [26] that exploits Fast
Hadamard Transform (FHT) to reduce the cost of Gaussian random projections. In particular, we
generate 3 random diagonal matrices D1,D2,D3 whose values are randomly chosen in {+1,−1}.
The random projection of x is simulated by the mapping x 7→ HD3HD2HD1x where H is the
Hadamard matrix. With FHT, the random projection can be simulated in O (D log (D)) time and use
additional O(D) extra space to store random matrices.

3.4 The time and space complexity of sDBSCAN

We analyze the time and space complexity of sDBSCAN with m = O(minPts).

Time complexity. With FHT, retrieving top-k closest/furthest vectors for each q ∈ X, and
top-m closest/furthest points for each random vector ri in the preprocessing (Alg. 2) runs in
O (nD log (D) + nD log (k) + nD log (minPts))) time. Finding approximate neighborhoods for
n points (Alg. 3) runs in O(dnk ·minPts) time since each point needs O(k ·minPts) distance
computations. For a constant k, sDBSCAN runs in O(dn ·minPts + nD log (D)) time. When
D = o(n), sDBSCAN runs in subquadratic time.

Empirically, the cost of identifying core points and their neighborhood dominates the preprocessing
cost due to the expensive random memory access of distance computations. Nevertheless, pre-

7

0 1 2 3 4 5 6

(a) sOptics (L1) 10 4

0

0.5

1

1.5

2

re
a
c
h
D

is
t

10 4

0 1 2 3 4 5 6 7

(b) sOptics (L2) 10 4

400

600

800

1000

1200

1400

1600

1800

re
a
c
h
D

is
t

0 1 2 3 4 5 6 7

(c) sOptics (Cosine) 10 4

0

0.05

0.1

0.15

0.2

0.25

re
a
c
h
D

is
t

0 1 2 3 4 5 6 7

(d) sOptics (JS) 10 4

0

0.05

0.1

0.15

0.2

0.25

re
a
c
h
D

is
t

8000 9000 10000 11000 12000

(e) Dbscan variants (L1)

0

5

10

15

20

25

30

35

40

45

50

A
M

I

sDbscan

Dbscan

sngDbscan

1200 1250 1300 1350 1400

(f) Dbscan variants (L2)

0

5

10

15

20

25

30

35

40

45

50

A
M

I

sDbscan

Dbscan

uDbscan++

kDbscan++

sngDbscan

0.1 0.11 0.12 0.13 0.14 0.15

(g) Dbscan variants (Cosine)

0

5

10

15

20

25

30

35

40

45

50

A
M

I

sDbscan

Dbscan

uDbscan++

kDbscan++

sngDbscan

0.1 0.11 0.12 0.13 0.14 0.15

(h) Dbscan variants (JS)

0

5

10

15

20

25

30

35

40

45

50

A
M

I

sDbscan

Dbscan

sngDbscan

Figure 1: Top: sOPTICS’s graphs on L1, L2, cosine, JS on Mnist. sOPTICS runs within 3 seconds
while scikit-learn OPTICS requires 1.5 hours on L2. Bottom: AMI of DBSCAN variants on L1, L2,
cosine, JS over the range of ϵ suggested by sOPTICS. Cosine and JS give the highest AMI.

processing and finding neighborhood steps are elementary to run in parallel. Our straightforward
multi-threading implementation of sDBSCAN and sOPTICS shows a 10× speedup with 64 threads.

Space complexity. sDBSCAN needs O(nk+D ·minPts) extra space to store O(k) closest/furthest
vectors for each point, and O(minPts) points closest/furthest to each random vector. When D =
o(n), sDBSCAN’s additional memory is negligible compared to the data size O(nd). This key feature
makes sDBSCAN highly scalable on million-point data sets compared to standard DBSCAN and
several kernel-based clustering [4, 5].

4 Experiment

We implement sDBSCAN and sOPTICS in C++ and compile with g++ -O3 -std=c++17
-fopenmp -march=native. We conducted experiments on Ubuntu 20.04.4 with an AMD Ryzen
Threadripper 3970X 2.2GHz 32-core processor (64 threads) with 128GB of DRAM. We present
empirical evaluations on the clustering quality compared to the ground truth (i.e. data labels) to verify
our claims, including:

• sDBSCAN with the suggested parameter values provided by sOPTICS runs significantly
faster and achieves competitive accuracy compared to other clustering algorithms.

• Multi-threading sDBSCAN and sOPTICS run in minutes, while the scikit-learn counterparts
cannot run on million-point data sets due to memory constraints on our hardware.

Our competitors include pDBSCAN [6] as a representative grid-based approach, DBSCAN++ [14]
and sngDBSCAN [15]. DBSCAN++ has two variants, including DBSCAN++ with uniform ini-
tialization (uDBSCAN++) that uses KD-Trees to speed up the search of core points and k-center
initialization (kDBSCAN++). We also compare with multi-threading scikit-learn implementations
of DBSCAN and OPTICS. To demonstrate the scalability and utility of sDBSCAN on other dis-
tance measures, we compare it with the result of kernel k-means in [21]. We found other clustering
competitors could not work on million-point data sets given 128 GB of RAM, detailed in the appendix.

We use the adjusted mutual information (AMI) [30] to measure the clustering quality. Results on
other measures [31], including normalized mutual information (NMI) and correlated coefficients (CC)
are in the appendix. We conduct experiments on three popular data sets: Mnist (n = 70, 000, d =
784, # clusters = 10), Pamap2 (n = 1, 770, 131, d = 51, # clusters = 18), and Mnist8m (n =
8, 100, 000, d = 784, # clusters = 10). All results are the average of 5 runs of the algorithms.

Parameter settings. We consider minPts = 50 for all experiments. sDBSCAN and sOPTICS use
D = 1024, m = minPts. Randomized kernel embeddings use σ = 2ε, d′ = 1024. We use k = 5
for Mnist and k = 10 for Pamap2 and Mnist8m. We first run sOPTICS to select a relevant range of

8

values of ε for DBSCAN variants. For DBSCAN++ and sngDBSCAN variants, we set the sampling
probability p = 0.01 for Mnist and Pamap2, and p = 0.001 for Mnist8m to have a similar number of
distance computations with sDBSCAN. pDBSCAN uses ρ = 0.001. Experiments on the sensitivity
of parameters m, k, σ, d′,minPts of sDBSCAN and sOPTICS are left in the appendix.

4.1 An ablation study of sOPTICS and sDBSCAN on Mnist

While DBSCAN on L2 is popular, the capacity to use arbitrary distances is an advantage of DBSCAN
compared to other clustering algorithms. We use sOPTICS to visualize the cluster structure on several
distance measures, including L1, L2, cosine, and JS on Mnist with D = 1, 024,m = minPts =
50, k = 5. By using the average top-100 nearest neighbor distances of 100 random points to find the
setting of ε for sOPTICS, we set ε = 1, 800 for L2, ε = 18, 000 for L1, and ε = 0.25 for the others.

The top subfigures of Figure 1 show reachability-plot dendrograms of sOPTICS on 4 studied distance
measures. Since points belonging to a cluster have a small reachability distance to their nearest
neighbors, the number of valleys in the dendrograms reflects the cluster structure. Therefore, we
can predict that cosine and JS provide higher clustering quality than L2 while L1 suffers low-quality
clustering. Importantly, any ε in the range [0.1, 0.15] can differentiate the 4 valleys by cosine and JS
while selecting a specific value to separate the 3 valleys by L2 is impossible. Note that 64-thread
sOPTICS runs in less than 3 seconds while 64-thread scikit-learn OPTICS demands 1.5 hours on L2.
Indeed, sOPTICS can output similar OPTICS graphs within 30 seconds, as shown in the appendix.

The bottom subfigures of Figure 1 show AMI scores of several DBSCAN variants over the recom-
mended ranges of ε by sOPTICS. Note that sDBSCAN and DBSCAN reach the peak on such ranges
while sampling-based variants do not. sDbscan is superior on all 4 supported distances, except L2
by uDBSCAN++. While sDBSCAN reaches DBSCAN’s accuracy of AMI 43% on cosine and JS,
sngDBSCAN gives significantly lower accuracy on all 4 distances. uDBSCAN++ gives at most 32%
AMI on L2 and cosine while kDBSCAN++ does not provide a meaningful result on the studied range
values of ε. L2 and L1 distances show inferior performance on clustering compared to cosine and JS,
as can be predicted from their corresponding sOPTICS graphs.

