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ABSTRACT

A powerful architecture for universal segmentation relies on transformers that en-
code multi-scale image features and decode object queries into mask predictions.
With efficiency being a high priority for scaling such models, we observed that the
state-of-the-art method Mask2Former uses >50% of its compute only on the trans-
former encoder. This is due to the retention of a full-length token-level represen-
tation of all backbone feature scales at each encoder layer. With this observation,
we propose a strategy termed PROgressive Token Length SCALing for Efficient
transformer encoders (PRO-SCALE) that can be plugged-in to the Mask2Former
segmentation architecture to significantly reduce the computational cost. The un-
derlying principle of PRO-SCALE is: progressively scale the length of the tokens
with the layers of the encoder. This allows PRO-SCALE to reduce computations
by a large margin with minimal sacrifice in performance (∼52% encoder and ∼
27% overall GFLOPs reduction with no drop in performance on COCO dataset).
Experiments conducted on public benchmarks demonstrates PRO-SCALE’s flex-
ibility in architectural configurations, and exhibits potential for extension beyond
the settings of segmentation tasks to encompass object detection. Code will be
released.

1 INTRODUCTION

The tasks of image segmentation (instance (He et al., 2017), semantic (Tu, 2008), and panoptic (Kir-
illov et al., 2019)) are recently being addressed together under the paradigm of “universal” image
segmentation (Cheng et al., 2021; 2022; Jain et al., 2023; Gu et al., 2024; Cavagnero et al., 2024;
Rosi et al., 2024). This is due to the evolution of transformer-based (Vaswani et al., 2017) approaches
that can represent both stuff and things categories (Kirillov et al., 2019)) using general tokens,
leading to a diminished distinction among the tasks of semantic, instance, and panoptic segmenta-
tion. Success of the state-of-the-art universal segmentation framework Mask2Former (M2F) (Cheng
et al., 2022) can be attributed to its DEtection TRansformer (Carion et al., 2020) or DETR-style ar-
chitecture. This DETR-style segmentation (henceforth termed as M2F-style) framework exhibits
exceptional performance across various segmentation tasks without the need for task-specific design
choices, setting them apart from preceding modern panoptic segmentation frameworks (Rashwan
et al., 2024; Hu et al., 2023; Ammar et al., 2023; Sun et al., 2023).

The strong performance of M2F-style architecture, however, incurs significant computational over-
head hindering their widespread deployment. In this paper, we address this important problem of
designing an efficient M2F-style architecture for universal segmentation model. In particular, we
present PROgressive Token Length SCALing for Efficient transformer encoders or PRO-SCALE
that reduces the computational load occurring in the transformer encoder of such models with sur-
prisingly low performance deterioration. M2F-style architectures contain a backbone (for multi-
scale feature extraction from input images), a pixel decoder or transformer encoder (to capture long-
range dependencies and contextual relationships across the multi-scale backbone features), and a
transformer decoder (for predicting the masks and labels) along with a segmentation module (see
Fig. 1(a)). In efficient segmentation models, where the backbones are traditionally lightweight
(SWIN-T (Liu et al., 2021) and Res50 (He et al., 2016)), cross-scale feature attention has been
shown as a potent way to achieve high segmentation performance (Cheng et al., 2022; Li et al.,
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Figure 1: Compute distribution. (a) Mask2Former-style segmentation model (b) In the
Mask2Former model using Res50 (He et al., 2016) and SWIN-T (Liu et al., 2021) backbones, the
transformer encoder contributes the most to the overall computation cost, accounting for 54.04%
and 50.38%, respectively.

2023a). However, it has been shown in (Li et al., 2023a; Lv et al., 2023; Yao et al., 2021) that due to
a large number of query tokens introduced from multi-scale features of light backbones, the encoder
incurs the highest computational cost. We make a similar observation in Fig. 1(b) for M2F where
more than 50% of the compute comes from the encoder, given backbones SWIN-T and Res50.

Existing solutions (Li et al., 2023a; Lv et al., 2023) for making DETR-style architectures efficient
are only designed to handle detection tasks. For example, Lite-DETR (Li et al., 2023a) proposed
to update larger and smaller scale features in different frequencies for efficient computation. RT-
DETR (Lv et al., 2023) on the other hand, proposed a hybrid encoder that transforms multi-scale
features into a sequence of image features through intra-scale interaction and cross-scale fusion.
Such detection-based strategies do not suit the segmentation task: either they propose to discard the
use of multi-scale features (as in (Lv et al., 2023)) or lack the ability to reduce computations induced
due to constructing a pixel embedding map (as in (Li et al., 2023a)). This significantly reduces their
impact on performance-efficiency trade-off for segmentation models (e.g. ∼33% GFLOPs reduction
but 11% segmentation accuracy drop).

To this end, we introduce PRO-SCALE for M2F’s transformer encoder that has two key properties:
(1) progressively increase the token length or input size at each encoder layer by introducing larger
scale features in the deeper layers (2) simplifying the pixel embedding layer by replacing it with a
Light Pixel Embedding (LPE) module. The fundamental idea of PRO-SCALE is to address the pos-
sible redundancy that arises from consistently maintaining a full-length token sequence across all
layers in the encoder. For example as shown in Fig. 2(a), M2F uses tokens from multi-scale features
across all encoder layers resulting in expensive computations. With PRO-SCALE’s progressively
expanding tokens, the reduction in sequence length leads to significant FLOPs savings with mini-
mal to negligible degradation in segmentation performance (see Fig. 2(b)). Extensive experiments
show that PRO-SCALE based M2F architecture achieves a ∼52% reduction in transformer encoder
GFLOPs while maintaining the same segmentation performance. In particular, PRO-SCALE-M2F
with SWIN-T backbone achieves a 52.82% PQ with 171.7 GFLOPs (vs. original performance of
52.03% PQ with 234.5 GFLOPs) on the COCO (Lin et al., 2014) dataset.

To summarize, we present an efficient transformer encoder PRO-SCALE for M2F universal seg-
mentation architecture. PRO-SCALE operates on the fundamental idea of progressively expanding
tokens along the encoder depth to address the computation redundancy. It is further assisted by a
light pixel embedding module that effectively target computational reduction in the encoder module.
Extensive experiments show that PRO-SCALE achieves the best performance-efficiency trade-off on
two datasets across diverse settings.

