
Under review as a conference paper at ICLR 2022

THE MANIFOLD HYPOTHESIS FOR
GRADIENT-BASED EXPLANATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

When are gradient-based explanations meaningful? We propose a necessary crite-
rion: explanations need to be aligned with the tangent space of the data manifold.
To test this hypothesis, we employ autoencoders to estimate and generate data
manifolds. Across a range of different datasets – MNIST, EMNIST, CIFAR10,
X-ray pneumonia and Diabetic Retinopathy detection – we demonstrate empiri-
cally that the more an explanation is aligned with the tangent space of the data,
the more interpretable it tends to be. In particular, popular post-hoc explanation
methods such as Integrated Gradients and SmoothGrad tend to align their results
with the data manifold. The same is true for the outcome of adversarial training,
which has been claimed to lead to more interpretable explanations. Empirically,
alignment with the data manifold happens early during training, and to some de-
gree even when training with random labels. However, we theoretically prove that
good generalization of neural networks does not imply good or bad alignment of
model gradients with the data manifold. This leads to a number of interesting
follow-up questions regarding gradient-based explanations.

1 INTRODUCTION

A large number of algorithms aim to provide post-hoc explanations for the output of neural net-
works (Simonyan et al., 2014; Bach et al., 2015; Shrikumar et al., 2017; Ancona et al., 2018; Lim
et al., 2021). Many of them are, directly or indirectly, based on the gradient with respect to the
input (Smilkov et al., 2017; Sundararajan et al., 2017; Garreau & Mardaoui, 2021; Agarwal et al.,
2021). A particularly interesting application for gradient-based input attribution methods is natural
image classification. Despite recent attempts to provide a priori interpretable image classifiers, neu-
ral networks remain exceptionally successful at classification (Chen et al., 2018a). However, recent
work has demonstrated that post-hoc explanation methods fail various sanity checks (Adebayo et al.,
2018b;a; Kindermans et al., 2019; Arun et al., 2020), and some have even suggested that they should
not be used at all (Rudin, 2019).

In this paper, we try to understand when and why gradient-based input attribution methods can be
meaningful. To this end, we propose the following hypothesis:

Gradient-based explanations are more meaningful the more they are aligned
with the tangent space of the data manifold.

Consider image classification. It is widely believed that natural image data concentrates around a
low-dimensional image manifold (Goodfellow et al., 2016, Section 5.11.3). This image manifold
captures the geometric structure of the data. In particular, the tangent space captures all components
of an image that can be changed while still staying within the realm of natural images. If a gradient-
based explanation approximately lies in the tangent space, this means that it highlights a meaningful
way in which the different components of an image contribute to the prediction. If a gradient based
explanation lies orthogonal to the tangent space, this means that it points in some direction that
would not lead to realistic images, and a human would have a hard time to understand its meaning.

Our motivation for proposing this hypothesis is twofold. First, we believe that it is intuitive, and
we provide empirical evidence in its support. Second, we hope that the hypothesis can provide a
perspective on why obtaining gradient-based explanations might be more difficult than classification.

1

Under review as a conference paper at ICLR 2022

Figure 1: Conceptual overview of our approach. We first estimate the data manifold of an existing
dataset with a variational autoencoder, then use the decoder as a generative model. On the generated
data, we train a classifier f . For this classifier, we evaluate whether different gradient based expla-
nations Ei align with the tangent space of the data manifold. Moving along an explanation aligned
with the tangent space keeps us in the manifold, whereas moving along an orthogonal explanation
takes us out of manifold. Our hypothesis is that the latter does not lead to meaningful explanations
because it describes changes that lead to unnatural images.

To evaluate the hypothesis empirically, we employ autoencoders to estimate the data manifolds of
five different datasets - MNIST, EMNIST, CIFAR10, X-ray pneumonia and diabetic retinopathy
detection. As depicted in Figure 1, we also use variational autoencoders as generative models. This
allows us to generate datasets with completely known manifold structure. With this approach, we
provide qualitative and quantitative evidence that explanations that are more aligned with the tangent
space of the data are more interpretable.

To study when and why model gradients are aligned with the tangent space of the data, we first
show that the gradients of neural networks at initialization are unrelated to the structure of the data
manifold. This means that the learning algorithm picks up some aspects of the structure of the data
manifold during training. We show that this happens early during training, and to some extent even
when training with random labels. Moreover, under standard training procedures, the alignment
between model gradients and the data manifold deteriorates as the model increasingly fits the labels.
This is avoided by l2 adversarial training, which significantly aligns the model’s gradients with the
tangent space of the data. Is it always the case that a neural network that generalizes necessarily
adapts its gradients to the data manifold, at least to some degree? The answer is no, as we show
theoretically. Without further assumptions, the relation between data manifold and model gradients
is ambiguous: The alignment between the two quantities can be arbitrarily good or bad.

The organization of the paper is as follows. Sec.2 formally introduces the manifold hypothesis and
outlines our conceptual approach. Sec.3 evaluates the hypothesis on five datasets. Sec.4 discusses
the effects of adversarial training and the evolution of model gradients over the course of training.
Sec.5 contains a formal proof that generalization does not imply alignment with the data manifold,
Sec.6 discusses the related work and Sec.7 discusses the implications of our results.

2 THE MANIFOLD HYPOTHESIS

Our goal is to evaluate the following hypothesis: A gradient-based explanation E ∈ Rd at a point
x ∈ M is more meaningful the more it is aligned with the tangent space of the data manifold at x.
Below we first give a background on data manifolds, tangent spaces and model gradients; then we
detail our evaluation approach.

2.1 BACKGROUND

Data manifolds and tangent spaces. A k-dimensional differentiable manifold M ⊂ Rd is a
subset of a d-dimensional space that locally resembles Rk. At every point x ∈M, the tangent space
Tx is a k-dimensional subspace of Rd. The tangent space Tx consists of all directions v such that
x+ v, for ‖v‖ small, is again close to the manifold. Manifolds and tangent spaces are the subject of
differential geometry, to which we refer for a comprehensive introduction.

The long-standing hypothesis that natural image data concentrates around a low-dimensional im-
age manifold is supported by a number of empirical studies (Weinberger & Saul, 2006; Fefferman

2

Under review as a conference paper at ICLR 2022

et al., 2016). However, accurately learning the data manifolds of natural image datasets – manifold
learning – is difficult and the exact properties of these manifolds remain unknown (Cayton, 2005;
Aamari & Levrard, 2019). Shao et al. (2018) investigate the properties of manifolds generated by
deep generative models and find that they have mostly low curvature.

Model gradients and the fraction of the gradient in tangent space. We consider neural net-
works that learn differentiable functions f : Rd → RC . Here C is the number of classes and the
model prediction is given by argmaxi f(x)i. The gradient of class i with respect to the input is
given by gradi(x) =

∂(f(x)i)
∂x . Unless mentioned otherwise, we always consider the model gradient

with respect to the predicted class and before the softmax.

At every point x that lies on the data manifoldM, we can decompose the gradient into a part that
lies in tangent space and a part that is orthogonal to it. Formally, we have gradi(x) = v1 + v2 with
v1 ∈ Tx, v2 ∈ T ⊥x and v1 ⊥ v2. Here v1 is the part of the gradient that lies in the tangent space, and
v2 is the part of the gradient that is orthogonal to the tangent space. If the gradient completely lies in
the tangent space, we have v2 = 0. If the gradient is completely orthogonal to the tangent space, we
have v1 = 0. In practice, some part of the gradient will lie in the tangent space and another part be
orthogonal to it, that is we have v1 6= 0 and v2 6= 0. To quantitatively measure how well the gradient
is aligned with the tangent space, we compute the

Fraction of the Gradient in Tangent Space =
‖v1‖

‖gradi(x)‖
∈ [0, 1]. (1)

2.2 HOW DO WE KNOW THE DATA MANIFOLD?

To estimate whether an explanation is aligned
with the tangent space we make use of autoen-
coders. The various variants of variational au-
toencoders (Kingma & Welling, 2013; Higgins
et al., 2017), allow to estimate the data man-
ifolds of existing datasets. Importantly, they
also allow to generate datasets with completely
known manifold structure (Algorithm 1). We
make use of two related approaches that we
term the generative approach and the recon-
structive approach. In both approaches, we first
train an autoencoder on the orignal dataset.

