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Abstract

Several recent works use positional encodings to extend the receptive fields of graph neural
network (GNN) layers equipped with attention mechanisms. These techniques, however,
extend receptive fields to the complete graph, at substantial computational cost and risking
a change in the inductive biases of conventional GNNs, or require complex architecture
adjustments. As a conservative alternative, we use positional encodings to expand receptive
fields to r-hop neighborhoods. More specifically, our method augments the input graph
with additional nodes/edges and uses positional encodings as node and/or edge features.
We thus modify graphs before inputting them to a downstream GNN model, instead of
modifying the model itself. This makes our method model-agnostic, i.e., compatible with
any of the existing GNN architectures. We also provide examples of positional encodings
that are lossless with a one-to-one map between the original and the modified graphs. We
demonstrate that extending receptive fields via positional encodings and a virtual fully-
connected node significantly improves GNN performance and alleviates over-squashing using
small r. We obtain improvements on a variety of models and datasets and reach competitive
performance using traditional GNNs or graph Transformers.

1 Introduction

GNN layers typically embed each node of a graph as a function of its neighbors’ (1-ring’s) embeddings from
the previous layer; that is, the receptive field of each node is its 1-hop neighborhood. Hence, at least r stacked
GNN layers are needed for nodes to get information about their r-hop neighborhoods. Barceló et al. (2020)
and Alon and Yahav (2021) identify two broad limitations associated with this structure: under-reaching
occurs when the number of layers is insufficient to communicate information between distant vertices, while
over-squashing occurs when certain edges act as bottlenecks for information flow.

Inspired by the success of the Transformer in natural language processing (Vaswani et al., 2017), recent
methods expand node receptive fields to the whole graph (Dwivedi and Bresson, 2021; Ying et al., 2021).
Since they effectively replace the topology of the graph with that of a complete graph, these works propose
positional encodings that communicate the connectivity of the input graph as node or edge features. As
these methods operate on fully-connected graphs, the computational cost of each layer is quadratic in the
number of nodes, obliterating the sparsity afforded by conventional 1-ring based architectures. Moreover,
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the success of the 1-ring GNNs suggests that local feature aggregation is a useful inductive bias, which has
to be learned when the receptive field is the whole graph, leading to slow and sensitive training.

In this paper, we expand receptive fields from 1-ring neighborhoods to r-ring neighborhoods, where r ranges
from 1 (typical GNNs) to R, the diameter of the graph (fully-connected). That is, we augment a graph
with edges between each node and all others within distance r in the input topology. We demonstrate the
compute-performance trade-offs for different r-values and show that performance is significantly improved
using fairly small r and carefully-chosen positional encodings annotating this augmented graph. This simple
but effective approach can be combined with any GNN.

Contributions. We apply GNN architectures to graphs augmented with edges connecting vertices to their
peers within distance ≤ r. Our contributions are as follows: (i) We increase receptive fields using a simple pre-
processing of graphs with positional encodings as edge and node features. (ii) We compare r-hop positional
encodings on the augmented graph, specifically lengths of shortest paths, spectral computations, and powers
of the graph adjacency matrix. (iii) We demonstrate that GNNs, with limited computational budget and
without changing the architecture, can benefit from positional encodings and expanded receptive views that
are smaller than the fully-connected setting, and we illustrate the compute-performance trade-offs.

2 Related Work

The Transformer has permeated deep learning (Vaswani et al., 2017), with state-of-the-art performance
in NLP (Devlin et al., 2018), vision (Parmar et al., 2018), and genomics (Zaheer et al., 2020). Its core
components include multi-head attention, an expanded receptive field, positional encodings, and a CLS-token
(virtual global source and sink nodes). Several works adapt these constructions to GNNs. For example,
the Graph Attention Network (GAT) performs attention over the neighborhood of each node, but does
not generalize multi-head attention using positional encodings (Veličković et al., 2018). Recent works use
Laplacian spectra, node degrees, and shortest-path lengths as positional encodings to expand attention to
all nodes (Kreuzer et al., 2021; Dwivedi and Bresson, 2021; Rong et al., 2020; Ying et al., 2021). Several
works also adapt attention mechanisms to GNNs (Yun et al., 2019; Cai and Lam, 2019; Hu et al., 2020; Baek
et al., 2021; Veličković et al., 2018; Wang et al., 2021b; Zhang et al., 2020; Shi et al., 2021). Furthermore,
there is a recent line of work that seeks to improve Transformers on graphs: Rampášek et al. (2022) provide
a taxonomy of positional encodings and present an alternative Transformer architecture for sub-quadratic
attention; Shirzad et al. (2023) build on this work by introducing a sparse attention mechanism through
virtual global nodes and expander graphs. Lastly, Kim et al. (2022) demonstrate that Transformers without
graph-specific modifications can obtain promising results in graph learning both in theory and practice,
by simply treating nodes and edges as independent tokens. In contrast with these papers, our work is
architecture-agnostic, demonstrating that augmentation and positional encodings can benefit Transformer-
free GNN architectures and Transformer GNNs alike.

Ying et al. (2018); Gao and Ji (2019) and others introduce hierarchical pooling and improved information flow
by shrinking the graph rather than extending it. This, therefore, represents an alternative to the multi-hop
aggregation approach adopted in our work.

Path and distance information has been incorporated into GNNs more generally. Yang et al. (2019) introduce
the Shortest Path Graph Attention Network (SPAGAN), whose layers incorporate path-based attention via
shortest paths between a center node and distant neighbors, using an involved hierarchical path aggregation
method to aggregate a feature for each node. Like us, SPAGAN introduces the ≤ k-hop neighbors around
the center node as a hyperparameter; their model, however, has hyperparameters controlling path sampling.
Beyond SPAGAN, Chen et al. (2019) concatenate node features, edge features, distances, and ring flags to
compute attention probabilities. Li et al. (2020) show that distance encodings (i.e., one-hot feature of distance
as an extra node attribute) obtain more expressive power than the 1-Weisfeiler-Lehman test. Chen et al.
(2021) introduce graph-augmented multi-layer perceptrons (MLPs) that incoroprate multi-hop connections
via powers of the adjacency matrix and focus on establishing the expressive power of graph-augmented MLPs
relative to graph neural networks. Sun et al. (2021) also use powers of the adjacency matrix but for multi-
hop connections combined with self-label enhanced training. Graph-BERT introduces multiple positional
encodings to apply Transformers to graphs and operates on sampled subgraphs to handle large graphs (Zhang
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et al., 2020). Yang et al. (2019) introduce the Graph Transformer Network (GTN) for learning a new graph
structure, which identifies “meta-paths” and multi-hop connections to learn node representations. Wang
et al. (2021a) introduce Multi-hop Attention Graph Neural Network (MAGNA) that uses diffusion to extend
attention to multi-hop connections. Frankel et al. (2021) extend GAT attention to a stochastically-sampled
neighborhood of neighbors within 5-hops of the central node. Isufi et al. (2020) introduce EdgeNets, which
enable flexible multi-hop diffusion. Luan et al. (2019) generalize spectral graph convolution and GCN in
block Krylov subspace forms. Abu-El-Haija et al. (2019) introduce a specialized MixHop Graph Convolution
Layer for higher-order message passing. You et al. (2019) capture nodes’ positions by sampling anchor nodes
and learning a non-linear distance-weighted aggregation from target nodes to the anchor-sets. Feng et al.
(2023); Nikolentzos et al. (2020) explore the expressive power of r-hop GNNs and introduces specific r-hop
GNN architectures aimed at augmenting this expressive capability. While the enhanced theoretical expressive
power of GNNs achieved through r-hops aligns with our approach, our primary focus is on examining the
empirical performance improvements that result from decoupling the r-hop rewiring from the GNN, as
evaluated across various GNNs within a constrained computational budget.

