
Published as a conference paper at ICLR 2025

LEARNING STRUCTURED UNIVERSE GRAPH WITH OUT-
LIER OOD DETECTION FOR PARTIAL MATCHING

Zetian Jiang1†, Jiaxin Lu3†, Haozhao Fan1, Tianzhe Wang1, Junchi Yan12∗
1Sch. of Computer Science & Sch. of Artificial Intelligence, Shanghai Jiao Tong University
2Shanghai Artificial Intelligence Laboratory
3Department of Computer Science, University of Texas at Austin
{maple jzt,usedtobe,yanjunchi}@sjtu.edu.cn, lujiaxin@utexas.edu

ABSTRACT

Partial matching is a kind of graph matching where only part of two graphs can be
aligned. This problem is particularly important in computer vision applications,
where challenges like point occlusion or annotation errors often occur when label-
ing key points. Previous work has often conflated point occlusion and annotation
errors, despite their distinct underlying causes. We propose two components to
address these challenges: (1) a structured universe graph is learned to connect two
input graphs Xij = XiuX

⊤
ju, effectively resolving the issue of point occlusion;

(2) an energy-based out-of-distribution detection is designed to remove annotation
errors from the input graphs before matching. We evaluated our method on the
Pascal VOC and Willow Object datasets, focusing on scenarios involving point
occlusion and random outliers. The experimental results demonstrate that our ap-
proach consistently outperforms state-of-the-art methods across all tested scenarios,
highlighting the accuracy and robustness of our method.

1 INTRODUCTION

Graph matching has been a fundamental task in traditional computer vision for a long time, applied
in areas such as structure from motion (Vijayanarasimhan et al., 2017), object tracking (Nam & Han,
2016; Iqbal et al., 2017), optical flow (Sun et al., 2018), stereo matching (Luo et al., 2016; Chang &
Chen, 2018), and pose estimation (Gasse et al., 2019). With the rise of deep learning, integrating graph
matching and neural networks has led to significant improvements in accuracy and efficiency (Zanfir
& Sminchisescu, 2018; Wang et al., 2019), making it more suitable for downstream tasks. Beyond
these, graph matching has also shown great potential in other fields, such as bioinformatics for protein
structure comparison (Luo et al., 2021) and drug design (Kriege et al., 2019), as well as in social
network analysis for community detection and network alignment (Chen et al., 2020).

In particular, graph matching aims to find node correspondence between graph-structured data via
both node and edge affinity (Gold & Rangarajan, 1996; Cho et al., 2010). It is a well-known NP-Hard
problem and is often formulated as the quadratic assignment problem (QAP):

max
X

vec(X)⊤Kvec(X)

s.t. X ∈ {0, 1}n×n,X1n = 1n,X
⊤1n = 1n.

(1)

Here, X represents a binary permutation matrix, where Xij = 1 indicates that node i in the first
graph corresponds to node j in the second graph. K ∈ Rn2×n2

is a hand-crafted or learned affinity
matrix whose diagonal (off-diagonal) encodes node (edge) affinities.

While theoretically elegant, the QAP’s assumption of perfect one-to-one node correspondence
between graphs rarely holds in real-world applications. Practical scenarios often involve partial
matching, where only subsets of nodes between graphs correspond, as illustrated in Figure 1. Tradi-
tional approaches attempted to address this limitation by introducing dummy nodes with zero affinity.
However, this solution proves inadequate for handling real-world challenges such as occlusions and
annotation errors.

∗Correspondence author. † denotes equal contribution. The SJTU authors were in part supported by NSFC
(62222607, 92370201).

1

Published as a conference paper at ICLR 2025

𝓖𝒂 𝓖𝒃

Pairwise Matching

𝓖𝒂 𝓖𝒃

UGM

correct matching wrong matching
correct matching

on valid non-matches

outlier

(annotation errors)

outlier

(valid non-matches)
inlier

filtered

outlier

Figure 1: Overview of the problem setting and UGM. Partial Matching: Due to occlusion, viewpoint
differences, and annotation errors, only a subset of key points on each graph can be matched. Left:
Prior works have limited capability in detecting and filtering outliers. Right: UGM employs two key
components to improve partial matching performance: (1) a universe graph that serves as a bridge to
aggregate matches from different graphs, and (2) an outlier filter to remove spurious matches. This
design ensures that only inliers are matched, significantly enhancing partial matching performance.

Several recent works have explored ways to overcome this limitation. BBGM (Rolı́nek et al., 2020a),
for instance, bypasses the constraint that each node must find a specific match by learning a negative
affinity score. However, this approach heavily relies on the neural network’s capacity, and the actual
performance gains are often limited. GCAN (Jiang et al., 2022) reformulates graph matching as an
integer linear programming (ILP), introducing a placeholder node for each graph to absorb outliers.
While this helps, learning for ILP remains a challenging task. AFAT (Wang et al., 2023) predicts
which node match to discard by analyzing matched points and the affinity matrix. However, as a
post-processing step, its effectiveness is limited because outliers may have already disrupted the
initial matching, weakening its ability to correct errors. Another approach, URL (Nurlanov et al.,
2023), learns a universe point representation, which serves as a central reference for key point
alignment across all images. Although it addresses the issue of point occlusion, it still suffers from
redundant matches as the erroneous annotation outliers fail to find the corresponding universe point
representation.

A key insight often overlooked by these literature is the distinction between point occlusion and
annotation errors: occlusion-caused outliers may find correspondences in other graphs, while annota-
tion errors are inherently meaningless. Building on this observation, we propose Universe Graph
Matching (UGM), which addresses these challenges through two key innovations: (1) A latent
universe graph learning approach that utilizes the structured universe graph to serve as a bridge for
matching graph pairs Xij = XiuX

⊤
ju. This method leverages the inherent structural information

from input graphs, enhancing the accuracy and robustness of the learned universe graph for handling
point occlusions. (2) An energy-based out-of-distribution detection method that effectively identifies
and removes annotation errors at test time. Through training with a margin loss, we effectively
differentiate between the energy scores of erroneous annotation outliers and valid in-distribution
keypoints. By removing annotation errors, we significantly reduce the complexity of the partial
matching problem (as we will discuss in Sec. 3.3), thereby improving overall matching accuracy.

Our primary contributions are:

• We propose Latent Universe Graph Learning, which enhances universe matching robustness
through combined node features and structural information.

• We are the first to introduce the Energy-based OOD Detection for annotation error identification,
enabling pre-matching outlier filtering for improved accuracy.

• We evaluate the proposed UGM approach on keypoint matching tasks under occlusion and random
outlier settings using both Pascal VOC and Willow datasets. Our experimental results demonstrate
that UGM consistently outperforms state-of-the-art methods, highlighting the effectiveness and
robustness of our method.

2 RELATED WORKS

2.1 CLASSICAL GRAPH MATCHING

Two-graph matching has been widely studied, which involves constructing graphs for the objects to be
matched and aligning the nodes and edges between the two graphs. (Gold & Rangarajan, 1996) solves
graph matching via a graduated assignment (GA) algorithm, which computes the partial derivative

2

Published as a conference paper at ICLR 2025

of the objective function with Taylor expansion to turn the GM problem into a linear assignment
problem. RRWM (Cho et al., 2010) constructs an association graph for matching graphs and applies
the random walk algorithm with matching constraints. RRWHM (Lee et al., 2011) is the extended
version of RRWM where the association graph is built with higher-order geometric information
extracted from the graph. DS++, DS* (Dym et al., 2017; Bernard et al., 2018) design different ways
to tightly relax GM to a convex problem and then project the results back to the original solution
space. LPMP (Swoboda et al., 2017) proposes several additional Lagrangian relaxations of the graph
matching problem and o leading solvers for this problem optimize the Lagrange decomposition duals
with sub-gradient and dual ascent updates.