The generative approach to create datasets
with a completely known manifold struc-
ture. To generate a dataset with completely
known manifold structure, we have to train a
variational- or another generative autoencoder
(Tagasovska et al., 2019). After training, we
pass the original dataset through the autoen-
coder. Then we train an additional classifier
that reproduces the original labels from latent codes and reconstructed images. Equipped with this
labeling function, we sample from the prior and use decoder and labeling function to generate a
dataset. If the decoder is differentiable, we can compute the tangent space at each datapoint x (Shao
et al., 2018; Anders et al., 2020).

The reconstructive approach to create datasets with an estimated manifold structure. The main
limitation of the generative approach is that we might not be able to obtain high-quality samples with
reasonably small latent spaces. While there have been great advances in generative modeling, state-
of-the-art models like hierarchical variational autoencoders (Vahdat & Kautz, 2020) require very
large latent spaces, i.e. k ≈ d. For our analysis, it is however critical that

√
k/d is small – with

k = d, the fraction of the gradient in tangent space is always 1. To evaluate our hypothesis on real-
world high-dimensional image data where it is difficult to obtain realistic samples with not-too-large
latent spaces, we rely on estimating the tangent space. That is we simply pass the original dataset
through the autoencoder and take the reconstucted images with the original labels as our new dataset.

3

Under review as a conference paper at ICLR 2022

3 PUTTING THE HYPOTHESIS TO THE TEST

Explanation algorithms. We consider four gradient-based input attribution methods: The gra-
dient (Simonyan et al., 2014), Integrated Gradients (Sundararajan et al., 2017), Input × Gradient
(Ancona et al., 2018), and SmoothGrad (Smilkov et al., 2017). The motivation behind Integrated
Gradients is axiomatic. The motivation behind SmoothGrad is to reduce noise in the gradient. All
four methods provide explanations as vectors in Rd. We can evaluate how each method is aligned
with the tangent space of the data manifold by computing the fraction of the explanation method
in tangent space. While other methods also provide explanations as vectors in Rd, we restrict our-
selves to these four methods because they are directly related to the gradient with respect to the
input, which is our main object of investigation.

Experimental setting. Given a dataset, obtained either with the generative or the reconstructive
approach, we train a neural network to minimize the test error. For this network, we then eval-
uate how gradients and other gradient-based explanation methods relate to the data manifold. To
evaluate whether an explanation is meaningful, we use qualitative evaluations as demonstrated in
(Simonyan et al., 2014; Bach et al., 2015; Sundararajan et al., 2017; Smilkov et al., 2017). We
also rely on the literature that demonstrates the utility of Integrated Gradients and SmoothGrad for
diabetic retinopathy detection (Sayres et al., 2019; Van Craenendonck et al., 2020).

When we quantitatively evaluate the fraction of an explanation in tangent space (1), we need to
account for the fact that even a random vector has a non-zero fraction in tangent space. A random
vector is by definition completely unrelated to the structure of the data manifold. The expected
fraction of a random vector that lies in any k-dimensional subspace is

√
k/d. In our MNIST32 task,

for example, d = 1024, k = 10 and
√
10/1024 ≈ 0.1. Thus, we could only say that a gradient-

based explanation is systematically related to the tangent space of the data manifold if, on average,
the fraction of the explanation in tangent space is significantly larger than 0.1.

Datasets. We evaluate our hypothesis several datasets. This includes (i) MNIST32 and
MNIST256, two variants of the MNIST dataset (LeCun et al., 1998) with 10 classes and 60000
grayscale training images and 10000 grayscale test images of size 32 × 32 and 256 × 256, respec-
tively. (ii) EMNIST128, a variant of the EMNIST dataset (Cohen et al., 2017) that extends MNIST
with handwritten letters and has over 60 classes, (iii) the CIFAR10 dataset (Krizhevsky et al., 2009).
We also evaluate our hypothesis on two real world high dimensional image datasets: X-ray Pneumo-
nia (Kermany et al., 2018) and Diabetic Retinopathy Detection 1. Both tasks have been used before
to study the properties of post-hoc explanation methods (Rajaraman et al., 2019; Luján-Garcı́a et al.,
2020; Amyar et al., 2020; Arun et al., 2020; Chetoui & Akhloufi, 2020; Van Craenendonck et al.,
2020). All further details on the datasets are provided in appendix A.

3.1 EVALUATION ON GRAYSACLE IMAGES: MNIST32, MNIST256 AND EMNIST128

We first demonstrate on MNIST32 that the part of the gradient that lies in tangent space is meaning-
ful, whereas the part of the gradient that is orthogonal to the tangent space is not meaningful. The
MNIST32 dataset was generated with a β-TCVAE (Chen et al., 2018b), trained on MNIST as de-
scribed in Algorithm 1 (details in appendix A). The data lies on a completely known 10-dimensional
image manifold in a 1024-dimensional space. On this dataset, we train a simple neural network with
two convolutional and two fully connected layers to a test accuracy greater than 99%.

Figure 2 depicts model gradients for images from the test set of MNIST32 where the fraction of
the gradient in tangent space is particularly large. The gradients are decomposed into the part of
the gradient that lies in tangent space (second row) and the part of the gradient that is orthogonal
to the tangent space (third row). It can be seen quite clearly that the part of the gradient that lies in
tangent space has meaningful structure that in particular relates to prediction that we aim to explain.
In case of the number 3 (fourth column), regions that would complete an 8 have negative attribution.
In case of the number 8 (ninth column), pixels that distinguish the number from a 3 have a positive
attribution instead. Similar patterns can be observed for other numbers, too. In contrast, the part of
the gradient that is orthogonal to the tangent space does not have meaningful structure. In line with

1Dataset at https://www.kaggle.com/c/diabetic-retinopathy-detection

4

https://www.kaggle.com/c/diabetic-retinopathy-detection

Under review as a conference paper at ICLR 2022

Figure 2: (First row) depicts images from the test set of MNIST32. (Second row) depicts the part of
the gradient that lies in tangent space for these images. (Third row) depicts the part of gradient that
is orthogonal to the tangent space for these images. Blue corresponds to negative attribution, red
to positive attribution. (Bottom row) depicts the fraction of four different explanation methods in
tangent space. (Bottom left) MNIST32. (Bottom center) MNIST256. (Bottom right) EMNIST128.
Vertical gray line shows the expected fraction of a random vector in tangent space.

our hypothesis, it consists of seemingly unrelated spots of positive and negative attribution. We do
not address the question whether the part of the gradient that is orthogonal to the tangent space at x is
best described as noise or has a structural component. Shah et al. (2021) show that model gradients
are not able to differentiate instance-specific features from other task-relevant features that are not
pertinent to a given input instance. In this respect, note that part of the gradient that is orthogonal to
the tangent space at x might lie within the tangent space of other instances on the data manifold.