2 RELATED WORKS

DETR (Carion et al., 2020) embraces an end-to-end object detection approach with a set-prediction
objective, discarding the need for manually crafted modules like anchor design and non-maximum
suppression. Using the set prediction mechanism introduced in DETR, MaskFormer (Cheng et al.,
2021) proposed an approach that converts any existing per-pixel classification model into a mask
classification model. This resulted in a universal segmentation architecture that demonstrated
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(a) (b)

Figure 2: Key idea and performance comparison of PRO-SCALE w.r.t. prior works. (a) il-
lustrates the key idea of PRO-SCALE to progressively extend the token length in the transformer
encoder. {s2, s3, s4} represent different resolutions. In (b), we show two instantiates of our pro-
posed transformer encoder PRO-SCALE, compared with Mask2Former (M2F) (Cheng et al., 2022)
and RT-M2F (an adaptation of (Lv et al., 2023)). PRO-SCALE eliminates 80.43% (with config-
uration (p1, p2, p3) = (1,1,1)) and 51.98% (with configuration (p1, p2, p3) = (3,3,3)) of encoder
GFLOPs from M2F while maintaining the competitive performance. Results are computed on the
COCO (Lin et al., 2014) dataset.

state-of-the-art performance across all segmentation tasks on public benchmarks in diverse settings
(Cheng et al., 2022; Li et al., 2023b; Ding et al., 2022; Cavagnero et al., 2024; Rosi et al., 2024)
without task-specific design choices. In particular, it employs a transformer decoder to predict a set
of pairs (a class prediction, a binary mask). Mask2Former (Cheng et al., 2022) improved Mask-
Former by using masked attention in the transformer decoder to restrict the attention to localized
features centered around predicted segments. Recently, (Li et al., 2023b) presented a DETR-style
multi-task architecture by extending DINO (Zhang et al., 2022) for both detection and segmenta-
tion tasks. PEM (Cavagnero et al., 2024) introduced a MaskFormer based model that includes a
multi-scale feature pyramid network to extract high-semantic-content features with context-based
self-modulation to ensure efficiency. PRO-SCALE focuses on making the Mask2Former universal
segmentation model efficient.

In recent times, there have been some interesting efforts (Wang et al., 2019; de Geus et al., 2020;
Hong et al., 2021; Hou et al., 2020; Sun et al., 2023; Šarić et al., 2023; Cavagnero et al., 2024;
Xu et al., 2024; Rosi et al., 2024) to make task-specific or non-M2F-style panoptic segmentation
models efficient. For example, YOSO (Hu et al., 2023) introduced a lightweight panoptic segmen-
tation model by utilizing a feature pyramid aggregator and separable dynamic decoders. ReMaX
(Sun et al., 2023) proposed a training pipeline to address the dominant impact of false positive
mask assignments in panoptic segmentation by utilizing a separate semantic prediction head. Above
methods contain specific model design choices or training strategies suited for the panoptic segmen-
tation task. Unlike these, PRO-SCALE does not conform to one segmentation task and still shows
competitive performances.

3 METHODOLOGY

Framework Overview. Following M2F, our proposed framework is composed of a lightweight
backbone, our novel transformer encoder design PRO-SCALE, and a transformer decoder with mask
and class prediction heads (each described next). The overall model framework is shown in Fig. 3.
In particular, the input image is fed to the backbone to create multi-scale features. These features
are flattened and updated by PRO-SCALE (introduced in Sec. 3.1) with gradual expansion of input
tokens along with depth of intermediate encoder layers, allowing a better performance-efficiency
trade-off. The transformer decoder uses the representations from PRO-SCALE and learnable object
queries to compute mask embeddings. Finally, a segmentation module uses the decoder output
and per-pixel embeddings from PRO-SCALE for mask predictions. PRO-SCALE provides these
per-pixel embeddings required for mask prediction using a parameter-free Light-Pixel Embedding
module (described in Sec. 3.1.1). We start by introducing notations and model components, before
diving into the details.
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Figure 3: Proposed framework. Our model includes our transformer encoder PRO-SCALE
(Sec. 3.1), designed to reduce the computational load. {si}s represent the multi-scale backbone
features. PRO-SCALE progressively scale the length of the tokens with the layers of the encoder.
This allows PRO-SCALE to reduce computations by a large margin with minimal sacrifice in per-
formance. Further, s1 goes through our efficient Light-Pixel Embedding (LPE) module (Sec. 3.1.1)
to create pixel embeddings for mask prediction. p1, p2 and p3 represent encoder layer frequency.
{s′, s′′, s′′′} represent the outputs of respective layers.

• A backbone network that extracts features from an input image I ∈ RH×W×3. The backbone
network can provide multi-scale feature maps {s̄1, s̄2, s̄3, s̄4}. The spatial resolutions are typically
1/42, 1/82, 1/162, and 1/322 of the input image, respectively. We will denote the token form of these
features as s1, s2, s3, and s4, respectively.

• A pixel decoder or transformer encoder, that enhances the image features {s2, s3, s4} and also
creates a per-pixel embedding map from s1 and s2. The feature enhancement is performed on a
token representation P ∈ RK×C , where K =

∑
(HW/322 + HW/162 + HW/82) and C = 256

(Cheng et al., 2022). This P is composed of concatenated {s2, s3, s4} obtained via flattening the
spatial dimensions and fed to a transformer encoder. The transformer encoder usually consists of
several stacked transformer blocks. Following M2F, our framework also consists of six deformable
attention transformer (Zhu et al., 2020) layers that includes a self-attention block and a feed-
forward block. The per-pixel embedding map, on the other hand, is generated using convolutional
layers s1 and s2, which enhance local spatial details to be used to create the segmentation mask.

• A Transformer decoder along with segmentation module that decodes binary masks from the mod-
ulated image features from the pixel decoder using a set of randomly initialized object queries. The
transformer decoder consists of three stages, with each stage consisting of three transformer layers
(Vaswani et al., 2017). Each layer includes a self-attention block, a cross-attention block, and a
feed-forward block. Each layer only handles tokens of one scale of features for efficiency (Cheng
et al., 2022).

As described above, the original transformer encoder results in significantly expensive computations
from global attention mechanism, as it maintains the complete token length of P for all layers. Sim-
ply dropping larger scale features results in poor localization, especially in small objects (Li et al.,
2023a). For example, removing features s1 and s2 results in a degradation of ∼ 5% AP compared
to original model. Moreover, the use of large-scale features to produce pixel embedding map in the
convolutional layers require processing an enormous number of tokens, leading to an extremely high
computational demand. We will now explain how our approach tackles these obstacles.

3.1 PRO-SCALE: PROPOSED TRANSFORMER ENCODER

Intuition. The bottleneck towards an efficient encoder are excessive large-scale features, where
most of which are not informative but contain local details for different objects (Li et al., 2023a).
In order to better handle their usage in the encoder, we can leverage the composition of multi-scale
features from the backbone: (1) The limited quantity of small-scale features (e.g. s3, s4) captures
abundant semantics. (2) The larger quantity of large-scale features (e.g. s1, s2) captures crucial local
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features important for segmenting varying scale of objects. For example, assuming a SWIN-T back-
bone based M2F, {s2, s3, s4} result in {76.19%, 19.04%, 4.76%} token contributions, respectively
(also see our analysis in Fig. 9 in Appendix). Therefore, we propose to prioritize enrichment of
tokens from small scale features earlier than the large scale features.