In addition, numerous works have focused on matching multiple graphs, which is called Multi-Graph
Matching. There are mainly two forms of methods. The first solves the problem in discrete space,
which includes composition-based method CAO (Yan et al., 2015b), MGM-Floyd (Jiang et al.,
2021), tree-structure-based approach MatchOpt (Yan et al., 2015a), DPMC (Wang et al., 2020b),
and Majorize-Minimization framework based approach M3C (Lu et al., 2024). Another line of
works (Pachauri et al., 2013; Huang & Guibas, 2013; Chen et al., 2014; Wang et al., 2018) etc. tries
to relax the MGM problem into a continuous space and re-project the solution to obtain a discrete
matching result.

2.2 DEEP LEARNING OF GRAPH MATCHING

Deep learning has recently been applied to graph matching on images (Zanfir & Sminchisescu, 2018),
whereby CNN extracts node features from images followed by spectral matching and is learned using
a regression-like node correspondence supervision. This work is improved via introducing GNN to
encode structural (Wang et al., 2019; Wang et al., 2020) or geometric (Zhang & Lee, 2019) informa-
tion, with a combinatorial loss based on cross-entropy loss, and Sinkhorn network (Adams & Zemel,
2011) as a differential matching solver. The work (Yu et al., 2020) extends PCA (Permutation loss
and Cross-graph Affinity GM) (Wang et al., 2019) by edge embedding and Hungarian-based (Kuhn,
1955) attention mechanism to stabilize end-to-end training. BBGM (Blackbox Deep Graph Match-
ing) (Rolı́nek et al., 2020b) proposes a better front-end feature extraction backbone with Spline
Convolution (Fey et al., 2018), and the gradient is backpropagated by a fitting linear gradient of the
discrete graph matching solver (Pogančić et al., 2019). NGM (Neural Graph Matching Nets) (Wang
et al., 2021; 2020a) proposes to address the most general Lawler’s QAP form, based on the novel
feature extractors e.g. (Rolı́nek et al., 2020a) with the proposed learnable graph matching solver.
DLGM (Deep Latent Graph Matching) (Yu et al., 2021), based on BBGM, predicts consistent graph
topology utilizing deterministic and generative models to improve the matching quality. GCAN (Jiang
et al., 2022) formulates the graph matching problem as an Integer Linear Programming problem and
explores a novel node feature extraction framework with attention. AFAT (Wang et al., 2023) uses
the attention model to predict which node match to discard by analyzing matched points and the
affinity matrix. COMMON (Lin et al., 2023) adopts a contrastive learning approach, utilizing the
infoNEC loss to supervise training similarity matrices for both edges and nodes. URL (Nurlanov
et al., 2023) introduces a novel universe point representation learning method, applying universe key
point matching to the graph matching field for the first time.

2.3 OUT-OF-DISTRIBUTION DETECTION

Out-of-distribution (OOD) detection is a growing field aimed at identifying data points that deviate
from the distribution on which a model was trained. This is crucial for improving the robustness and
safety of machine learning systems. Many OOD detection methods can be applied to pre-trained
models without modifying the training process. These methods often rely on statistics from the
model’s output, such as maximum softmax probability, to distinguish between in-distribution (ID)
and OOD data (Hendrycks & Gimpel, 2016; Liang et al., 2017). Energy-based OOD detection
methods, on the other hand, assign an energy score to each input, where OOD data typically results
in higher energy values (Liu et al., 2020; Bao et al., 2024). Generative models, such as VAEs and
GANs, have also been used to estimate the likelihood that a given data point belongs to the training
distribution (Nalisnick et al., 2018). More recently, self-supervised tasks have been employed to
improve OOD detection by learning representations that are highly correlated with the training
distribution, enabling the model to identify deviations (Sehwag et al., 2021). Contrastive learning has
further advanced OOD detection by ensuring that OOD data points are positioned far from ID data in
the learned representation space (Winkens et al., 2020).

3

Published as a conference paper at ICLR 2025

B
a

c
k
b

o
n

e

S
p

lin
e

 C
o

n
v

C
la

s
s
 E

m
b

e
d

d
in

g
 𝐂

N
o

d
e

 F
e

a
tu

re
 𝐍

E
d

g
e

 F
e

a
tu

re
 𝐄

Latent Universe Graph

𝐊𝑛

O
u

tl
ie

r
F

ilt
e

r

𝐊𝑒

L
P

M
P𝐊𝑛

filtered

𝐊𝑒
filtered

N
o

d
e

 E
n

e
rg

y
 ℰ
(𝑣
)

C
ro

s
s
-e

n
tr

o
p

y
 L

o
s
s

E
n

e
rg

y
 L

o
s
s 𝐗

Evaluation PhaseLatent Universe Graph LearningFeature Extraction

Input Graph

Figure 2: Pipeline of Universe Graph Matching. The pipeline consists of two main components: 1)
structured universe graph learning, which includes the training of node and edge affinities, and 2)
outlier ood detection through energy score. The dark blue arrows indicate the training phase, while
the light blue arrows represent the inference phase.

3 METHODOLOGY

In this section, we will introduce our method Universe Graph Matching (UGM) from two parts:
structured universe graph learning and outlier ood detection in Section 3.1 and 3.2, respectively. The
overall pipeline is shown in Figure 2, and more implementation and training details are provided in
Appendix B. Meanwhile, we also discuss UGM in perspective of problem formulation and analyze
its strength as well as drawbacks in Section 3.3.

3.1 STRUCTURED UNIVERSE GRAPH LEARNING

We begin by defining the structured universe graph, which serves as the foundation for our approach.
The universe graph U = {Nu ∈ Rnu×d,Eu ∈ Rmu×d} is composed of both node embeddings Nu

and edge embeddings Eu. The number of nodes nu corresponds to the distinct types of key points
present in the input graphs. We define this latent U as a complete, directed graph, where every pair
of nodes is connected by a directed edge, resulting in mu = nu × (nu − 1) edges. This ensures that
any edge in the input graph will have a corresponding edge in the universe graph. Moreover, the
directed edges capture the inherent asymmetry in real-world relationships between key points, such
as varying geometric or contextual dependencies, offering greater flexibility in encoding complex
structural information.

We now introduce the pipeline to match the latent universe graph U to the input graph Gi. The input
graph Gi = {Ni ∈ Rni×d,Ei ∈ Rmi×d} consists of node features Ni and edge features Ei. As
in previous works, these features are initially extracted using a CNN-based backbone, followed by
refinement through a GNN. Node affinity Kn and Edge affinity Ke are constructed by:

Kn = NiN
⊤
u , Ke = EiE

⊤
u . (2)

The matching between the universe graph U and the input graph Gi is then obtained using a traditional
graph matching solver, such as LPMP (Swoboda et al., 2017):

Xiu = GMSolver(Kn,Ke). (3)

In our training process, we use the ground truth universe matching Xgt
iu, instead of ground truth

pairwise matching Xgt
ij , as the supervision signal. Xgt

iu ∈ {0, 1}ni×nu is a permutation matrix which
denotes the ground truth correspondence between input graph Gi and universe latent graph. In fact,
the universe matching set {Xiu|1 ≤ i ≤ N} and the pairwise matching set {Xij |1 ≤ i, j ≤ N} are
fully equivalent and can be obtained via non-negative factorisation (Bernard et al., 2019):

Xp =

X00 X01 · · · X0N

X10 X11 · · · X1N
...

...
. . .

...
XN0 XN1 · · · XNN

 =

X0u

X1u
...

XNu

(
X⊤

0u X⊤
1u · · · X⊤

Nu

)
= XuX T

u . (4)

Even if some pairwise matchings are missing, we can still recover the universe matching by first
applying spectral decomposition and then projecting the result back into the discrete space (Pachauri
et al., 2013). It is worth noting that, in most computer vision tasks, the matching matrix is typically

4

Published as a conference paper at ICLR 2025

generated from keypoint annotations, and these annotations naturally serve as the ground truth
universe matching.