To provide quantitative evidence for our hypothesis we look at the fraction in tangent space (Equa-
tion 1) of different gradient-based attribution methods. If the hypothesis is correct, we would expect
attribution methods that are known to provide better explanations to have a higher fraction in tangent
space. The bottom-left of Figure 2 depicts the distribution of the fraction in tangent space for model
gradients, SmoothGrad, Integrated Gradients and Input× Gradient over all images from the test set.
All four methods provide explanations whose fraction in tangent space is considerably larger than
random. In particular, the mean fraction of the gradient in tangent space is significantly larger than
random (t-test, p < 0.001). As expected under the hypothesis, Integrated Gradients and Input ×
Gradient improve upon the gradient. SmoothGrad seems to have little effect in this task.

As an experiment, we increase the dimension of the MNIST32 images to 256 × 256 by bilinear
upsampling. This preserve the structure of the data manifold while increasing the dimension of
the ambient space, i.e. on MNIST256 the ratio

√
k/d is only 0.012. To measure the effect on the

fraction of model gradients in tangent space, we train a ResNet18 (He et al., 2016) to a test accuracy
greater than 99% and then compute again the fraction in tangent space of various gradient-based
attribution methods (bottom-center of Figure 2). At first glance, the picture seems similar to that
of MNIST32 on the left – the only modification being that SmoothGrad now improves upon the
gradient. However, looking on the x-axis reveals that the fraction in tangent space of all methods
is significantly reduced. Figure 8 in the Appendix shows that this also impacts the visual quality of
explanations. We conjecture that, holding everything else fixed, aligning model gradients with the
data manifold is harder as the ratio

√
k/d decreases.

Finally, we present our results on EMNIST128. To create this dataset, we used the reconstructive
approach. We resized the images form EMNIST to 128× 128 and estimated the data manifold with
a latent dimension of k = 656 (details are in appendix A.3). EMNIST128 has 60 classes and serves

5

Under review as a conference paper at ICLR 2022

Figure 3: Comparing different explanation methods on (Top row) CIFAR10, (Middle row) X-Ray
Pneumonia and (Bottom row) Diabetic Retinopathy detection. (Left part) qualitatively shows differ-
ent explanations. (Right part) shows the distribution of the fraction in tangent space for all methods
over the images from the test set. In high dimensional cases SmoothGrad has the highest component,
whereas Input × Gradient has the highest component on CIFAR10.

as an example of a high-dimensional problem. We train a VGG16 network that yields an accuracy
of 99%. Figure 2 (right) depicts again the fraction in tangent space of various explanation methods.
SmoothGrad has the best performance, while again all post-hoc methods improve upon the gradient.

3.2 EXPERIMENTS ON CIFAR10 AND MEDICAL DIAGNOSIS DATASETS

We now turn to CIFAR10 and two medical diagnosis datasets, using the reconstructive approach.
For CIFAR10, we trained a convolutional autoencoder with k = 144. A VGG16 classifier on
the reconstructed images achieves an accuracy of 94.1%. For pneumonia and diabetic retinopathy
detection, we resized the images to 1× 256×224 (i.e., d = 57344) and 3×224×224 (i.e., d =
150528), respectively. We used a convolutional autoencoder with a latent dimension of 7168 and
6272, respectively. For both tasks we train ResNet18 classifier on the reconstructed images. It
achieves an accuracy of 89% for pneumonia and 92% for retinopathy. Details are in Appendix A.

The top row of Figure 3 shows the performance of various gradient-based explanation methods
on the reconstructed CIFAR10 dataset. The quantitative plot on the right shows that all post-hoc
explanation methods have a higher fraction in tangent space than the gradient. Among all methods,
Input × Gradient achieves the highest fraction in tangent space. The qualitative example on the left
indicates that Input × Gradient indeed provides the most meaningful explanations. For instance, for
the upper-left image of the frog, while other methods seem to focus on only some parts of frog along
with the background, Input × Gradient focuses on the central region covering the entire frog. This
is similar to the low-dimensional MNIST task (MNIST32), where Input × Gradient is among the
best performing methods, indicating that SmoothGrad has little impact in lower dimensions.

Figure 3 middle row shows the performance of gradient-based explanation methods on the pneu-
monia dataset. The quantitative plots on the right show the distribution of the fraction in tangent
space for different methods on all the test images. We observe that in general the fraction is highest
for SmoothGrad and lowest for raw gradients. The qualitative examples on the left indicate that
SmoothGrad indeed focuses on the relevant region near the lungs to make the correct predictions,
whereas raw gradients do not seem to focus on the lungs. Similarly, Figure 3 bottom row shows the
performance of gradient-based explanation methods on the diabetic retinopathy dataset. Again, from

6

Under review as a conference paper at ICLR 2022

Figure 4: Fraction of gradient in tangent space evolving over the course of training. Mean and 90%
confidence bounds. Gray line shows the expected fraction of a random vector in tangent space.
Logarithmic x-axis. (Left) Training with Adam (Kingma & Ba, 2014). (Center) PGD Adv. Robust
Training. (Right) Training with Adam and random labels.

qualitative examples shown on left we see that SmoothGrad correctly focuses on the region away
from the pupil to explain the diagnosis but other methods, such as gradients, wrongly focus on the
pupil to explain the decision. Both the qualitative and quantitative results indicate that SmoothGrad
has a strong impact in high dimensions.

In conclusion, we find that the fraction of gradient based explanations in the tangent space is much
higher than the expectation of fraction of random vectors in the tangent space. We also observe
that for complex data manifolds (as described in this section), the alignment of different explanation
methods is consistent with the literature (i.e., raw gradients being worse than other methods, with
SmoothGrad being the best in high-dimensional setup).

4 WHEN AND WHY ARE GRADIENTS ALIGNED WITH THE DATA MANIFOLD?

When and why are model gradients aligned with the data manifold? That there is some degree
of alignment is plausible: After all, finite differences between the points in the training data serve
as rough approximations of the data manifold. For a more detailed perspective, we study how the
fraction of model gradients in tangent space evolves over the course of training (Figure 4). The left
part of Figure 4 depicts the evolution of model gradients over the course of training on the MNIST32
dataset and the model from Section 3.1. First, we see that the fraction of model gradients in tangent
space at initialization is only as good as random. Second, and somewhat surprisingly, we see that
the fraction in tangent space increases rapidly during the early steps of training, almost before the
model starts to fit the labels (note that the x-axis in Figure 4 is logarithmic). Moreover, the relation
between the data manifold and model gradients deteriorates as the model increasingly fits the labels.

4.1 THE EFFECT OF ADVERSARIAL TRAINING

Figure 5: Adv. Robust Gradients.

Why does the relation between the data manifold and
model gradients deteriorate as the model increasingly fits
the labels? For insights on this question, we turn to
training with adversarial perturbations. Previous work
has noted that adversarial training aligns model gradients
with human perception and the data manifold (Tsipras
et al., 2018; Kim et al., 2019). In line with our hypothesis,
we expect that adversarial training increases the fraction
of model gradients in tangent space. An evaluation on the
MNIST32 dataset shows that this is indeed the case. Fig-
ure 5 depicts the fraction of model gradients in tangent
space, both for the model from section 3.1, and for the same architecture trained with projected gra-
dient descent (PGD) against an l2-adversary (Madry et al., 2017). Details regarding the adversarial
training procedure are in Appendix A. The effect of adversarial training is quite remarkable: the
mean fraction of gradients in tangent space is 0.68 for the adversarially trained model, compared
with 0.31 for the standard model. The fraction of adversarially robust gradients in tangent space
is not being improved by any of the post-hoc explanation methods considered in this paper. As
depicted in the center part of Figure 4, the fraction of model gradients in tangent space does not

7

Under review as a conference paper at ICLR 2022

deteriorate under adversarial training, but instead increases monotonically. We hypothesize that the
observed behavior under standard training is due to the presence of non-robust features that are not
aligned with the data manifold (Ilyas et al., 2019).