Encoder structure. We build upon deformable attention as it exhibits linear complexity with the
number of feature queries (in our case, represented by P). We create three splits of P (following the
three scales):

P1 = C(s4) ∈ RK1×C , (1)

P2 = C(s′, s3) ∈ RK2×C (2)

P3 = C(s′′, s2) ∈ RK3×C (3)

Here, C(·) denotes the concatenation operation along the token size dimension, K3 =
∑

(HW/322 +
HW/162 + HW/82),K2 =

∑
(HW/322 + HW/162), and K1 = HW/322. These splits are then fed to

three stages of the deformable attention transformer layers sequentially. The output of these stages
are s′, s′′, and s′′′, respectively. s′′′ is subsequently fed to the decoder. Each stage is repeated p1, p2
and p3 times before propagating the tokens to the next stage. This results in updation of s4 for
(p1 + p2 + p3), s3 for (p2 + p3), and s2 for p1 times, gradually expanding the token length of inputs
to intermediate layers in PRO-SCALE. As we show in Sec. 4, this strategy reduces computing load
by significant margins while maintaining performance. Note that, since we skip using tokens from
large scale features in the initial layers, we also use a token recalibration within PRO-SCALE that
enriches small-scale features with high-scale features to gain slightly better segmentation without
significant computational overhead. Please see Sec. C in Appendix for more details and Fig. 7 for a
complete visualization.

3.1.1 LIGHT-PIXEL EMBEDDING (LPE) MODULE

Intuition. Strong performance of M2F depends on multi-scale features computed from the back-
bone (Cheng et al., 2022). Tokens {s2, s3, s4} are fed to the encoder layers to compute s′′′ in order
to produce per-segment embeddings in the transformer decoder. s1, on the other hand, serves the
purpose of creating the per-pixel embedding map Eemb to enhance local details in the feature maps.
However, due to the large size of s1, it results in high computational load from the use of convo-
lutional layers in original M2F. Hence rather than dropping s1, we weaken this inductive bias and
assess the existing learnable module with a simpler module in our design.

LPE structure. We propose to use a simple maxpooling layer followed by normalization and
non-linearity to compute Eemb. The goal of our LPE module is to mitigate this overhead while
keeping the advantages of s1 in producing Eemb. We observe it reduces almost ∼45% GFLOPs in the
encoder architecture, but doesn’t significantly harm the overall model’s segmentation performance.
In our implementation, we use a pooling kernel size of 3 (and stride is set to 1).

4 EXPERIMENTS

In this section, we evaluate PRO-SCALE based M2F architecture on two benchmarks on all segmen-
tation tasks. First, we observe that PRO-SCALE is extremely effective in reducing computational
load while providing best trade-offs compared to baselines (Tab. 1, 2, 9). Second, we provide an ex-
tensive ablation analysis of PRO-SCALE in Tab. 3 - 7, and Fig. 4, 5. Third, we test the performane
of PRO-SCALE on prevalent state-of-the-art frameworks for tasks like object detection, joint-task
predictions, and open-vocabulary universal segmentation in Tab. 8, 10 and 11. Finally, we visualize
some segmentation examples in Fig. 6. In the Appendix, we provide our training, and dataset (for
COCO (Lin et al., 2014) and Cityscapes (Cordts et al., 2016)) details. For brevity, we will denote
our overall framework as PRO-SCALE.

Evaluation metrics. We evaluate PRO-SCALE and baselines in the universal segmentation set-
ting. This means, following (Cheng et al., 2022), PRO-SCALE’s evaluation is performed using a
model trained exclusively with panoptic segmentation annotations. For panoptic segmentation, the
conventional PQ (Panoptic Quality (Kirillov et al., 2019)) metric is used. Following (Cheng et al.,
2022), we report APp (Average-Precision (Lin et al., 2014)) metric for instance segmentation. This
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Table 1: COCO evaluation. PRO-SCALE (with configuration (p1, p2, p3)) is extremely competitive
against the baselines on COCO with at least 51.99% GFLOPs reduction compared to M2F with no
performance drop. Non-M2F-style architectures are colored in gray.

Performance (↑) GFLOPs (↓), (% decrement)
Model PQ mIOUp APp Total Encoder

Backbone: SWIN-T

M2F (Cheng et al., 2022) 52.03 62.49 42.17 234.50 117.00
Lite-M2F (Li et al., 2023a) 52.70 63.08 41.10 188.00 (-19.83) 79.78 (-31.81)
RT-M2F (Lv et al., 2023) 41.36 61.54 24.68 158.30 (-32.49) 59.66 (-49.01)
PRO-SCALE (1, 1, 1) 50.79 62.39 39.57 137.10 (-41.54) 22.89 (-80.44)
PRO-SCALE (2, 2, 2) 52.12 63.21 41.58 154.40 (-34.16) 39.53 (-66.21)
PRO-SCALE (3, 3 ,3) 52.82 63.49 42.60 171.70 (-26.78) 56.18 (-51.99)

Backbone: Res50

M2F (Cheng et al., 2022) 51.73 61.94 41.72 229.10 135.00
MF (Cheng et al., 2021) 46.50 57.80 33.00 181.00 (-20.99) – (–)
PEM (Cavagnero et al., 2024) 46.38 55.95 34.25 110.90 (-51.59) – (–)
YOSO (Hu et al., 2023) 48.40 58.74 36.87 114.50 (-50.02) – (–)
RAP-SAM (Xu et al., 2024) 46.90 – – 123.00 (-46.31) – (–)
ReMaX (Sun et al., 2023) 53.50 – – 169.00 (-26.23) – (–)
PRO-SCALE (1, 1, 1) 50.31 60.66 39.56 131.40 (-42.65) 30.25 (-77.59)
PRO-SCALE (2, 2, 2) 51.21 61.53 40.66 148.80 (-35.05) 48.85 (-63.48)
PRO-SCALE (3, 3, 3) 51.45 61.58 41.45 166.10 (-27.50) 67.45 (-50.03)

is computed on the ‘thing’ categories from the instance segmentation annotations. For semantic seg-
mentation, we report mIoUp (mean Intersection-over-Union (Everingham et al., 2015)) by merging
instance masks from the same category. Here, subscript p denotes evaluation after training with
panoptic segmentation annotations. For computing the GFLOPs, we use image scale of (800, 1333)
for COCO dataset, and (1024, 2048) for Cityscapes dataset. All models are trained and evaluated on
the train and validation split, respectively.

