
Under review as a conference paper at ICLR 2023

THEORETICAL CHARACTERIZATION OF HOW NEURAL
NETWORK PRUNING AFFECTS ITS GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

It has been observed in practice that applying pruning-at-initialization methods to
neural networks and training the sparsified networks can not only retain the test-
ing performance of the original dense models, but also sometimes even slightly
boost the generalization performance. Theoretical understanding for such exper-
imental observations are yet to be developed. This work makes the first attempt
to study how different pruning fractions affect the model’s gradient descent dy-
namics and generalization. Specifically, this work considers a classification task
for overparameterized two-layer neural networks, where the network is randomly
pruned according to different rates at the initialization. It is shown that as long
as the pruning fraction is below a certain threshold, gradient descent can drive
the training loss toward zero and the network exhibits good generalization per-
formance. More surprisingly, the generalization bound gets better as the pruning
fraction gets larger. To complement this positive result, this work further shows
a negative result: there exists a large pruning fraction such that while gradient
descent is still able to drive the training loss toward zero (by memorizing noise),
the generalization performance is no better than random guessing. This further
suggests that pruning can change the feature learning process, which leads to the
performance drop of the pruned neural network. Up to our knowledge, this is the
first generalization result for pruned neural networks, suggesting that pruning can
improve the neural network’s generalization.

1 INTRODUCTION

Neural network pruning can be dated back to the early stage of the development of neural networks
(LeCun et al., 1989). Since then, many research works have been focusing on using neural network
pruning as a model compression technique, e.g. (Molchanov et al., 2019; Luo & Wu, 2017; Ye et al.,
2020; Yang et al., 2021). However, all these work focused on pruning neural networks after training
to reduce inference time, and, thus, the efficiency gain from pruning cannot be directly transferred to
the training phase. It is not until the recent days that Frankle & Carbin (2018) showed a surprising
phenomenon: a neural network pruned at the initialization can be trained to achieve competitive
performance to the dense model. They called this phenomenon the lottery ticket hypothesis. The
lottery ticket hypothesis states that there exists a sparse subnetwork inside a dense network at the
random initialization stage such that when trained in isolation, it can match the test accuracy of the
original dense network after training for at most the same number of iterations. On the other hand,
the algorithm Frankle & Carbin (2018) proposed to find the lottery ticket requires many rounds
of pruning and retraining which is computationally expensive. Many subsequent works focused
on developing new methods to reduce the cost of finding such a network at the initialization (Lee
et al., 2018; Wang et al., 2019; Tanaka et al., 2020; Liu & Zenke, 2020; Chen et al., 2021b). A
further investigation by Frankle et al. (2020) showed that some of these methods merely discover
the layer-wise pruning ratio instead of sparsity pattern.

The discovery of the lottery ticket hypothesis sparkled further interest in understanding this phe-
nomenon. Another line of research focused on finding a subnetwork inside a dense network at the
random initialization such that the subnetwork can achieve good performance (Zhou et al., 2019;
Ramanujan et al., 2020). Shortly after that, Malach et al. (2020) formalized this phenomenon which
they called the strong lottery ticket hypothesis: under certain assumption on the weight initialization
distribution, a sufficiently overparameterized neural network at the initialization contains a subnet-

1

Under review as a conference paper at ICLR 2023

work with roughly the same accuracy as the target network. Later, Pensia et al. (2020) improved
the overparameterization parameters and Sreenivasan et al. (2021) showed that such a type of result
holds even if the weight is binary. Unsurprisingly, as it was pointed out by Malach et al. (2020),
finding such a subnetwork is computationally hard. Nonetheless, all of the analysis is from a func-
tion approximation perspective and none of the aforementioned works have considered the effect of
pruning on gradient descent dynamics, let alone the neural networks’ generalization.

Interestingly, via empirical experiments, people have found that sparsity can further improve gener-
alization in certain scenarios (Chen et al., 2021a; Ding et al., 2021; He et al., 2022). There have also
been empirical works showing that random pruning can be effective (Frankle et al., 2020; Su et al.,
2020; Liu et al., 2021b). However, theoretical understanding of such benefit of pruning of neural
networks is still limited. In this work, we take the first step to answer the following important open
question from a theoretical perspective:

How does pruning fraction affect the training dynamics and the model’s general-
ization, if the model is pruned at the initialization and trained by gradient descent?

We study this question using random pruning. We consider a classification task where the input data
consists of class-dependent sparse signal and random noise. We analyze the training dynamics of
a two-layer convolutional neural network pruned at the initialization. Specifically, this work makes
the following contributions:

• Mild pruning. We prove that there indeed exists a range of pruning fraction where the
pruning fraction is small and the generalization error bound gets better as pruning fraction
gets larger. In this case, the signal in the feature is well-preserved and due to the effect of
pruning purifying the feature, the effect from noise is reduced. We provide detailed expla-
nation in Section 3. Up to our knowledge, this is the first theoretical result on generalization
for pruned neural networks, which suggests that pruning can improve generalization under
some setting. Further, we conduct experiments to verify our results.

• Over pruning. To complement the above positive result, we also show a negative result: if
the pruning fraction is larger than a certain threshold, then the generalization performance
is no better than a simple random guessing, although gradient descent is still able to drive
the training loss toward zero. This further suggests that the performance drop of the pruned
neural network is not solely caused by the pruned network’s own lack of trainability or
expressiveness, but also by the change of gradient descent dynamics due to pruning.

• Technically, we develop novel analysis to bound pruning effect to weight-noise and weight-
signal correlation. Further, in contrast to many previous works that considered only the
binary case, our analysis handles multi-class classification with general cross-entropy loss.
Here, a key technical development is a gradient upper bound for multi-class cross-entropy
loss, which might be of independent interest.