4.2 TRAINING WITH RANDOM LABELS

There are two different ways in which a model might align its gradients with the data manifold: (1)
The model leverages information about the data manifold in an unsupervised way. After all, the data
manifold is an unsupervised object that exists independently of the labels. (2) The model leverages
information about the data manifold implicitly through the labels. After all, in natural image classi-
fication problems, class boundaries might be implicitly aligned with the data manifold. We attempt
to distinguish between these two different possibilities by training with random labels. The result
of this experiment is depicted in the right part of Figure 4. First, the fraction of gradients in tangent
space increase even when training with random labels. Second, it reaches its peak just before the
network starts to fit the labels. Third, as the network increasingly (over-)fits the data, the relation
between model gradients and the data manifold deteriorates until it remains hardly better than ran-
dom. This experiment shows that the model does indeed, at least in part, leverage information about
the data manifold in an unsupervised way. However, it also indicates that this relation might be hard
to sustain if the labels are unrelated to the structure of the data manifold.

5 GENERALIZATION DOES NOT IMPLY ALIGNMENT WITH THE MANIFOLD

We have already seen empirically that the relation between model gradients and the data manifold
can exhibit considerable local variation (Figures 2 and 3). This is the case even for models that
achieve an accuracy > 99% (Section 3.1). In this section, we are going to formally prove that
a single neural network that achieves a test accuracy of 100% can exhibit an arbitrary amount of
variation between its gradients and the data manifold (Theorem 1). This is illustrated in Figure 6.
Figure 6 depicts the fraction of model gradients in tangent space for a two-layer neural network
trained to solve a classification problem that lives on a 1-dimensional data manifold in R3. For this
network, the distribution of model gradients in tangent space is bi-modal with two modes near 0 and
1. This means that (a) for 50% of observations, model gradients lie within the tangent space of the
data manifold, and (b) for the remaining 50% of observations, model gradients are orthogonal to the
tangent space of the data manifold.

Figure 6:M3 and Simulation Results.

To formally prove this result, we leverage the
recently demonstrated connections between the
training dynamics of infinite width neural net-
works and Wasserstein gradient flow (Chizat
& Bach, 2018; 2020). In particular, Chizat
& Bach (2020) show that the limit of Wasser-
stein gradient flow, conditional on convergence,
takes the form of a maximum-margin classifier

ν? = argmax
ν∈P(Sd+1)

min
(x,y)∈D

y · f(ν, x) (2)

where f(ν, x) = E(w,a,b)∼ν wφ(〈 a, x〉+b) and
φ(x) = max{x, 0}. We show that there exists a manifold and corresponding classification such that
the gradient of (2) is partly perfectly and partly not at all aligned with the manifold.
Theorem 1 (Generalization does not imply alignment with the manifold). For every dimension
d > 1, there exists a 1-dimensional manifoldMd ⊂ Rd that does not lie in any proper subspace, a
probability distribution D onMd × {−1, 1} and a maximum-margin classifier with zero test error
given by equation (2) such that

P(x,y)∼D

(
∂f(ν?, x)

∂x
∈ Tx

)
> 0.49 and P(x,y)∼D

(
∂f(ν?, x)

∂x
∈ T ⊥x

)
> 0.49.

The proof is in appendix B, we follow Shah et al. (2021). It would have been equally possible to
provide examples where the gradient is always or never aligned with the data manifold. We choose
this particular example because we believe that it is related to what is observed in practice.

8

Under review as a conference paper at ICLR 2022

6 RELATED WORK

Explanation methods. Methods such as layer conductance (Dhamdhere et al., 2018), internal influ-
ence (Leino et al., 2018), and GradCam (Selvaraju et al., 2017) attempt to attribute model predictions
to a certain layer and are aptly called layer attribution methods. The work in (Singla et al., 2020)
proposed a method to explain the classifier by generating visual perturbation of an image by exag-
gerating or diminishing the semantic features that the classifier associates with a target label. Work
on causal explanation such as (Schwab & Karlen, 2019) formulates the problem of explaining a
machine learning model as a causal learning task that estimates the influence of certain inputs on
the outputs of another machine learning model. Moreover, work such as (Yang & Song, 2020) uses
models based on differentiable inductive logic programming that learns first-order logic to explain
the data. The work in (Yeh et al., 2020) proposes a method to find set of concepts that are “suffi-
cient” to explain predictions. Koh et al. (2020) build a model where concepts are built-in so that one
can control influential concepts.

Evaluating explanations. It is important to objectively assess how good an explanation is. How-
ever, unavailability of ground-truth explanations makes it difficult to evaluate them (Samek et al.,
2021). Evaluation is further complicated by the fact that explanations may not be reliable as they are
susceptible to adversarial attacks (Heo et al., 2019; Dombrowski et al., 2019). Some of the existing
work in this direction focus on (i) Faithfulness/Sufficiency and (ii) Human interpretability. Works
on faithfulness propose that an explanation should reliably and comprehensively represent the local
decision structure of the analyzed ML model. A practical technique to assess such property of the
model, in case of image data, is “pixel-flipping” (Samek et al., 2016), it tests whether removing
the features highlighted by the explanation (as most relevant) leads to a strong decay of the net-
work prediction abilities. Works on human interpretability emphasize that the presented explanation
techniques deliver results that are meaningful to the human (Samek et al., 2021). It is difficult to de-
fine human interpretability as different users may have different capabilities at reading explanations
and at making sense of the features that support them (Ribeiro et al., 2016; Narayanan et al., 2018;
Miller, 2019).

7 DISCUSSION

Recently, there has been a lot of discussion about post-hoc explanation methods, with some authors
claiming that they work relatively well (Samek et al., 2021), while others assert that they should
not be used at all (Rudin, 2019). In this work, we focus on the particular case of gradient-based
input attribution methods and propose a necessary criterion: explanations should be aligned with the
tangent space of the data manifold.

The objective of this paper is not to claim that the gradients of existing models provide good ex-
planations or that any particular post-hoc explanation method works especially well. Instead, our
goal is to convince the reader that the manifold hypothesis for gradient-based explanations deserves
consideration, and to start exploring the potential implications of this hypothesis. We hope that our
hypothesis can provide a novel perspective on gradient-based explanations, and to serve a criterion
for future investigations. As we demonstrate in Section 5, the question of whether model gradients
are aligned with the data manifold is amendable to theoretical analysis. Future work might ask under
what conditions adversarial training causes model gradients to be aligned with the data manifold, or
when Integrated Gradients can of improve the fraction of model gradients in tangent space. More-
over, while current models and algorithms provide only imperfect alignment, it is an open question
whether this is due to the fact that we have not yet found the right algorithm, or because the problem
is harder than classification.

Although we are, to the best of our knowledge, the first to provide a systematic evaluation of our
hypothesis, we believe that it is implicit in previous works. Projections of model gradients on esti-
mates of the tangent space have long been performed in the literature (Kim et al., 2019; Dombrowski
et al., 2019). Our criterion might also be implicitly related to other sanity checks for explanations
(Adebayo et al., 2018a). For example, since model gradients at random initialization are unrelated
to the data manifold, an explanation that does not change when model weights are being randomized
can also not lie in the tangent space of the data manifold.

9

Under review as a conference paper at ICLR 2022

8 ETHICS AND REPRODUCABILITY STATEMENTS

Explainability is an important demand when it comes to applications of machine learning, for ex-
ample in medicine or in societal contexts. This has been stressed by the European Data Protection
Regulation, and will be an important aspect of future AI legislation. However, the field of ex-
plainable machine learning is still widely open, and formal guarantees about explanation algorithms
rarely exist. Our work takes one step towards understanding conceptually how particular explana-
tion methods work. Many more such steps will be necessary before we actually understand which
kind of guarantees can possibly be given for explanation algorithms.