Baselines. We compare PRO-SCALE with the original M2F, along with some recently proposed
efficient transformer encoders for detection (Li et al., 2023a; Lv et al., 2023; Cavagnero et al., 2024).
Specifically, we replace the transformer encoder of M2F with encoders proposed in Lite-DETR (Li
et al., 2023a) and RT-DETR (Lv et al., 2023). We call these Lite-M2F and RT-M2F, respectively.
Note that, we opted for the “Lite-DETR H3L1-(6+1)×1” setup without its key-aware deformable
attention (Li et al., 2023a). However, we modified this setup to (5+1) when implementing Lite-
M2F. For completeness, we also compare with recent non-M2F-style panoptic segmentation models
YOSO (Hu et al., 2023), RAP-SAM (Xu et al., 2024) and ReMaX (Sun et al., 2023).

Architecture Details. We focus on standard lightweight backbones Res50 (He et al., 2016),
SWIN-Tiny (Liu et al., 2021), and MViT2-Tiny (Li et al., 2022b), pre-trained on ImageNet-1K
(Deng et al., 2009). We use PRO-SCALE as the transformer encoder. As per Sec. 3, we use dif-
ferent integer values of (p1, p2, p3) to instantiate different depths of the stages in PRO-SCALE. We
directly adopt the M2F’s decoder that consists of masked attention (Cheng et al., 2022) with 9 lay-
ers in total and 100 learnable queries. Similar to M2F’s round robin design, PRO-SCALE feeds
{s2, s3, s4} into successive transformer decoder layers.

4.1 MAIN RESULTS

The analysis on the COCO dataset is presented in Tab. 1. We use M2F (Cheng et al., 2022) as
reference for performance and present the following insights. First, PRO-SCALE is significantly
computationally cheaper than baseline efficient M2F-style models such as Lite-M2F and RT-M2F.
For example with SWIN-T backbone, PRO-SCALE achieves a PQ of 52.82 and with a computa-
tional cost of 171.70 GFLOPs. This PQ is 11.46 points better than that of RT-M2F, while enabling
a ∼52% lighter transformer encoder. Compared to Lite-M2F, PRO-SCALE shows a better overall
segmentation while decreasing approximately ∼52% of GFLOPs compared to ∼32% of Lite-M2F.
Similar performance improvements can be observed over M2F and MaskFormer (Cheng et al., 2021)
with Res50 backbone. Second, PRO-SCALE outperforms non-M2F-style models YOSO (Hu et al.,
2023) in panoptic segmentation by at least ∼2 points. YOSO has a slightly better computational load
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Table 2: Cityscapes evaluation. PRO-SCALE (with configuration (p1, p2, p3)) shows strong ef-
ficiency trade-off compared to the baselines on Cityscapes, e.g. 51.96% (SWIN-T) and 50.17%
(Res50) GFLOPs reduction and little-to-no accuracy drop. Non-M2F-style models are colored in
gray. † trained for 200K iterations.

Performance (↑) GFLOPs (↓), (% decrement)
Model PQ IoUp APp Total Encoder

Backbone: SWIN-T

M2F (Cheng et al., 2022) 64.00 80.77 39.26 537.8 0 281.00
Lite-M2F (Li et al., 2023a) 62.29 79.43 36.57 428.70 (-20.29) 172.00 (-38.79)
RT-M2F (Lv et al., 2023) 59.73 77.89 31.35 361.10 (-32.86) 130.00 (-53.74)
PRO-SCALE (1, 1, 1) 60.58 78.29 32.97 311.90 (-42.00) 055.14 (-80.38)
PRO-SCALE (2, 2, 2) 62.37 78.62 35.97 352.00 (-34.55) 095.24 (-66.11)
PRO-SCALE (3, 3 ,3) 63.06 77.94 37.81 392.10 (-27.09) 135.00 (-51.96)

Backbone: Res50

M2F (Cheng et al., 2022) 61.86 76.94 37.35 524.10 291.00
PEM (Cavagnero et al., 2024) 61.07 77.62 34.11 236.60 (-51.59) – (–)
YOSO (Hu et al., 2023) 59.70 76.05 33.76 265.10 (-49.42) – (–)
ReMaX† (Sun et al., 2023) 65.40 – – 294.70 (-43.77) – (–)
PRO-SCALE (1, 1, 1) 59.70 77.19 32.77 298.10 (-43.12) 65.21 (-77.59)
PRO-SCALE (2, 2, 2) 60.89 76.61 34.95 338.20 (-35.47) 105.00 (-63.92)
PRO-SCALE (3, 3, 3) 61.87 78.44 37.33 378.30 (-27.82) 145.00 (-50.17)

Table 3: Component ablation. Comparison of different cases with settings of PRO-SCALE for PQ
and GFLOPs for the encoder with SWIN-T backbone on Cityscapes dataset. PRO-SCALE provides
a flexible way to adjust performance and computational cost by varying its scaling factors.

Case # Setting PQ (↑) GFLOPs (↓) FPS (↑)

M2F 64.00 281.00 5.10
C1 M2F + (completely remove s1) 60.65 132.00 7.28
C2 PRO-SCALE (1,1,1) + s1 61.73 73.49 6.36
C3 PRO-SCALE (1,1,1) + (s1 via LPE) 60.58 55.14 6.47
C4 PRO-SCALE (2,2,2) + (s1 via LPE) 62.37 95.24 6.07
C5 PRO-SCALE (3,3,3) + (s1 via LPE) 63.06 135.00 5.71

than PRO-SCALE, while ReMaX (Sun et al., 2023) has competitive accuracy. Note that, ReMaX
focuses on the training pipeline of panoptic segmentation (Sun et al., 2023), which is orthogonal to
our approach to design efficient segmentation architectures. Further, ReMaX is limited by the in-
herent efficiency of model and becomes ineffective on larger models (see Appendix C in (Sun et al.,
2023)). Similarly, in comparison with a recent universal segmentation architecture PEM (Cavagnero
et al., 2024) with Res50 backbone, PRO-SCALE shows stronger results in severe GFLOPs reduc-
tion settings (p1, p2, p3 = 1,1,1). The analysis on Cityscapes dataset segmentation is shown in
Tab. 2. Similar to COCO, PRO-SCALE is computationally most efficient compared to both M2F-
style models (Lite-M2F and RT-M2F) and at-par with non-M2F-style models (YOSO and ReMaX
(Sun et al., 2023)) with extremely competitive performance. For example, PRO-SCALEwith SWIN-
T backbone achieves 63.06 PQ vs. Lite-M2F’s 62.29 PQ while having comparatively ∼27% less
GLOPS than M2F. Compared to non-M2F-style models in Res50 backbone, PRO-SCALE demon-
strates competitive performance with no specific panoptic segmentation design like YOSO (Hu et al.,
2023), or much fewer training iterations with specific panoptic segmentation training strategies like
ReMaX (Sun et al., 2023) (200K vs 90K iterations).