Pictorially, our result is summarized in Figure 1. We point out that the neural network training we
consider is in the feature learning regime, where the weight parameters can go far away from their
initialization. This is fundamentally different from the popular neural tangent kernel regime, where
the neural networks essentially behave similar to its linearization.

1.1 RELATED WORKS

The Lottery Ticket Hypothesis and Sparse Training. The discovery of the lottery ticket hypothe-
sis (Frankle & Carbin, 2018) has inspired further investigation and applications. One line of research
has focused on developing computationally efficient methods to enable sparse training: the static
sparse training methods are aiming at identifying a sparse mask at the initialization stage based on
different criterion such as SNIP (loss-based) (Lee et al., 2018), GraSP (gradient-based) (Wang et al.,
2019), SynFlow (synaptic strength-based) (Tanaka et al., 2020), neural tangent kernel based method
(Liu & Zenke, 2020) and one-shot pruning (Chen et al., 2021b). Random pruning has also been con-
sidered in static sparse training such as uniform pruning (Mariet & Sra, 2015; He et al., 2017; Gale
et al., 2019; Suau et al., 2018), non-uniform pruning (Mocanu et al., 2016), expander-graph-related
techniques (Prabhu et al., 2018; Kepner & Robinett, 2019) Erdös-Rényi (Mocanu et al., 2018) and
Erdös-Rényi-Kernel (Evci et al., 2020). On the other hand, dynamic sparse training allows the

2

Under review as a conference paper at ICLR 2023

Probability Density

Signal Strengthμ

Mild Pruning

Full model

Over Pruning

Figure 1: A pictorial demonstration of our results. The bell-shaped curves model the distribution of
the signal in the features, where the mean represents the signal strength and the width of the curve
indicates the variance of noise. Our results show that mild pruning preserves the signal strength and
reduces the noise variance (and hence yields better generalization), whereas over pruning lowers
signal strength albeit reducing noise variance.

sparse mask to be updated (Mocanu et al., 2018; Mostafa & Wang, 2019; Evci et al., 2020; Jayaku-
mar et al., 2020; Liu et al., 2021c;d;a; Peste et al., 2021). The sparsity pattern can also be learned
by using sparsity-inducing regularizer (Yang et al., 2020). Recently, He et al. (2022) discovered that
pruning can exhibit a double descent phenomenon when the data-set labels are corrupted.

Another line of research has focused on studying pruning the neural networks at its random ini-
tialization to achieve good performance (Zhou et al., 2019; Ramanujan et al., 2020). In particular,
Ramanujan et al. (2020) showed that it is possible to prune a randomly initialized wide ResNet-50
to match the performance of a ResNet-34 trained on ImageNet. This phenomenon is named the
strong lottery ticket hypothesis. Later, Malach et al. (2020) proved that under certain assumption
on the initialization distribution, a target network of width d and depth l can be approximated by
pruning a randomly initialized network that is of a polynomial factor (in d, l) wider and twice deeper
even without any further training. However finding such a network is computationally hard, which
can be shown by reducing the pruning problem to optimizing a neural network. Later, Pensia et al.
(2020) improved the widening factor to being logarithmic and Sreenivasan et al. (2021) proved that
with a polylogarithmic widening factor, such a result holds even if the network weight is binary. A
follow-up work shows that it is possible to find a subnetwork achieving good performance at the
initialization and then fine-tune (Sreenivasan et al., 2022). Our work, on the other hand, analyzes
the gradient descent dynamics of a pruned neural network and its generalization after training.

Analyses of Training Neural Networks by Gradient Descent. A series of work (Allen-Zhu et al.,
2019; Du et al., 2019; Lee et al., 2019; Zou et al., 2020; Zou & Gu, 2019; Ji & Telgarsky, 2019;
Chen et al., 2020b; Song & Yang, 2019; Oymak & Soltanolkotabi, 2020) has proved that if a deep
neural network is wide enough, then (stochastic) gradient descent provably can drive the training
loss toward zero in a fast rate based on neural tangent kernel (NTK) (Jacot et al., 2018). Further,
under certain assumption on the data, the learned network is able to generalize (Cao & Gu, 2019;
Arora et al., 2019). However, as it is pointed out by Chizat et al. (2019), in the NTK regime, the
gradient descent dynamics of the neural network essentially behaves similarly to its linearization
and the learned weight is not far away from the initialization, which prohibits the network from
performing any useful feature learning. In order to go beyond NTK regime, one line of research
has focused on the mean field limit (Song et al., 2018; Chizat & Bach, 2018; Rotskoff & Vanden-
Eijnden, 2018; Wei et al., 2019; Chen et al., 2020a; Sirignano & Spiliopoulos, 2020; Fang et al.,
2021). Recently, people have started to study the neural network training dynamics in the feature
learning regime where data from different class is defined by a set of class-related signals which
are low rank (Allen-Zhu & Li, 2020; 2022; Cao et al., 2022; Shi et al., 2021; Telgarsky, 2022).
However, all previous works did not consider the effect of pruning. Our work also focuses on the
aforementioned feature learning regime, but for the first time characterizes the impact of pruning on
the generalization performance of neural networks.

2 PRELIMINARIES AND PROBLEM FORMULATION

In this section, we introduce our notation, data generation process, neural network architecture and
the optimization algorithm.

3

Under review as a conference paper at ICLR 2023

Notations. We use lower case letters to denote scalars and boldface letters and symbols (e.g. x) to
denote vectors and matrices. We use ⊙ to denote element-wise product. For an integer n, we use [n]
to denote the set of integers {1, 2, . . . , n}. We use x = O(y), x = Ω(y), x = Θ(y) to denote that
there exists a constant C such that x ≤ Cy, x ≥ Cy, x = Cy respectively. We use Õ, Ω̃ and Θ̃ to
hide polylogarithmic factor in these notations. Finally, we use x = poly(y) if x = O(yC) for some
positive constant C, and x = poly log y if x = poly(log y).