In practice, we cannot directly supervise Xiu with Xgt
iu, as most graph matching algorithms are

non-differentiable. Even when using differentiable algorithms, such as RRWM (Cho et al., 2010), the
high number of iterations would make gradient-based optimization difficult. Therefore, instead of
supervising the solution, we directly act on the node and edge affinities. By treating the universe’s
nodes and edges indices as labels, we apply the cross-entropy loss to the node affinity Kn and edge
affinity Ke for training:

Lgraph = CE(softmax(Kn), yn) + CE(softmax(Ke), ye) (5)

where
yn = argmax(Xgt

iu), ye = yn(EdgeID(0))× nu + yn(EdgeID(1)). (6)

Note EdgeID ∈ N2×m denotes directed edges in the graph. EdgeID(0) denotes the indices of the
source nodes and EdgeID(1) denotes the indices of the target nodes. Another important consideration
in the matching process is the diversity of categories. The input may consist of pairs from different
categories, each ideally requiring its own distinct latent universe graph. A straightforward approach
would be to learn a separate graph representation for each category. However, this method would cause
the latent universe graph to grow excessively as the number of categories increases. Consequently,
the complexity of the graph matching solver could escalate quadratically or even worse, making it
impractical for large-scale problems.

To address this, we propose learning a single latent universe graph, where key points from different
categories are mapped to the same universe node. For example, the left front wheel of a car and the left
handlebar of a bicycle can share the same universe node embedding. In fact, a single universe node
embedding is shared among all categories, allowing the graph’s size to be limited by the maximum
number of points across all categories. The same principle applies to edge embeddings, which further
reduces space complexity.

However, since the latent universe graph shares node and edge embeddings for all categories, the
embeddings Nu and Eu inherently lack category-specific information. To reintroduce this information
for affinity construction, we add a class embedding C to each key point feature F extracted by CNN-
based backbone. This ensures that the nodes Ni and edges Ei of the input graph still carry the
necessary class information. The class embedding is derived from the global features H of the input
images pair as follows:

C = Encoder(Hi,Hj), Fi = Concat(Fi,C), Fj = Concat(Fj ,C). (7)

3.2 OUTLIER DETECTION

Although the structured universe graph effectively handles point occlusion, it cannot address error
annotation outliers, as these outliers do not have corresponding nodes in the universe graph. We frame
the identification of these erroneous annotation outliers as an out-of-distribution (OOD) detection
problem.

Out-of-distribution detection typically refers to a model’s ability to identify and appropriately handle
data that deviates significantly from its training distribution. In the context of keypoint annotation, the
correctly annotated keypoints adhere to a well-defined, coherent distribution that is consistent across
all data. In contrast, erroneously annotated outliers are generated through random and unpredictable
factors, causing them to deviate substantially from this established distribution. This inherent
difference in data characteristics enables us to frame the outlier detection problem within an OOD
detection framework, leveraging the disparity between the structured nature of valid annotations and
the stochastic nature of annotation errors.

Following Liu et al. (2020), we define an energy score function for each node vi of input graph:

E(vi) = −T · ln(
∑
j

eKn(i,j)/T), (8)

where Kn(i, j) denotes the node affinity between vi on input graph and vj on universe graph, and
T is a temperature constant. When vi is an inlier, it should have a corresponding point in the latent
universe graph, resulting in a relatively low energy score. Conversely, when vi is an outlier, all the
values of Kn(i, j) will be relatively low, leading to a higher energy score.

5

Published as a conference paper at ICLR 2025

While the energy score can be used for a pre-trained neural network directly, the energy gap between
in-distribution and out-of-distribution data may not always be optimal for differentiation. To address
this, we also introduce a margin loss that fine-tunes the neural network to explicitly create a larger
energy gap:

Lenergy = Ev∼Din
(max(0, E(v)−min)) + Ev∼Dout

(max(0,mout − E(v))), (9)
where Din is the in-distribution training data, Dout is the out-of-distribution training data, min and
mout are the margins for in- and out-of-distribution data, respectively. This loss assigns lower energy
scores to in-distribution data and higher scores to OOD data. By contrastively shaping the energy
landscape during training, the model becomes more effective at distinguishing between in- and
out-of-distribution data.

To apply the energy score in our network, we first compute the energy E for each node in the input
graph Gi based on its affinity with nodes in the latent universe graph U. Nodes with energy scores
above a certain threshold τ , indicating a high likelihood of being outliers, are removed before the
graph matching process:

Gfiltered = {V = {vi|E(vi) ≤ τ},E = {eij |E(vi) ≤ τ, E(vj) ≤ τ}} (10)

We use the newly obtained graph Gfiltered to construct the filtered node affinity Kfiltered
n and edge

affinity Kfiltered
e , and then feed it into the graph matching solver to obtain the matching result.

Xfiltered
iu = GMSolver(Kfiltered

n ,Kfiltered
e). (11)

This preprocessing step improves the quality and accuracy of the subsequent matching between the
input graph and the latent universe graph. After the matching process, the removed outlier points are
reintroduced into the solution to maintain the integrity of the input data.

Xiu(vi) =

{
0⊤ E(vi) > τ,
Xfiltered

iu (vi) E(vi) ≤ τ.
(12)

3.3 DISCUSSION

Universe Graph Matching essentially decomposes the ambiguous partial matching problem into two
well-defined subgraph matching problems. Partial matching, where only parts of the input graphs
are aligned, is difficult to formalize with clear optimization objectives and constraints. Conventional
approaches, such as adding dummy nodes or relaxing the condition X1n = 1n to X1n ≤ 1n, have
proven inadequate. Our key contribution lies in introducing latent universe graph, which enables us to
decompose the partial matching problem between two graphs as Xij = XiuX

⊤
ju. This reformulation

shifts the objective from maximizing the match Xij between the input graphs to maximizing the
match Xiu,Xju between each input graph and the latent universe graph. Since the latent universe
graph contains all points and edges, the input graphs become its subgraphs, turning the solution
of Xiu into a well-defined subgraph matching problem. This more precise and structured problem
definition in universe graph matching improves performance over traditional pairwise graph matching
on partial matching tasks.

However, the latent universe graph alone cannot fully address the error annotation points, which
lack corresponding matches in the universe graph and violate the assumption that input graphs
are subgraphs of the universe graph. While introducing dummy nodes in to the universe graph U
could potentially account for these outliers, this approach faces several challenges. Estimating the
appropriate number of dummy nodes is difficult, and the randomness of error annotations makes it
complicate to learning effective dummy node embeddings. Our solution adopts an OOD detection
approach, treating error annotation outliers as out-of-distribution points and excluding them before
solving the subgraph matching problem.

Despite its advantages, our approach still faces several challenges: 1) Universe latent graph is
inherently limited to closed-set problems, relying on class information and training data, which
restricts generalization to unseen categories. However, few-shot learning can significantly alleviate
this limitation, as shown in our experiments in Appendix E, demonstrating the method’s potential to
adapt to new classes. 2) The universe graph is a complete graph; however, the distribution of edges in
the input graphs is uneven. This mismatch leads to suboptimal learning of many edge embeddings,
with some edges either absent or appearing only rarely in the training data. 3) While the universe
graph is more stable and structured than universe point representation, the universe graph cannot
fully prevent errors in Xiu from propagating to all Xij matches. All in all, expanding graph partial
matching to a more general form, both in terms of mathematical modeling and finer design, requires
a long-term exploration.

6

Published as a conference paper at ICLR 2025

4 EXPERIMENT

4.1 PROTOCOL

Datasets We evaluate our method on Pascal VOC (Everingham et al., 2010) and Willow Object
Class (Cho et al., 2013), two widely recognized datasets.