4.2 ABLATION STUDY

Ablation of components. We analyze the impact of PRO-SCALE with SWIN-T backbone in
a low GFLOPs budget scenario in Tab. 3. We make the following observations. Simply remov-
ing s1 from M2F (Case C1) reduced GFLOPs by 51.24% but also reduced PQ by 5.7%. Using
PRO-SCALE (p1, p2, p3 = 1,1,1) (Case C2) achieved a 73.85% reduction in GFLOPs with a 4.7%
PQ reduction. When s1 is added back via LPE to (p1, p2, p3 = 1,1,1) (Case C3), it results in a
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Figure 4: Impact of LPE module. Per-pixel em-
beddings produced by LPE do not significantly
harm the performance but demonstrate a strong
impact on the computational reduction. Here,
backbone= SWIN-T, PRO-SCALE configuration:
c1 = (1, 1, 1), c2 = (2, 2, 2), c3 = (3, 3, 3), mod-
els = w/o LPE and w/ LPE), dataset = COCO.
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Figure 5: Impact of pre-trained weights.
PRO-SCALE provides significant computational
boosts, irrespective of backbone pre-trained
weights. Here, backbone/dataset= SWIN-
T/COCO, weights = supervised/ MoBY (Xie
et al., 2021) on IN1K (Russakovsky et al., 2015),
PRO-SCALE config.: c1 = (1, 1, 1), c2 =
(3, 1, 1), c3 = (1, 3, 1), c4 = (1, 1, 3).

Table 4: LPE module with Lite-M2F. LPE can
be flexibly integrated to improve the computa-
tional load of Lite-M2F (Li et al., 2023a) with
minimal performance degradation. Backbone =
SWIN-T.

Performance (↑) GFLOPs (% decrement)
Dataset Model PQ mIOUp APp Total Encoder

Lite-M2F 52.70 63.52 42.26 188.00 79.78COCO + LPE 52.32 63.08 41.10 154.60 (-17.77) 43.92 (-44.95)

Lite-M2F 62.29 79.43 36.57 428.70 172.00Cityscapes + LPE 61.35 79.05 35.91 351.40 (-18.03) 94.69 (-44.95)

Table 5: Impact of different backbones.
PRO-SCALE can provide significant effi-
ciency boosts across various backbones. Here,
(p1, p2, p3) = (1, 1, 3), dataset = COCO.

Performance (↑) GFLOPs (↓), (% decrement)Backbone
type PQ mIOUp APp Total Encoder

52.03 62.49 42.17 234.50 117.00SWIN-T 52.40 62.66 41.62 164.70 (-29.77) 54.77 (-53.19)

51.73 61.94 41.72 229.10 135.00Res50 51.35 61.53 40.82 158.60 (-30.77) 59.44 (-55.97)

54.11 64.39 44.54 244.60 130.00MViT-T 53.70 64.17 43.53 174.10 (-28.82) 54.77 (-57.87)

stronger performance-efficiency trade-off than C1. This performance further improves when differ-
ent configurations of PRO-SCALE are used in case C4 and C5.

Impact of LPE module. Our LPE module is aimed to drastically decrease the computational
overhead without impairing the segmentation performance in PRO-SCALE. To analyze this, we
compare LPE with the M2F’s convolutional layer based embedding layer module in Fig. 4. Here,
we can observe that compared to this convolutional unit with learnable parameters, LPE is extremely
effective. For example, for PRO-SCALE configuration c3 = (3, 3, 3), LPE reduces the computa-
tions by ∼40% with performance degradation of 0.12 PQ points. Similarly, c2 = (1, 1, 1) and
c2 = (2, 2, 2) provide similar computational benefits with 0.43 PQ points degradation. This demon-
strates the favorable performance-computation trade-off LPE provides in PRO-SCALE. To further
demonstrate the potency of our proposed LPE module, we incorporate LPE in Lite-M2F and ana-
lyze the results in Tab. 4. We can observe that LPE shows similar impact on Lite-M2F: ∼45% less
transformer encoder GLOPS with only ∼0.5-1 PQ point trade-off.

Variations in encoder configuration. Here, we analyze the impact of PRO-SCALE configura-
tion on model performance in Tab. 6. We can make some key observations. First, we observe that
PRO-SCALE shows stronger performance if any pi > 1. This is trivial as more computations are
allowed for the corresponding layers. Second, increasing p3 and p2 have different performance-
efficiency trade-off: for COCO, p2 vs. (p2 + 2) results in only increment of ∼ 6.5 GFLOPs with
∼ 1.0% PQ improvement whereas p3 vs. (p3 + 2) results in a higher computational load of ∼ 32
GFLOPs increase with ∼ 1.6% PQ performance improvement. We make similar observations for
the Cityscapes dataset for (p1 + 2) vs. (p2 + 2).

Variations in backbone architectures. We analyze the performance of PRO-SCALE with dif-
ferent backbones in Tab. 5. Specifically, we observe the impacts of SWIN-T, Res50, and MViT-T in
the segmentation performance. PRO-SCALE is versatile in providing strong performance-efficiency
across diverse backbone types. We also present results with larger backbones namely ResNet101,
SWIN-Small, SWIN-Base, and SWIN-Large on Cityscapes dataset in Fig. 7. PRO-SCALE reduces
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Table 6: Analysis of configurations (p1, p2, p3).
Increments in different pi shows different
performance-efficiency trade-off.

Performance (↑) GFLOPs (↓), (% decrement)
p1, p2, p3 PQ mIOUp APp Total Encoder

Dataset: Cityscapes, Backbone: SWIN-T

original 64.00 80.77 39.26 537.80 281.00
(1, 1, 1) 60.58 78.29 32.97 311.90 (-42.00) 055.14 (-80.38)
(3, 1, 1) 61.38 78.58 33.75 314.70 (-41.48) 057.93 (-79.38)
(1, 3, 1) 61.63 78.67 35.26 326.30 (-39.33) 069.62 (-75.22)
(1, 1, 3) 62.32 79.49 36.97 374.80 (-30.31) 118.00 (-58.01)

Dataset: COCO, Backbone: SWIN-T

original 52.03 62.49 42.17 234.50 117.00
(1, 1, 1) 50.79 62.39 39.57 137.10 (-41.54) 22.89 (-80.44)
(3, 1, 1) 51.69 62.81 40.46 138.70 (-40.85) 26.87 (-77.03)
(1, 3, 1) 51.76 63.23 41.07 143.80 (-38.68) 32.29 (-72.40)
(1, 1, 3) 52.40 62.66 41.62 164.70 (-29.77) 54.77 (-53.19)

Table 7: Impact of large backbones.
PRO-SCALE can provide significant effi-
ciency boosts across various backbones. Here,
(p1, p2, p3) = (3, 3, 3), dataset = Cityscapes.