2.1 SETTINGS

Definition 2.1 (Data distribution of K classes). Consider we are given the set of signal vectors
{µei}Ki=1, where µ > 0 denotes the strength of the signal, and ei denotes the i-th standard basis
vector with its i-th entry being 1 and all other coordinates being 0. Each data point (x, y) with
x = [x⊤

1 ,x
⊤
2]

⊤ ∈ R2d and y ∈ [K] is generated from the following distribution D:

1. The label y is generated from a uniform distribution over [K].

2. A noise vector ξ is generated from the Gaussian distribution N (0, σ2
nI).

3. With probability 1/2, assign x1 = µy, x2 = ξ; with probability 1/2, assign x2 =
µy, x1 = ξ where µy = µey .

The sparse signal model is motivated by the empirical observation that during the process of training
neural networks, the output of each layer of ReLU is usually sparse instead of dense. This is partially
due to the fact that in practice the bias term in the linear layer is used (Song et al., 2021). For
samples from different classes, usually a different set of neurons fire. Our study can be seen as a
formal analysis on pruning the second last layer of a deep neural network in the layer-peeled model
as in Zhu et al. (2021); Zhou et al. (2022). We also point out that our assumption on the sparsity
of the signal is necessary for our analysis. If we don’t have this sparsity assumption and only make
assumption on the ℓ2 norm of the signal, then in the extreme case, the signal is uniformly distributed
across all coordinate and the effect of pruning to the signal and the noise will be essentially the
same: their ℓ2 norm will both be reduced by a factor of

√
p.

Network architecture and random pruning. We consider a two-layer convolutional neural net-
work model with polynomial ReLU activation σ(z) = (max{0, z})q , where we focus on the case
when q = 3 1 The network is pruned at the initialization by mask M where each entry in the mask
M is generated i.i.d. from Bernoulli(p). Let mj,r denotes the r-th row of Mj . Given the data (x, y),
the output of the neural network can be written as F (W ⊙M,x) = (F1(W1 ⊙M1,x), F2(W2 ⊙
M2,x), . . . , Fk(Wk ⊙Mk,x)) where the j-th output is given by

Fj(Wj ⊙Mj ,x) =

m∑
r=1

[σ(⟨wj,r ⊙mj,r,x1⟩) + σ(⟨wj,r ⊙mj,r,x2⟩)]

=

m∑
r=1

[σ(⟨wj,r ⊙mj,r,µ⟩) + σ(⟨wj,r ⊙mj,r, ξ⟩)].

The mask M is only sampled once at the initialization and remains fixed through the entire training
process. From now on, we use tilde over a symbol to denote its masked version, e.g., W̃ =
W ⊙M and w̃j,r = wj,r ⊙mj,r.

Since µj ⊙mj,r = 0 with probability 1−p, some neurons will not receive the corresponding signal
at all and will only learn noise. Therefore, for each class j ∈ [k], we split the neurons into two sets
based on whether it receives its corresponding signal or not:

Sj
signal = {r ∈ [m] : µj ⊙mj,r ̸= 0}, Sj

noise = {r ∈ [m] : µj ⊙mj,r = 0}.
Gradient descent algorithm. We consider the network is trained by cross-entropy loss with soft-
max. We denote by logiti(F,x) := eFi(x)∑

j∈[k] e
Fj(x) and the cross-entropy loss can be written as

1We point out that as many previous works (Allen-Zhu & Li, 2020; Zou et al., 2021; Cao et al., 2022),
polynomial ReLU activation can help us simplify the analysis of gradient descent, because polynomial ReLU
activation can give a much larger separation of signal and noise (thus, cleaner analysis) than ReLU. Our analysis
can be generalized to ReLU activation by using the arguments in (Allen-Zhu & Li, 2022).

4

Under review as a conference paper at ICLR 2023

ℓ(F (x, y)) = − log logity(F,x). The convolutional neural network is trained by minimizing the
empirical cross-entropy loss given by

LS(W) =
1

n

n∑
i=1

ℓ[F (W ⊙M;xi, yi)] = ESℓ[F (W ⊙M;xi, yi)],

where S = {(xi, yi)}ni=1 is the training data set. Similarly, we define the generalization loss as

LD := E(x,y)[ℓ(F (W ⊙M;x, y))].

The model weights are initialized from a i.i.d. Gaussian N (0, σ2
0). The gradient of the cross-entropy

loss is given by ℓ′j,i := ℓ′j(xi, yi) = logitj(F,xi)− I(j = yi). Since

∇wj,rLS(W ⊙M) = ∇wj,r⊙mj,rLS(W ⊙M)⊙mj,r = ∇w̃j,r
LS(W̃)⊙mj,r,

we can write the full-batch gradient descent update of the weights as

w̃
(t+1)
j,r = w̃

(t)
j,r − η∇w̃j,r

LS(W̃)⊙mj,r

= w̃
(t)
j,r −

η

n

n∑
i=1

ℓ
′(t)
j,i · σ′

(〈
w̃

(t)
j,r, ξi

〉)
· ξ̃j,r,i −

η

n

n∑
i=1

ℓ
′(t)
j,i σ

′
(〈

w̃
(t)
j,r,µyi

〉)
µyi

⊙mj,r,

for j ∈ [K] and r ∈ [m], where ξ̃j,r,i = ξi ⊙mj,r.

Condition 2.2. We consider the parameter regime described as follows: (1) Number of classes
K = O(log d). (2) Total number of training samples n = poly log d. (3) Dimension d ≥ Cd for
some sufficiently large constant Cd. (4) Relationship between signal strength and noise strength:
µ = Θ(σn

√
d log d) = Θ(1). (5) The number of neurons in the network m = Ω(poly log d). (6)

Initialization variance: σ0 = Θ̃(m−4n−1µ−1). (7) Learning rate: Ω(1/ poly(d)) ≤ η ≤ Õ(1/µ2).
(8) Target training loss: ϵ = Θ(1/ poly(d)).