The Pascal VOC (Everingham et al., 2010) with Berkeley annotations (Bourdev & Malik, 2009)
contains images with bounding boxes surrounding objects of 20 classes. We follow the standard data
preparation procedure of NGM and BBGM (Wang et al., 2021; Rolı́nek et al., 2020b). Each object is
cropped to its bounding box and scaled to 256× 256 px. We follow the unfiltered setting (Rolı́nek
et al., 2020b), which preserves all key points for graph pairs, to evaluate our method’s performance
under point occlusion. Moreover, we randomly sample the coordinates on images to add outliers,
which serve as error annotation key points. We also follow prior works to split the train and test
dataset, where training data includes 7,020 images and test data includes 1,682 images.

The Willow Object Class (Cho et al., 2013) contains images from Caltech-256 (Griffin et al., 2007)
and Pascal VOC 2007 (Everingham et al.), which consists of 256 images from 5 categories: 40 cars,
40 motorbikes, 50 ducks, 66 wine bottles, and 109 faces. Each image is annotated with the same ten
key points. Following standard procedure, we also rescale the image to 256× 256 px. In experiments,
we randomly drop 0 - 6 key points for each image for the ‘occlusion’ setting. We also add 1 - 10
random outliers as we do in PascalVOC for the ‘random outlier’ setting. We choose 20 images from
each category as our training dataset and leave others for evaluation.

Compared Method We compare our methods UGM with previous work of two kinds: traditional
solver with pre-defined affinity and deep graph matching learning model. For the learning-free
traditional solvers, we consider four works: GAGM (Gold & Rangarajan, 1996), RRWM (Cho
et al., 2010), BPF (Wang et al., 2017), and ZAC (Wang et al., 2020). We generate node and edge
affinities using the pre-trained BBGM learning framework and input these affinities into each solver
to obtain their respective matching results. For learning-based models, we compare our method with
NGMv2 (Wang et al., 2021), BBGM (Rolı́nek et al., 2020b), DLGM (Yu et al., 2021), GCAN (Jiang
et al., 2022), AFAT (Wang et al., 2023), and URL (Lin et al., 2023). To report the performance of prior
works, we adhere to the following principles: 1) If a prior work’s experimental settings align with
ours, we directly report the performance metrics provided in their paper. 2) If the experimental setting
is unique to our work, we attempt to replicate the prior methods under their original experimental
settings and then adapt them to our setting to obtain comparable performance metrics. However, we
failed to replicate the methods of DLGM and URL because they did not release publicly available
code. Therefore, we did not report their performance in some of the experiments (Table 2 and
Table 3).

Evaluation Metric We see the matching prediction as a binary classification task for each entry.
Therefore, F1 score is applied as an evaluation metric, which is introduced by BBGM (Rolı́nek et al.,
2020b). The F1 score is calculated as follows:

F1 = 2 · Precision · Recall
Precision + Recall

=
2TP

2TP + FP + FN
(13)

where TP denotes true positive, FP denotes false positive, and FN denotes false negative.

4.2 PERFORMANCE ON PASCAL VOC

To thoroughly evaluate the performance of our proposed UGM method, we conducted experiments
on the Pascal VOC dataset under two distinct settings: the unfiltered setting, where all key points
are preserved without the introduction of additional noise, and the random outlier setting, where two
random outliers are further added to each input image. All the results are shown in Table 1 and 2.

Our proposed UGM method demonstrates superior performance in both setting, surpassing the
state-of-the-art (SOTA) models by a significant margin. Specifically, in the unfiltered setting, UGM
outperforms the best-performing SOTA model by 2.2% in terms of average F1 score. Similarly, in
the random outlier setting, UGM still leads the comparison, exceeding the next best method by 4.8%.
This consistent improvement across both settings highlights the robustness and generalization ability
of our approach.

A comparison of the two tables reveals how much performance degrades between the unfiltered
and random outlier settings, allowing us to evaluate the robustness of learning-based models in the
presence of outliers. Our UGM method experiences a performance drop of 8.8%, ranking second

7

Published as a conference paper at ICLR 2025

Table 1: F1 Score performance on Pascal VOC under ‘unfiltered’ setting. All the key points are
preserved, and no additional outliers are added. Top: learning-free graph matching solver with
pre-learned affinity. Middle: deep learning graph matching model. Bottom: out method UGM.

Method aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv avg

GAGM 37.3 60.3 47.7 39.1 75.0 53.7 36.1 59.2 34.8 56.2 40.2 54.4 51.9 54.3 39 83.8 48.8 19 58.3 68.7 50.9

RRWM 39.4 63.7 52.1 39.7 76.5 57.9 28.5 64.3 37.9 60.3 43 57.9 54.2 54 43.3 85 50.4 22 66.1 69.9 53.3

BPF 39.2 66.5 51.2 40.0 77.0 59.0 26.7 63.8 36.9 60.6 49.7 58.1 54.3 58.2 43.6 84.9 50.7 23 66.4 70.4 54.0

ZAC 43.5 62.8 57.5 43.9 72.1 61.2 33.6 69 38.3 64.1 46.4 66.2 61.8 61.4 46.4 83.2 58.1 27.9 69.8 72.6 57.0

NGMv2 45.5 65.3 55.3 45.8 88.4 64.3 45.9 58.6 43.3 59.1 39.2 55.7 58 65.3 44.4 95.4 50.3 41.2 72.4 81.8 58.8

BBGM 42.7 70.9 57.5 46.6 85.8 64.1 51 63.8 42.4 63.7 47.9 61.5 63.4 69 46.1 94.2 57.4 39 78 82.7 61.4

DLGM 43.8 72.9 58.5 47.4 86.4 71.2 53.1 66.9 54.6 67.8 64.9 65.7 66.9 70.8 47.4 96.5 61.4 48.4 77.5 83.9 64.8

GCAN 45 66.7 60.6 49.7 89.7 66.3 65.2 64.9 45.5 66.9 54.4 63.1 62.5 63.5 55 96.1 63.5 49.7 80.6 83.6 64.6

AFAT 47.1 70.8 58.1 45.8 90.8 66.5 49.6 58.8 50.6 64.6 47.2 60.5 62.3 65.7 46.3 95.4 52.7 47.4 74.2 83.8 62.0

URL 62.7 75.2 73 56.7 93.7 66.2 76.7 69.2 64.9 76.6 44.6 74.4 78.8 80.9 62.5 96.9 70.3 55.4 73.6 82.1 71.7

UGM 57.4 76.3 71.2 55.1 91.7 72.3 80.3 72.3 70.1 74.6 61.5 75.3 71.6 76.1 63.8 97.2 73.6 60.0 93.1 84.8 73.9

Table 2: F1 Score performance on Pascal VOC under ‘random outlier’ setting. Two random outliers
are further added to each input image. Top: learning-free graph matching solver with pre-learned
affinity. Middle: deep learning graph matching model. Bottom: out method UGM.