Each layer of our GNN attends to the r-hop neighborhood around each node. Unlike SPAGAN and Graph-
BERT, our method is model agnostic and does not perform sampling, avoiding their sampling-ratio and
number-of-iterations hyperparameters. Unlike GTN, we do not restrict to a particular graph structure.
Broadly, our approach does not require architecture or optimization changes. Thus, our work also joins a
trend of decoupling the input graph from the graph used for information propagation (Veličković, 2022). For
scalability, Hamilton et al. (2017) sample from a node’s local neighborhood to generate embeddings and ag-
gregate features, while Zhang et al. (2018) sample to deal with topological noise. Rossi et al. (2020) introduce
Scalable Inception Graph Neural Networks (SIGN), which avoid sampling by precomputing convolutional
filters. Kipf and Welling (2017) preprocess diffusion on graphs for efficient training. Topping et al. (2021);
Nguyen et al. (2023) use graph curvature to rewire graphs and combat over-squashing and bottlenecks.

In contrast, our work does not use diffusion, curvature, or sampling, but expands receptive fields via
Transformer-inspired positional encodings. In this sense, we avoid the inductive biases from pre-defined
notions of diffusion and curvature, and since we do not remove connectivity, injective lossless changes are
easy to obtain.

3 Preliminaries and Design

Let G = (V, E, fv, fe) denote a directed graph with nodes V ⊂ N0 and edges E ⊆ V × V , and let G be the
set of graphs. For each graph, let functions fv ∶ V → Rdv and fe ∶ E → Rde denote node and edge features,
respectively, and we let R denote the diameter of the graph. We consider learning on graphs, specifically
node classification and graph classification. At inference, the input is a graph G. For node classification,
the task is to predict a node label lv(v) ∈ R for each vertex v ∈ V . Using the node labels, the homophily of
a graph is defined as the fraction of edges that connect nodes with the same labels (Ma et al., 2022). For
graph classification, the task is to predict a label lG ∈ R for the entire graph G.

Given the tasks above, GNN architectures typically ingest a graph G = (V, E, fv, fe) and output either a
label or a per-node feature. One can view this as an abstraction; e.g. a GNN for graph classification is a
map Fθ ∶ G → Rn with learnable parameters θ. These architectures vary in terms of how they implement Fθ.
Some key examples include the following: (i) Spatial models (Kipf and Welling, 2017) use the graph directly,
computing node representations in each layer by aggregating representations of a node and its neighbors
(1-ring). (ii) Spectral models (Bruna et al., 2014) use the eigendecomposition of the graph Laplacian to
perform spectral convolution. (iii) Diffusion models (Wang et al., 2021a; Klicpera et al., 2019) use weighted
sums of powers of the adjacency matrix to incorporate larger neighborhoods (r-hops). (iv) In Transformers
(Kreuzer et al., 2021; Dwivedi and Bresson, 2021; Rong et al., 2020; Ying et al., 2021), each node forms a new
representation by self-attention over the complete graph (R-hop neighborhood) using positional encodings.
These approaches incorporate useful inductive biases while remaining flexible enough to learn from data.

Spatial models have been extremely successful, but recent work shows that they struggle with under-reaching
and over-squashing (Alon and Yahav, 2021). Spectral approaches share similar convolutional bias as spatial
models and face related problems (Kipf and Welling, 2017). On the other hand, Transformers with complete
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attention and diffusion aim to alleviate the shortcomings of spatial models and show promising results.
Due to complete attention, Transformers carry little inductive bias but are also computationally expensive.
Diffusion explicitly incorporates the inductive bias that distant nodes should be weighted less in message
aggregation, limiting its breadth of applicability.

We alleviate under-reaching and over-squashing while avoiding the computational load of complete attention
by incorporating a more general proximity bias than diffusion without committing to a specific model. Our
method is built on the observation that Fθ can be trained to ingest modified versions of the original graph
that better communicate structure and connectivity. Hence, we add new edges, nodes, and features to the
input graph. To preserve the information about the original topology of the input graph, we add positional
encodings. More formally, we design functions g ∶ G → G that modify graphs and give features to the new
nodes and edges. These functions can be prepended to any GNN Fθ ∶ G → Rn as Fθ ○ g ∶ G → Rn.

The following are desiderata informing our design of g: (i) ability to capture the original graph, (ii) ability
to incorporate long-range connections, (iii) computational efficiency, and (iv) minimal and flexible locality
bias. By using positional encodings and maintaining the original graph G as a subgraph of the modified
graph, we capture the original graph in our modified input (Section 4.2.1). By expanding the receptive
field around each node to r-hop neighborhoods we reduce computational load relative to complete-graph
attention, with limited inductive bias stemming from proximity. Additionally, expanded receptive fields
alleviate under-reaching and over-squashing (Section 6.1).

4 Approach

We modify graphs before inputting them to a downstream GNN model, instead of modifying the model itself.
Our approach does not remove edges or nodes in the original graph but only adds elements. Given input
G = (V, E, fv, fe), we create a new graph G′ = (V ′, E′, f ′v, f ′e) such that G is a subgraph of G′. Expanded
receptive fields are achieved in G′ by adding edges decorated with positional encodings as node or edge
attributes; we also add a fully-connected CLS node (“CLS” is short for classification as per Devlin et al.
(2018)). G′ is still a graph with node and edge attributes to which we may apply any GNN. This process
is represented by a function g ∶ G → G. We decompose the construction of g into topological rewiring and
positional encoding, detailed below. In a slight abuse of notation, we will subsequently use G to denote only
the subset of graphs relevant to a given machine learning problem. For example, for graph regression on
molecules, G denotes molecule graphs, with atoms as nodes and bonds as edges.

4.1 Topological Rewiring

We modify the input graph G to generate G′ in two steps:

Expanded receptive field. Given a graph G = (V, E, fv, fe) ∈ G and a positive integer r ∈ N+, we add
edges between all nodes within r hops of each other in G to create G′r = (V, E′, f ′v, f ′e). If G is annotated
with edge features, we assign to each edge in E′/E an appropriate constant feature Ce. See Figure 1 for an
illustration of the expanded receptive field around a node.

CLS node. Following Gilmer et al. (2017), we also include a “CLS”—or classification—node to our graph
connected to all others. We follow this procedure: Given a graph G, we (i) initialize a new graph G′ =
(V ′, E′, f ′v, f ′e) = G, (ii) add a new node vCLS to V ′, and (iii) set f ′v(vCLS) ∶= Cv for a constant Cv. Finally,
we set E′ ∶= E ∪ ⋃v∈V {(vCLS, v), (v, vCLS)}, with f ′e((vCLS, v)) = f ′e((v, vCLS)) ∶= Ce, where Ce is defined
above.