Conditions (1) and (2) ensure that there are enough samples in each class with high probability.
Condition (3) ensures that our setting is in high-dimensional regime. Condition (4) ensures that the
full model can be trained to exhibit good generalization. Condition (5), (6) and (7) ensures that
the neural network is sufficiently overparameterized and can be optimized efficiently by gradient
descent. Condition (7) and (8) further ensures that training time is polynomial in d. We further
discuss the practical consideration of η and ϵ to justify their condition in Remark D.9.

3 MILD PRUNING

3.1 MAIN RESULT

The first main result shows that there exists a threshold on the pruning fraction p such that pruning
helps the neural network’s generalization.

Theorem 3.1 (Main Theorem for Mild Pruning, Informal). Under Condition 2.2, if p ∈ [C1
log d
m , 1]

for some constant C1, then with probability at least 1 − O(d−1) over the randomness in the data,
network initialization and pruning, there exists T = Õ(Kη−1σ2−q

0 µ−q +K2m4µ−2η−1ϵ−1) such
that

1. The training loss is below ϵ: LS(W̃
(T)) ≤ ϵ.

2. The generalization loss can be bounded by LD(W̃
(T)) ≤ O(Kϵ) + exp(−n2/p).

Theorem 3.1 indicates that there exists a threshold in the order of Θ(log d
m) such that if p is above

this threshold (i.e., the fraction of the pruned weights is small), gradient descent is able to drive
the training loss towards zero (as item 1 claims) and the overparameterized network achieves good
testing performance (as item 2 claims). In the next subsection, we explain why pruning can help
generalization via an outline of our proof, and we defer all the detailed proofs in Appendix D.

5

Under review as a conference paper at ICLR 2023

3.2 PROOF OUTLINE

Our proof contains the establishment of the following two properties:

• First we show that after mild pruning the network is still able to learn the signal, and the
magnitude of the signal in the feature is preserved.

• Then we show that given a new sample, pruning reduces the noise effect in the feature
which leads to the improvement of generalization.

We first show the above properties for three stages of gradient descent: initialization, feature growing
phase, and converging phase, and then establish the generalization property.

Initialization. First of all, readers might wonder why pruning can even preserve signal at all. Intu-
itively, a network will achieve good performance if its weights are highly correlated with the signal
(i.e., their inner product is large). Two intuitive but misleading heuristics are given by the following:

• Consider a fixed neuron weight. At the random initialization, in expectation, the signal
correlation with the weights is given by Ew,m[| ⟨w ⊙m,µ⟩ |] ≤ pσ0µ and the noise cor-

relation with the weights is given by Ew,m,ξ[| ⟨w ⊙m, ξ⟩ |] ≤
√
Ew,m,ξ[⟨w ⊙m, ξ⟩2] =

σ0σn

√
pd by Jensen’s inequality. Based on this argument, taking a sum over all the neu-

rons, pruning will hurt weight-signal correlation more than weight-noise correlation.
• Since we are pruning with Bernoulli(p), a given neuron will not receive signal at all with

probability 1− p. Thus, there is roughly p fraction of the neurons receiving the signal and
the rest 1 − p fraction will be purely learning from noise. Even though for every neuron,
roughly

√
p portion of ℓ2 mass from the noise is reduced, at the same time, pruning also

creates 1− p fraction of neurons which do not receive signals at all and will purely output
noise after training. Summing up the contributions from every neuron, the signal strength
is reduced by a factor of p while the noise strength is reduced by a factor of

√
p. We again

reach the conclusion of pruning under any rate will hurt the signal more than noise.

The above analysis shows that under any pruning rate, it seems pruning can only hurt the signal
more than noise at the initialization. Such analysis would be indicative if the network training is
under the neural tangent kernel regime, where the weight of each neuron does not travel far from its
initialization so that the above analysis can still hold approximately after training. However, when
the neural network training is in the feature learning regime, this average type analysis becomes
misleading. Namely, in such a regime, the weights with large correlation with the signal at the
initialization will quickly evolve into singleton neurons and those weights with small correlation
will remain small. In our proof, we focus on the featuring learning regime, and analyze how the
network weights change and what are the effect of pruning during various stages of gradient descent.

We now analyze the effect of pruning on weight-signal correlation and weight-noise correlation at
the initialization. Our first lemma leverages the sparsity of our signal and shows that if the pruning
is mild, then it will not hurt the maximum weight-signal correlation much at the initialization. On
the other hand, the maximum weight-noise correlation is reduced by a factor of

√
p.

Lemma 3.2 (Initialization). With probability at least 1− 2/d, for all i ∈ [n],

σ0σn

√
pd ≤ max

r

〈
w̃

(0)
j,r , ξi

〉
≤
√

2 log(Kmd)σ0σn

√
pd.

Further, suppose pm ≥ Ω(log(Kd)), with probability 1− 2/d, for all j ∈ [K],

σ0 ∥µj∥2 ≤ max
r∈Sj

signal

〈
w̃

(0)
j,r ,µj

〉
≤
√
2 log(8pmKd)σ0 ∥µj∥2 .

Given this lemma, we now prove that there exists at least one neuron that is heavily aligned with
the signal after training. Similarly to previous works (Allen-Zhu & Li, 2020; Zou et al., 2021; Cao
et al., 2022), the analysis is divided into two phases: feature growing phase and converging phase.

Feature Growing Phase. In this phase, the gradient of the cross-entropy is large and the weight-
signal correlation grows much more quickly than weight-noise correlation thanks to the polynomial
ReLU. We show that the signal strength is relatively unaffected by pruning while the noise level is
reduced by a factor of

√
p.

6

Under review as a conference paper at ICLR 2023

Lemma 3.3 (Feature Growing Phase, Informal). Under Condition 2.2, there exists time T1 such that

1. The max weight-signal correlation is large: maxr

〈
w̃

(T1)
j,r ,µj

〉
≥ m−1/q for j ∈ [K].