Table 1 summarizes the performance of studied DBSCAN variants on the best ε ∈ [0.1, 0.2] with
cosine distance. On 1 thread, sDBSCAN runs nearly 2×, 8× and 10× faster than sngDBSCAN,
uDBSCAN++ and kDBSCAN++, respectively. 64-thread sDBSCAN runs nearly 10× faster than
1-thread sDBSCAN and 100× faster than 64-thread scikit-learn. Though pDBSCAN shares the same
AMI with scikit-learn, its running time makes it infeasible for high-dimensional data sets.

4.2 Comparison on million-point data sets: Pamap2 and Mnist8m

This subsection compares the performance of sDBSCAN, DBSCAN++, and sngDBSCAN on million-
point data sets. scikit-learn DBSCAN and pDBSCAN cannot finish after 4 hours. Our implemented
sngDBSCAN runs faster than [15] and supports multi-threading. We use sOPTICS graphs in the
appendix to select relevant ranges of ε. sOPTICS runs in 2 mins and 11 mins on Pamap2 and Mnist8m,
respectively, significantly faster than DBSCAN++ and sngDBSCAN. The released DBSCAN++ does
not support L1, χ2, JS and multi-threading while the rest are in multi-threading.

Pamap2. Figure 2 shows the performance of sDBSCAN compared to DBSCAN++ and sngDBSCAN.
Given suggested ranges of ε by sOPTICS, sDBSCAN’s AMI peaks are consistently higher than that
of sngDBSCAN but 5% lower than DBSCAN on L1 and L2. While sDBSCAN achieves the AMI
peak on the studied ranges of ε on 3 distances, the performance of the others is very different on
different range of ϵ with cosine. We found that DBSCAN with ε = 0.005 returns AMI 47% but

Table 1: AMI on the best ε ∈ [0.1, 0.2] and running time of 64-thread scikit-learn vs. 1-thread
DBSCAN variants using cosine distance on Mnist. 64-thread sDBSCAN runs in 0.9 seconds.

Alg. scikit-learn sDBSCAN uDBSCAN++ kDBSCAN++ sngDBSCAN pDBSCAN

AMI 43% 43% 43% 7% 33% 43%
Time 86s 8.8s 67s 87s 18s 1.85 hours
ε 0.11 0.14 0.18 0.2 0.15 0.11

9

30 40 50 60 70 80

(a) L1

0

10

20

30

40

50

A
M

I

6 9 12 15 18 21

(b) L2

0

10

20

30

40

50

A
M

I

0.02 0.025 0.03 0.035 0.04 0.045

(c) Cosine

0

10

20

30

40

50

A
M

I

sDbscan Dbscan uDbscan++ kDbscan++ sngDbscan

Figure 2: AMI comparison of DBSCAN variants on L1, L2 and cosine on Pamap2 over a wide range
of ε suggested by sOPTICS. sDBSCAN runs within 0.3 mins, nearly 10×, 10×, 45×, 100× faster
than sngDBSCAN, uDBSCAN++, kDBSCAN++, and DBSCAN. L1 gives the highest AMI.

1300 1350 1400 1450 1500

(a) L2

0

5

10

15

20

25

30

35

40

N
M

I

sDbscan-1NN

sDbscan

Kernel k-means

sngDbscan

0.14 0.15 0.16 0.17 0.18

(b) Cosine

0

5

10

15

20

25

30

35

40

N
M

I

sDbscan-1NN

sDbscan

Kernel k-means

sngDbscan

0.14 0.15 0.16 0.17 0.18

(c)
2

0

5

10

15

20

25

30

35

40

N
M

I

sDbscan-1NN

sDbscan

Kernel k-means

sngDbscan

0.12 0.13 0.14 0.15 0.16

(d) JS

0

5

10

15

20

25

30

35

40

N
M

I

sDbscan-1NN

sDbscan

Kernel k-means

sngDbscan

Figure 3: NMI comparison of DBSCAN variants on L2, cosine, χ2, and JS and kernel k-means on
Mnist8m over a wide ranges of ε suggested by sOPTICS. sDBSCAN and sDBSCAN-1NN runs within
10 mins and 15 mins while sngDBSCAN demands nearly 1 hour. Kernel k-means (k = 10) [21]
runs in 15 mins on a supercomputer of 32 nodes, each has 64 threads and 128 GB of DRAM.

offers only 37% AMI on ε = 0.01. This explains the reliability of sOPTICS in guiding the parameter
setting for sDBSCAN and the difficulty in selecting relevant ε for other DBSCAN variants without
any scalable visual tools.

Mnist8m. As DBSCAN++ with p = 0.001 could not finish after 4 hours, we only report sngDBSCAN.
As we cannot run scikit-learn k-means++ or any kernel-based clustering [4, 5] with 128 GB of RAM,
we use the result of 41% NMI given by a fast kernel k-means [21] running on a supercomputer with
32 nodes, each of which has two 2.3GHz 16-core (32 threads) Haskell processors and 128GB of
DRAM. This configuration of a single node is similar to our conducted machine. Figure 3 shows
the NMI scores of sDBSCAN-1NN with 1-NN heuristic described in Subsection 3.3, sDBSCAN,
sgnDBSCAN, and kernel k-means on Mnist8m. sDBSCAN-1NN shows superiority among DBSCAN
variants. Its peak is at least 10% and 5% higher than sngDBSCAN and sDBSCAN, respectively, on
studied measures. sDBSCAN consistently gives higher accuracy than sngDBSCAN with the most
significant gap of 5% on χ2 and cosine. Note that sDBSCAN-1NN samples 0.01n core points, and
uses CEOs to build the approximate 1NN classifier, the time overhead of this step is smaller than
sDBSCAN’s time. Indeed, sDBSCAN-1NN with minPts = 100 reaches 40% NMI on χ2, running
within 15 minutes. Details of the running time comparison are in the appendix.

5 Conclusion

The paper presents a simple and scalable sDBSCAN for density-based clustering, and sOPTICS
for interactive clustering exploration for high-dimensional data. By leveraging the neighborhood
preservation of random projections, sDBSCAN preserves the DBSCAN’s output with theoretical
guarantees under mild conditions. We extend our proposed algorithms to other distance measures
to facilitate density-based clustering on many applications with image data. Empirically, both
sDBSCAN and sOPTICS are highly scalable, run in minutes on million-point data sets, and provide
very competitive accuracy compared to other clustering algorithms. We hope sDBSCAN and
sOPTICS will be featured on popular clustering libraries shortly.

10

Acknowledgments and Disclosure of Funding

Ninh Pham is supported by Marsden Fund (MFP-UOA2226).

References
[1] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. In KDD, pages 226–231, 1996.

[2] Ricardo J. G. B. Campello, Peer Kröger, Jörg Sander, and Arthur Zimek. Density-based
clustering. WIREs Data Mining Knowl. Discov., 10(2), 2020.

[3] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In SODA,
pages 1027–1035, 2007.

[4] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering and
normalized cuts. In SIGKDD, pages 551–556, 2004.

[5] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 22(8):888–905, 2000.

[6] Junhao Gan and Yufei Tao. On the hardness and approximation of euclidean DBSCAN. ACM
Trans. Database Syst., 42(3):14:1–14:45, 2017.

[7] Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. DBSCAN
revisited, revisited: Why and how you should (still) use DBSCAN. ACM Trans. Database Syst.,
42(3):19:1–19:21, 2017.

[8] Son T. Mai, Ira Assent, and Martin Storgaard. Anydbc: An efficient anytime density-based
clustering algorithm for very large complex datasets. In SIGKDD, pages 1025–1034. ACM,
2016.

[9] Xiaogang Huang and Tiefeng Ma. Fast density-based clustering: Geometric approach. Proc.
ACM Manag. Data, 1(1):58:1–58:24, 2023.

[10] K. Mahesh Kumar and A. Rama Mohan Reddy. A fast DBSCAN clustering algorithm by
accelerating neighbor searching using groups method. Pattern Recognit., 58:39–48, 2016.

[11] Mark de Berg, Ade Gunawan, and Marcel Roeloffzen. Faster DBSCAN and HDBSCAN in
low-dimensional euclidean spaces. Int. J. Comput. Geom. Appl., 29(1):21–47, 2019.

[12] Hossein Esfandiari, Vahab S. Mirrokni, and Peilin Zhong. Almost linear time density level set
estimation via DBSCAN. In AAAI, pages 7349–7357, 2021.

[13] Johannes Schneider and Michail Vlachos. Scalable density-based clustering with quality
guarantees using random projections. Data Min. Knowl. Discov., 31(4):972–1005, 2017.

[14] Jennifer Jang and Heinrich Jiang. Dbscan++: Towards fast and scalable density clustering. In
ICML, pages 3019–3029, 2019.