4.2 Positional Encodings

Given only the connectivity of a rewired graph G′r = (V ′, E′, f ′v, f ′e) from the two-step procedure above, it
may not be possible to recover the connectivity of the original graph G = (V, E, fv, fe). In the extreme, when
r is large and G is connected, G′r could become fully-connected, meaning that all topology is lost—removing
the central cue for graph-based learning. To combat this effect, we encode the original topology of G into
G′r via positional encodings, which are node and/or edge features. We consider several positional encoding

4



Published in Transactions on Machine Learning Research (10/2023)

Figure 1: Topological rewiring from the perspective of the black center node. Left: Original graph G. Right:
Rewired graph G′r with r = 2 and new edges e5, e6, e7, and e8. Various subsequent positional encodings allow
the NN (on input G′r) to discern certain or all aspects of the original topology (i.e., G) while alleviating
over-squashing and under-reaching.

functions for edges pe ∶ G × V ′ × V ′ → Rn or nodes pv ∶ G × V ′ → Rn, appending the output of pe as edge
or pv as node features to G′r. Section 4.2.1 lays out properties to compare choices of pe and/or pv. Then,
Section 4.2.2 provides concrete positional encodings compared in our experiments that trade off between the
properties we lay out.

4.2.1 Properties of Positional Encodings

There are countless ways to encode the subgraph topology of G within G′ in vertex features pv or edge features
pe. Below, we state a few properties we can check to give a framework for comparing the capabilities and
biases of possible choices.

Lossless encoding. While a GNN can ignore information in input G′, it cannot reconstruct information
that has been lost in constructing G′ from G. Yet, there can be benefits in forgetting information, e.g., when
dealing with noisy graphs or incorporating a stronger inductive bias (Rossi et al., 2020; Klicpera et al., 2019).
That said, a simple property to check for G′ equipped with positional encoding features pe, pv is whether we
can recover G from this information, that is, whether our encoding is lossless (or non-invasive). As long as
it is possible to identify G within g(G), g is an injection and non-invasive. Hence, a sufficient condition for
lossless positional encodings is as follows: If all edges in G have positional-encoding values not shared with
any edge in G′/G, then g ∶ G → G is a bijection. One way to achieve this condition is to use an additional
edge feature that is unique to the 1-ring, i.e., unique to G.

Discriminative power. Following work investigating the discriminative power of GNNs (Xu et al., 2019;
Brüel Gabrielsson, 2020), Ying et al. (2021) showed that expanded receptive fields together with shortest-
path positional encodings are strictly more powerful than the 1-Weisfeiler-Lehman (WL) test and hence more
powerful than 1-hop vanilla spatial GNN models (Xu et al., 2019). The combination of increased receptive
fields, positional encodings, and choice of subsequent GNN models determines discriminative power. In fact,
it follows from Ying et al. (2021) that the positional encodings presented below together with an increased
receptive field r > 1 and a vanilla spatial GNN model are strictly more powerful than the 1-WL test.

Computational time. Positional encodings may come at substantial computational cost when working
with r-hop neighborhoods. The cost of computing positional encodings affects total inference time, which
may be relevant in some learning settings. However, in our setting, the runtime of computing positional
encodings is an order of magnitude less than the subsequent inference time, and in our implementation the
asymptotic runtimes of computing the positional encodings are the same. See Appendix E.
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Local vs. global. The positional encoding of a vertex or edge can be local, meaning it incorporates
information from a limited-sized neighborhood in G, or global, in which case adding or removing a node
anywhere in G could affect all of the positional encodings.

Inductive bias. Our positional encodings can bias the results of the learning procedure, effectively com-
municating to the downstream GNN which properties of G and G′ are particularly important for learning.
Without positional encodings, our model would induce a bias stating that distances < r in our graph are
insignificant. More subtly, suppose ℓ is the distance (of length ≤ r) between two nodes in G corresponding to
a new edge in E′. Using ℓ directly as positional encoding rather than a decaying function, e.g. e−αℓ, makes
it easier or harder (resp.) to distinguish long distances in G.

A related consideration involves whether our model can imitate the inductive bias of past work. For example,
graph diffusion has been used to incorporate multi-hop connections into GNNs using fixed weights (Wang
et al., 2021a). We can ask whether our positional encodings on G′ are sufficient to learn to imitate the
behavior of a prescribed multi-hop model on G, e.g. whether a layer of our GNN applied to G′ can capture
multi-hop diffusion along G.

Over-squashing and under-reaching. Section 6.1 demonstrates, via the NeighborsMatch problem (Alon
and Yahav, 2021), that increased receptive fields as well as the CLS-node alleviate over-squashing; however,
this toy problem is concerned with matching node attributes and not with graph topology. We want positional
encodings that alleviate over-squashing in the sense that it enables effective information propagation for the
task at hand. Our experiments showing that expanded receptive fields alleviate the over-squashing problem
and that the best performing positional encoding varies across datasets showcase this. Additionally, our
experiments on the discriminative power of positional encodings in Appendix D further help discern the
different options.

4.2.2 Positional Encoding Options

Taking the properties above into consideration, we now give a few options for positional encodings below,
compared empirically in Section 6.

Shortest path. For any edge e ∈ G′r, the shortest-path positional encoding takes pe ∈ {0, 1, . . . , r} to be
the integer length of the shortest path in G between the corresponding nodes of E. These embeddings are
lossless because G is the subgraph of g(G) with pe = 1. They also are free to compute given our construction
of G′r from G. But, multiple vertices in the r-neighborhood of a vertex in V could have the same positional
encoding in V ′, and shortest path lengths are insufficient to capture complex inductive biases of multi-hop
GNNs like diffusion over large neighborhoods. Shortest-path positional encoding was previously used by
Ying et al. (2021) for extending G to a fully-connected graph, but they did not consider smaller r values.

Spectral embedding. Laplacian eigenvectors embed graph vertices into Euclidean space, providing per-
vertex features that capture multi-scale graph structure. They are defined by factorizing the graph Laplacian
matrix, ∆ = I −D−1/2AD−1/2, where D is the degree matrix and A is the adjacency matrix. We call the
result a spectral positional embedding. We can use the q smallest non-trivial Laplacian eigenvectors of G as
a node-based positional encoding pv ∶ V ′ → Rq; i.e., pv is the spectral embedding of G in G′. Note that q
represents an additional approximation as it truncates the spectrum. Following Dwivedi et al. (2020), since
these eigenvectors are known only up to a sign, we randomly flip the sign during training. Prior work consider
Laplacian eigenvectors as additional node features without topological rewiring (Dwivedi et al., 2020).

Spectral positional encodings do not necessarily make g injective. Even when q = ∣V ∣, this encoding fails
to distinguish isospectral graphs (Von Collatz and Sinogowitz, 1957), but these are rarely encountered in
practice. On the other hand, spectral signatures are common for graph matching and other tasks (Hu et al.,
2014). Moreover, unlike the remaining features in this section, spectral positional encodings capture global
information about G rather than only r-neighborhoods. Finally, we note that the diffusion equation for
graphs can be written as ut = −∆u, where u is a function of vertex and time, and ut is the derivative of u
with respect to time; this graph PDE can be solved in closed-form given the eigenvectors and eigenvalues
of ∆. Hence, given the spectral embedding of G in G′, we can simulate diffusion-based multi-hop GNN
architectures up to spectral truncation.
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Powers of the adjacency matrix. Our final option for positional encoding generalizes the shortest path
encoding and can capture the inductive biases of diffusion-based GNNs. The entry at position (i, j) of the
k-th power Ak of the adjacency matrix A of graph G gives the number of paths of length k between node
i and j in G. Concatenating the powers from k = 1, . . . , r, we get for each edge e in G′ an integer vector
pe ∈ Nr giving the powers of the adjacency matrix positional encoding.