Performance (↑) GFLOPs (↓), (% decrement)Backbone
type PQ mIOUp APp Total Encoder

64.80 81.80 40.70 724.30 281.00SWIN-S 64.41 80.19 39.90 578.50 (-20.13) 135.00 (-51.96)

66.10 82.70 42.80 1051.20 283.00SWIN-B 65.27 81.97 41.12 905.40 (-13.87) 137.00 (-51.59)

66.60 82.90 43.60 1949.70 287.00SWIN-L 65.93 82.77 41.80 1803.90 (-7.48) 141 (-50.87)

62.40 78.60 37.70 679.70 291.00Res101 61.28 76.50 36.49 533.90 (-21.45) 145.00 (-50.17)

GFLOPs in all cases while providing a strong accuracy-efficiency trade-off. The PRO-SCALE con-
figuration is (p1, p2, p3) = (3,3,3). Note that, we can also employ a different PRO-SCALE configu-
ration (p1, p2, p3) to further reduce the computations.

Variations in backbone pre-trained weights. We analyze the performance of PRO-SCALEwith
different pre-training strategies of the backbones in Fig. 5. Specifically, we initialize SWIN-T with
supervised learning (SL) and self-supervised learning (SSL) based ImageNet-1K weights. For SSL
pre-training, we employ MoBY (Xie et al., 2021). We can see that PRO-SCALE can gain perfor-
mance robustness of SSL weights while providing the same trade-offs as SL weights. For example,
when c1 = (p1, p2, p3) = (1, 1, 1), MoBY shows an improvement of ∼1.6% APp with the same
efficiency gains. On average, integrating PRO-SCALE with the MoBY pre-trained backbone re-
sults in better (overall) performance compared to using SL backbone weights, especially in instance
segmentation (Fig. 5, right).

FPS comparison. Tab. 9 compares M2F and PRO-SCALE against state-of-the-art efficient en-
coder for universal segmentation method PEM (Cavagnero et al., 2024). While M2F achieves the
highest PQ (51.73) and lowest FPS (4.91) and PEM provides the highest FPS (7.31) but lower PQ
(46.38), PRO-SCALE offers a competitive PQ (51.35) with a balanced FPS (6.25).

Impact beyond universal segmentation. We analyze PRO-SCALE on tasks beyond universal
segmentation to test its effectiveness. In particular, we add PRO-SCALE to DINO (Zhang et al.,
2022) for the task of object detection, MaskDINO (Li et al., 2022a) for the joint task of instance
segmentation-detection, and FCCLIP (Yu et al., 2023) and MaskCLIP (Zheng Ding, 2023) for the
task of open-vocabulary segmentation. Note that we can use a different PRO-SCALE configuration
to further reduce the computations in all cases.

• Impact on DINO for object detection. As shown in Tab. 8, PRO-SCALE (integrated with
DINO) stands out with the highest AP (49.4), showcasing exceptional performance compared to
other models. It also has the lowest encoder GFLOPs (56.18), making it more computationally
efficient than other methods. We also show segmentation PQ for comprehensive overview.

• Impact on two open-vocab universal segmentation frameworks. We used recent state-of-the-
art open-vocabulary image segmentation methods MackCLIP (Zheng Ding, 2023) and FCCLIP
(Yu et al., 2023). Our method PRO-SCALE can easily work with these frameworks and reduce
the computations while having better performance as shown in Tab. 10. We followed the ex-
act training and testing protocols of respective methods and trained our model with COCO. We
perform evaluation on COCO val set and cross-evaluation on ADE20K (Zhou et al., 2017) val set.

• Impact on MaskDINO for multi-task prediction. We integrated and trained MaskDINO with
PRO-SCALE, and the results are shown in Tab. 11. In particular, we trained the model on COCO
panoptic annotations with the exact same training settings as MaskDINO for 50 epochs and eval-
uated the model for segmentation and object detection. Clearly, PRO-SCALE effectively reduces
the computational requirements of MaskDINO while maintaining overall performance.

Qualitative analysis. We show some examples of predicted panoptic maps in Fig. 6 with SWIN-
T backbone. We set PRO-SCALE configuration to (3, 3, 3). Compared to M2F (Cheng et al., 2022),
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Table 8: PRO-SCALE for object detection.
PRO-SCALE can easily work with DETR (Car-
ion et al., 2020) based object detection models
and reduce the computations while having bet-
ter performance. The PRO-SCALE configura-
tion is (p1, p2, p3, p4) = (3,3,3,3), backbone is
Res50, training dataset is COCO, and trained for
12 epochs. The segmentation results are with
SWIN-T backbone. LPE module is not required
for object detection.

Performance (↑) GFLOPs (↓)
Model AP PQ Total Encoder

DINO (Zhang et al., 2022) 49.00 N/A N/A N/A
Lite-DETR (Lv et al., 2023) 49.10 52.70 188.00 79.78
RT-DETR (Li et al., 2023a) 49.20 41.36 158.30 59.66

PRO-SCALE 49.40 52.82 171.70 56.18

Table 9: PRO-SCALE FPS comparison.
PRO-SCALE strikes a balance with a high PQ
score, and good FPS, offering a good trade-off
between quality and speed. The PRO-SCALE
configuration is (p1,p2, p3) = (3,3,3), backbone
is Res50, and dataset is COCO.

Model PQ (↑) FPS (↑)

M2F (Cheng et al., 2022) 51.73 4.91
PEM (Cavagnero et al., 2024) 46.38 7.31

PRO-SCALE 51.45 6.25

Table 10: PRO-SCALE for open-vocabulary
segmentation. PRO-SCALE can easily work
with M2F based open-vocab universal segmenta-
tion models (Zheng Ding, 2023; Yu et al., 2023)
and reduce the computations while having better
PQ performance. The PRO-SCALE configura-
tion is (p1,p2, p3) = (3,3,3), backbone is Res50,
and training dataset is COCO.

Performance (↑) GFLOPs (↓)
Model COCO ADE20K Total Encoder

MaskCLIP (Zheng Ding, 2023) 29.98 15.12 549.20 135.00
+ PRO-SCALE 34.53 16.53 486.10 67.45

FCCLIP (Yu et al., 2023) 54.40 26.80 2119.60 287.00
+ PRO-SCALE 55.81 25.27 1973.80 141.00

Table 11: PRO-SCALE for MaskDINO.
PRO-SCALE can easily work with MaskDINO
models (Li et al., 2022a) and reduce the com-
putations while having better Mask and Box AP
performance. The PRO-SCALE configuration is
(p1,p2, p3) = (3,3,3), backbone is Res50, and
training dataset is COCO.

Performance (↑) GFLOPs (↓)
Model Mask AP Box AP Total Encoder

MaskDINO 46.00 50.50 302.10 204.00
+ PRO-SCALE 45.66 50.83 212.40 108.00

input image M2F PRO-SCALE input image M2F PRO-SCALE

input image M2F PRO-SCALE input image M2F PRO-SCALE

Figure 6: Qualitative visualizations. We visualize examples of predicted panotic maps from M2F
and PRO-SCALE. Even with 52% encoder GFLOPs reduction, PRO-SCALE shows better quality
panoptic maps (backbone = SWIN-T, PRO-SCALE config. = (3, 3, 3)). Zoom-in for best view.