[15] Heinrich Jiang, Jennifer Jang, and Jakub Lacki. Faster DBSCAN via subsampled similarity
queries. In NeurIPS, 2020.

[16] Heinrich Jiang. Density level set estimation on manifolds with DBSCAN. In ICML, volume 70,
pages 1684–1693, 2017.

[17] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. OPTICS: ordering
points to identify the clustering structure. In SIGMOD, pages 49–60, 1999.

[18] H. A. David and J. Galambos. The asymptotic theory of concomitants of order statistics. Journal
of Applied Probability, 11(4):762–770, 1974.

[19] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In NIPS,
pages 1177–1184, 2007.

11

[20] Andrea Vedaldi and Andrew Zisserman. Efficient additive kernels via explicit feature maps.
IEEE Trans. Pattern Anal. Mach. Intell., 34(3):480–492, 2012.

[21] Shusen Wang, Alex Gittens, and Michael W. Mahoney. Scalable kernel k-means clustering with
nyström approximation: Relative-error bounds. J. Mach. Learn. Res., 20:12:1–12:49, 2019.

[22] Ninh Pham. Simple yet efficient algorithms for maximum inner product search via extreme
order statistics. In KDD, pages 1339–1347, 2021.

[23] Ninh Pham and Tao Liu. Falconn++: A locality-sensitive filtering approach for approximate
nearest neighbor search. In NeurIPS, 2022.

[24] Faiss Library. Faiss. https://faiss.ai/.

[25] Yury A. Malkov and Dmitry A. Yashunin. Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell.,
42(4):824–836, 2020.

[26] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig Schmidt.
Practical and optimal LSH for angular distance. In NIPS, pages 1225–1233, 2015.

[27] David R. Karger. Random sampling in cut, flow, and network design problems. Math. Oper.
Res., 24(2):383–413, 1999.

[28] Thomas D. Ahle, Martin Aumüller, and Rasmus Pagh. Parameter-free locality sensitive hashing
for spherical range reporting. In SODA, pages 239–256, 2017.

[29] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe LSH: efficient
indexing for high-dimensional similarity search. In VLDB, pages 950–961, 2007.

[30] Xuan Vinh Nguyen, Julien Epps, and James Bailey. Information theoretic measures for cluster-
ings comparison: Variants, properties, normalization and correction for chance. J. Mach. Learn.
Res., 11:2837–2854, 2010.

[31] Martijn Gösgens, Alexey Tikhonov, and Liudmila Prokhorenkova. Systematic analysis of
cluster similarity indices: How to validate validation measures. In ICML, volume 139, pages
3799–3808. PMLR, 2021.

[32] H. A. David. Concomitants of Extreme Order Statistics, pages 211–224. Springer US, 1994.

[33] Martin J. Wainwright. Basic tail and concentration bounds, pages 21–57. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

12

A OPTICS and sOPTICS

A.1 OPTICS

OPTICS [17] attempts to mitigate the problem of selecting relevant ε by linearly ordering the data
points such that close points become neighbors in the ordering. For each point x ∈ X, OPTICS
computes a reachability distance from its closest core point. Each point’s cluster ordering and
reachability distance are used to construct a reachability-plot dendrogram that visualizes the density-
based clustering results corresponding to a broad range of ε. Hence, given the setting of large ε,
valleys in the reachability plot are considered as the clustering indicators.

In principle, given a pair (ε,minPts), OPTICS first identifies the core points, their neighborhoods,
and their core distances. Then, OPTICS iterates X, and for each x ∈ X, computes the smallest
reachability distance, called x.reach, between x and the processed core points so far. The point with
the minimum reachability distance will be processed first and inserted into the cluster ordering O.

The core distance, coreDist, and reachability distance, reachDist, are defined as follows.

coreDist(q) =

{
∞ if q is non-core,
minPts− NN distance otherwise.

reachDist(x,q) =

{
∞ if q is non-core,
max(coreDist(q), dist(x,q)) otherwise.

For a core point q, reachDist(x,q) is dist(x,q) if x is not belonging to minPts−NN of
q. Among several core points whose neighborhood contains x, OPTICS seeks the small-
est reachability distance x.reach for x from these core points. In other words, x.reach =
minqi

{reachDist(x,qi) |qi is core and x ∈ Bε(qi)}.
OPTICS can be implemented as a nested loop as shown in Algorithm 6. In the outer loop (Line 4),
a random q ∈ X is selected and inserted into an empty cluster ordering O. If q is core, each point
x ∈ Bε(q) is inserted into a priority queue Q with reachDist(x,q) as the key value. An inner loop
(Line 12) that successively pops q′ from Q until Q is empty. We can see that the priority of q′ ∈ Q
is determined by their smallest reachability distance w.r.t. current core points processed so far. The
point with the smallest reachability distance in Q is always popped first (due to the priority queue)
and inserted into the ordering O.

We note that our presented OPTICS in Algorithm 6 is slightly different from the original version [17].
Since we do not know how to implement decrease-key operation efficiently on the priority queue 1,
we propose a “lazy deletion” where we keep adding x into Q with the new key. Though x might be
duplicated on Q, by checking whether or not x is processed (Lines 16–18), we can process each point
exactly once and output it into the cluster ordering O. When a point x is inserted into the ordering
O, x.reach at the time it was popped out of Q is recorded. Therefore, by setting ε large enough,
OPTICS outputs a cluster ordering that can be used as a visualization to extract clustering structure
for smaller values of ε.

Time and space complexity. Similar to DBSCAN, the running time of OPTICS is O(n2) makes
it impractical on large-scale data sets. Fast implementations of OPTICS with large values of ε will
require O(n2) memory to store the matrix distance between the core points and its neighborhood
points. Such implementations are infeasible for large n.

A.2 sOPTICS

To guide sDBSCAN’s parameter setting, Algorithm 5 presents sOPTICS, an OPTICS variant with the
identified core points and their neighborhood subsets provided by Algorithm 3. Given the identified
core point q and B̃ε(q), we store the set {dist(x,q) for each x ∈ B̃ε(q)} (Line 16 of Alg. 3). Using
this set, we can estimate coreDist(q) as the minPts-NN distance between q and B̃ε(q). Though
such estimation is an upper bound of coreDist(q), the tightness of the upper bound and the accurate
neighborhood approximation make the reachability-plot provided by sOPTICS very similar to the

1C++ STL priority queue does not support decrease-key function.

13

Algorithm 6 OPTICS
1: Inputs: X, ε,minPts, the set C = {(q, Bε(q), coreDist(q),
{dist(x,q) for each x ∈ Bε(q)}) |q is core}

2: Initialize an empty cluster ordering O
3: q.reach←∞ for each q ∈ X
4: for each unprocessed q ∈ X do
5: Mark q as processed, and insert q into O
6: if q is core then
7: Seeds← empty priority queue Q
8: for each x ∈ Bε(q) do
9: if x is unprocessed then

10: x.reach← min(x.reach, reachDist(x,q))
11: Insert (x,x.reach) into Q
12: while Q is not empty do
13: q′ ← Q.pop()
14: if q′ is processed then
15: continue
16: Mark q′ as processed, and insert q′ into O
17: if q′ is core then
18: for each unprocessed x ∈ Bε(q

′) do
19: x.reach← min(x.reach, reachDist(x,q′))
20: Insert (x,x.reach) into Q
21: return Cluster ordering O

original OPTICS with the same valley areas. Therefore, sOPTICS is a fast and reliable tool to guide
DBSCAN and sDBSCAN parameter settings and to visualize the clustering structure.

Ensuring sOPTICS recovers OPTICS’s result is difficult without any further assumptions as OPTICS’s
result is sensitive to the order of processed core points and their exact neighborhoods. Hence, we will
discuss sOPTICS’s quality in practical scenarios.

Like sDBSCAN, sOPTICS only considers top-m closest/furthest points to any random vector where
m = O(minPts). Given a core point q, the core distance of q derived from the set B̃ε(q) is an
upper bound of coreDist(q). Since a core point q is often surrounded by many other core points in
a dense cluster, B̃ε(q) tends to contain core points. Hence, the upper bound of reachability distance
provided by sOPTICS is tight. When the clustering structure is well separated, i.e., valleys in the
reachability-plot are deep, sOPTICS with m = O(minPts) is a reliable tool to guide the selection of
(ε,minPts) for DBSCAN. Importantly, the extra space of sOPTICS is linear, i.e. O(nk ·minPts),
as the approximate neighborhood size of each point is O(k ·minPts).