This embedding can be used to recover the shortest-path embedding. This adjacency-derived embedding
can also generalize the inductive bias of diffusion-based multi-hops GNNs. In particular, diffusion aggre-
gation weights are often approximated using a Taylor series, W = ∑∞i=0 θiA

i ≈ ∑r
i=0 θiA

i ∶= W , where θi are
a prescribed decaying sequence (θi > θi+1). The entries of W above can be computed linearly from the
adjacency-powers positional encoding. Hence, assuming the underlying model is an universal function ap-
proximator, up to truncation of the series the adjacency-powers positional encoding is strictly more general
than using prescribed diffusion-based aggregation weights on G.

Lossless encodings. The previously discussed lossless-encoding properties of our graph rewiring method
are accomplished by two of the above-mentioned positional encodings:
Proposition 1. Shortest-path and adjacency matrix positional encodings yield lossless rewirings.

Proof. Recovering the original graph G = (V, E) from the rewired graph G′ = (V, E′) is almost trivial. With
the shortest-path position encoding the original graph can be recovered via E = {e∣e ∈ E′, pe = 1} and for
powers-of-the-adjacency-matrix encodings via E = {e∣e ∈ E′, (pe)1 = 1}.

5 Implementation Details

Our method is compatible with most GNN architectures. Here we adopt GatedGCN (Bresson and Laurent,
2018), MoNet (Monti et al., 2017), and an implementation of the Transformer (Vaswani et al., 2017); see
Appendix B for details. For each model, we consider graph rewiring with a different r-hop receptive field
around each node, and compare with and without the CLS-node, as well as the three positional encodings
introduced in Section 4.2.2.

Input and readout layers. Typically, GNNs on a graph G = (V, E, fv, fe) first embed node features fv and
edge features fe through a small feed-forward network (FFN) input layer. When incorporating positional
encodings per edge/node, we embed using a small FFN and add them at this input layer. After this layer,
it updates node and edge representations through successive applications of GNN layers. Lastly, a readout
layer is applied to the last GNN layer L. For node classification, it is typically a FFN applied to each node
feature hL

i . For graph classification, it is typically an FFN applied to the mean or sum aggregation of all
node features hL. For graph classification and when using the CLS-node, we aggregate by applying the FFN
to the CLS-node’s features in the last layer.

6 Experiments

We evaluate performance on six benchmark graph datasets: ZINC, AQSOL, PATTERN, CLUSTER, MNIST,
and CIFAR10 from (Dwivedi et al., 2020). The benchmark includes a training time limit of 12 hours; we use
similar compute to their work via a single TeslaV100 GPU. Training also stops if for a certain number of
epochs the validation loss does not improve (Dwivedi et al., 2020). Thus, our experiments consider the ease of
training and efficient use of compute. For the first two datasets, we run GatedGCN, MoNet, and Transformer
to show that rewiring and positional encoding work for different models; for the other datasets we run only
GatedGCN to focus on the effects of receptive field size, the CLS node, and positional encodings. For all
datasets, we run with increasing receptive fields, with different positional encodings, and with or without the
CLS-node. In the tables, density is the average of the densities (defined as the ratio ∣E∣/∣V ∣2) of each graph in
the dataset rewired to the respective receptive field size. See Appendix A for details.

Table 1 compares our best results with other top performing methods and models. All our top performing
models come from the GatedGCN, although the Transformer performs comparably; however, the Transformer
was harder to train—see Appendix B. MoNet performs worse but still sees significant improvements from

7



Published in Transactions on Machine Learning Research (10/2023)

our approach. Our GatedGCN implementation was taken from the same work (Dwivedi et al., 2020) that
introduced the benchmarks and code that we use. Thus, hyperparameters might be better adapted to the
GatedGCN. This highlights the benefits of our model-agnostic approach, which allows us to pick the best
models from Dwivedi et al. (2020) and combine them with our methods. Our approach with 100K parameters
achieves top performance on all datasets among models with 100K parameters and even outperforms 500K-
parameter models.

ZINC, Graph Regression. ZINC consists of molecular graphs and the task is graph property regression
for constrained solubility. Each ZINC molecule is represented as a graph of atoms with nodes and bonds
as edges. In Table 2 we present results for r from 1 to 10. The density column shows that these graphs
are sparse and that the number of edges increases almost linearly as the receptive field r is increased.
Performance across all settings noticeably improves when increasing r above 1. Top performance is achieved
with the CLS-node and powers-of-the-adjacency positional encoding at r = 4, and at 52% of the edges and
compute compared to complete attention. When using the CLS node and/or spectral positional encodings,
top performance generally occurs at lower r, which is likely due to the global nature of these changes to the
graphs. The GatedGCN and Transformer perform comparably for the same settings, with a slight edge to
the GatedGCN. The two models show the same performance trends between settings, i.e., both increased
receptive fields and the CLS-node boost performance. Further, Ying et al. (2021) include a performance of
0.123 on ZINC with their Graphormer(500K), i.e., a Transformer with positional encodings and complete
attention. However, their training is capped at 10,000 epochs while ours is capped at 1,000 epochs; training
their Graphormer(500K) with same restrictions leads to a score of 0.26 on ZINC.

AQSOL, Graph Regression. AQSOL consists of the same types of molecular graphs as ZINC. The
densities of AQSOL graphs are slightly higher than those of ZINC. For all settings not including CLS-
node or spectral positional encodings, performance improves significantly when increasing r above 1 (see
Table 3); in these settings, better performing r are larger than for ZINC. However, when including CLS
node or spectral positional encodings, performance changes much less across different r. This indicates the
importance of some form of global bias on this dataset. At least one of larger r values, spectral positional
encoding, or the CLS-token is required to provide the global bias, but the effect of them differs slightly
across the two models. GatedGCN performs significantly better, and larger r-values still boosts performance
when combined with the CLS-token for MoNet, but not for GatedGCN. MoNet uses a Bayesian Gaussian
Mixture Model (Dempster et al., 1977) and since MoNet was not constructed with edge-features in mind,
we simply add edge embeddings to the attention coefficients. Not surprisingly, this points to the importance
of including edge features for optimal use of expanded receptive fields and positional encodings.

CLUSTER, Node Classification. CLUSTER is a node classification dataset generated using a stochastic
block model (SBM). The task is to assign a cluster label to each node. There is a total of 6 cluster labels and
the average homophily is 0.34. CLUSTER graphs do not have edge features. Table 4 gives results for r-hop
neighborhoods from 1 to 3. As can be seen in the density column, at r = 3 all graphs are fully connected,
and more than 99% of them are fully connected at r = 2. Hence, these graphs are dense. Significant
improvements are achieved by increasing r for all but the spectral positional encoding (again showcasing
its global properties), which together with the CLS node perform competitively at r = 1. The CLS node
is helpful overall, especially at r = 1. The GatedGCN and Transformer perform comparably for all but the
spectral positional encodings where the Transformer breaks down. We found that this breakdown was due
to the placement of batch normalization, discussed in Appendix B.1.