2. The weight-noise and cross-class weight-signal correlations are small: if j ̸= yi, then
maxj,r,i

∣∣∣〈w̃(T1)
j,r , ξi

〉∣∣∣ ≤ O(σ0σn

√
pd) and maxj,r,k

∣∣∣〈w̃(T1)
j,r ,µk

〉∣∣∣ ≤ Õ(σ0µ).

Converging Phase. We show that gradient descent can drive the training loss toward zero while the
signal in the feature is still large. An important intermediate step in our argument is the development
of the following gradient upper bound for multi-class cross-entropy loss which introduces an extra
factor of K in the gradient upper bound.
Lemma 3.4 (Gradient Upper Bound, Informal). Under Condition 2.2, we have∥∥∥∇LS(W̃

(t))⊙M
∥∥∥2
F
≤ O(Km2/qµ2)LS(W̃

(t)).

Proof Sketch. To prove this upper bound, note that for a given input (xi, yi), ℓ
′(t)
yi,i

∇Fyi
(xi) should

make major contribution to
∥∥∥∇ℓ(W̃;xi, yi)

∥∥∥
F

. Further note that |ℓ′(t)yi,i
| = 1 − logityi

(F ;xi) =∑
j ̸=yi

eFj(xi)∑
j eFj(xi)

≤
∑

j ̸=yi
eFj(xi)

eFyi
(xi)

. Now, apply the property that Fj(xi) is small for j ̸= yi (which we

prove in the appendix), the numerator will contribute a factor of K. To bound the rest, we utilize
the special property of multi-class cross-entropy loss: |ℓ′(t)j,i | ≤ |ℓ′(t)yi,i

| ≤ ℓ
(t)
i . However, a naive

application of this inequality will result in a factor of K3 instead K in our bound. The trick is to
further use the fact that

∑
j ̸=yi

|ℓ′(t)j,i | = |ℓ′(t)yi,i
|.

Using the above gradient upper bound, we can show that the objective can be minimized.
Lemma 3.5 (Converging Phase, Informal). Under Condition 2.2, there exists T2 such that for some
time t ∈ [T1, T2] we have

1. The results from the feature growing phase (Lemma 3.3) hold up to constant factors.

2. The training loss is small LS(W̃
(t)) ≤ ϵ.

Notice that the weight-noise correlation still remains reduced by a factor of
√
p after training.

Lemma 3.5 proves the statement of the training loss in Theorem 3.1.

Generalization Analysis. Finally, we show that pruning can purify the feature by reducing the
variance of the noise by a factor of p when a new sample is given. The lemma below shows that the
variance of weight-noise correlation for the trained weights is reduced by a factor of p.

Lemma 3.6. The neural network weight W̃⋆ after training satisfies that

P
ξ

[
max
j,r

∣∣〈w̃⋆
j,r, ξ

〉∣∣ ≥ (2m)−2/q

]
≤ 2Km exp

(
− (2m)−4/q

O(σ2
0σ

2
npd)

)
.

Using this lemma, we can show that pruning yields better generalization bound (i.e., the bound on
the generalization loss) claimed in Theorem 3.1.

4 OVER PRUNING

Our second result shows that there exists a relatively large pruning fraction (i.e., small p) such that
the learned model yields poor generalization, although gradient descent is still able to drive the
training error toward zero. The full proof is defered to Appendix E.
Theorem 4.1 (Main Theorem for Over Pruning, Informal). Under Condition 2.2 if p = Θ(1

Km log d),
then with probability at least 1−1/ poly log d over the randomness in the data, network initialization
and pruning, there exists T = O(η−1nσq−2

0 σ−q
n (pd)−q/2 + η−1ϵ−1m4nσ−2

n (pd)−1) such that

7

Under review as a conference paper at ICLR 2023

1. The training loss is below ϵ: LS(W̃
(T)) ≤ ϵ.

2. The generalization loss is large: LD(W̃
(T)) ≥ Ω(logK).

Remark 4.2. The above theorem indicates that in the over-pruning case, the training loss can still go
to zero. However, the generalization loss of our neural network behaves no much better than random
guessing, because given any sample, random guessing will assign each class with probability 1/K,
which yields a generalization loss of logK. The readers might wonder why the condition for this to
happen is p = Θ(1

Km log d) instead of O(1
Km log d). Indeed, the generalization will still be bad if p

is too small. However, now the neural network is not only unable to learn the signal but also cannot
efficiently memorize the noise via gradient descent.

Proof Outline. Now we analyze the over-pruning case. We first show that there is a good chance
that the model will not receive any signal after pruning due to the sparse signal assumption and
mild overparameterization of the neural network. Then, leveraging such a property, we bound the
weight-signal and weight-noise properties for the feature growing and converging phases of gradient
descent, as stated in the following two lemmas, respectively. Our result indicates that the training
loss can still be driven toward zero by letting the neural network memorize the noise, the proof of
which further exploits the fact that high dimensional Gaussian noise are nearly orthogonal.

Lemma 4.3 (Feature Growing Phase, Informal). Under Condition 2.2, there exists T1 such that

• Some weights has large correlation with noise: maxr

〈
w̃

(T1)
yi,r , ξi

〉
≥ m−1/q for all i ∈ [n].

• The cross-class weight-noise and weight-signal correlations are small: if j ̸= yi, then
maxj,r,i

∣∣∣〈w̃(T1)
j,r , ξi

〉∣∣∣ = Õ(σ0σn

√
pd) and maxj,r,k

∣∣∣〈w̃(T1)
j,r ,µk

〉∣∣∣ ≤ Õ(σ0µ).

Lemma 4.4 (Converging Phase, Informal). Under Condition 2.2, there exists a time T2 such that
∃t ∈ [T1, T2], the results from phase 1 still holds (up to constant factors) and LS(W̃

(t)) ≤ ϵ.