Time complexity. Similar to sDBSCAN, sOPTICS runs in O(dn ·minPts + nD log (D)) time
for preprocessing and identifying core points and its approximate neighborhood. For each point q,
sOPTICS keeps |B̃ε(q)| = O(k ·minPts) points and distance values. The size of the priority queue
Q of sOPTICS is O(nk ·minPts). Therefore, for a constant k, sOPTICS runs in O(dn ·minPts+
nD log (D)+n ·minPts · log (n ·minPts)). When D = o(n), sOPTICS run in subquadratic time.

Space complexity. sOPTICS needs O(nk +D ·minPts) extra space to store O(k) closest/furthest
vectors for each point, and O(minPts) points closest/furthest to each random vector. Due to the
priority queue of size O(nk ·minPts), sOPTICS uses O(nk +D ·minPts+ nk ·minPts) extra
space, which is linear when D = o(n), and independent on any value of ε. Note that scikit-learn uses
O(n2) memory and hence could not run OPTICS on million-point data sets.

B Proof of Lemma 1, Lemma 3, and extension to other distance measures

B.1 Proof of Lemma 1

We briefly describe the proof of Lemma 1 where points are on the unit sphere Sd−1. We note that
Lemma 1 holds on general Euclidean space as detailed in [22].

14

Given two vectors q,x ∈ Sd−1 and any random Gaussian vector ri ∈ Rd, we let Qi = q⊤ri
and Xi = x⊤ri. It is well known that Qi ∼ N(0, 1), Xi ∼ N(0, 1), and Qi and Xi are normal
bivariates from N (0, 0, 1, 1, ρ) where ρ = x⊤q. Let (Q1, X1), (Q2, X2), . . . , (QD, XD) be D
random samples from N (0, 0, 1, 1, ρ) generated by D Gaussian vectors ri, 1 ≤ i ≤ D. We form the
concomitants of normal order statistics by descendingly sorting these pairs based on Q-value.

Let r∗ = argmaxri q
⊤ri. Let X[1] be the concomitant of the first (maximum) order statistic

Q(1). Then we have Q(1) = q⊤r∗, X[1] = x⊤r∗. The theory of concomitants of extreme order
statistics [18, 32] studies the asymptotic behavior of the concomitants X[1] given the asymptotic
behavior of Q(1) when D goes to infinity.

The seminal work of David and Galambos [18] establishes the following properties of concomitants
of normal order statistics.

E
[
Q(1)

] D−→
√
2 ln (D) , Var

[
Q(1)

] D−→ 0 ,

E
[
X[1]

]
= (x⊤q)E

[
Q(1)

] D−→ x⊤q
√
2 ln (D) ,

Var
[
X[1]

]
= 1− (x⊤q)2 + (x⊤q)2 Var

[
Q(1)

] D−→ 1− (x⊤q)2 ,

X[1]
D−→ N

(
E
[
X[1]

]
,Var

[
X[1]

])
.

Since Gaussian distribution is symmetric, we can use both X[1] and −X[D] corresponding to the
maximum Q(1) associated to the closest random vector and minimum Q(D) associated to the furthest
random vector to q for estimating x⊤q. This proves the claim of Lemma 1.

B.2 Proof of Lemma 3

Given D random vectors ri ∈ Rd, i ∈ [D], whose coordinates are randomly selected from the
standard normal distribution N(0, 1), and the sign function sgn(·), we randomly projects x and q
onto these D Gaussian random vectors. For significantly large D random vectors ri, w.l.o.g. we
assume that r1 = argmaxri |q

⊤ri|, we have

x⊤r1 ∼ N
(
sgn(q⊤r1) · x⊤q

√
2 ln (D) , 1− (x⊤q)2

)
.

For a constant k > 0, this property (i.e. Lemma 1) also holds for the top-k closest/furthest vectors to
q due to the asymptotic property of extreme normal order statistics [18, 22].

Given a core point q, we denote by x ∈ Bε(q) and y ∈ X \ Bε(q) any close and far away
points to q regarding the distance threshold ε. W.l.o.g., we assume that r1 = argmaxri |q

⊤ri| =
argmaxri q

⊤ri. Let X = x⊤r1, Y = y⊤r1 be random variable corresponding to the projection
values of x,y on r1, respectively. Then we have

X ∼ N
(
x⊤q

√
2 ln (D) , 1− (x⊤q)2

)
, Y ∼ N

(
y⊤q

√
2 ln (D) , 1− (y⊤q)2

)
.

Let αxy =
(
x⊤q− y⊤q

)
/

(√
1− (x⊤q)

2
+

√
1− (y⊤q)

2

)
, applying Chernoff bound [33] on

the Gaussian variable Y −X gives

Pr [Y ≥ X] ≤ D
−(x⊤q−y⊤q)

2
/
(√

1−(x⊤q)2+
√

1−(y⊤q)2
)2

= D−α2
xy .

Let α∗ = argminx∈Bε(q),y∈X\Bε(q) αxy and D = n2/α2
∗ , applying the union bound, we have

Pr [x is ranked higher than all y ∈ X \Bε(q) on r1] ≥ 1− 1/n .

Since Lemma 1 holds for k closest/furthest random vectors ri to q due to their asymptotic indepen-
dence, let Rq be the set of these vectors associated to q. By setting D = n1/kα2

∗ we have
Pr [x is ranked higher than all y ∈ X \Bε(q) on one vector in Rq] ≥ 1− 1/n .

Assume that the event any point x ∈ Bε(q) is ranked higher than all y ∈ X \Bε(q) is independent,
we have
Pr [At least minPts points in Bε(q) appear on top-minPts points associated to Rq] ≥ (1−1/n)minPts .

This proves the claim of Lemma 3.

15

B.3 Extension to other similarity measures with random kernel features

We show how to extend sDBSCAN and sOPTICS to other popular distance measures, including
L2, L1, χ2, and Jensen-Shannon (JS). We will utilize the random features [19, 20] to embed these
distances into cosine distance. In particular, we study fast randomized feature mapping f : Rd 7→ Rd′

such that E
[
f(x)⊤f(q)

]
= K(x,q) where K is the kernel function. We study Gaussian, Laplacian,

χ2, and JS kernels as their randomized mappings are well-studied and efficiently computed. Also,
the embeddings’ extra costs are negligible compared to those of sDBSCAN and sOPTICS.

Given x = {x1, . . . , xd},y = {y1, . . . , yd} and σ > 0, the following are the definitions of the
investigated kernels.

KL(x,y) = e−∥x−y∥1/σ ; KG(x,y) = e−∥x−y∥2
2/2σ

2

;

Kχ2(x,y) =
∑
i

2xiyi
xi + yi

;

KJS(x,y) =
∑
i

xi

2
log

(
xi + yi

xi

)
+

yi
2
log

(
xi + yi

yi

)
.

We present here the random Fourier embeddings [19] for KL and KG with σ = 1. We first generate
d′ random vectors wi, i ∈ [d′] whose coordinates are from N(0, 1) for KG and Lap(0, 1) for KL.
Our randomized mappings are:

f(x) =
1√
d′
{sin (w⊤

i x), cos (w
⊤
i x) | i ∈ [d′]} ∈ S2d

′−1 .

Since |f(x)⊤f(y)| ≤ ∥f(x)∥2∥f(y)∥2 = 1, the Hoeffding’s inequality guarantees:
Pr

[
|f(x)⊤f(y)−K(x,y)| ≥ δ

]
≤ e−d′· δ2/2 . By selecting d′ = O(log (n)), the randomized

mapping f preserves well the kernel function of every pair of points. Hence, sDBSCAN and sOP-
TICS on these randomized embeddings output similar results to DBSCAN and OPTICS on the
corresponding distance measures.

Complexity. For KG,KL, the embedding time is O(dd′). For Kχ2 ,KJS , the embedding time is
O(d′) for d′ random features by applying the sampling and scaling approaches [20]. Empirically,
the random feature construction time is negligible compared to the sDBSCAN and sOPTICS time.
As we execute random projections on the constructed random features for each point and compute
dist(x,y) using the original data, we only need a small extra space to store random vectors wi.

C Additional experiments

We use the Eigen library 2 for SIMD vectorization on computing the distances. It will only give
advantages on dense data sets, e.g., Pamap2. Our sDBSCAN and sOPTICS are multi-threading
friendly. We only add #pragma omp parallel directive on the for loop when preprocessing and
finding the neighborhood for each point.

Clustering competitors. We tried several clustering algorithms on scikit-learn, including DBSCAN,
spectral clustering, and kernel k-means. They could not work on million-point data sets given our
DRAM of 128 GB. The released JAVA implementation of random projection-based DBSCAN [13]
cannot run even on the small Mnist data set.