Regarding our experimental setup: The properties of the data manifolds of natural image datasets
depend on data collection practices and other design choices made during dataset creation. In this
work, we use standard open-sourced datasets that do not require ethical approval.

All details regarding our experimental setup can be found in appendix A. The same is true for all
model architectures, as well as the details of neural network training. Python code for computing the
tangent space and our model architectures can be found in appendix D. A formal proof of Theorem
1 is in appendix B.

REFERENCES

Eddie Aamari and Clément Levrard. Nonasymptotic rates for manifold, tangent space and curvature
estimation. The Annals of Statistics, 2019.

Julius Adebayo, Justin Gilmer, Ian Goodfellow, and Been Kim. Local explanation methods for deep
neural networks lack sensitivity to parameter values. arXiv preprint arXiv:1810.03307, 2018a.

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim.
Sanity checks for saliency maps. arXiv preprint arXiv:1810.03292, 2018b.

Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Zhiwei Steven Wu, and
Himabindu Lakkaraju. Towards the unification and robustness of perturbation and gradient based
explanations. arXiv preprint arXiv:2102.10618, 2021.

Amine Amyar, Romain Modzelewski, Hua Li, and Su Ruan. Multi-task deep learning based ct
imaging analysis for covid-19 pneumonia: Classification and segmentation. Computers in Biology
and Medicine, 2020.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better understanding
of gradient-based attribution methods for deep neural networks. International Conference on
Learning Representations, 2018.

Christopher Anders, Plamen Pasliev, Ann-Kathrin Dombrowski, Klaus-Robert Müller, and Pan
Kessel. Fairwashing explanations with off-manifold detergent. In International Conference on
Machine Learning, 2020.

Nishanth Arun, Nathan Gaw, Praveer Singh, Ken Chang, Mehak Aggarwal, Bryan Chen, Katharina
Hoebel, Sharut Gupta, Jay Patel, Mishka Gidwani, et al. Assessing the (un) trustworthiness of
saliency maps for localizing abnormalities in medical imaging. arXiv preprint arXiv:2008.02766,
2020.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PLOS ONE, 2015.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-
jardins, and Alexander Lerchner. Understanding disentangling in β-vae. arXiv preprint
arXiv:1804.03599, 2018.

Lawrence Cayton. Algorithms for manifold learning. Univ. of California at San Diego Tech. Rep,
2005.

10

Under review as a conference paper at ICLR 2022

Chaofan Chen, Oscar Li, Chaofan Tao, Alina Jade Barnett, Jonathan Su, and Cynthia Rudin.
This looks like that: deep learning for interpretable image recognition. arXiv preprint
arXiv:1806.10574, 2018a.

Ricky TQ Chen, Xuechen Li, Roger Grosse, and David Duvenaud. Isolating sources of disentangle-
ment in variational autoencoders. arXiv preprint arXiv:1802.04942, 2018b.

Mohamed Chetoui and Moulay A Akhloufi. Explainable diabetic retinopathy using efficientnet. In
IEEE Engineering in Medicine & Biology Society (EMBC), 2020.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. arXiv preprint arXiv:1805.09545, 2018.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on Learning Theory, 2020.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist to
handwritten letters. In 2017 International Joint Conference on Neural Networks (IJCNN), 2017.

Kedar Dhamdhere, Mukund Sundararajan, and Qiqi Yan. How important is a neuron? arXiv preprint
arXiv:1805.12233, 2018.

Ann-Kathrin Dombrowski, Maximillian Alber, Christopher Anders, Marcel Ackermann, Klaus-
Robert Müller, and Pan Kessel. Explanations can be manipulated and geometry is to blame.
Neural Information Processing Systems, 2019.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 2016.

Damien Garreau and Dina Mardaoui. What does lime really see in images? arXiv preprint
arXiv:2102.06307, 2021.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen Fayyaz, and Mohammad Sabokrou. Lets
keep it simple, using simple architectures to outperform deeper and more complex architectures.
arXiv preprint arXiv:1608.06037, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE conference on computer vision and pattern recognition, 2016.

Juyeon Heo, Sunghwan Joo, and Taesup Moon. Fooling neural network interpretations via adver-
sarial model manipulation. Neural Information Processing Systems, 2019.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In ICLR, 2017.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. arXiv preprint arXiv:1905.02175,
2019.

Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huiying Liang, Sally L
Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al. Identifying medical diag-
noses and treatable diseases by image-based deep learning. Cell, 172(5):1122–1131, 2018.

Beomsu Kim, Junghoon Seo, and Taegyun Jeon. Bridging adversarial robustness and gradient inter-
pretability. arXiv preprint arXiv:1903.11626, 2019.

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T Schütt, Sven
Dähne, Dumitru Erhan, and Been Kim. The (un) reliability of saliency methods. In Explainable
AI: Interpreting, Explaining and Visualizing Deep Learning. 2019.

11

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Under review as a conference paper at ICLR 2022

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim,
and Percy Liang. Concept bottleneck models. In International Conference on Machine Learning,
2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998.

Klas Leino, Shayak Sen, Anupam Datta, Matt Fredrikson, and Linyi Li. Influence-directed explana-
tions for deep convolutional networks. In 2018 IEEE International Test Conference, 2018.

Dohun Lim, Hyeonseok Lee, and Sungchan Kim. Building reliable explanations of unreliable neu-
ral networks: Locally smoothing perspective of model interpretation. In IEEE Conference on
Computer Vision and Pattern Recognition, 2021.

Juan Eduardo Luján-Garcı́a, Cornelio Yáñez-Márquez, Yenny Villuendas-Rey, and Oscar Camacho-
Nieto. A transfer learning method for pneumonia classification and visualization. Applied Sci-
ences, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial intel-
ligence, 2019.

Menaka Narayanan, Emily Chen, Jeffrey He, Been Kim, Sam Gershman, and Finale Doshi-Velez.
How do humans understand explanations from machine learning systems? an evaluation of the
human-interpretability of explanation. arXiv preprint arXiv:1802.00682, 2018.

Sivaramakrishnan Rajaraman, Sema Candemir, George Thoma, and Sameer Antani. Visualizing and
explaining deep learning predictions for pneumonia detection in pediatric chest radiographs. In
Medical Imaging 2019: Computer-Aided Diagnosis, 2019.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 2019.

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-Robert
Müller. Evaluating the visualization of what a deep neural network has learned. IEEE transactions
on neural networks and learning systems, 2016.

Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J Anders, and Klaus-
Robert Müller. Explaining deep neural networks and beyond: A review of methods and applica-
tions. Proceedings of the IEEE, 2021.

Rory Sayres, Ankur Taly, Ehsan Rahimy, Katy Blumer, David Coz, Naama Hammel, Jonathan
Krause, Arunachalam Narayanaswamy, Zahra Rastegar, Derek Wu, et al. Using a deep learning
algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Oph-
thalmology, 2019.

Patrick Schwab and Walter Karlen. Cxplain: Causal explanations for model interpretation under
uncertainty. Neural Information Processing Systems, 2019.

12

Under review as a conference paper at ICLR 2022

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In IEEE International Conference on Computer Vision, 2017.

Harshay Shah, Prateek Jain, and Praneeth Netrapalli. Do input gradients highlight discriminative
features? arXiv preprint arXiv:2102.12781, 2021.

Hang Shao, Abhishek Kumar, and P Thomas Fletcher. The riemannian geometry of deep generative
models. In IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International Conference on Machine Learning, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In In Workshop at International Con-
ference on Learning Representations, 2014.