PATTERN, Node Classification. The PATTERN dataset is also generated using an SBM model and
has an average homophily of 0.66. The task is to classify the nodes into two communities and graphs have
no edge features. Table 5 shows results for r-hops from 1 to 3. Similarly to CLUSTER, the density column
shows that the graphs are dense. Significant improvements are achieved by increasing r > 1 and/or using
the CLS-node. Performance generally decreases at r = 3. Similarly to CLUSTER, the CLS-node helps at
r = 1, but for both CLUSTER and PATTERN, top performing model comes from a larger r > 1 without
the CLS-node, suggesting that trade-offs exist between CLS-node and increased receptive fields. Compared
to CLUSTER, our approach shows a smaller performance boost for PATTERN, which suggests that our
approach is more helpful for graphs with low homophily. We investigate this further in Appendix F.
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Table 1: Benchmarking. Higher is better for all but for ZINC and AQSOL where lower is better. Benchmarks
can be found in Dwivedi et al. (2020); Corso et al. (2020); Bouritsas et al. (2020); Dwivedi and Bresson (2021).
The benchmarks (Dwivedi et al., 2020) and corresponding leaderboard have 100K and 500K parameter
entries. OOM is short for out-of-memory errors.

Datasets: PATTERN CLUSTER MNIST CIFAR10 ZINC AQSOL
task: node class. node class. graph class. graph class. graph reg. graph reg.
# graphs: 14000 12000 70000 60000 12000 9823
Avg # nodes: 117.47 117.20 70.57 117.63 23.16 17.57
Avg # edges: 4749.15 4301.72 564.53 941.07 49.83 35.76
MoNet(100K) 85.482±0.037 58.064±0.131 90.805±0.032 54.655±0.518 0.397±0.010 1.395±0.027
GAT(100K) 75.824±1.823 57.732±0.323 95.535±0.205 64.223±0.455 0.475±0.007 1.441±0.023
GraphSage(100K) 50.516±0.001 50.454±0.145 97.312±0.097 65.767±0.308 0.468±0.003 1.431±0.010
GIN(100K) 85.590±0.011 58.384±0.236 96.485±0.252 55.255±1.527 0.387±0.015 1.894±0.024
PNA(100K) 86.730±0.050 63.020±0.262 97.940±0.120 70.350±0.630 0.188±0.004 1.083±0.011
GatedGCN(100K) 84.480±0.122 60.404±0.419 97.340±0.143 67.312±0.311 0.328±0.003 1.295±0.016
GatedGCN-PE/E(500K) 86.363±0.127 74.088±0.344 OOM OOM 0.214±0.006 0.996±0.008
GraphTransformer(500K) 54.941±3.739 27.121±8.471 OOM OOM 0.598±0.049 1.110±0.010
Ours(100K) 86.757±0.031 77.575±0.149 98.743±0.062 73.808±0.193 0.143±0.006 0.920±0.009

MNIST, Graph Classification. MNIST is an image classification dataset converted into super-pixel
graphs, where each node’s feature includes super-pixel coordinates and intensity. The images are of hand-
written digits, and the task is to classify the digit. Table 6 summarizes results for r from 1 to 3. Not all
graphs are fully connected at r = 3, but training at r = 4 exceeds our memory limit. Noticeable perfor-
mance gains are achieved at r = 2, but performance generally decreases at r = 3. The CLS-node consistently
improves performance at r = 1 but not otherwise, indicating that the CLS-node and increased r-size have
subsumed effects.

CIFAR10, Graph Classification. CIFAR10 is an image classification dataset converted into super-pixel
graphs, where each node’s features are the super-pixel coordinates and intensity. The images consist of ten
natural motifs, and the task is to classify the motif, e.g., dog, ship, or airplane. Table 7 provides results for
r from 1 to 3. Not all graphs are fully connected at r = 3, but training at r = 4 led to out-of-memory issues.
Top performing versions are all at r = 1, and performance degrades for r > 1. As with MNIST, the CLS-node
only improves performance at r = 1, again indicating its shared (subsumed) effects with increased r-sizes.

Table 2: Increasing r on ZINC/molecules 100K parameters.

type: density trans-adj trans-adj-cls trans-short trans-short-cls trans-lp trans-lp-cls gcn-adj gcn-adj-cls gcn-short gcn-short-cls gcn-lp gcn-lp-cls
r=1 .14 0.341±0.024 0.289±0.012 0.346±0.022 0.298±0.012 0.293±0.044 0.257±0.036 0.329±0.023 0.287±0.010 0.326±0.024 0.265±0.043 0.291±0.029 0.274±0.027
r=2 .27 0.297±0.019 0.234±0.021 0.295±0.030 0.220±0.040 0.263±0.024 0.253±0.030 0.265±0.021 0.198±0.011 0.263±0.019 0.204±0.022 0.233±0.023 0.199±0.009
r=3 .40 0.233±0.010 0.150±0.003 0.287±0.024 0.197±0.014 0.297±0.018 0.243±0.019 0.199±0.007 0.152±0.007 0.243±0.005 0.153±0.005 0.254±0.006 0.214±0.007
r=4 .52 0.217±0.014 0.145±0.003 0.294±0.027 0.194±0.014 0.325±0.013 0.288±0.032 0.180±0.009 0.143±0.006 0.236±0.008 0.167±0.010 0.305±0.010 0.307±0.028
r=5 .62 0.226±0.022 0.146±0.006 0.303±0.012 0.200±0.019 0.349±0.006 0.331±0.019 0.165±0.010 0.144±0.005 0.254±0.015 0.175±0.006 0.331±0.013 0.297±0.023
r=6 .71 0.206±0.005 0.169±0.010 0.305±0.014 0.209±0.016 0.373±0.012 0.343±0.009 0.171±0.007 0.152±0.007 0.255±0.009 0.185±0.009 0.352±0.005 0.337±0.009
r=7 .79 0.206±0.013 0.165±0.008 0.318±0.012 0.211±0.017 0.371±0.017 0.336±0.003 0.172±0.007 0.152±0.004 0.259±0.013 0.197±0.004 0.351±0.005 0.327±0.012
r=8 .85 0.212±0.012 0.180±0.010 0.341±0.035 0.235±0.031 0.369±0.009 0.338±0.009 0.192±0.008 0.182±0.012 0.276±0.019 0.210±0.025 0.345±0.006 0.330±0.006
r=9 .90 0.216±0.007 0.203±0.022 0.385±0.013 0.225±0.009 0.396±0.008 0.342±0.007 0.214±0.012 0.257±0.017 0.280±0.020 0.205±0.011 0.363±0.017 0.332±0.011
r=10 .94 0.247±0.021 0.238±0.014 0.366±0.027 0.245±0.023 0.398±0.009 0.350±0.011 0.270±0.045 0.304±0.032 0.275±0.008 0.206±0.010 0.370±0.013 0.336±0.003

gcn: GatedGCN, trans: Transformer, adj: adjacency p.e., short: shortest-path p.e., lp: spectral p.e., cls: CLS-node

Table 3: Increasing r on AQSOL 100K parameters.