Our competitors include pDBSCAN [6] 3 as a representative grid-based approach, DBSCAN++ [14] 4

and sngDBSCAN [15] 5 as representatives for sampling-based approaches. DBSCAN++ has two
variants, including DBSCAN++ with uniform initialization (called uDBSCAN++) that uses KD-Trees
to speed up the search of core points and k-center initialization (called kDBSCAN++). We also
compare with multi-threading scikit-learn implementations of DBSCAN and OPTICS 6.

2https://eigen.tuxfamily.org
3https://sites.google.com/view/approxdbscan
4https://github.com/jenniferjang/dbscanpp
5https://github.com/jenniferjang/subsampled_neighborhood_graph_dbscan
6https://scikit-learn.org/stable/modules/clustering.html

16

https://sites.google.com/view/approxdbscan
https://github.com/jenniferjang/dbscanpp
https://github.com/jenniferjang/subsampled_neighborhood_graph_dbscan
https://scikit-learn.org/stable/modules/clustering.html

0 1 2 3 4 5 6 7

(a) Optics-L2 10 4

400

600

800

1000

1200

1400

1600

1800

re
a

c
h

D
is

t

Optics-L2

0 1 2 3 4 5 6 7

(b) sOptics-L2 10 4

400

600

800

1000

1200

1400

1600

1800

re
a

c
h

D
is

t

sOptics-L2

0 1 2 3 4 5 6 7

(c) Optics-L1 10 4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

re
a

c
h

D
is

t

10 4

Optics-L1

0 1 2 3 4 5 6 7

(d) sOptics-L1 10 4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

re
a

c
h

D
is

t

10 4

sOptics-L1

Figure 4: Reachability-plot dendrograms of OPTICS and sOPTICS over L2 and L1 on Mnist. While
sOPTICS needs less than 30 seconds, scikit-learn OPTICS requires 1.5 hours on L2 and 0.5 hours
on L1.

Since the current sngDBSCAN only supports L2 and single thread, we re-implement sngDBSCAN to
support L1, χ2, and JS distance with multi-threading.

Datasets. We conduct experiments on three popular data sets: Mnist (n = 70, 000, d = 784, # clus-
ters = 10), Pamap2 (n = 1, 770, 131, d = 51, # clusters = 18), and Mnist8m (n = 8, 100, 000, d =
784, # clusters = 10), as shown in Table 2. For Pamaps2, we discarded instances that contain NaN
values and removed the dominated class 0 corresponding to the transient activities. We note that
Mnist and Mnist8m are sparse data sets with at least 75% sparsity, while Pamap2 is dense.

C.1 sOPTICS vs. scikit-learn OPTICS on Mnist over L1 and L2

This subsection measures the performance of sOPTICS and scikit-learn OPTICS with multi-threads.
We show that sOPTICS can output the same OPTICS’s results in less than 30 seconds, which is up to
180× speedups over scikit-learn OPTICS.

We use scikit-learn OPTICS to generate the dendrogram given minPts = 50. To select a reasonable
value of ε for OPTICS to reduce the running time, we randomly sample 100 points and use the average
top-100 nearest neighbor distances of these sampled points as ε. Accordingly, we use ε = 1, 800 for
L2 and ε = 18, 000 for L1.

To recover OPTICS’s results, sOPTICS uses D = 2, 048, k = 2 and m = 1, 000. For L2 and L1
distances, sOPTICS requires two additional parameters, including the scale σ and the number of
embeddings d′, for random Fourier embeddings. We observe that the performance of sOPTICS is
insensitive to σ and d′, hence we simply set σ = 2 ∗ ε and d′ = 1, 024 for our experiments.

We run both scikit-learn OPTICS and sOPTICS with 64 threads. Regarding speed, sOPTICS needs
less than 30 seconds, while OPTICS takes hours to finish. This shows the advantages of sOPTICS in
accurately finding candidates to construct neighborhoods and efficiently utilizing multi-threading.
Regarding accuracy, sOPTICS outputs nearly the same graphs as OPTICS, as shown in Figure 4.
Since there are more valleys on L2 than L1, the clustering accuracy regarding the ground truth using
L2 will be higher than L1.

C.2 sDBSCAN vs. scikit-learn DBSCAN on Mnist over cosine

We first normalize all data points. Since cosine distance is identical to L2 on a unit sphere, we use
scikit-learn DBSCAN on L2 to compare with sDBSCAN on cosine distance. Given minPts = 50,
we set ε = 0.11 as DBSCAN returns the highest NMI of 43% with the ground truth. sDBSCAN has
two main parameters on cosine distance: top-m points closest/furthest to a random vector and top-k
closest/furthest random vectors to a point. These parameters govern the accuracy and efficiency of
sDBSCAN. We set D = 1, 024 and vary m, k in the next experiments.

Table 2: The data sets

Datasets n d # clusters
Mnist 70,000 784 10

Pamap2 1,770,131 51 18
Mnist8m 8,100,000 784 10

17

Accuracy and efficiency of sDBSCAN. For sDBSCAN, we vary k = {40, 20, . . . , 1}, m =
{50, 100, . . . , 2, 000} such that it computes nearly the same 2km distances for each point. Ta-
ble 3 shows the performance of multi-threading sDBSCAN on DBSCAN’s outputs with ε =
0.11,minPts = 50. We can see that sDBSCAN can recover DBSCAN’s result with larger m.
These findings justify our theoretical result as larger m increases the chance of examining all points
in the set Si and Ri corresponding to the random vector ri, increasing the chance to recover the
DBSCAN’s output.

In the last column with m = 2, 000, sDBSCAN with k = 2 achieves NMI of 95% but runs 2 times
slower than k = 1 since it nearly doubles the candidate size. sDBSCAN with all configurations runs
at least 3× faster than scikit-learn DBSCAN. This presents the advantages of sDBSCAN in accurately
finding candidates to find core points and efficiently utilizing the multi-threading architecture.

sDBSCAN’s parameter setting. Given m ≥ minPts and k, each point needs at most 2km distance
computations due to the duplicates on top-m candidates corresponding to 2k investigated random
vectors. As a larger k leads to more duplicates among 2km candidates, given a fixed budget B = 2km,
Table 3 shows that k = 1,m = B/2 has higher accuracy but significantly higher running time than
k = k0 > 1,m = B/2k0.

While larger m and D tend to increase the accuracy of sDBSCAN, they affect space and time
complexity. Since we often set D = 1, 024 to ensure Lemma 3 holds, and the memory resource is
limited due to large data sets, we set m = minPts = 50 and k = {5, 10} for most experiments.
Compared to the ground truth, this setting does not affect the accuracy of sDBSCAN but uses
significantly less computational resources than other configurations.

Running time of sDBSCAN’s components with multi-threading. Given ε = 0.11, m =
minPts = 50, k = 5, Table 4 shows the running time of sDBSCAN components on 1 and 64
threads. On 1 thread, we can see that finding neighborhoods is the primary computational bottleneck
while forming clusters is negligible. This is due to the expensive random access operations to
compute 2km distances for each point. As the main components of sDBSCAN, including preprocess-
ing (Alg. 2) and finding neighborhoods (Alg. 3) can be sped up with multi-threading, we achieve
nearly 10× speedup with 64 threads. We also observe that the construction time of the randomized
embeddings to support L2, L1, χ2, and JS is similar to the preprocessing time and is negligible to
that of finding neighborhoods.

C.3 sOPTICS graphs on Pamap2 and Mnist8m

We use the average top-100 nearest neighbor distances of 100 sampled points to select a suitable ε
for sOPTICS. Figure 5 and 6 show sOPTICS’s graphs of Pamap2 and Mnist8m with minPts = 50.
As Pamap2 contains negative features, we only run on cosine, L2, and L1 distances. sOPTICS uses
D = 1, 024, σ = 2 ∗ ε, d′ = 1, 024 runs in less than 2 minutes and 11 minutes on Pamap2 and
Mnist8m, respectively. Both figures show that L2 is less relevant than the other distances as it does
not show clear valley areas. This reflects the need to use other distance measures rather than L2 for
density-based clustering to achieve reasonable performance.

Table 3: Comparison of sDBSCAN with the DBSCAN’s output on cosine distance with ε =
0.11,minPts = 50 over different k and m on Mnist. The scikit-learn DBSCAN runs in 71 seconds.

m 50 100 200 400 1,000 2,000 2,000
k 40 20 10 5 2 1 2

NMI 69% 76% 81% 86% 88% 91% 95%
Time (s) 8.8 9.9 10.5 11.1 12.1 12.6 23

Table 4: Running time of sDBSCAN components in seconds with D = 1, 024, k = 5,m =
minPts = 50, ε = 0.11 on Mnist.