Finally, since the above lemmas show that the network is purely memorizing the noise, we further
show that such a network yields poor generalization performance as stated in Theorem 4.1.

5 EXPERIMENTS

5.1 SIMULATIONS TO VERIFY OUR RESULTS

In this section, we conduct simulations to verify our results. We conduct our experiment using binary
classification task and show that our result holds for ReLU networks. Our experiment settings are
the follows: we choose input to be x = [x1,x2] = [ye1, ξ] ∈ R800 and x1,x2 ∈ R400, where ξi is
sampled from a Gaussian distribution. The class labels y are {±1}. We use 100 training examples
and 100 testing examples. The network has width 150 and is initialized with random Gaussian
distribution with variance 0.01. Then, p fraction of the weights are randomly pruned. We use the
learning rate of 0.001 and train the network over 1000 iterations by gradient descent.

The observations are summarized as follows. In Figure 2a, when the noise level is σn = 0.5,
the pruned network usually can perform at the similar level with the full model when p ≤ 0.5
and noticably better when p = 0.3. When p > 0.5, the test error increases dramatically while
the training accuracy still remains perfect. On the other hand, when the noise level becomes large
σn = 1 (Figure 2b), the full model can no longer achieve good testing performance but mild pruning
can improve the model’s generalization. Note that the training accuracy in this case is still perfect
(omitted in the figure). We observe that in both settings when the model test error is large, the
variance is also large. However, in Figure 2b, despite the large variance, the mean curve is already
smooth. In particular, Figure 2c plots the testing error over the training iterations under p = 0.5
pruning rate. This suggests that pruning can be beneficial even when the input noise is large.

5.2 ON THE REAL WORLD DATASET

To further demonstrate the mild/over pruning phenomenon, we conduct experiments on MNIST
(Deng, 2012) and CIFAR-10 (Krizhevsky et al., 2009) datasets. We consider neural network ar-

8

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8
Pruning rates

0.00

0.05

0.10

0.15

0.20

Er
ro

r

Training/Testing Error over Pruning Rates
Testing error
Training error

(a)

0.0 0.2 0.4 0.6 0.8
Pruning rates

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Er
ro

r

Training/Testing Error over Pruning Rates
Testing error

(b)

0 200 400 600 800 1000
Iterations

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Er
ro

r

Testing error
full
pruned

(c)

Figure 2: Figure (a) shows the relationship between pruning rates p and training/testing error under
noise variance σn = 0.5. Figure (b) shows the relationship between pruning rates p and testing error
under noise variance σn = 1. The training error is omitted since it stays effectively at zero across
all pruning rates. Figure (c) shows a particular training curve under pruning rate p = 50% and noise
variance σn = 1. Each data point is created by taking an average over 10 independent runs.

0.0 20.0 36.0 48.8 59.0 67.2 73.8 79.0 83.2 86.6 89.3 91.4 93.1 94.5 95.6 96.5 97.2
Sparsity

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

Ac
cu

ra
cy

MLP MNIST Accuracy vs Sparsity

Random (Train)
Random (Test)
IMP (Train)
IMP (Test)

(a)

0.0 20.0 36.0 48.8 59.0 67.2 73.8 79.0 83.2 86.6 89.3 91.4 93.1 94.5 95.6 96.5 97.2
Sparsity

88

90

92

94

96

98

100

Ac
cu

ra
cy

VGG-16 CIFAR-10 Accuracy vs Sparsity

Random (Train)
Random (Test)
IMP (Train)
IMP (Test)

(b)

Figure 3: Figure (a) shows the result between pruning rates p and accuracy on MLP-1024-1024 on
MNIST. Figure (b) shows the result on VGG-16 on CIFAR-10. Each data point is created by taking
an average over 3 independent runs.

chitectures including MLP with 2 hidden layers of width 1024, VGG, ResNets (He et al., 2016)
and wide ResNet (Zagoruyko & Komodakis, 2016). In addition to random pruning, we also add
iterative-magnitude-based pruning Frankle & Carbin (2018) into our experiments. Both pruning
methods are prune-at-initialization methods. Our implementation is based on Chen et al. (2021c).

Under the real world setting, we do not expect our theorem to hold exactly. Instead, our theorem
implies that (1) there exists a threshold such that the testing performance is no much worse than
(or sometimes may slightly better than) its dense counter part; and (2) the training error decreases
later than the testing error decreases. Our experiments on MLP (Figure 3a) and VGG-16 (Figure 3b)
show that this is the case: for MLP the test accuracy is steady competitive to its dense counterpart
when the sparsity is less than 79% and 36% for VGG-16. We further provide experiments on ResNet
in the appendix for validation of our theoretical results.

6 DISCUSSION AND FUTURE DIRECTION

In this work, we provide theory on the generalization performance of pruned neural networks trained
by gradient descent under different pruning rates. Our results characterize the effect of pruning under
different pruning rates: in the mild pruning case, the signal in the feature is well-preserved and the
noise level is reduced which leads to improvement in the trained network’s generalization; on the
other hand, over pruning significantly destroys signal strength despite of reducing noise variance.
One open problem on this topic still appears challenging. In this paper, we characterize two cases
of pruning: in mild pruning the signal is preserved and in over pruning the signal is completely
destroyed. However, the transition between these two cases is not well-understood. Further, it
would be interesting to consider more general data distribution, and understand how pruning affects
training multi-layer neural networks. We leave these interesting directions as future works.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 977–988. IEEE, 2022.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and
deep neural networks. Advances in neural information processing systems, 32, 2019.

Yuan Cao, Zixiang Chen, Mikhail Belkin, and Quanquan Gu. Benign overfitting in two-layer con-
volutional neural networks. arXiv preprint arXiv:2202.06526, 2022.