PRO-SCALE consistently shows strong performance with drastically fewer GLOPs in everyday
scenes (top row on COCO) as well as complex driving scenes (bottom row on Cityscapes).

5 CONCLUSION

In this paper, we propose an efficient transformer encoder PRO-SCALE for the Mask2Former uni-
versal segmentation framework. It reduces the computational load by a large margin with minimal
degradation in performance. The core principle of PRO-SCALE is to progressively expand the
length of the tokens with the layers of the encoder. Further, a light per-pixel embedding module
is introduced to alleviate the computational overhead arising from creating per-pixel embeddings
without much sacrifice in performance. Our extensive experiments demonstrate that PRO-SCALE
is significantly lighter than prior prominent methods while maintaining competitive universal seg-
mentation performance.
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6 REPRODUCIBILITY STATEMENT

We will release the source code and configuration for PRO-SCALE-based models. All training and
loss function details provided in the appendix along with our method description should also aid
readers reproduce our results.
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Niccolò Cavagnero, Gabriele Rosi, Claudia Cuttano, Francesca Pistilli, Marco Ciccone, Giuseppe
Averta, and Fabio Cermelli. Pem: Prototype-based efficient maskformer for image segmentation.
arXiv preprint arXiv:2402.19422, 2024.

Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-pixel classification is not all you need for
semantic segmentation. Advances in Neural Information Processing Systems, 34:17864–17875,
2021.

Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In CVPR, 2022.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213–3223, 2016.

Daan de Geus, Panagiotis Meletis, and Gijs Dubbelman. Fast panoptic segmentation network. IEEE
Robotics and Automation Letters, 5(2):1742–1749, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Zheng Ding, Jieke Wang, and Zhuowen Tu. Open-vocabulary panoptic segmentation with maskclip.
arXiv preprint arXiv:2208.08984, 2022.

Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes challenge: A retrospective. International journal of
computer vision, 111:98–136, 2015.

Xiuye Gu, Yin Cui, Jonathan Huang, Abdullah Rashwan, Xuan Yang, Xingyi Zhou, Golnaz Ghiasi,
Weicheng Kuo, Huizhong Chen, Liang-Chieh Chen, et al. Dataseg: Taming a universal multi-
dataset multi-task segmentation model. Advances in Neural Information Processing Systems, 36,
2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Weixiang Hong, Qingpei Guo, Wei Zhang, Jingdong Chen, and Wei Chu. Lpsnet: A lightweight so-
lution for fast panoptic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16746–16754, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rui Hou, Jie Li, Arjun Bhargava, Allan Raventos, Vitor Guizilini, Chao Fang, Jerome Lynch, and
Adrien Gaidon. Real-time panoptic segmentation from dense detections. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8523–8532, 2020.

Jie Hu, Linyan Huang, Tianhe Ren, Shengchuan Zhang, Rongrong Ji, and Liujuan Cao. You only
segment once: Towards real-time panoptic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 17819–17829, 2023.

Jitesh Jain, Jiachen Li, Mang Tik Chiu, Ali Hassani, Nikita Orlov, and Humphrey Shi. Oneformer:
One transformer to rule universal image segmentation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 2989–2998, 2023.

Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollár. Panoptic segmen-
tation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 9404–9413, 2019.

Feng Li, Hao Zhang, Huaizhe xu, Shilong Liu, Lei Zhang, Lionel M. Ni, and Heung-Yeung Shum.
Mask dino: Towards a unified transformer-based framework for object detection and segmenta-
tion, 2022a.

Feng Li, Ailing Zeng, Shilong Liu, Hao Zhang, Hongyang Li, Lei Zhang, and Lionel M Ni. Lite detr:
An interleaved multi-scale encoder for efficient detr. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 18558–18567, 2023a.

Feng Li, Hao Zhang, Huaizhe Xu, Shilong Liu, Lei Zhang, Lionel M Ni, and Heung-Yeung Shum.
Mask DINO: Towards a unified transformer-based framework for object detection and segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3041–3050, 2023b.

Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and
Christoph Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classification and
detection. In CVPR, 2022b.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Wenyu Lv, Shangliang Xu, Yian Zhao, Guanzhong Wang, Jinman Wei, Cheng Cui, Yuning Du,
Qingqing Dang, and Yi Liu. Detrs beat yolos on real-time object detection. arXiv preprint
arXiv:2304.08069, 2023.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural net-
works for volumetric medical image segmentation. In 2016 fourth international conference on
3D vision (3DV), pp. 565–571. Ieee, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Abdullah Rashwan, Jiageng Zhang, Ali Taalimi, Fan Yang, Xingyi Zhou, Chaochao Yan, Liang-
Chieh Chen, and Yeqing Li. Maskconver: Revisiting pure convolution model for panoptic seg-
mentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 851–861, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025
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A EXPERIMENT DETAILS

Datasets. We examine PRO-SCALE with two image segmentation datasets: COCO (Lin et al.,
2014) (80 “things”, 53 “stuff” categories) and Cityscapes (Cordts et al., 2016) (8 “things”, 11 “stuff”
categories). COCO has 118K training and 5K validation images. Cityscapes has 2975 training and
500 validation images.

Training details. All our training details and underlying strategy follow (Cheng et al., 2022),
including for our baselines. We use Detectron2 (Wu et al., 2019) and PyTorch (Paszke et al., 2019)
for implementation. We employ the AdamW optimizer (Loshchilov & Hutter, 2017) with a step
learning rate schedule. The initial learning rate is 0.0001. The backbone learning rate is multiplied
with 0.1 and its weight decay is set as 0.05. We decay the learning rate at 0.9 and 0.95 fractions
of the total training steps by a factor of 10. For COCO, our models are trained for 50 epochs. For
Cityscapes, we use 90k iterations. Batch size is set as 16. For data augmentation and calculating
GFLOPs, we follow the strategies exactly as M2F. We report the average GFLOPs for all cases. We
use distributed training with 8 A6000 GPUs.

Loss functions. We use the exact same loss functions and weights as (Cheng et al., 2022). In
particular, we use the binary cross-entropy loss and the dice loss (Milletari et al., 2016) for our mask
loss. Both loss functions use a weight of 5.0. The final loss is a combination of mask loss and
classification loss (cross-entropy loss). We set the classification loss weight as 2.0 for all classes,
except 0.1 for the ‘no object’ class. Finally, we apply the identical post-processing methodology as
described in (Cheng et al., 2022) to obtain the desired output formats for panoptic, semantic, and
instance segmentation predictions.

B ADDITIONAL RESULTS

LPE pooling analysis. We analyzed the LPE module with ‘average pooling’ in place of ‘max-
pooling’ on the Cityscapes dataset with Res50 backbone and (p1, p2, p3) = (3,3,3). We observed that
the performance of the LPE module performs better with max-pooling (61.87% PQ) than average
pooling (61.47% PQ).