Threads Preprocess Find core points Cluster Total

1 thread 1.424 7.745 0.001 9.198
64 threads 0.160 0.700 0.001 0.862

18

0 2 4 6 8 10 12 14 16 18

(a) L1 10 5

0

50

100

150

200

re
a

c
h

D
is

t

0 2 4 6 8 10 12 14 16 18

(b) L2 10 5

0

20

40

60

80

re
a

c
h

D
is

t

0 2 4 6 8 10 12 14 16 18

(c) Cosine 10 5

0

0.05

0.1

0.15

re
a

c
h

D
is

t

Figure 5: sOPTICS’s graphs on L1, L2 and cosine distances on Pamap2. Each runs within 2 minutes.
scikit-learn OPTICS could not finish in 4 hours.

0 2 4 6 8

(a) L2 10 6

400

600

800

1000

1200

1400

1600

1800

2000

re
a

c
h

D
is

t

0 2 4 6 8

(b) Cosine 10 6

0

0.05

0.1

0.15

0.2

re
a

c
h

D
is

t

0 2 4 6 8

(c)
2 10 6

0

0.05

0.1

0.15

0.2

0.25

re
a

c
h

D
is

t

0 2 4 6 8

(d) JS 10 6

0

0.05

0.1

0.15

0.2

0.25

re
a

c
h

D
is

t

Figure 6: sOPTICS’s graphs on L2, cosine, χ2, and JS distances on Mnist8m. Each runs within 11
minutes. scikit-learn OPTICS could not finish in 4 hours.

C.4 Detailed comparison on Pamap2

As L2 is inferior to L1 and cosine on sampling-based DBSCAN, Table 5 reports the NMI scores
and running time of studied algorithms on L1 and cosine distances over a larger range of ε. While
sDBSCAN shows a low NMI on cosine, its accuracy is 45% on L1, which is higher than sngDBSCAN
on both cosine and L1. As sngDBSCAN uses p = 0.01, each point will compute np ∼ 17, 700
distances compared to 2km = 1000 of sDBSCAN. Hence, sDBSCAN runs up to 14× faster
than sngDBSCAN on L2. On L1, sDBSCAN is nearly 100× faster than DBSCAN. By changing
k = 5,m = 200, sDBSCAN reaches 48% NMI on L1 and still runs in less than 1 minute. Compared

Table 5: The NMI on the best ε and running time comparison on cosine and L1 distances on Pamap2.
The upper 3 algorithms run in multi-threading with 10× speedup compared to 1 thread while the
lower ones use 1 thread.

Algorithms Cosine (ε ∈ [0.005, 0.05]) L1 (ε ∈ [30, 80])

NMI Time ε NMI Time ε

DBSCAN 47% 28.4 min 0.005 50% 29.3 min 40
sDBSCAN 34% 0.2 min 0.04 46% 0.3 min 60

sngDBSCAN 42% 2.8 min 0.015 40% 2.7 min 50

uDBSCAN++ 46% 3 min 0.015 – – –
kDBSCAN++ 39% 13.4 min 0.05 – – –

k-mean++ (k = 18) 36% 0.4 min – – – –

Table 6: The NMI on the best ε and running time comparison of multi-threading DBSCAN variants
on L2 and cosine on Mnist8m. Kernel k-means (k = 10) [21] runs in 15 minutes on a supercomputer
of 32 nodes and achieves NMI 41%.

Algorithms L2 (ε ∈ [1100, 1500]) Cosine (ε ∈ [0.1, 0.2])

NMI Time ε NMI Time ε

sDBSCAN-1NN 36% 8 min 1400 37% 14 min 0.16
sDBSCAN 25% 7 min 1350 32% 8 min 0.16

sngDBSCAN (p = 0.001) 22% 43 min 1150 26% 42 min 0.16

19

to k-mean++, multi-threading sDBSCAN runs faster and offers significantly higher NMI with L1.
We emphasize that the advantage of multi-threading sDBSCAN comes from its simplicity, as it is
effortless engineering to run sDBSCAN on multi-threads.

Among sampling-based approaches, uDBSCAN++ gives the highest NMI score of 46%, while
kDBSCAN++ is very slow. kDBSCAN++ runs approximately 5× slower than uDBSCAN due to
the overhead of k-center initialization and the efficiency of KD-Trees on Pamap2 with d = 51. In
general, sDBSCAN provides competitive clustering accuracy and runs significantly faster than other
DBSCAN variants. Like Mnist, our sOPTICS on Pamap2 runs in less than 2 minutes, even faster
than any sampling-based implementations.

C.5 Detailed comparison on Mnist8m

As Mnist8m is non-negative, we conduct experiments on cosine, L2, and L1, χ2, and JS distances.
Similar to Mnist, sOPTICS graphs show L1 is inferior, so we do not report L1 here.

uDBSCAN++ and kDBSCAN++ with p = 0.001 could not finish after 3 hours. It is not surprising as
our multi-threading sngDBSCAN runs in nearly 1 hour, and single thread sngDBSCAN is at least 4×
faster than DBSCAN++ variants on Mnist. As we cannot run scikit-learn k-means++, we use the
result of 41% NMI given by a fast kernel k-means [21] running on a supercomputer with 32 nodes,
each of which has two 2.3GHz 16-core (32 threads) Haskell processors and 128GB of DRAM. This
configuration of a single node is similar to our conducted machine.

Table 6 and 7 summarize the performance of multi-threading sDBSCAN-1NN, sDBSCAN, and
sngDBSCAN, including the NMI score on the best ε and the running time, on L2, cosine, χ2, and
JS. sDBSCAN-1NN runs in at most 15 minutes and returns the highest NMI among DBSCAN
variants with a peak of 38% NMI on χ2 and JS. We emphasize that kernel k-means with Nyström
approximation [21, Table 4] also needs 15 minutes on a supercomputer and gives 41% NMI.

sDBSCAN runs faster than sDBSCAN-1NN as it does not assign labels to non-core points, and
still achieves significantly higher NMI scores than sngDBSCAN on all 4 studied distances. Among
4 distances, L2 shows lower accuracy but runs faster than χ2 and JS due to the faster distance
computation. sDBSCAN runs 6.4× faster than sngDBSCAN, which is justified by the number of
distance computations np = 8, 100 of sngDBSCAN compared to 2km = 1000 of sDBSCAN. As
sDBSCAN-1NN samples 0.01n core points to build the approximate 1NN classifier, the running time
overhead of this extra step is smaller than sDBSCAN’s time.

C.6 Sensitivity of parameters used in random kernel features

We first show empirical results on random kernel mappings that facilitate sDBSCAN and sOPTICS
on L1, L2, χ2, and JS distance. We use Pamap2 for L1 and L2 as it contains negative values and
Mnist for χ2 and JS as it does not contain negative values.

L1 and L2 on Pamap2. We carry out experiments to evaluate the sensitivity of the parameter σ used
on random kernel mappings on L1 and L2. We fix k = 10,m = minPts = 50, D = 1024, d′ =
1024 and vary σ for L1 and L2. Figure 7 shows the accuracy of sDBSCAN on the recommended range
of ε by sOPTICS graphs with σ = {50, 100, 200, 400} for L1 on Figure 8 and σ = {20, 40, 80, 160}
for L2 on Figure 9.

Table 7: The NMI on the best ε and running time comparison of multi-threading DBSCAN variants
on χ2 and JS distances on Mnist8m. Kernel k-means (k = 10) [21] runs in 15 minutes on a
supercomputer of 32 nodes and achieves NMI 41%.

Algorithms χ2 (ε ∈ [0.1, 0.2]) JS (ε ∈ [0.1, 0.2])

NMI Time ε NMI Time ε

sDBSCAN-1NN 38% 15 min 0.17 38% 15 min 0.15
sDBSCAN 32% 10 min 0.17 31% 10 min 0.15

sngDBSCAN (p = 0.001) 28% 64 min 0.15 27% 64 min 0.17

20

30 40 50 60 70 80 90 100

(a) L1

0

10

20

30

40

50

N
M

I

=50

=100

=200

=400

9 12 15 18 21 24 27 30 33 36 39 42 45 48

(b) L2

0

10

20

30

40

50

N
M

I

=20

=40

=80

=160

Figure 7: sDBSCAN’s NMI on L1 and L2 with various σ on Pamaps with k = 10,m = minPts =
50. Each runs in less than 20 seconds.