type: density gcn-adj gcn-adj-cls gcn-short gcn-short-cls gcn-lp gcn-lp-cls mon-adj mon-adj-cls mon-short mon-short-cls mon-lp mon-lp-cls
r=1 .17 1.277±0.039 0.920±0.009 1.287±0.017 0.927±0.019 1.027±0.006 0.936±0.004 1.391±0.019 1.261±0.117 1.402±0.013 1.216±0.139 1.136±0.020 1.234±0.028
r=2 .37 1.268±0.011 0.956±0.019 1.273±0.019 0.947±0.016 1.049±0.016 0.961±0.027 1.357±0.020 1.205±0.049 1.376±0.032 1.145±0.055 1.193±0.021 1.269±0.155
r=3 .54 1.164±0.006 0.954±0.013 1.200±0.013 0.961±0.017 1.045±0.010 0.953±0.020 1.250±0.009 1.277±0.088 1.269±0.017 1.215±0.070 1.160±0.023 1.183±0.017
r=4 .67 1.118±0.008 0.943±0.017 1.132±0.012 0.951±0.008 1.056±0.007 0.937±0.019 1.240±0.018 1.183±0.039 1.188±0.027 1.158±0.036 1.199±0.021 1.225±0.056
r=5 .76 1.076±0.015 0.970±0.011 1.090±0.019 0.981±0.012 1.046±0.022 0.962±0.012 1.243±0.040 1.166±0.026 1.179±0.030 1.183±0.071 1.211±0.005 1.203±0.026
r=6 .82 1.056±0.021 0.941±0.020 1.064±0.017 0.945±0.012 1.054±0.018 0.933±0.008 1.229±0.031 1.195±0.041 1.206±0.013 1.151±0.044 1.194±0.014 1.217±0.038
r=7 .87 1.064±0.014 0.967±0.018 1.043±0.012 0.949±0.006 1.026±0.017 0.930±0.004 1.235±0.056 1.186±0.031 1.197±0.024 1.141±0.035 1.208±0.028 1.211±0.022
r=8 .90 1.054±0.014 0.956±0.017 1.057±0.008 0.952±0.009 1.035±0.009 0.944±0.014 1.213±0.025 1.179±0.043 1.212±0.022 1.144±0.016 1.193±0.013 1.182±0.019
r=9 .92 1.090±0.009 0.996±0.009 1.042±0.008 0.955±0.010 1.038±0.011 0.952±0.010 1.248±0.044 1.205±0.055 1.205±0.017 1.160±0.050 1.184±0.014 1.208±0.008
r=10 .93 1.092±0.010 0.966±0.008 1.035±0.009 0.953±0.018 1.037±0.011 0.951±0.010 1.228±0.011 1.264±0.067 1.164±0.037 1.161±0.038 1.195±0.024 1.192±0.015

gcn: GatedGCN, mon: MoNet, adj: adjacency p.e, short: shortest-path p.e., lp: spectral p.e., cls: CLS-node
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Table 4: Increasing r on CLUSTER 100K parameters.
type: density trans-adj trans-adj-cls trans-short trans-short-cls trans-lp* trans-lp-cls* gcn-adj gcn-adj-cls gcn-short gcn-short-cls gcn-lp gcn-lp-cls
r=1 .31 73.124±0.264 73.972±0.123 73.346±0.119 74.117±0.363 53.858±7.832 48.950±6.887 72.492±0.460 73.459±0.197 72.554±0.418 73.048±0.220 76.453±0.105 77.156±0.181
r=2 >.99 76.964±0.059 77.193±0.072 76.498±0.216 76.432±0.115 47.140±11.138 53.381±4.887 76.917±0.059 76.874±0.172 75.354±0.115 75.411±0.063 77.445±0.153 77.520±0.176
r=3 1.0 77.095±0.250 77.266±0.133 76.364±0.085 76.636±0.049 37.274±14.859 54.194±1.746 61.028±2.334 61.540±2.404 75.255±0.199 75.392±0.190 77.575±0.149 77.560±0.195

gcn: GatedGCN, trans: Transformer, adj: adjacency p.e., short: shortest-path p.e., lp: spectral p.e., cls: CLS-node, *: Training not
converging

Table 5: Increasing r on PATTERN 100K parameters.

type: density gcn-adj gcn-adj-cls gcn-lp gcn-lp-cls gcn-short gcn-short-cls
r=1 .43 85.715±0.036 86.723±0.006 86.547±0.026 86.713±0.031 85.681±0.033 86.732±0.020
r=2 >.99 86.698±0.047 86.707±0.029 86.723±0.031 86.747±0.011 86.757±0.031 86.736±0.014
r=3 1.0 85.471±0.949 84.657±0.977 86.718±0.024 86.744±0.015 86.712±0.031 86.739±0.027

gcn: GatedGCN, adj: adjacency p.e, short: shortest-path p.e., lp: spectral p.e., cls: CLS-node

Table 6: Increasing r on MNIST 100K parameters.

type: density gcn-adj gcn-adj-cls gcn-lp gcn-lp-cls gcn-short gcn-short-cls
r=1 .13 98.537±0.089 98.522±0.033 98.395±0.099 98.542±0.079 98.373±0.126 98.545±0.057
r=2 .34 98.630±0.134 98.743±0.062 98.720±0.067 98.605±0.032 98.597±0.070 98.552±0.107
r=3 .58 98.035±0.094 98.190±0.141 98.513±0.145 98.570±0.117 98.315±0.156 98.390±0.104

gcn: GatedGCN, adj: adjacency p.e., short: shortest-path p.e., lp: spectral p.e., cls: CLS-node

Table 7: Increasing r on CIFAR10 100K parameters.

type: density gcn-adj gcn-adj-cls gcn-lp gcn-lp-cls gcn-short gcn-short-cls
r=1 .08 73.415±0.717 73.498±0.842 72.525±0.471 73.808±0.193 72.610±0.574 72.950±0.520
r=2 .21 72.037±0.400 72.480±0.420 72.085±0.487 71.745±0.325 72.127±0.471 71.470±0.508
r=3 .38 70.688±0.171 69.580±0.488 70.380±0.308 70.318±0.295 71.285±0.722 71.188±0.498

gcn: GatedGCN, adj: adjacency p.e., short: shortest-path p.e., lp: spectral p.e., cls: CLS-node

6.1 NeighborsMatch, Over-squashing

Alon and Yahav (2021) introduce a toy problem called NeighborsMatch to benchmark the extent of over-
squashing in GNNs, while controlling over-squashing by limiting the problem radius rp. The graphs in the
dataset are binary trees of depth equal to the problem radius rp. Thus, the graphs are structured and sparse,
and the number of edges grows linearly with the increased receptive field r. See Figure 2, Appendix C, for
results with GatedGCN. Increasing the receptive field r with a step of 1 increases the attainable problem
radius with a step of 1, while using the CLS-node at r = 1 falls in between the performance of r = 2 and
r = 3 but with a much longer tail. Thus, this further showcases the subsumed as well as different effect
(complementary and conflicting) the receptive field and the CLS-node have, as also observed on the other
benchmarks.

6.2 Computational Analysis

For all positional encodings, the number of edges determines the asymptotic runtime and memory use. The
CLS-node only introduces an additive factor. Figures 5 and 6 in Appendix E show that the runtime in
practice scales roughly the same as the density, as the receptive field size is increased; real runtime has a
significant constant factor.

6.3 Selecting Positional Encoding and Hops Size

We recommend the adjacency positional encodings together with the CLS-node. In terms of ranked perfor-
mance across the 6 datasets, adjacency and spectral positional encodings perform the same, but the spectral
encoding performs considerably worse on the ZINC dataset, while the differences are smaller on the other
datasets. Additional experiments in Appendix D, Figure 3, assess the discriminative power of the different
encodings. However, there is no positional encoding superior in all aspects. Instead, each one has unique
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benefits as well as drawbacks. This is made apparent by considering r as a parameter and observing the
performance differences across values of r. Furthermore, the CLS-node is part of the best-performing config-
uration more often than not. Similarly, no fixed r is optimal for all datasets. Instead, optimal r depends on
the dataset and the amount of compute, and our experiments showcase the compute-performance trade-off.
Appendix F shows that increased r diminishes the reliance on homophily as an inductive bias, and thus low
homophily of a dataset could be used as an indicator for selecting an increased r. If the density does not
change much from a change in r then neither does performance. The use of the spectral positional encodings,
the CLS-node, or increased r have subsuming effects for multiple datasets; here the CLS-node or spectral
positional encodings may be preferred, computationally cheaper, alternatives to increasing r.