Method aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv avg

GAGM 26.7 49.3 36.6 25.1 61.9 40.7 9.0 45.4 22.5 39.3 13.1 41.0 37.8 39.1 27.9 59.8 29.1 19.7 26.0 54.9 35.2

RRWM 28.3 54.6 40.3 27.4 70.6 46.3 9.0 49.8 23.5 42.8 15.1 44.8 38.1 39.1 30.3 66.8 29.3 18.1 27.1 64 38.3

BPF 25.8 55.2 38.8 26.0 70.7 45.7 9.5 49.4 22.9 40.2 14.4 44.1 36.9 40.0 29.0 68.6 28.6 18.8 28.1 63.8 37.8

ZAC 37.2 62.3 50.8 34.0 76.0 55.9 23.8 63.7 33.2 58.8 37.7 59.4 55.8 55.4 39.1 76.8 49.3 29.0 49.1 68.9 50.8

NGMv2 35.6 60.2 45.0 34.3 72.1 51.3 40.2 50.2 29.5 49.4 23.7 47.6 49.8 51.5 38.7 69.3 42.9 40.8 45.0 62.2 47.0

BBGM 34.4 63.9 44.1 35.0 78.5 57.6 21.5 54.6 33.7 50.3 37.4 49.8 50.8 54.7 29.6 79.8 44.1 23.5 44.5 76.1 48.2

GCAN 44.4 61.7 51.2 47.5 78.8 72.3 48.9 58.0 50.2 62.8 53.0 54.6 60.3 61.2 51.5 83.2 62.6 48.8 70.0 84.8 60.3

AFAT 41.2 66.9 51.4 36.5 82.7 61.8 37.9 56.9 34.8 55.7 28.0 54.4 55.3 60.3 38.2 86.3 48.8 32.6 57.1 77.1 53.1

UGM 49.9 72.2 63.5 48.8 85.3 70.1 71.8 66.5 54.6 67.4 49.5 67.4 65.2 66.2 57.6 88.0 62.2 47.2 65.6 83.4 65.1

among the learning-based models, just behind GCAN. In comparison, models like NGMv2 and
BBGM exhibit larger performance declines of 11.8% and 13.2%, respectively. The relatively low
decrease in UGM’s performance demonstrates its robustness and adaptability, particularly in noisy
and complex environments, making it a reliable option for real-world graph matching tasks.

We also perform an random outlier pressure test on our method UGM. Results are shown in Figure 3.
Classes like sofa, train, and table see a significant performance drop (32% - 61%) as the number
of random outliers increases. This decline is primarily due to the limited amount of training data,
particularly for classes like ‘table’, which has only 28 images, and ‘sofa’, which has 73 images in
the train dataset. The fewer images available, the lower the quality of the constructed latent universe
graph, making it more difficult to distinguish between inliers and error annotation outliers. On the
other hand, classes like TV, boat, horse, and bus are more robust, with relatively smaller drops in
performance (9.9% - 13.9%).

4.3 PERFORMANCE ON WILLOW OBJECT

In this experiment, we evaluate the performance of various learning-based graph matching models on
the Willow dataset under three settings: occlusion, random outlier, and occlusion + random outlier.
These settings simulate real-world challenges, where key points may be missing (occlusion), or noisy
data (outliers) may be introduced. All the results are shown in Table 3.

Our proposed UGM method demonstrates superior performance across all three settings. In the
occlusion setting, UGM achieves the highest average F1 score of 91.9%, outperforming the next best
model, GCAN, by a significant margin of 9.7%. In the random outlier setting, UGM again leads
with an average score of 85.4%, surpassing AFAT, the second-best model, by 1.7%. Finally, in the
occlusion + random outlier setting, UGM shows exceptional robustness, maintaining the highest
average score of 71.1%, which is 5.9% higher than the second-place model.

It is worth noting that the extent of our lead varies across the three settings.

• In the occlusion setting, UGM demonstrates a significant advantage. This suggests that the latent
universe graph structure offers a considerable benefit compared to pairwise matching approaches,

8

Published as a conference paper at ICLR 2025

0

10

20

30

40

50

60

70

80

90

100

aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofat train tv avg

Results by Category and Outlier Level

0 outlier 2 outliers 4 outliers 6 outliers 8 outliers 10 outliers

Figure 3: Random outlier pressure test of UGM on Pascal VOC. All the key points are preserved,
and additional outliers are added to each input image.

Table 3: F1 Score performance on Willow Object Class. Occlusion: randomly drop 0-6 key points
for each input image. Random Outlier: randomly add 1-10 outliers for each input image. Occlusion
+ Random Outlier: both operations are applied. Only the learning model’s performance is reported.

Occlusion Random Outlier Occlusion + Random Outlier

Method car duck face motor bottle avg car duck face motor bottle avg car duck face motor bottle avg

NGMv2 80.9 73.8 84.9 85.7 76.7 80.4 78.9 66.6 84.3 63.1 76 73.8 46.3 45.2 61.6 42.9 54.6 50.1

BBGM 77.5 78.8 92.7 83.1 82.3 82.9 65.1 60.7 85.5 71.6 65.5 69.7 36.2 35.5 57.2 35.0 52.4 43.3

GCAN 81.4 74.4 88.5 88.3 78.2 82.2 74.8 75.7 92.8 77.1 83.5 80.8 43.7 51.7 60.2 45.8 56.9 51.7

AFAT 77.1 73.7 88.0 76.6 86.4 80.4 82.2 77.7 92.7 77.2 88.6 83.7 70.8 54.7 79.1 53.8 67.9 65.2

UGM 87.7 86.2 99.5 90.2 96.0 91.9 88.1 72.9 96.8 82.5 86.5 85.4 64.4 62.1 89.6 65.1 74.5 71.1

as Universe Graph Matching essentially decomposes the ambiguous pairwise partial matching
problem into two well-defined subgraph matching problems, thereby improving its ability to
handle missing key points.

• In the random outlier setting, the performance gap between UGM and other models is narrower.
While our OOD (out-of-distribution) detection technique offers a clear advantage, the improve-
ment is less pronounced. This is likely due to the fact that our approach does not introduce
additional training parameters, which limits the potential for further gains.

• Finally, in the occlusion + random outlier setting, UGM once again achieves a clear lead. This
demonstrates the strong synergy between the latent universe graph learning and our energy
based OOD detection technique. The two techniques work in harmony, with no conflicting or
contradictory effects, allowing UGM to excel in the most challenging conditions.

4.4 ABLATION STUDIES

Table 4: Ablation study on Pascal VOC with
‘random outlier’ setting. All the key points are
preserved, and two random outliers are added to
each input image. F1 score is reported.

class embedding edge learning outlier filter F1 score

65.12

56.88

63.49

58.71

The ablation study results presented in Table 4
highlight the contribution of each key compo-
nent—class embedding, universe graph, and out-
lier filter—to the overall performance. Without
the outlier filter component, we matched all the
points in the input graph to the latent universe
graph. Without edge learning, we only learned
the universe node representation and used a linear
assignment solver to obtain the matching results
between the input graph and the universe point
representation. Without class embedding, we di-
rectly used the local key point features extracted
by the backbone to learn the node embeddings.

These results demonstrate that each component plays a unique role in enhancing the model’s perfor-
mance. Specifically, removing the outlier filter has the most significant negative impact, underscoring
its importance in handling noise and maintaining robust graph matching.

Furthermore, we also conduct a sensitivity test for hyperparameters on Pascal VOC under the ‘random
outlier’ setting, as shown in Figure 4. In this sensitivity analysis, we investigate the effects of varying
three hyperparameters—temperature T , threshold τ , and the pair of values for min and mout. Unless

9

Published as a conference paper at ICLR 2025

1 2 5 10
Temperature

62

63

64

65

66

67

F1
 S

co
re

6 5 4 3 2
Threshold

62

63

64

65

66

67

F1
 S

co
re

-8.0 -7.0 -6.0 -5.0
mout

-4
.0

-3
.0

-2
.0

-1
.0

m
in

65.10

65.10

64.80

63.91

-8.0 -7.0 -6.0 -5.0 -4.0
mout

-5
.0

-4
.0

-3
.0

-2
.0

-1
.0

m
in

64.26

64.60

65.10

64.43

64.73 64.0

64.2

64.4

64.6

64.8

65.0

F1
 S

co
re

Figure 4: Sensitivity test for hyperparameters on Pascal VOC under ‘random outlier’ setting. Temper-
ature T in energy function, OOD threshold τ , and min,mout in energy loss are tested.

BBGM

NGMv2

GCAN

AFAT

UGM

GT

Figure 5: Visualization on Pascal VOC of UGM and peer methods. The green dashed lines represent
correct matches, while the red dashed lines represent incorrect matches. Ground truth matching is
shown at the bottom.

specified otherwise, the default parameter values are set to T = 1.0, min = −3, mout = −6, and
τ = (min +mout)/2.