0 2 4 6 8 10 12 14 16 18

(a) = 400 10 5

0

50

100

150

200

re
a

c
h

D
is

t

0 2 4 6 8 10 12 14 16 18

(a) = 200 10 5

0

50

100

150

200
re

a
c
h

D
is

t

0 2 4 6 8 10 12 14 16 18

(b) = 100 10 5

0

50

100

150

200

re
a

c
h

D
is

t

0 5 10 15

(c) = 50 10 5

0

50

100

150

200

re
a

c
h

D
is

t

Figure 8: sOPTICS’s graphs on L1 with various σ on Pamaps with k = 10,m = minPts = 50.
Each runs in less than 2 minutes.

0 2 4 6 8 10 12 14 16 18

(a) = 160 10 5

0

10

20

30

40

50

60

70

80

re
a

c
h

D
is

t

0 2 4 6 8 10 12 14 16 18

(a) = 80 10 5

0

10

20

30

40

50

60

70

80

re
a

c
h

D
is

t

0 2 4 6 8 10 12 14 16 18

(b) = 40 10 5

0

10

20

30

40

50

60

70

80

re
a

c
h

D
is

t

0 2 4 6 8 10 12 14 16 18

(c) = 20 10 5

0

10

20

30

40

50

60

70

80

re
a

c
h

D
is

t

Figure 9: sOPTICS’s graphs on L2 with various σ on Pamaps with k = 10,m = minPts = 50.
Each runs in less than 2 minutes.

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

(a)
2

0

10

20

30

40

50

N
M

I

d'=d

d'=3d

d'=5d

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

(b) JS

0

10

20

30

40

50

N
M

I

d'=d

d'=3d

d'=5d

Figure 10: sDBSCAN’s NMI on χ2 and JS with various σ on Mnist with k = 10,m = minPts = 50.
Each runs in less than 20 seconds.

While L1 provides 46% NMI, higher than just 40% NMI by L2, the setting σ = 2ε reaches the peak
of NMI for both L1 and L2. For example, sDBSCAN at ε = 50, σ = 100 reaches NMI 46% for L1.
sDBSCAN at ε = 15, σ = 20 and ε = 21, σ = 40 reach NMI of 40% for L2. Also, the performance
of sDBSCAN is not sensitive to the value σ, especially with the guide of sOPTICS graphs. For
example on L2 as shown in Figure 9, σ = 160 suggests the suitable range [40, 50] while σ = 80
shows [30, 40]. The best values of ε of these two σ values are clearly on these ranges, as shown in
Figure 7(b). This observations appear again on σ = {20, 40} for the range of [10, 20] and [20, 30],
respectively.

χ2 and JS on Mnist. We carry out experiments to evaluate the sensitivity of the parameter d′ used
on random kernel mappings on χ2 and JS. We fix k = 5,m = minPts = 50, D = 1024 and vary
d′. We note that [20] approximates χ2 and JS distance using the sampling approach, hence we set

21

0 1 2 3 4 5 6 7

(a)
2
, d' = 2352 10 4

0

0.05

0.1

0.15

0.2

0.25

re
a

c
h
D

is
t

0 1 2 3 4 5 6 7

(b)
2
, d' = 3920 10 4

0

0.05

0.1

0.15

0.2

0.25

re
a

c
h
D

is
t

0 1 2 3 4 5 6 7

(c) JS, d' = 2352 10 4

0

0.05

0.1

0.15

0.2

0.25

re
a
c
h
D

is
t

0 1 2 3 4 5 6 7

(d) JS, d' = 3920 10 4

0

0.05

0.1

0.15

0.2

0.25

re
a
c
h
D

is
t

Figure 11: sOPTICS’s graphs on χ2 and JS with d′ = {3d, 5d} on Mnist with k = 5,m = minPts =
50. Each runs in less than 3 seconds.

30 40 50 60 70 80

(a) k = 5

25

30

35

40

45

50

N
M

I

Dbscan

sDbscan, m=50

sDbscan, m=100

sDbscan, m=200

sDbscan, m=400

30 40 50 60 70 80

(b) k = 10

25

30

35

40

45

50

N
M

I

Dbscan

sDbscan, m=50

sDbscan, m=100

sDbscan, m=200

sDbscan, m=400

Figure 12: sDBSCAN’s NMI on L1 with various k,m on Pamaps with minPts = 50.

the sampling interval as 0.4, as suggested on scikit-learn 7. We also note that d′ should be set as
(2l + 1)d for l ∈ N. Hence, we set d′ = {3d, 5d} in our experiment.

Figure 11 shows sOPTICS graphs of χ2 and JS on d′ = {3d, 5d}. They are very similar to the
sOPTICS graphs on d′ = d where the range of ε should be in [0.15, 0.2] for χ2 and [0.13, 0.18] for
JS. Therefore, we can see that sDBSCAN with such a recommended range of ε will reach the peak of
accuracy.

Figure 10 shows that sDBSCAN reaches the peak at ε = 0.16 with χ2 and ε = 0.14 with JS. Using
d′ = 5d slightly increases the accuracy compared to d′ = d though it is not significant on JS. Both
measures offer the highest accuracy with 45% NMI.

C.7 Sensitivities of k, m of sDBSCAN

We carry out experiments on Pamap2 using L1 to study the performance of sDBSCAN on various
values of k,m since L1 shows superiority compared to cosine and L2. We fix σ = 200, D = 1024
and consider the range of ε ∈ [30, 80]. As increasing k,m will increase the memory and running
time of sDBSCAN, we first fix k = {5, 10} and then increase m = {50, 100, 200, 400}.
Figure 12 shows that for a fix k, increasing m slightly increases the accuracy of sDBSCAN. In
particular, sDBSCAN with m = 400 at ε = 50 reaches the accuracy of the exact DBSCAN of 50%
NMI. Regarding the time, sDBSCAN with m = 400 needs 1.5 minutes and xxx mins for k = 5 and
k = 10, respectively, which is significantly faster than 29.3 minutes required by the exact DBSCAN.

C.8 Neighborhood size minPts = 100

We present experiments on the setting of minPts = 100. We follow the same procedure that
plots sOPTICS graphs first and use them to select the relevant range values of ε. We all use
k = 10,m = 100, D = 1024 for Pamap2 and Mnist8m.

Pamap2. Figure 13 shows sOPTICS graphs on Pamap2 with L1, L2, and cosine distances where
we use σ = 200 for L1, and σ = 20 for L2. It shows again that L2 is inferior than L1 and cosine

7https://github.com/scikit-learn/scikit-learn/blob/5c4aa5d0d/sklearn/kernel_
approximation.py

22

https://github.com/scikit-learn/scikit-learn/blob/5c4aa5d0d/sklearn/kernel_approximation.py
https://github.com/scikit-learn/scikit-learn/blob/5c4aa5d0d/sklearn/kernel_approximation.py

0 2 4 6 8 10 12 14 16 18

(a) L1 10 5

0

50

100

150

200

re
a

c
h

D
is

t

0 2 4 6 8 10 12 14 16 18

(b) L2 10 5

0

10

20

30

40

50

60

70

80

re
a

c
h

D
is

t

0 2 4 6 8 10 12 14 16 18

(c) Cosine 10 5

0

0.05

0.1

0.15

re
a

c
h

D
is

t

Figure 13: sOPTICS’s graphs on L1, L2, cosine on Pamap2 with k = 10,m = minPts = 100. Each
runs in less than 5 minutes.

30 40 50 60 70 80

(a) L1

0

10

20

30

40

50

N
M

I

9 12 15 18 21 24

(b) L2

0

10

20

30

40

50

N
M

I

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

(c) Cosine

0

10

20

30

40

50

N
M

I

sDbscan Dbscan uDbscan++ kDbscan++ sngDbscan

Figure 14: sDBSCAN’s NMI on L1, L2, and cosine on Pamap2 with k = 10,m = minPts = 100.
Each runs within 1 minute.

distances. Figure 14 shows the accuracy of sDBSCAN compared to other competitors on Pamap2
with studied distances over the range of ε suggested by their corresponding sOPTICS graphs.

SDBSCAN reaches the highest NMI at the suggested range of ε by their sOPTICS graphs. In contrast,
sampling-based approaches have to investigate a much wider range of ε to achieve good performance.
We observe that the performance of sDBSCAN is stable regarding minPts though a larger minPts
requires larger m which increases the running time. Each instance of sDBSCAN runs in 0.5 minutes,
which is significantly faster than 3 minutes by uDBSCAN++ and 13.4 minutes by kDBSCAN++.
sDBSCAN shows the advantage of running on many distance measures, which leads to the highest of
48% of NMI of L1. In contrast, uDBSCAN++ achieves the highest of 46% of NMI among cosine
and L2 distances.