From this empirical study, for picking optimal r, we recommend computing the densities for increasing r and
picking the first one where the average density exceeds 0.5 to reap most of the performance boosts. This
seems to maintain a helpful locality bias as well as to significantly reduce the compute compared to complete
attention. See Appendix G for further discussion.

7 Discussion

Our simple graph rewiring and positional encodings achieve competitive performance, widening receptive
fields while alleviating over-squashing. This is much due to the ability to easily apply our method to models
that stem from a large body of work on GNNs, highlighting the benefits of our model-agnostic approach.

The reality is that attention with complete receptive fields is still computationally intractable for most
practitioners and researchers. However, here we show the compute-performance trade-offs of increased
receptive fields and that significant performance boosts can be obtained by increasing the receptive field
only slightly. Thus, opening up recent work to a broader range of practitioners as well as giving more fair
conditions for comparing GNNs. In addition, the systematic investigation of increased receptive fields and
positional encodings gives further insights into the necessity of homophily for the success of GNNs and
highlights other implicit biases in GNN architectures.
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A Training Details

Both code and training follow Dwivedi et al. (2020) closely, and to a lesser extent (Dwivedi and Bresson,
2021), which uses the same code base.

Like (Dwivedi et al., 2020), we use the Adam optimizer (Kingma and Ba, 2015) with the same learning rate
decay strategy. The initial learning rate is set to 10−3 and is reduced by half if the validation loss does
not improve after a fixed ("lr_schedule_patience") number of epochs, either 5 or 10. Instead of setting a
maximum number of epochs, the training is stopped either when the learning rate has reached 10−6 or when
the computational time reaches 12 hours (6 hours for NeighborsMatch). Experiments are run with 4 different
seeds; we report summary statistics from the 4 results.

Below we include training settings for the different datasets.

A.1 ZINC

"model": GatedGCN and Transformer,
"batch_size": 128,
"lr_schedule_patience": 10,
"max_time": 12

A.2 AQSOL

"model": GatedGCN and MoNet,
"batch_size": 128,
"lr_schedule_patience": 10,
"max_time": 12

A.3 CLUSTER

"model": GatedGCN and Transformer,
"batch_size": 48 (GatedGCN), 32 or 16 (Transformer),
"lr_schedule_patience": 5,
"max_time": 12

A.4 PATTERN

"model": GatedGCN,
"batch_size": 48,
"lr_schedule_patience": 5,
"max_time": 12

A.5 MNIST

"model": GatedGCN,
"batch_size": 128,
"lr_schedule_patience": 10,
"max_time": 12

A.6 CIFAR10

"model": GatedGCN,
"batch_size": 128,
"lr_schedule_patience": 10,
"max_time": 12
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A.7 NeighborsMatch

"model": GatedGCN,
"batch_size": 256,
"lr_schedule_patience": 10,
"max_time": 6

B Transformer Implementation

We implemented a simple version of the Transformer adapted to graphs:
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Here, h and e are node and edge features (resp.) from the previous layer. Wk, A, B ∈ Rd/H×d and C ∈ R1×d

are learnable weight-matrices, H is the number of attention heads, and BN is short for batch normalization.
∥Hk=1 denotes the concatenation of the attention heads.

B.1 Design Choices and Challenges

There are many variations on the Transformer model. Following Ying et al. (2021), we put the normalization
before the multi-head attention, which caused instability when training on CLUSTER with Laplacian (spec-
tral) positional encodings. This was fixed by putting the normalization after or using layer normalization
instead of batch normalization; however, these changes reduced performance on ZINC. While the GatedGCN
worked well with identical architecture parameters across datasets, we found that the Transformer needed
more variations to stay competitive on MNIST and CIFAR10; in particular, fewer layers and larger hidden
dimensions.

Transformers use multi-head attention which puts number-of-heads dimension vectors on each edge—seen
as directed. Hence, the memory load becomes 2 × ∣E∣ × num_heads (in our experiments, num_heads = 6),
which compared for GatedGCN is only 2 × ∣E∣. This causes a memory bottleneck for the Transformer that
may force one to use a reduced batch size to avoid memory issues.

B.2 Other Variants

We implemented other variants, including more involved Transformers. As in (Vaswani et al., 2017), we
ran the path-integers through sine and cosine functions of different frequencies, and inspired by (Dai et al.,
2019; Ke et al., 2020) we implemented a more involved incorporation of relative positions in the multi-head
attention (see below); however, we found performance to be comparable.

In natural language processing, the input is a sequence (a line graph) x = (x1, . . . , xn) of text tokens from
a vocabulary set V, with each token having a one-hot-encoding fV ∶ V → [0, 1]∣V ∣. The word embeddings
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E ∈ Rn×d for n tokens are formed as E = (WembedfV(xi) ∣ xi ∈ x) where Wembed ∈ Rd×∣V ∣ is a learnable weight
matrix.

The original Transformer model used absolute positional encodings. This means that we add the positional
encoding to the node embedding at the input layer. Consider a positional encoding function pe ∶ N0 → Rd.
Then the first input is

h0 = (WembedfV(xi) + pe(i) ∣ i = 1, . . . , n) = E +U

where U = (pe(i) ∣ i = 0, . . . n) ∈ Rn×d. Typically pe contains sine and cosine functions of different frequencies:

pe(k, 2 × l) = sin(k/10000(2×l)/d)
pe(k, 2 × l + 1) = cos(k/10000(2×l+1)/d)

where k ∈ N is the position and l ∈ N is the dimension. That is, each dimension of the positional encoding
corresponds to a sinusoid. The wavelengths form a geometric progression from 2π to 10000 × 2π. This
function was chosen because it was hypothesized that it would allow the model to easily learn to attend by
relative positions, since for any fixed offset m, pe(k+m) is a linear function of pe(k). It was also hypothesized
that it may allow the model to extrapolate to sequence lengths longer than the ones encountered during
training.

In many cases, absolute positional encodings have been replaced with relative fully learnable positional
encodings and relative partially learnable positional encodings (Dai et al., 2019). To justify these, consider
the first attention layer with absolute positional encodings:

Aabs
i,j = ExiWqW T

k ET
xj
+ExiWqW T

k UT
j +UiWqW T

k ET
xj
+UiWqW T

k UT
j

For relative (fully and partially) learnable positional encodings we have instead:
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i,j = ExiWqW T

k,EET
xj
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k,RRT
i−j + uW T

k,EET
xj
+ vW T

k,RRT
i−j

where u, v ∈ R1×d are learnable weights and Ri−j ∈ R1×d is a relative positional encoding between i and
j. Each term has the following intuitive meaning: term (1) represents content-based addressing, term (2)
captures a content-dependent positional bias, term (3) governs a global content bias, and (4) encodes a global
positional bias.

For relative fully learnable positional encodings, W T
k,RRT

i−j is a learnable weight in Rd×1 for each i − j ∈ N,
while for relative partially learnable positional encodings Ri,j = pe(∣i− j∣) where pe is the sinusoidal function
from before.

We implemented both fully and partially learnable positional encodings for the shortest-path positional
encodings (integer-valued) and related versions for the other positional encodings (in Rd). We include
results in Tables 8 and 9.

C Over-squashing

Results for over-squashing experiment can be found in Figure 2.