Token redundancy visualization. We provide an explicit qualitative visualization that proves
the token redundancy in early stages of the transformer encoder in Fig. 9. This analysis is on 100
randomly chosen images from COCO val set. In this figure, the x-axis represents the distance of
neighborhood tokens from the candidate token (along the token dimension) and the y-axis represents
the (average across the number of images) cosine similarity between the two. It can be observed
that in larger scale tokens, the token similarity is higher than smaller token as the neighborhood
distance increases. This clearly suggests that the information redundancy of larger scale tokens is
comparatively higher than smaller scale tokens.

Efficiency vs Performance overview. Fig. 10 illustrates the trade-off between efficiency
(GFLOPS on the x-axis) and performance (PQ on the y-axis) for different configurations of (p1,
p2, p3) on the COCO dataset, with each point representing a specific configuration. The red dashed
line indicates the original model’s performance (PQ = 52.03), highlighting how the configurations
compare in terms of maintaining performance while reducing computational costs.

Additional qualitative visualization. We show some examples of predicted panoptic maps in
Fig. 11 with Res50 backbone on the COCO dataset. We set PRO-SCALE configuration to (3, 3,
3). Compared to Lite-M2F (Li et al., 2023a) and PEM (Cavagnero et al., 2024), PRO-SCALE
consistently shows strong performance with drastically fewer GLOPs.

FPS analysis. The following analysis is with A6000 GPUs. We analyzed the gain in speed when
PRO-SCALE is integrate with different backbones in Tab. 16. Further, Tab. 15 provides an overview
of FPS with different baselines. PRO-SCALE provides good trade-off between performance and
speed in different settings.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 7: Token Re-Calibration (TRC) module. This unit first interpolates s2 to the size of the
target smaller-scale feature si. Then, the spatially flattened and resized s2 is passed through a
channel reduction layer ϕ (followed by sigmoid function) to produce an attention map. This map is
imposed on the spatially flattened si to create ŝi.

C PRO-SCALE ADDENDUM: TOKEN RE-CALIBRATION (TRC) MODULE

Intuition. Skipping the propagation of s2 in the initial layers may lead to errors in predicted
panoptic maps due to missing information from this feature scale. To avoid such map errors caused
by imperfect token representations, we propose to calibrate the s3 and s4 using s2 in our TRC
module. This module aims to enhance small-scale features si ∈ {s3, s4} using large-scale feature
s2 without increasing the computations in PRO-SCALE transformer layers.

TRC structure. To utilize strengths of s2 in smaller scales, we employ contrastive attention. In
particular, we propose to enrich the tokens of si by projecting s2 on si via an attention map. This
attention map is obtained by using a channel reduction layer ϕ followed by a sigmoid function. As
illustrated in Fig. 7, the final tokens ŝi are obtained as (⊗ represents elementwise multiplication):

ŝi = si ⊗ sigmoid(ϵϕ(s2)) (4)

With above, Eq. 2, 3 translate to P1 = C(ŝ4) and P2 = C(s′, ŝ3). We choose ϕ(·) to be a linear
layer and set temperature ϵ = 0.1, keeping computations negligible.

Impact of TRC module. Our TRC module is designed to incorporate the benefits of large scale
feature s2 without increasing computational overhead in PRO-SCALE. In Tab. 12, we can see that
the TRC module consistently improves the performance of the proposed framework demonstrating
the efficacy of this unit. Moreover, this unit only costs 0.006 GFLOPs for the COCO dataset. We
also analyze the impact of ϵ on the TRC module in Tab. 13 and find that it overall improves the
performance of segmentation with best performance at ϵ = 0.1. Finally, we provide visualizations
of impact of TRC module in two examples shown in Fig. 8. It can be observed that the TRC module
introduces stronger focus on parts of images that need to be segmented by the model.
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Table 12: Impact of TRC module. Use of s2 via
TRC to enhance {s3, s4} improves the overall perfor-
mance with light computational load. Here, backbone
= Res50, dataset = COCO, config.=(p1, 1, 1).

Table 13: Impact of ϵ on TRC. Tem-
perature scaling ϵ of 0.1 shows the best
performance. Here, backbone = SWIN-
T, dataset = Cityscapes.

ϵ PQ(%)

0.01 60.05
0.10 60.58
1.00 60.32
5.00 60.41

10.00 60.34

Figure 8: Effect of TRC module. It can be observed that the TRC module introduces stronger focus
on parts of images that need to be segmented by the model.
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Figure 9: Token redundancy visualization.

Table 14: LPE pooling analysis. We ob-
serve that max-pooling provides better results
with PRO-SCALE than average pooling. The
PRO-SCALE configuration is (p1, p2, p3) =
(3,3,3), backbone is Res50, training dataset is
Cityscapes.

Pooling PQ (↑)

avg-pooling 61.47
max-pooling 61.87

Figure 10: Efficiency vs. Performance for different PRO-SCALE (p1, p2, p3) configurations on
COCO. The red lines indicate M2F’s PQ and GFLOPs for reference.

Table 15: PRO-SCALE FPS comparison with
baselines. PRO-SCALE strikes a balance with
a high PQ score, and good FPS, offering a good
trade-off between quality and speed. Backbone is
SWIN-T, and dataset is Cityscapes.

Model PQ (↑) FPS (↑)

Lite-M2F (Cheng et al., 2022) 62.29 6.01
RT-M2F (Cavagnero et al., 2024) 59.73 6.59

PRO-SCALE (1,1,1) 60.58 6.47
PRO-SCALE (2,2,2) 62.37 6.07
PRO-SCALE (3,3,3) 63.06 5.71

Table 16: PRO-SCALE FPS comparison on dif-
ferent backbones. PRO-SCALE strikes a bal-
ance with a high PQ score, and good FPS, offer-
ing a good trade-off between quality and speed.
Here, (p1, p2, p3) = (1, 1, 3), dataset = COCO.

Performance (↑)Backbone
type PQ mIOUp APp

FPS (↑)

52.03 62.49 42.17 5.09SWIN-T 52.40 62.66 41.62 5.28

51.73 61.94 41.72 2.10Res50 51.35 61.53 40.82 5.71

54.11 64.39 44.54 2.08MViT-T 53.70 64.17 43.53 4.85
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input image Lite-M2F PEM PRO-SCALE

Figure 11: Qualitative visualizations. We visualize few examples of predicted panotic maps from
Lite-M2F (Li et al., 2023a) and PEM (Cavagnero et al., 2024) and PRO-SCALE. Even with 52%
transformer encoder GFLOPs reduction, PRO-SCALE shows better quality panoptic maps. Here,
backbone = Res50, PRO-SCALE configuration = (3, 3, 3). Zoom-in for best view.
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