Mnist8m. Figure 15 shows sOPTICS graphs on Mnist8m with L2, cosine, χ2 and JS distances
where we use σ = 4000 for L2, and d′ = d on χ2 and JS. It shows the advantages of sDBSCAN on
supporting many distances and predicts that cosine, χ2 and JS provide higher accuracy than L2.

Figure 16 shows the accuracy of sDBSCAN variants compared to other competitors on Mnist8m
with studied distances over the range of ε suggested by their corresponding sOPTICS graphs. We
consider sDBSCAN-1NN with the approximation 1NN heuristic to cluster border and noisy points
detected by sDBSCAN. It shows again that sDBSCAN variants outperform sngDBSCAN on all
studied distances. sDBSCAN-1NN on a single computer nearly reaches the accuracy of kernel
k-means [21]. Regarding the speed, each instance of sDNSCAN-1NN runs in less than 15 minutes,
which is the time requirement for kernel k-means on a supercomputer.

23

0 2 4 6 8

(a) L2 10 6

400

600

800

1000

1200

1400

1600

1800

2000

re
a
c
h
D

is
t

0 2 4 6 8

(b) Cosine 10 6

0

0.05

0.1

0.15

0.2

0.25

re
a
c
h
D

is
t

0 2 4 6 8

(c)
2 10 6

0

0.05

0.1

0.15

0.2

0.25

re
a
c
h
D

is
t

0 2 4 6 8

(d) JS 10 6

0

0.05

0.1

0.15

0.2

0.25

re
a
c
h
D

is
t

Figure 15: sOPTICS’s graphs on L2, cosine, χ2, and JS distances on Mnist8m with k = 10,m =
minPts = 100. Each runs in less than 20 minutes.

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550

(a) L2

0

5

10

15

20

25

30

35

40

45

N
M

I

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

(b) Cosine

0

5

10

15

20

25

30

35

40

45
N

M
I

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

(c)
2

0

5

10

15

20

25

30

35

40

45

N
M

I

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

(d) JS

0

5

10

15

20

25

30

35

40

45

N
M

I

sDbscan-1NN sDbscan Kernel k-means sngDbscan

Figure 16: sDBSCAN’s NMI on L2, cosine, χ2, and JS on Mnist8m with k = 10,m = minPts =
100. Each runs within 20 minutes.

C.9 Clustering accuracy with NMI and CC on Mnist and Pamap2

Figures 17 and 18 show the clustering accuracy with NMI and CC on Mnist and Pamap2 of sDbscan,
DBSCAN, uDBSCAN++, kDBSCAN++, sngDBSCAN on minPts = 50. These figures show that
sDBSCAN is competitive to other DBSCAN variants on different clustering accuracy measures.

8000 9000 10000 11000 12000

(e) Dbscan variants (L1)

0

10

20

30

40

50

N
M

I

sDbscan

Dbscan

sngDbscan

1200 1250 1300 1350 1400

(f) Dbscan variants (L2)

0

10

20

30

40

50

N
M

I

sDbscan

Dbscan

uDbscan++

kDbscan++

sngDbscan

0.1 0.11 0.12 0.13 0.14 0.15

(g) Dbscan variants (Cosine)

0

10

20

30

40

50

N
M

I

sDbscan

Dbscan

uDbscan++

kDbscan++

sngDbscan

0.1 0.11 0.12 0.13 0.14 0.15

(h) Dbscan variants (JS)

0

10

20

30

40

50
N

M
I

sDbscan

Dbscan

sngDbscan

8000 9000 10000 11000 12000

(e) Dbscan variants (L1)

0

2

4

6

8

10

12

14

16

18

20

22

C
C

sDbscan

Dbscan

sngDbscan

1200 1250 1300 1350 1400

(f) Dbscan variants (L2)

0

2

4

6

8

10

12

14

16

18

20

22

C
C

sDbscan

Dbscan

uDbscan++

kDbscan++

sngDbscan

0.1 0.11 0.12 0.13 0.14 0.15

(g) Dbscan variants (Cosine)

0

2

4

6

8

10

12

14

16

18

20

22

C
C

sDbscan

Dbscan

uDbscan++

kDbscan++

sngDbscan

0.1 0.11 0.12 0.13 0.14 0.15

(h) Dbscan variants (JS)

0

2

4

6

8

10

12

14

16

18

20

22

C
C

sDbscan

Dbscan

sngDbscan

Figure 17: NMI and CC of DBSCAN variants on Mnist with L1, L2, cosine, JS over the range of ε
suggested by sOPTICS. Cosine and JS give the highest clustering accuracy.

24

30 40 50 60 70 80

(a) L1

0

10

20

30

40

50

N
M

I

6 9 12 15 18 21

(b) L2

0

10

20

30

40

50

N
M

I

0.02 0.025 0.03 0.035 0.04 0.045

(c) Cosine

0

10

20

30

40

50

N
M

I

sDbscan Dbscan uDbscan++ kDbscan++ sngDbscan

30 40 50 60 70 80

(a) L1

0

5

10

15

20

C
C

6 9 12 15 18 21

(b) L2

0

5

10

15

20

C
C

0.02 0.025 0.03 0.035 0.04 0.045

(c) Cosine

0

5

10

15

20

C
C

Figure 18: NMI and CC of DBSCAN variants on Pamap2 with L1, L2, cosine over the range of ε
suggested by sOPTICS. L1 gives the highest clustering accuracy.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We show how to scale up DBSCAN and OPTICS with million-point data
within a few minutes. After preprocessing, our proposed sDBSCAN and sOPTICS only
need O(minPts · n) distance computations and additional O(minPts · n) extra space
compared to O(n2) of DBSCAN and OPTICS.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The theoretical result of sDBSCAN uses the asymptotic property of extreme
order statistics that require D →∞, and an assumption on the strong connection of density-
based components of a cluster. Nevertheless, we observe that D = 1024 works very well in
practice and the cost of executing random projections is significantly smaller than the cost
of distance computations.

Guidelines:

25

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For Theorem 1, we use the result of Lemma 1, which requires the asymptotic
property of extreme order statistics, and the need to maintain the set Si and Ri whose sizes
depend on the neighborhood around the random vector ri. For Lemma 3, we assume that
the event any point x ∈ Bε(q) is ranked higher than all y ∈ X \Bε(q) is independent.

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release the source code, parameter setting guidelines, and data set for
reproducibility.

Guidelines:
• The answer NA means that the paper does not include experiments.

26

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The appendix describes detailed clustering competitors and their settings. Our
released sDBSCAN and sOPTICS on Github has Python wrappers to test with scikit-learn
competitors.

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We state how to set parameter settings for other competitors, and how to set
parameter settings for DBSCAN variants via sOPTICS.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the error bar on the clustering accuracy (AMI, NMI, and CC).

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed computer resources.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

28

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We anonymized our work.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper proposes a new density-based clustering algorithm that can be run
on any high-dimensional data set.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No risks.

Guidelines:
• The answer NA means that the paper poses no such risks.

29

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use released data sets, including Mnist, Mnist8m, Pamap2 which are very
popular in research community.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We propose a new algorithm.

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing.

Guidelines:

30

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Preliminary
	DBSCAN
	OPTICS
	Random projection-based neighborhood preservation

	Scalable density-based clustering with random projections
	sDBSCAN: A simple and scalable density-based clustering
	Theoretical analysis of sDBSCAN
	From theory to practice
	The time and space complexity of sDBSCAN

	Experiment
	An ablation study of sOPTICS and sDBSCAN on Mnist
	Comparison on million-point data sets: Pamap2 and Mnist8m

	Conclusion
	OPTICS and sOPTICS
	OPTICS
	sOPTICS

	Proof of Lemma 1, Lemma 3, and extension to other distance measures
	Proof of Lemma 1
	Proof of Lemma 3
	Extension to other similarity measures with random kernel features

	Additional experiments
	 sOPTICS vs. scikit-learn OPTICS on Mnist over L1 and L2
	sDBSCAN vs. scikit-learn DBSCAN on Mnist over cosine
	sOPTICS graphs on Pamap2 and Mnist8m
	Detailed comparison on Pamap2
	Detailed comparison on Mnist8m
	Sensitivity of parameters used in random kernel features
	Sensitivities of k, m of sDBSCAN
	Neighborhood size minPts = 100
	Clustering accuracy with NMI and CC on Mnist and Pamap2