D Additional Evaluation of Positional Encodings

Here we provide a start to toy data and a task for comparing positional encodings. In this task we wish to
assess how powerful the positional encodings are in practice, i.e., how well they discriminate between different
graph isomorphism classes. Specifically, we generate 100 random Erdos graphs and then expand the receptive
field so that the graph is fully connected. Thus, the positional encodings become the mere instrument for
communicating the connectivity/topology of the original graph. The task is to retrieve a specific graph
among all 100 graphs, i.e., the task is graph classification and there is a 100 classes. Hence, achieving 100%
accuracy means that the GNN, based on the positional encodings, has been able to discriminate between all
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Table 8: Increasing r on ZINC/molecules 100K parameters.
type: trans-adj trans-short-cls
r=1 0.338±0.020 0.274±0.021
r=2 0.296±0.010 0.179±0.011
r=3 0.260±0.013 0.183±0.018
r=4 0.255±0.009 0.271±0.036
r=5 0.235±0.022 0.227±0.026
r=6 0.226±0.015 0.264±0.042
r=7 0.219±0.012 0.251±0.039
r=8 0.210±0.009 0.278±0.026
r=9 0.213±0.010 0.289±0.042
r=10 0.564±0.221 0.327±0.023

Table 9: Increasing r on CLUSTER 100K parameters.
type: trans-adj-cls trans-adj trans-short-cls trans-short
r=1 74.262±0.188 73.445±0.068 74.717±0.308 72.947±0.123
r=2 77.390±0.168 77.399±0.200 76.771±0.012 76.454±0.084
r=3 77.216±0.226 68.384±7.975 76.770±0.094 76.521±0.250
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Figure 2: NeighborsMatch (Alon and Yahav, 2021). Benchmarking the extent of over-squashing via the
problem radius rp.
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Figure 3: Learning to retrieve random Erdos graphs.

graphs. We only look at train accuracy here, since we’re interested in the power to overfit, not to generalize.
Results can be found in Figure 3.

All positional encodings are able to solve that task after a sufficient amount of training, besides Adj-10. Adj-5
and Adj-10 encode the adjacency matrix to the power of 5 and 10 respectively (at both points all graphs
are fully connected). Adj-10 encodes between any two nodes the number of paths of length 10, number of
path of length 9, and so on. The experiments indicate that too much such information confuses the GNN
and makes it harder to discriminate between graphs. The shortest and Adj-5 positional encodings are the
fastest at solving the task. This can be due to the fact that the Laplacian positional encoding is only unique
up to a sign and that we randomly switch the sign during training.

E Computational Runtime and Memory Use

In our implementation, the step of computing the positional encodings as well as expanding the r-hops of
the graph is done in the same process for shortest-path and adjacency positional encodings; thus this step
always occur and we found that implementing it via iterative matrix multiplications of the adjacency matrix
gave the fastest results. How this scales with the r-size can be found in Figure 4. Since each increment
of the r-size results in an additional matrix multiplication, the linear increase is expected. The spectral
positional encoding has the same additive runtime per graph across r-sizes of 1.3 × 10−3 seconds. These
matrix multiplications are done on CPU rather than GPUs, but running them on GPUs could results in
speed-ups. However, the runtime for computing these positional encodings is at least an order of magnitude
smaller (per graph) than the runtime for running the subsequent GNN on a GPU, so there was no need to
optimize this runtime further.

In Figures 5 and 6 we include actual runtime of the GNN (on GPU) of different positional encodings and
hops sizes, juxtaposed with the density of the modified graphs, for the ZINC and CIFAR10 datasets. Note,
we are here excluding the computation of the positional encoding on the input graph, which can be found
in Figure 4.

Most graphs to which GNNs are applied to are connected and typically the number of edges are greater than
the number of nodes, i.e., ∣E∣ ≥ ∣V ∣. Since all established GNNs make use of the edges in one way or another,
the number of edges usually determines the asymptotic behavior of the runtime and memory use, i.e., they
are in O(∣E∣). With modern deep learning and specialized graph learning framework, GPU-parallelization
and other more technical aspect affect memory and runtime. Thus, Figures 5 and 6 compare theoretical
runtime (dominated by the density) with actual runtime of code run on GPUs. We find that density and
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Figure 4: P.E. Computational Time on ZINC/molecules. The average densities across graphs for r from 1
through 10 are .14, .27, .40, .52, .62, .71, .79, .85, .90, and .94.

actual runtime is strongly correlated. In Figure 7 we include the memory use for increasing radius on ZINC
dataset, and find its roughly linear with the density as well.

F Homophily Score and Performance

We include experiments to investigate the correlation between homophily score (Ma et al., 2021) and perfor-
mance when increasing hops size. This applies to the node classification datasets, CLUSTER and PATTERN,
that we used. We split the test set into three buckets, which is just a sorted segmentation of the graphs with
increasing homology scores. We evaluate trained Gated-GCN models with adjacency positional encodings
for r-values 1 and 2 (at r = 2 almost all graphs are fully connected). See Tables 10 and 11 for results.

We find that high homophily score correlates much stronger with performance when r = 1 than it does at
r = 2. This indicates that increased r-size diminishes the reliance on homophily as an inductive bias.

Table 10: Increasing r on CLUSTER homophily buckets.
density homophily score: 0.315±0.008 0.336±0.006 0.366±0.0160
.31 r=1 71.494±0.619 72.361±0.462 73.812±0.265
>.99 r=2 77.010±0.234 76.660± 0.143 76.965±0.242

Table 11: Increasing r on PATTERN homophily buckets.
density homophily score: 0.567±0.031 0.652±0.026 0.774±0.051
.43 r=1 83.958±0.031 86.862±0.021 92.154±0.492
>.99 r=2 84.197±0.048 87.214± 0.062 87.085±0.082

G Optimal Positional Encoding and Hops Size

Again, we recommend the adjacency positional encodings together with the CLS-node. We find that in terms
of ranked performance on the 6 datasets, adjacency- and spectral positional encodings perform at the same
level, but the spectral encoding perform considerably worse on the ZINC datasets, while the differences are
smaller on the other datasets. The spectral encoding hardcode global-to-local information on the nodes and
the size of the encoding-vector is a hyperparameter; we found performance not to be too sensitive to this
hyperparameter but future work could further investigate this. Spectral embeddings also use less memory
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Figure 5: GNN Computational Time on ZINC/molecules
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Figure 7: GNN Memory use on ZINC/molecules

as it does not encode its embeddings as edge-features; however, since information still is propagated along
edges we find this memory saving to be significant but not asymptotically different. Adjacency encoding
breaks down faster as the r-size is increased compare to the other positional encodings, we believe this to be
due to the corresponding increase in size of the embedding-vectors and its introducing low-signal information
that is also easy to overfit to, e.g., the number of paths of length 10 between two nodes (where any edge can
be used multiple times). The Erdos experiments in Appendix D support this observation. However, all in
all, the adjacency encoding stands out slightly considering the performance, runtime, memory use, and toy
experiments. Furthermore, the CLS-node is part of the best performing configuration more times than it is
not, and it has the additional advantage of leading to peak performance at lower r-sizes where in some cases
it also has reduced runtime and memory use compared instead to increasing the r-size.

In this work, we do not find a fixed r-size that is optimal for all datasets. The optimal r depends on the
dataset and the amount of compute available. Given the fixed amount of compute used in our experiments,
we found that all the best performance was found at r-size four or smaller. We provide heuristic for selecting
a good r-size but ultimately it depends on the amount of compute and memory available.
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