Tianlong Chen, Zhenyu Zhang, Santosh Balachandra, Haoyu Ma, Zehao Wang, Zhangyang Wang,
et al. Sparsity winning twice: Better robust generalization from more efficient training. In Inter-
national Conference on Learning Representations, 2021a.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. Advances in Neural Information Processing Systems, 34, 2021b.

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Jingjing Liu, and Zhangyang Wang. The
elastic lottery ticket hypothesis. Github Repository, MIT License, 2021c.

Zixiang Chen, Yuan Cao, Quanquan Gu, and Tong Zhang. A generalized neural tangent kernel
analysis for two-layer neural networks. Advances in Neural Information Processing Systems, 33:
13363–13373, 2020a.

Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much over-parameterization is suf-
ficient to learn deep relu networks? In International Conference on Learning Representations,
2020b.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information processing sys-
tems, 31, 2018.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in Neural Information Processing Systems, 32, 2019.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Shaojin Ding, Tianlong Chen, and Zhangyang Wang. Audio lottery: Speech recognition made
ultra-lightweight, noise-robust, and transferable. In International Conference on Learning Repre-
sentations, 2021.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–
1685. PMLR, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

10

Under review as a conference paper at ICLR 2023

Cong Fang, Jason Lee, Pengkun Yang, and Tong Zhang. Modeling from features: a mean-field
framework for over-parameterized deep neural networks. In Conference on learning theory, pp.
1887–1936. PMLR, 2021.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning neural net-
works at initialization: Why are we missing the mark? In International Conference on Learning
Representations, 2020.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397,
2017.

Zheng He, Zeke Xie, Quanzhi Zhu, and Zengchang Qin. Sparse double descent: Where network
pruning aggravates overfitting. In International Conference on Machine Learning, pp. 8635–
8659. PMLR, 2022.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon Osindero, and Erich Elsen. Top-kast: Top-k
always sparse training. Advances in Neural Information Processing Systems, 33:20744–20754,
2020.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve ar-
bitrarily small test error with shallow relu networks. In International Conference on Learning
Representations, 2019.

Jeremy Kepner and Ryan Robinett. Radix-net: Structured sparse matrices for deep neural net-
works. In 2019 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 268–274. IEEE, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations, 2018.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting
pruning plasticity with neuroregeneration. Advances in Neural Information Processing Systems,
34, 2021a.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang
Wang, and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the
most naive baseline for sparse training. In International Conference on Learning Representations,
2021b.

11

Under review as a conference paper at ICLR 2023

Shiwei Liu, Decebal Constantin Mocanu, Amarsagar Reddy Ramapuram Matavalam, Yulong Pei,
and Mykola Pechenizkiy. Sparse evolutionary deep learning with over one million artificial neu-
rons on commodity hardware. Neural Computing and Applications, 33(7):2589–2604, 2021c.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In International
Conference on Machine Learning, pp. 6989–7000. PMLR, 2021d.

Tianlin Liu and Friedemann Zenke. Finding trainable sparse networks through neural tangent trans-
fer. In International Conference on Machine Learning, pp. 6336–6347. PMLR, 2020.

Jian-Hao Luo and Jianxin Wu. An entropy-based pruning method for cnn compression. arXiv
preprint arXiv:1706.05791, 2017.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket
hypothesis: Pruning is all you need. In International Conference on Machine Learning, pp. 6682–
6691. PMLR, 2020.

Zelda Mariet and Suvrit Sra. Diversity networks: Neural network compression using determinantal
point processes. arXiv preprint arXiv:1511.05077, 2015.

Decebal Constantin Mocanu, Elena Mocanu, Phuong H Nguyen, Madeleine Gibescu, and Antonio
Liotta. A topological insight into restricted boltzmann machines. Machine Learning, 104(2):
243–270, 2016.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018.

P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Pruning convolutional neural networks for
resource efficient inference. In 5th International Conference on Learning Representations, ICLR
2017-Conference Track Proceedings, 2019.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pp.
4646–4655. PMLR, 2019.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory, 1(1):84–105, 2020.

Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris Papailiopoulos.
Optimal lottery tickets via subset sum: Logarithmic over-parameterization is sufficient. Advances
in Neural Information Processing Systems, 33:2599–2610, 2020.

Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. Ac/dc: Alternating com-
pressed/decompressed training of deep neural networks. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

Ameya Prabhu, Girish Varma, and Anoop Namboodiri. Deep expander networks: Efficient deep
networks from graph theory. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 20–35, 2018.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Raste-
gari. What’s hidden in a randomly weighted neural network? In Proceedings of the IEEE CVF
Conference on Computer Vision and Pattern Recognition, pp. 11893–11902, 2020.

Grant M Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting particle systems:
Asymptotic convexity of the loss landscape and universal scaling of the approximation error.
stat, 1050:22, 2018.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. In International Conference
on Learning Representations, 2021.

12

Under review as a conference paper at ICLR 2023

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A law of
large numbers. SIAM Journal on Applied Mathematics, 80(2):725–752, 2020.

Mei Song, Andrea Montanari, and P Nguyen. A mean field view of the landscape of two-layers
neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound.
arXiv preprint arXiv:1906.03593, 2019.

Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized
neural networks? Advances in Neural Information Processing Systems, 34, 2021.

Kartik Sreenivasan, Shashank Rajput, Jy-yong Sohn, and Dimitris Papailiopoulos. Finding every-
thing within random binary networks. arXiv preprint arXiv:2110.08996, 2021.

Kartik Sreenivasan, Jy-yong Sohn, Liu Yang, Matthew Grinde, Alliot Nagle, Hongyi Wang, Kang-
wook Lee, and Dimitris Papailiopoulos. Rare gems: Finding lottery tickets at initialization. arXiv
preprint arXiv:2202.12002, 2022.

Jingtong Su, Yihang Chen, Tianle Cai, Tianhao Wu, Ruiqi Gao, Liwei Wang, and Jason D Lee.
Sanity-checking pruning methods: Random tickets can win the jackpot. Advances in Neural
Information Processing Systems, 33:20390–20401, 2020.