For the temperature experiment, we tested values ranging from 0.8 to 10. The results show that
performance peaks at temp=1.0 with an average value of 65.1, and gradually decreases as the
temperature increases. The threshold experiment explores a range from -1.5 to -6. The average
performance is highest at τ=-2.5 with a value of 66.37, and the performance decreases consistently
as the threshold becomes more negative. Although adjusting τ can achieve a higher F1 score, we
are concerned that this might lead to some overfitting in the model. Therefore, we still report the
model results using the default value τ = (min +mout)/2 in other contexts. For the min and mout
experiments, we analyze both their margin (difference) and absolute offset. Performance peaks at (-3,
-6), where the margin is 3, but the overall impact of varying the range (from 1 to 7) or shifting their
absolute values is minimal.

5 CONCLUSION

In summary, this work presents a novel approach to addressing the challenges of partial matching
in graph-based keypoint alignment tasks. We introduce Structured Universe Graph Learning to
effectively resolve point occlusion by connecting input pairs via a learned latent graph. Additionally,
by incorporating both node features and structural information, the robustness of the matching process
is further enhanced. We also adopt Energy-based Out-of-Distribution Detection to filter out annotation
errors before matching, improving the overall quality of the matching process. Through extensive
evaluations of the Pascal VOC and Willow Object datasets, our method consistently outperforms
state-of-the-art techniques, particularly in challenging scenarios involving both point occlusion and
random outliers, demonstrating the effectiveness and robustness of our approach.

10

Published as a conference paper at ICLR 2025

REFERENCES

Ryan Prescott Adams and Richard S Zemel. Ranking via sinkhorn propagation. arXiv:1106.1925,
2011.

Tianyi Bao, Qitian Wu, Zetian Jiang, Yiting Chen, Jiawei Sun, and Junchi Yan. Graph out-of-
distribution detection goes neighborhood shaping. In Forty-first International Conference on
Machine Learning, 2024.

Florian Bernard, Christian Theobalt, and Michael Moeller. Ds*: Tighter lifting-free convex relaxations
for quadratic matching problems. In CVPR, pp. 4310–4319, 2018.

Florian Bernard, Johan Thunberg, Jorge Goncalves, and Christian Theobalt. Synchronisation of
partial multi-matchings via non-negative factorisations. Pattern Recognition, 92:146–155, 2019.

Lubomir D. Bourdev and Jitendra Malik. Poselets: Body part detectors trained using 3d human pose
annotations. ICCV, pp. 1365–1372, 2009.

Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In CVPR, pp. 5410–5418,
2018.

Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys, and Katarzyna Musial.
Multi-level graph convolutional networks for cross-platform anchor link prediction. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
1503–1511, 2020.

Yuxin Chen, Leonidas Guibas, and Qixing Huang. Near-optimal joint object matching via convex
relaxation. In ICML, pp. 100–108, 2014.

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted random walks for graph matching. In
ECCV, pp. 492–505, 2010.

Minsu Cho, Alahari Karteek, and J. Ponce. Learning graphs to match. ICCV, pp. 25–32, 2013.

Boris Delaunay et al. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i
Estestvennyka Nauk, 7(793-800):1–2, 1934.

Nadav Dym, Haggai Maron, and Yaron Lipman. Ds++ a flexible, scalable and provably tight
relaxation for matching problems. ACM Transactions on Graphics (TOG), 36(6):1–14, 2017.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. IJCV, 88(2):303–338, June 2010. ISSN 0920-5691.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast geometric
deep learning with continuous b-spline kernels. In CVPR, pp. 869–877, 2018.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. arXiv preprint arXiv:1906.01629,
2019.

S. Gold and Anand Rangarajan. A graduated assignment algorithm for graph matching. IEEE TPAMI,
18:377–388, 1996.

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. Technical
report, California Institute of Technology, 2007.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Qi-Xing Huang and Leonidas Guibas. Consistent shape maps via semidefinite programming. In
Computer Graphics Forum, volume 32, pp. 177–186. Wiley Online Library, 2013.

11

Published as a conference paper at ICLR 2025

Umar Iqbal, Anton Milan, and Juergen Gall. Posetrack: Joint multi-person pose estimation and
tracking. In CVPR, pp. 2011–2020, 2017.

Zetian Jiang, Tianzhe Wang, and Junchi Yan. Unifying offline and online multi-graph matching via
finding shortest paths on supergraph. IEEE TPAMI, 43(10):3648–3663, 2021.

Zheheng Jiang, Hossein Rahmani, Plamen Angelov, Sue Black, and Bryan M Williams. Graph-
context attention networks for size-varied deep graph matching. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2343–2352, 2022.

Nils M Kriege, Lina Humbeck, and Oliver Koch. Chemical similarity and substructure searches.
2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. NeurIPS, 25:1097–1105, 2012.

H. W. Kuhn. The hungarian method for the assignment problem. In Export. Naval Research Logistics
Quarterly, pp. 83–97, 1955.

Jungmin Lee, Minsu Cho, and Kyoung Mu Lee. Hyper-graph matching via reweighted random walks.
In CVPR, pp. 1633–1640, 2011.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

Yijie Lin, Mouxing Yang, Jun Yu, Peng Hu, Changqing Zhang, and Xi Peng. Graph matching with
bi-level noisy correspondence. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 23362–23371, 2023.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
Advances in neural information processing systems, 33:21464–21475, 2020.

Jiaxin Lu, Zetian Jiang, Tianzhe Wang, and Junchi Yan. M3c: A framework towards convergent,
flexible, and unsupervised learning of mixture graph matching and clustering. 2024.

Shitong Luo, Chence Shi, Minkai Xu, and Jian Tang. Predicting molecular conformation via dynamic
graph score matching. Advances in Neural Information Processing Systems, 34:19784–19795,
2021.

Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. Efficient deep learning for stereo matching.
In CVPR, pp. 5695–5703, 2016.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
deep generative models know what they don’t know? arXiv preprint arXiv:1810.09136, 2018.

Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional neural networks for visual
tracking. In CVPR, pp. 4293–4302, 2016.

Zhakshylyk Nurlanov, Frank R Schmidt, and Florian Bernard. Universe points representation learning
for partial multi-graph matching. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 1984–1992, 2023.

Deepti Pachauri, Risi Kondor, and Vikas Singh. Solving the multi-way matching problem by
permutation synchronization. In NeurIPS, pp. 1860–1868, 2013.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differen-
tiation of blackbox combinatorial solvers. In ICLR, 2019.

Michal Rolı́nek, Paul Swoboda, Dominik Zietlow, Anselm Paulus, Vı́t Musil, and Georg Martius.
Deep graph matching via blackbox differentiation of combinatorial solvers. In ECCV, pp. 407–424,
2020a.

Michal Rolı́nek, Paul Swoboda, Dominik Zietlow, Anselm Paulus, Vı́t Musil, and Georg Martius.
Deep graph matching via blackbox differentiation of combinatorial solvers. In ECCV, pp. 407–424,
2020b.

Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd: A unified framework for self-supervised
outlier detection. arXiv preprint arXiv:2103.12051, 2021.

12

Published as a conference paper at ICLR 2025

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2014.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In CVPR, pp. 8934–8943, 2018.

Paul Swoboda, Carsten Rother, Hassan Abu Alhaija, Dagmar Kainmuller, and Bogdan Savchynskyy.
A study of lagrangean decompositions and dual ascent solvers for graph matching. In CVPR, pp.
1607–1616, 2017.

Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia Schmid, Rahul Sukthankar, and Kate-
rina Fragkiadaki. Sfm-net: Learning of structure and motion from video. arXiv preprint
arXiv:1704.07804, 2017.

Fudong Wang, Nan Xue, Jin-Gang Yu, and Gui-Song Xia. Zero-assignment constraint for graph
matching with outliers. In CVPR, pp. 3033–3042, 2020.