Sumedha Singla, Brian Pollack, Junxiang Chen, and Kayhan Batmanghelich. Explanation by pro-
gressive exaggeration. In International Conference on Learning Representations, 2020.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International Conference on Machine Learning, 2017.

Natasa Tagasovska, Damien Ackerer, and Thibault Vatter. Copulas as high-dimensional generative
models: Vine copula autoencoders. arXiv preprint arXiv:1906.05423, 2019.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. arXiv preprint
arXiv:2007.03898, 2020.

Toon Van Craenendonck, Bart Elen, Nele Gerrits, and Patrick De Boever. Systematic comparison of
heatmapping techniques in deep learning in the context of diabetic retinopathy lesion detection.
Translational vision science & technology, 2020.

Kilian Q Weinberger and Lawrence K Saul. Unsupervised learning of image manifolds by semidef-
inite programming. International journal of computer vision, 2006.

Yuan Yang and Le Song. Learn to explain efficiently via neural logic inductive learning. In Interna-
tional Conference on Learning Representations, 2020.

Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Ravikumar.
On completeness-aware concept-based explanations in deep neural networks. Neural Information
Processing Systems, 2020.

13

Under review as a conference paper at ICLR 2022

A MODEL ARCHITECTURES AND TRAINING DETAILS

A.1 MNIST32

We first describe the creation of the MNIST32 dataset. We autoencoded the original MNIST dataset
with a β-TCVAE (Chen et al., 2018b) and the same architecture as Burgess et al. (2018). The
hyperparameters were α = γ = 1, β = 6. We use https://github.com/YannDubs/
disentangling-vae. On the reconstructed images, we trained a SimpleNet-V1 to replicate the
original labels (Hasanpour et al., 2016). Training with Adam and a learning rate of 1e − 3 allowed
to replicated the labels of the test images with an accuracy of 96%. To increase the quality of the
generated images, we additionally applied rejection sampling based on the the softmax score of the
class predicted by the SimpleNet. Every sample from the autoencoder was accepted with probability
p2softmax. Random samples from the MNIST32 dataset are depicted in the left part of Figure 7.

On the MNIST32 dataset, we trained the default model architecture from https://github.
com/pytorch/examples/tree/master/mnist. We trained for 50 epochs with Adam, an
initial learning rate of 1e− 4 and learning rate decay of 1e− 1 after 10 epochs each.

Adversarially robust training on MNIST32 was perfomed as follows. We trained the same model ar-
chitecture against an l2-adversary with projected gradient descent (PGD). For each gradient step, the
size of the adversarial perturbation ε was randomly chosen from [1, 4, 8] and we took 100 iterations
with a step size of α = 2.5ε/100 each (Madry et al., 2017).

To overfit the MNIST32 dataset with random labels, we disabled the dropout layers of the neural
network. We then trained for 3000 epochs with Adam, and intial learning rate of 1e−4 and learning
rate decay of 1e− 1 after 1000 epochs each.

A.2 MNIST256

To create the MNIST256 dataset, we appended a bilinear upsampling layer to the decoder that was
used to generate the MNIST32 dataset. Note that bilinear upsampling is differentiable, which is
required to compute the tangent spaces. Random samples from the MNIST256 dataset are depicted
in the right part of Figure 7.

On the MNIST256 dataset, we trained a ResNet18 for 50 epochs with Adam, an initial learning rate
of 1e− 2 and a learning rate decay of 1e− 1 after 10 epochs each.

A.3 EMNIST128

The EMNIST dataset is a set of handwritten character digits derived from the NIST Special Database
19 and converted to a 28 × 28 pixel image format and dataset structure that directly matches
the MNIST dataset. We used the dataset as available from PyTorch https://pytorch.org/
vision/stable/datasets.html#emnist. The images were resized to 128× 128 to make
it a high-dimensional problem and we used a subset consisting of 60 classes (in contrast to other
experiments where number of classes are typically low). We trained an autoencoder using the recon-
struction approach and encoder-decoder architecture as shown in Section D using Adam optimizer
with learning rate set to 1e-4, decayed over 200 epochs using cosine annealing. We then train a
VGG network to perform the classification, in a similar manner.

A.4 CIFAR10

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per
class. There are 50000 training images and 10000 test images. We use the dataset available directly
from the PyTorch dataloaders as described here https://pytorch.org/vision/stable/
datasets.html#cifar. To learn the manifold, we use the reconstruction approach using the
autoencoder shown in Section D with the latent dimension set to be 144 with

√
k/d ≈ 0.20. We use

the Adam optimizer with learning rate set to 1e-4 decayed using cosine annealing over 200 epochs
to learn the autoencoder. We then use the VGG16 to learn a classifier again trained using Adam
optimizer with learning rate set to 1e-4 decayed using cosine annealing.

14

https://github.com/YannDubs/disentangling-vae
https://github.com/YannDubs/disentangling-vae
https://github.com/pytorch/examples/tree/master/mnist
https://github.com/pytorch/examples/tree/master/mnist
https://pytorch.org/vision/stable/datasets.html#emnist
https://pytorch.org/vision/stable/datasets.html#emnist
https://pytorch.org/vision/stable/datasets.html#cifar
https://pytorch.org/vision/stable/datasets.html#cifar

Under review as a conference paper at ICLR 2022

A.5 PNEUMONIA DETECTION

The original dataset at https://www.kaggle.com/paultimothymooney/
chest-xray-pneumonia contains high-resolution chest X-ray images with 2 classes:
Normal and Pneumonia (with pneumonia being of two types viral and bacterial, but within class
distinction of pneumonia is not considered in this problem). The problem is posed as a binary
classification problem to decide between the normal and an abnormal class (pneumonia). The
images were resized to 1 × 256 × 224 (i.e., 57344 dimensional data) and the autoencoder shown
in Section D is used to learn the manifold of the images where the latent dimension is reduced
to 8 × 28 × 32 (i.e., 7168) with

√
k/d = 0.20, we then fine tune a Resnet18 model (previously

trained on ImageNet) to perform the classification using a learning rate of 1e-4, decayed with cosine
annealing over 200 epochs and using Adam optimizer.

A.6 DIABETIC RETINOPATHY DETECTION

The original 3 channel (RGB) fundus image dataset at https://www.kaggle.com/c/
diabetic-retinopathy-detection contains 5 classes with varying degrees of diabetic
retinopathy. We posed the problem as a binary classification problem to decide between the normal
and an abnormal class. The images were resized to 3 × 224 × 224 (i.e., 150528 dimensional data)
and the autoencoder shown in Section D is used to learn the manifold of the images where the latent
dimension is reduced to 8 × 28 × 28 (i.e., 6272) with

√
k/d = 0.20, we then fine tune a Resnet18

model (previously trained on ImageNet) to perform the classification using a learning rate of 2e-4,
decayed with cosine annealing over 150 epochs and using Adam optimizer.

B PROOF OF THEOREM 1

Proof. Let d > 1. We begin by defining the manifold. Let

tmax =

{
4(d− 2) if d is even
4(d− 1) if d is odd.

(3)

For t ∈ [0, tmax], consider the continuous curve f(t) that walks along the edges of the shifted
hypercube, alternating between the first and other dimensions

f(t) =

(−1/2 + (t− btc), 1, . . . , 1︸ ︷︷ ︸
bt/2c

, 0, . . . , 0︸ ︷︷ ︸
d−1−bt/2c

)
t if btc mod 4 = 0

(1/2, 1, . . . , 1︸ ︷︷ ︸
bt/2c

, t− btc, 0, . . . , 0︸ ︷︷ ︸
d−2−bt/2c

)
t if btc mod 4 = 1

(1/2− (t− btc), 1, . . . , 1︸ ︷︷ ︸
bt/2c

, 0, . . . , 0︸ ︷︷ ︸
d−1−bt/2c

)
t if btc mod 4 = 2

(−1/2, 1, . . . , 1︸ ︷︷ ︸
bt/2c

, t− btc, 0, . . . , 0︸ ︷︷ ︸
d−2−bt/2c

)
t if btc mod 4 = 3.