Qianqian Wang, Xiaowei Zhou, and Kostas Daniilidis. Multi-image semantic matching by mining
consistent features. In CVPR, pp. 685–694, 2018.

R. Wang, J. Yan, and X. Yang. Combinatorial learning of robust deep graph matching: an embedding
based approach. IEEE TPAMI, 2020.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks for
deep graph matching. In ICCV, pp. 3056–3065, 2019.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural graph matching network: Learning lawler’s
quadratic assignment problem with extension to hypergraph and multiple-graph matching. IEEE
TPAMI, 2021.

Runzhong Wang, Ziao Guo, Shaofei Jiang, Xiaokang Yang, and Junchi Yan. Deep learning of partial
graph matching via differentiable top-k. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6272–6281, 2023.

Tao Wang, Haibin Ling, Congyan Lang, and Songhe Feng. Graph matching with adaptive and
branching path following. IEEE TPAMI, 2017.

Tao Wang, He Liu, Yidong Li, Yi Jin, Xiaohui Hou, and Haibin Ling. Learning combinatorial solver
for graph matching. In CVPR, pp. 7568–7577, 2020a.

Tianzhe Wang, Zetian Jiang, and Junchi Yan. Clustering-aware multiple graph matching via decayed
pairwise matching composition. In Proc. AAAI Conf. Artif. Intell, pp. 7–12, 2020b.

Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert Stanforth, Vivek Natarajan, Joseph R Ledsam,
Patricia MacWilliams, Pushmeet Kohli, Alan Karthikesalingam, Simon Kohl, et al. Contrastive
training for improved out-of-distribution detection. arXiv preprint arXiv:2007.05566, 2020.

J. Yan, J. Wang, H. Zha, X. Yang, and S. Chu. Consistency-driven alternating optimization for
multigraph matching: A unified approach. IEEE TIP, 24(3):994–1009, 2015a.

Junchi Yan, Minsu Cho, Hongyuan Zha, Xiaokang Yang, and Stephen M Chu. Multi-graph matching
via affinity optimization with graduated consistency regularization. IEEE TPAMI, 38(6):1228–1242,
2015b.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching with
channel-independent embedding and hungarian attention. In ICLR, 2020.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Deep latent graph matching. In ICML, pp.
12187–12197, 2021.

Andrei Zanfir and Cristian Sminchisescu. Deep learning of graph matching. In CVPR, pp. 2684–2693,
2018.

Zhen Zhang and Wee Sun Lee. Deep graphical feature learning for the feature matching problem. In
ICCV, pp. 5087–5096, 2019.

13

Published as a conference paper at ICLR 2025

APPENDIX

A NOTATION

We first present all notations used in this paper for a better understanding of proposed algorithms and
to facilitate the following discussion.

Table 5: Main notations and description used in this paper.

Notations Descriptions
N Node embedding or node feature on the graph.

E Edge embedding or node feature on the graph.

U U = {Nu ∈ Rnu×d,Eu ∈ Rmu×d} denotes the latent universe graph, where nu and mu

represents the node and edge number of the latent universe graph.

Gi
Gi = {Ni ∈ Rni×d,Ei ∈ Rmi×d} denotes the input graph, where ni and mi represents
the node and edge number of the input graph.

EdgeID EdgeID ∈ N2×m denotes directed edges in the graph. EdgeID(0) denote the indices of the
source nodes and EdgeID(1) denote the indices of the target nodes.

Kn Kn ∈ Rni×nu denotes the node affinity between the input graph and the universe graph.

Ke Ke ∈ Rmi×mu denotes the edge affinity between the input graph and the universe graph.

Xij Xij ∈ {0, 1}ni×nu denotes the matching between the input graphs.

Xiu Xij ∈ {0, 1}ni×nu denotes the matching between the input graph and the universe graph.

C Class embedding for image pair.

Hi Global feature extracted by backbone for the input image.

Fi Key point feature extracted by backbone for the input image.

E(vi) Energy score for node vi.

τ Energy score threshold for outlier filter.

Din,Dout Din,Dout denotes in-distribution data and out-of-distribution data respectively.

B IMPLEMENTATION DETAIL

We utilize the standard feature extractor pipeline with a few modifications.

• Fisrt of all, we replace the VGG16 (Simonyan & Zisserman, 2014) backbone with ResNet50 (He
et al., 2016). We compute the outputs of relu3 5, relu4 1 of the ResNet50 network pre-trained on
ImageNet (Krizhevsky et al., 2012), to obtain feature F1 and F2, respectively. These features are
then concatenated to create the key point feature F:

F = CONCAT(F1,F2) (14)

Class embedding is added to F as introduced in Equation 7, and we apply an MLP layer to reduce
the feature dim to keep the same dimension with the output of the VGG16-based backbone.

• Then we feed the obtained feature F and the graph adjacency A into the geometric feature
refinement component. The graph adjacencyA is generated using Delaunay triangulation (Delaunay
et al., 1934) based on keypoint locations. We apply SplineConv (Fey et al., 2018) to encode higher-
order information and the geometric structure of the entire graph into node-wise features Fn:

N,E = SplineConv(F,A) (15)

The Spline Conv operation is calculated as follows:

Fi =
1

|N (i)|
∑

j∈N (i)

Fj · hΘ(Fi − Fj) (16)

where Fi represents the node feature of vi,N (i) denotes the neighborhood of vi, and hΘ denotes a
kernel function defined over the weighted B-Spline tensor product basis.

14

Published as a conference paper at ICLR 2025

Algorithm 1 Universe Graph Matching
Require: Input images I , input key points P , learnable parameters θ, learning rate η, epoch number

E, margins min,mout, Temperature T , OOD threshold τ
Ensure: Trained parameters θ∗ and universe latent graph U∗

1: Initialize θ randomly
2: Initialize node and edge embedding of universe latent graph U randomly
3: for e = 1 to E do
4: for image pair Ii, Ij in train/test dataset do
5: # extract features
6: Extract key point feature F by CNN backbone via Eq. 14
7: Add class embedding to F via Eq. 7
8: Refine F with Spline Conv to obtain node N and edge feature E via Eq. 15 and Eq. 16
9:

10: # build affinity
11: Construct node affinity Kn and edge affinity Ke via Eq. 2
12: Calculate energy E for each node via Eq. 8
13: Filter out random outlier with OOD threshold τ via Eq. 10
14:
15: if training then
16: # loss and update
17: Calculate permutation loss with Kfiltered

n and Kfiltered
e for both Ii and Ij

18: Calculate energy loss with E , min, and mout via Eq. 9 for both Ii and Ij
19: Final loss L = Lpermutation + Lenergy, and compute gradient∇θL,∇UL
20: Update parameters: θ ← θ − η∇θL
21: Update universe embedding: U← U− η∇UL
22: else
23: # build pairwise matching
24: Use LPMP solver to obtain universe matching Xiu,Xju via Eq. 11 and Eq. 12
25: Build pairwise matching by X = XiuX

⊤
ju

26: end if
27: end for
28: end for
29: return θ∗, U∗

Node and edge affinity construction, universe matching, and outlier filter process have been introduced
in Section 3.1 and 3.2. We finally build pairwise matching by Xij = XiuX

⊤
ju.

All the models are trained on on a Linux workstation with i9-10920X CPU@3.50GHz CPU, one
RTX3090, and 128GB RAM. The training and inference algorithm is shown in Algorithm 1. In
default, we train our UGM with hyper parameters min = −6, mout = −3, T = 1.0, τ = −4.5,
η = 1e− 3, and E = 15.

C BACKBONE COMPARISON

To systematically evaluate the impact of network architecture on performance, we conducted com-
prehensive experiments comparing VGG and ResNet as backbone models across all methods. This
analysis ensures fair comparison by providing results using consistent architectures while also
quantifying how architectural choices influence each method’s effectiveness.