(4)

In all dimensions, f(t) starts at (−1/2, 0, . . . , 0)t. If d is even, f(t) ends at (−1/2, 1, . . . , 1, 0)t.
If d is odd, f(t) ends at (−1/2, 1, . . . , 1)t. In even dimensions, connect the end-
point (−1/2, 1, . . . , 1, 0)t to the starting point via straight lines to the corner points
(
√
d− 1/2, 1, . . . , 1, 0)t, (

√
d− 1/2, 1, . . . , 1, 1)t, and (−1/2, 1, . . . , 1, 1)t In odd dimensions,

connect the endpoint (−1/2, 1, . . . , 1)t to the starting point via straight lines to the corner points
(−1/2, 2/3, . . . , 2/3)t, (−1/2 +

√
d− 1/2, 2/3, . . . , 2/3)t, (−1/2 +

√
d− 1/2, 1/3, . . . , 1/3)t,

(−1/2, 1/3, . . . , 1/3)t. The whole point of this construction is to obtain a closed connected curve
that does not lie in any proper subspace and that walks exactly half of the time along the first coor-
dinate, and the rest of the time orthogonal to it. By smoothing the corners of this connected curve,
we obtain a smooth connected manifoldM.

15

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://www.kaggle.com/c/diabetic-retinopathy-detection

Under review as a conference paper at ICLR 2022

LetUM be the uniform distribution onM. LetDx be given byDx(A) = UM(A/M)/(1−UM(M))
where M = {x ∈ M : |x1| < ε}. Let the label be given by y = signx1. The sep-
arating hyperplane with maximum margin is x1 = 0. We claim that ν? = 1

2δθ?0 + 1
2δθ?1 ,

θ?0 =

(
1√
2
, 1√

2(1+ε2)
, 0, . . . , 0, ε√

2(1+ε2)

)t
, θ?1 =

(
−1√
2
, −1√

2(1+ε2)
, 0, . . . , 0, ε√

2(1+ε2)

)t
, is a max-

imizer of
argmax
ν∈P(Sd+1)

min
(x,y)∈D

y · f(ν, x). (5)

By Proposition 12 in (Chizat & Bach, 2020), we have to show that there exists a measure p? onM
(the support vectors) such that

Support(ν?) ∈ argmax
(w,a,b)∈Sd+1

E(x,y)∼p? (y · wφ(〈 a, x〉+ b)) (6)

and
Support(p?) ∈ argmin

(x,y)∈D
E(w,a,b)∼ν? (y · wφ(〈 a, x〉+ b)) . (7)

We claim that p? is given by

p? =
1

2
δ(−ε,0,...,0)t +

1

2
δ(ε,0,...,0)t . (8)

We first show (6). It holds that

E(x,y)∼p? (y · wφ(〈 a, x〉+ b)) =
w

2
(φ(a1ε+ b)− φ(−a1ε+ b)) .

We differentiate two cases. Note that θ?0 achieves an objective larger than zero, hence a1 6= 0.

Case 1, a1 > 0. If a1 > 0, then φ(a1ε + b) > φ(−a1ε + b). This implies b ≥ 0 and b ≤ a1ε. The
maximization problem can then be written as

max
w,a1,b

w

2
a1ε+

w

2
b

subject to w2 + a21 + b2 = 1

0 ≤ b ≤ a1ε
a1 > 0.

For ε small enough, the unique solution is given by b = a1ε, w = 1√
2

and a1 = 1√
2(1+ε2)

, i.e. by

θ?0 . The objective is 1/(2
√
1 + ε2).

Case 2, a1 < 0. If a1 < 0, then φ(a1ε+ b) < φ(−a1ε+ b). This implies b ≥ 0 and b ≤ −a1ε. The
maximization problem can now be written as

max
w,a1,b

− w

2
a1ε+

w

2
b

subject to w2 + a21 + b2 = 1

0 ≤ b ≤ −a1ε
a1 < 0.

For ε small enough, the unique solution is given by b = −a1ε, w = 1√
2

, and a1 = 1√
2(1+ε2)

, i.e. by

θ?1 . The objective is again 1/(2
√
1 + ε2). This shows (6).

We now show (7). Explicit computation shows

E(w,a,b)∼ν? (y · wφ(〈 a, x〉+ b)) =
y√
2
φ

(
x1 + ε√
2(1 + ε2)

)
− y√

2
φ

(
−x1 + ε√
2(1 + ε2)

)
.

For y = 1, x1 ≥ ε and the second term vanishes. The minimum is then attained iff x1 = ε. For
y = −1, x1 ≤ ε and the first term vanishes. The minimum is then attained iff x1 = −ε. This proves
(7).

16

Under review as a conference paper at ICLR 2022

We now compute the gradient of f . We have

f(ν?, x) =
1√
2
φ

(
x1 + ε√
2(1 + ε2)

)
− 1√

2
φ

(
−x1 + ε√
2(1 + ε2)

)
. (9)

Thus, for i > 1,
∂f(ν?, x)

∂xi
= 0. (10)

For i = 1,
∂f(ν?, x)

∂x1
=

1

2
√
1 + ε2

. (11)

Thus, the gradient of f is constant and a multiple of (1, 0, . . . , 0)t.

Except at the corners, the tangent space ofM is either given by span〈 (1, 0, . . . , 0)t〉 or orthogonal to
(1, 0, . . . , 0)t. The proof is completed by noting that it is orthogonal to (1, 0, . . . , 0)t with probability
0.5, that we can smooth the corners in regions of arbitrarily small measure, and by choosing ε
arbitrarily small.

C PLOTS AND FIGURES

C.1 FIGURE CREATION DETAILS

Figures 2 and 8 were created by normalizing both vectors to unit norm and trimming the pixels with
the largest 0.005% absolute values. Images within the same column lie within the same color space,
i.e. equal colors imply equal values along the respective coordinates.

To create Figure 3 we use the following function which overlays the explanation maps on top of the
images.

1 def overlay_saliency_map(i1_rec, smap, alpha=0.5, thr=0.75, sigma=10,
wt_lowhigh=0.2):

2 smap = (smap-np.min(smap))/(np.max(smap) - np.min(smap))
3 smap = np.mean(smap, axis=2)
4 mask = smap > thr*np.max(smap)
5 smap_high = mask*smap
6 smap_bg = (1-mask)*smap
7 ##
8 smap_high = gaussian_filter(smap_high, sigma)
9 smap_high = (smap_high-np.min(smap_high))/(np.max(smap_high) - np.min

(smap_high))
10 smap_bg = (smap_bg-np.min(smap_bg))/(np.max(smap_bg) - np.min(smap_bg

))
11 smap = wt_lowhigh*smap_bg + (1-wt_lowhigh)*smap_high
12 smap = (smap-np.min(smap))/(np.max(smap) - np.min(smap))
13 smap = np.uint8(smap*255)
14 ##
15 smap = cv2.applyColorMap(smap, colormap=cv2.COLORMAP_JET)
16 smap = cv2.cvtColor(smap, cv2.COLOR_BGR2RGB)
17 ##
18 i1_rec = np.uint8(i1_rec*255)
19 smap = cv2.addWeighted(i1_rec, alpha, smap, 1-alpha, 0)
20 return smap

Listing 1: Function used to create Figure 3.

C.2 ADDITIONAL PLOTS AND FIGURES

17

Under review as a conference paper at ICLR 2022

Figure 7: Random samples from the generated datasets. Left: MNIST32. Right: MNIST256.

Figure 8: Images from the test set of the synthetic MNIST256 task. The second row depicts the
part of the gradient that lies in tangent space. The third row depicts the part of the gradient that is
orthogonal to the tangent space. Blue corresponds to negative attribution, red to positive attribution.

D CODE LISTINGS

1

2 def compute_tangent_space(NetAE, z, device=’cuda’):
3 """ compute the tangent space of a generative model at z
4

5 NetAE: The decoder. A pytorch module that implements decode(z)
6 z: pytorch tensor (latent vector)
7

8 Returns: vectors that span the tangent space (tangent space dim,
model output dim). These vectors correspond 1:1 to the latent
dimensions of z.

9 """
10 assert len(z.shape) == 1, "compute_tangent_space: batch dimension in

z is not supported. z has to be a 1-dimensional vector"
11 NetAE.to(device)
12 z = z.to(device)
13 latent_dim = z.shape[0]
14 z.requires_grad = True
15 out = NetAE.decode(z)
16 out = out.squeeze() # remove singleton batch dimension
17 output_shape = out.shape # store original output shape
18 out = out.reshape(-1) # and transform the output into a vector

18

Under review as a conference paper at ICLR 2022

19 tangent_space = torch.zeros((latent_dim, out.shape[0]))
20 for i in range(out.shape[0]):
21 out[i].backward(retain_graph=True)
22 tangent_space[:, i] = z.grad
23 z.grad.zero_()
24 tangent_space = tangent_space.reshape((-1, *output_shape)) # tangent

space in model output shape
25 return tangent_space

Listing 2: Code used to compute the tangent space of a generative model.

1 class MNIST32Model(nn.Module):
2 def __init__(self):
3 super(MNIST32Model, self).__init__()
4 self.conv1 = nn.Conv2d(1, 32, 3, 1)
5 self.conv2 = nn.Conv2d(32, 64, 3, 1)
6 self.dropout1 = nn.Dropout(0.25)
7 self.dropout2 = nn.Dropout(0.5)
8 self.fc1 = nn.Linear(12544, 128)
9 self.fc2 = nn.Linear(128, 10)

10

11 def forward(self, x):
12 x = self.conv1(x)
13 x = F.relu(x)
14 x = self.conv2(x)
15 x = F.relu(x)
16 x = F.max_pool2d(x, 2)
17 x = self.dropout1(x)
18 x = torch.flatten(x, 1)
19 x = self.fc1(x)
20 x = F.relu(x)
21 x = self.dropout2(x)
22 x = self.fc2(x)
23 return x

Listing 3: The model trained on MNIST32.

1

2 class ResBlock(nn.Module):
3 def __init__(self, in_channel, channel):
4 super().__init__()
5

6 self.conv = nn.Sequential(
7 nn.ReLU(),
8 nn.Conv2d(in_channel, channel, 3, padding=1),
9 nn.ReLU(inplace=True),

10 nn.Conv2d(channel, in_channel, 1),
11)
12

13 def forward(self, input):
14 out = self.conv(input)
15 out += input
16

17 return out

Listing 4: Convolutional residual block.

1 class Encoder(nn.Module):
2 def __init__(self, in_channel, channel, n_res_block, n_res_channel,

stride):
3 super().__init__()
4

5 elif stride == 8:
6 blocks = [

19

Under review as a conference paper at ICLR 2022

7 nn.Conv2d(in_channel, channel//2, 4, stride=2, padding=1)
,

8 nn.ReLU(inplace=True),
9 nn.Conv2d(channel//2, channel//2, 4, stride=2, padding=1)

,
10 nn.ReLU(inplace=True),
11 nn.Conv2d(channel//2, channel, 4, stride=2, padding=1),
12 nn.ReLU(inplace=True),
13 nn.Conv2d(channel, channel, 3, padding=1),
14]
15

16 elif stride == 4:
17 blocks = [
18 nn.Conv2d(in_channel, channel//2, 4, stride=2, padding=1)

,
19 nn.ReLU(inplace=True),
20 nn.Conv2d(channel//2, channel, 4, stride=2, padding=1),
21 nn.ReLU(inplace=True),
22 nn.Conv2d(channel, channel, 3, padding=1),
23]
24

25 for i in range(n_res_block):
26 blocks.append(ResBlock(channel, n_res_channel))
27

28 blocks.append(nn.ReLU(inplace=True))
29

30 self.blocks = nn.Sequential(*blocks)
31

32 def forward(self, input):
33 return self.blocks(input)

Listing 5: Convolutional encoder.

1 class Decoder(nn.Module):
2 def __init__(
3 self, in_channel, out_channel, channel, n_res_block,

n_res_channel, stride
4):
5 super().__init__()
6

7 blocks = [nn.Conv2d(in_channel, channel, 3, padding=1)]
8

9 for i in range(n_res_block):
10 blocks.append(ResBlock(channel, n_res_channel))
11

12 blocks.append(nn.ReLU(inplace=True))
13

14 elif stride == 8:
15 blocks.extend(
16 [
17 nn.ConvTranspose2d(channel, channel//2, 4, stride=2,

padding=1),
18 nn.ReLU(inplace=True),
19 nn.ConvTranspose2d(channel//2, channel//2, 4, stride

=2, padding=1),
20 nn.ReLU(inplace=True),
21 nn.ConvTranspose2d(
22 channel//2, out_channel, 4, stride=2, padding=1
23),
24]
25)
26

27 elif stride == 4:
28 blocks.extend(
29 [

20

Under review as a conference paper at ICLR 2022

30 nn.ConvTranspose2d(channel, channel//2, 4, stride=2,
padding=1),

31 nn.ReLU(inplace=True),
32 nn.ConvTranspose2d(
33 channel//2, out_channel, 4, stride=2, padding=1
34),
35]
36)
37

38 self.blocks = nn.Sequential(*blocks)
39

40 def forward(self, input):
41 return self.blocks(input)

Listing 6: Convolutional decoder.

1 class AutoEncoder(nn.Module):
2 def __init__(self, in_channel, out_channel, channel, n_res_block,

n_res_channel, stride):
3 super().__init__()
4

5 self.E = Encoder(in_channel, channel, n_res_block, n_res_channel,
stride)

6 self.D = Decoder(channel, out_channel, channel, n_res_block,
n_res_channel, stride)

7

8 def forward(self, x):
9 z = self.E(x)

10 x_rec = self.D(z)
11 return x_rec, z
12

13 def encode(self, x):
14 return self.E(x)
15

16 def decode(self, z):
17 return self.D(z)

Listing 7: Convolutional autoencoder used to estimate data manifolds.

21

	Introduction
	The manifold hypothesis
	Background
	How do we know the data manifold?

	Putting the hypothesis to the test
	Evaluation on graysacle images: MNIST32, MNIST256 and EMNIST128
	Experiments on CIFAR10 and Medical Diagnosis Datasets

	When and why are gradients aligned with the data manifold?
	The effect of adversarial training
	Training with random labels

	Generalization does not imply alignment with the manifold
	Related Work
	Discussion
	Ethics and Reproducability Statements
	Model Architectures and Training Details
	MNIST32
	MNIST256
	EMNIST128
	CIFAR10
	Pneumonia Detection
	Diabetic Retinopathy Detection

	Proof of Theorem 1
	Plots and Figures
	Figure Creation Details
	Additional Plots and Figures

	Code Listings