As demonstrated in Table 6, our method consistently outperforms existing approaches across multiple
feature extractor configurations, including VGG+Spline2D, VGG+Attention, and ResNet+Spline2D.
The sole exception occurs with VGG+Spline2D+3D, where URL achieves better results through its
utilization of spline3D features. However, due to the unavailability of URL’s implementation, we
were unable to integrate this feature extractor into our UGM model. To facilitate a fair comparison,
we adopted ResNet50 as the common backbone architecture.

While evaluating architectural impacts, we observed that not all baseline methods exhibited perfor-
mance improvements when transitioning to ResNet. To maintain scientific rigor and transparency, we
have included these results in this appendix, allowing for a more proper discussion of architectural
sensitivities across different approaches.

15

Published as a conference paper at ICLR 2025

Table 6: Backbone fairness comparison on Pascal VOC with unfiltered setting. The performance
with the VGG backbone is reported by their paper, and the performance with the ResNet backbone is
reproduced via publicly available code. ‘-’ denotes that the method has not released its code.

Method Backbone GNN F1 score Backbone GNN F1 score

NGMv2 VGG Spline2D 58.8 ResNet Spline2D 57.46
BBGM VGG Spline2D 61.4 ResNet Spline2D 64.45
DLGM VGG Spline2D 64.8 ResNet Spline2D -
GCAN VGG Attention 64.6 ResNet Attention 64.67
AFAT VGG Attention 62 ResNet Attention 59.55
URL VGG Spline2D 67.6 ResNet Spline2D -
URL VGG Spline2D+3D 71.7 ResNet Spline2D+3D -

UGM VGG Spline2D 70.5 ResNet Spline2D 73.9

D EFFECT OF ENERGY MARGIN LOSS

Figure 6: Left: Energy histogram of ID and OOD samples without energy loss finetuning, Right:
Energy histogram of ID and OOD samples with energy loss finetuning

The effect of energy margin loss is shown in Figure 6. Left shows the energy distribution of in-
distribution (ID) and out-of-distribution (OOD) samples before applying the Energy Margin Loss,
where the energy values for both ID and OOD samples overlap significantly, making it difficult to
distinguish between them. After finetuning with the Energy Margin Loss, the energy values for ID
samples shift toward lower energy levels, while OOD samples are pushed toward higher energy levels.
This separation of energy distributions effectively enhances the model’s ability to distinguish between
ID and OOD samples, demonstrating the efficacy of the Energy Margin Loss in improving model
robustness.

E FEW SHOT TEST FOR GENERALIZATION ABILITY

Table 7: Few shot test on Pascal VOC under ‘unfiltered’ setting. 16 classes on the left are base classes.
4 classes on the right are few shot classes where only 20 training images are given for each class. F1
scores are reported on the top and delta (compared to results in Table. 1) are reported on the bottom.

Method aero bike bird boat bus car cat chair cow table dog horse motor person sofa train bottle sheep plant tv avg

BBGM 44.6
(+1.9)

72.5
(+1.6)

59.7
(+2.2)

46.3
(-0.3)

68.9
(+4.0)

52.2
(+1.2)

64.2
(+0.4)

44
(+1.6)

61
(-2.7)

55.9
(+8.0)

63.5
(+2.0)

65.2
(+1.8)

73
(+4.0)

45.1
(-1.0)

43.8
(+4.8)

77.3
(-0.7)

68.9
(-16.9)

54
(-3.4)

77
(-17.2)

78.4
(-4.3)

60.7
(-0.7)

NGMv2 46.7
(+1.2)

64.2
(-1.1)

56.9
(+1.6)

46.2
(+0.4)

64.1
(-0.2)

49.3
(+3.4)

58.2
(-0.4)

42.8
(-0.5)

59.3
(+0.2)

41.5
(+2.3)

59.1
(+3.4)

56.7
(-1.3)

63.7
(-1.6)

46.5
(+2.1)

34.4
(-6.8)

70.0
(-2.4)

71.9
(-16.6)

45.9
(-4.4)

72.2
(-23.2)

77.9
(-3.9)

56.4
(-2.4)

GCAN 47.9
(+2.9)

66.2
(-4.5)

61.3
(+0.7)

49.8
(+0.1)

66.4
(+0.1)

66.3
(+1.1)

65.7
(+0.8)

44.9
(-0.6)

63.9
(-3.0)

46.4
(-8.0)

63.3
(+0.2)

61.1
(-1.4)

63.4
(-0.1)

55.6
(+0.6)

42.6
(-7.1)

77.7
(-2.9)

69.0
(-20.8)

63.8
(+0.3)

71.7
(-24.4)

75.9
(-7.7)

60.9
(-3.7)

AFAT 46.4
(-0.7)

70.1
(-0.8)

57.1
(-1.0)

46.6
(+0.8)

66.7
(+0.2)

43.5
(-6.1)

58.4
(-0.4)

47.6
(-3.0)

63.4
(-1.2)

43.3
(-3.9)

58.5
(-2.0)

61.5
(-0.8)

65.3
(-0.4)

44.4
(-1.9)

43.1
(-4.3)

72.0
(-2.2)

81.7
(-9.1)

48.5
(-4.2)

84.1
(-11.3)

78.8
(-5.0)

59.4
(-2.6)

UGM 55.9
(-1.5)

74.4
(-1.9)

70.1
(-0.4)

59.1
(+4.0)

70.9
(-1.3)

79.7
(-0.6)

71.5
(-0.8)

62.3
(-7.9)

72.4
(-2.3)

53.9
(-7.6)

76.1
(+0.7)

75.6
(+4.0)

72.6
(-3.5)

63.5
(-0.3)

54.4
(-5.5)

92.1
(-1.0)

79.5
(-12.3)

61.3
(-12.3)

95.0
(-2.2)

77.2
(-7.7)

70.9
(-3.0)

Our method heavily relies on the universe latent graph, which is learned from the training data to
capture its features and structure. This reliance poses a limitation, as the method cannot directly

16

Published as a conference paper at ICLR 2025

extend to unseen classes without additional data. However, generalizing the universe graph to unseen
classes requires only a small amount of labeled data. To validate this, we conducted a few-shot test to
compare the generalization ability of different methods.

Specifically, the dataset is divided into two groups: base classes and few-shot classes. For the base
classes, we provide all available training data, allowing methods to fully learn the features and
structures of these categories. For the few-shot classes, we limit the training data to only 20 labeled
images per class (about 5% of full data), simulating a typical few-shot learning scenario where labeled
data is scarce. The results, as shown in Table 7, provide insights into how effectively each method
adapts to the few-shot learning scenario.

UGM’s average delta for base classes is -1.62, indicating a more noticeable performance drop
compared to other methods like BBGM (+1.8) and NGMv2 (+0.018). This larger decline highlights a
limitation of UGM ’s design, where the shared universe latent graph is used across all classes. The
limited training data for the few-shot classes impacts not only their performance but also the overall
training of the latent graph, leading to performance degradation in the base classes. However, on
few-shot classes, UGM achieves an average delta of -8.63, significantly better than GCAN (-13.15)
and NGMv2 (-12.03), with a lower standard deviation (4.16). This demonstrates UGM’s ability to
retain stable and competitive performance across few-shot classes, outperforming other methods in
effectively handling the challenges posed by limited training data.

F VISUALIZATION

Figure 7: Visualization on Pascal VOC of UGM. All the image pairs are randomly picked. The green
dashed lines represent correct matches, while the red dashed lines represent incorrect matches.

17

	Introduction
	Related Works
	Classical Graph Matching
	Deep Learning of Graph Matching
	Out-of-distribution Detection

	Methodology
	Structured Universe Graph Learning
	Outlier Detection
	Discussion

	Experiment
	Protocol
	Performance on Pascal VOC
	Performance on Willow Object
	Ablation Studies

	Conclusion
	Notation
	Implementation Detail
	Backbone Comparison
	Effect of Energy Margin Loss
	Few Shot Test for Generalization Ability
	Visualization