Xavier Suau, Luca Zappella, and Nicholas Apostoloff. Network compression using correlation
analysis of layer responses. 2018.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 33:6377–6389, 2020.

Matus Telgarsky. Feature selection with gradient descent on two-layer networks in low-rotation
regimes. arXiv preprint arXiv:2208.02789, 2022.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2019.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differen-
tiable scale-invariant sparsity measures. In International Conference on Learning Representa-
tions, 2020. URL https://openreview.net/forum?id=rylBK34FDS.

Qing Yang, Jiachen Mao, Zuoguan Wang, and “Helen” Li Hai. Dynamic regularization on activation
sparsity for neural network efficiency improvement. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 17(4):1–16, 2021.

Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, and Qiang Liu. Good sub-
networks provably exist: Pruning via greedy forward selection. In International Conference on
Machine Learning, pp. 10820–10830. PMLR, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. Advances in neural information processing systems, 32, 2019.

Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing Qu, and Zhihui Zhu. On the optimization
landscape of neural collapse under mse loss: Global optimality with unconstrained features. arXiv
preprint arXiv:2203.01238, 2022.

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A ge-
ometric analysis of neural collapse with unconstrained features. Advances in Neural Information
Processing Systems, 34, 2021.

13

https://openreview.net/forum?id=rylBK34FDS

Under review as a conference paper at ICLR 2023

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. Advances in neural information processing systems, 32, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Machine Learning, 109(3):467–492, 2020.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of adam in
learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371, 2021.

14

Under review as a conference paper at ICLR 2023

A EXPERIMENT DETAILS

The experiments of MLP, VGG and ResNet-32 are run on NVIDIA A5000 and ResNet-50 and
ResNet-20-128 is run on 4 NIVIDIA V100s. We list the hyperparameters we used in training. All
of our models are trained with SGD and the detailed settings are summarized below.

Table 1: Summary of architectures, dataset and training hyperparameters

MODEL DATA EPOCH BATCH SIZE LR MOMENTUM LR DECAY, EPOCH WEIGHT DECAY

LENET MNIST 120 128 0.1 0 0 0
VGG CIFAR-10 160 128 0.1 0.9 0.1 × [80, 120] 0.0001
RESNETS CIFAR-10 160 128 0.1 0.9 0.1 × [80, 120] 0.0001

B FURTHER EXPERIMENT RESULTS

We plot the experiment result of ResNet-20-128 in Figure 4. This figure further verifies our results
that there exists pruning rate threshold such that the testing performance of the pruned network is on
par with the testing performance of the dense model while the training accuracy remains perfect.

0.0 20.0 36.0 48.8 59.0 67.2 73.8 79.0 83.2 86.6
Sparsity

95

96

97

98

99

100

Ac
cu

ra
cy

ResNet-20-128 CIFAR-10 Accuracy vs Sparsity

Random (Train)
Random (Test)
IMP (Train)
IMP (Test)

Figure 4: The figure shows the experiment results of ResNet-20-128 under various sparsity by ran-
dom pruning and IMP. Each data point is averaged over 2 runs.

C PRELIMINARY FOR ANALYSIS

In this section, we introduce the following signal-noise decomposition of each neuron weight from
Cao et al. (2022), and some useful properties for the terms in such a decomposition, which are useful
in our analysis.

Definition C.1 (signal-noise decomposition). For each neuron weight j ∈ [K], r ∈ [m], there exist
coefficients γ(t)

j,r,k, ζ
(t)
j,r,i, ω

(t)
j,r,i such that

w̃
(t)
j,r = w̃

(0)
j,r +

K∑
k=1

γ
(t)
j,r,k · ∥µk∥−2

2 · µk ⊙mj,r +

n∑
i=1

ζ
(t)
j,r,i ·

∥∥∥ξ̃j,r,i∥∥∥−2

2
· ξ̃j,r,i +

n∑
i=1

ω
(t)
j,r,i

∥∥∥ξ̃j,r,i∥∥∥−2

2
· ξ̃j,r,i,

where γ
(t)
j,r,j ≥ 0, γ

(t)
j,r,k ≤ 0, ζ

(t)
j,r,i ≥ 0, ω

(t)
j,r,i ≤ 0.

15

Under review as a conference paper at ICLR 2023

It is straightforward to see the following:

γ
(0)
j,r,k, ζ

(0)
j,r,i, ω

(0)
j,r,i = 0,

γ
(t+1)
j,r,j = γ

(t)
j,r,j − I(r ∈ Sj

signal)
η

n

n∑
i=1

ℓ
′(t)
j,i · σ′

(〈
w̃

(t)
j,r,µyi

〉)
∥µyi∥

2
2 I(yi = j),

γ
(t+1)
j,r,k = γ

(t)
j,r,k − I((mj,r)k = 1)

η

n

n∑
i=1

ℓ
′(t)
j,i · σ′

(〈
w̃

(t)
j,r,µyi

〉)
∥µyi∥

2
2 I(yi = k), ∀j ̸= k,

ζ
(t+1)
j,r,i = ζ

(t)
j,r,i −

η

n
· ℓ′(t)j,i · σ′

(〈
w̃

(t)
j,r, ξi

〉)∥∥∥ξ̃j,r,i∥∥∥2
2
I(j = yi),

ω
(t+1)
j,r,i = ω

(t)
j,r,i −

η

n
· ℓ′(t)j,i · σ′

(〈
w̃

(t)
j,r, ξi

〉)∥∥∥ξ̃j,r,i∥∥∥2
2
I(j ̸= yi),

where {γ(t)
j,r,j}Tt=1, {ζ

(t)
j,r,i}Tt=1 are increasing sequences and {γ(t)

j,r,k}Tt=1, {ω
(t)
j,r,i}Tt=1 are decreasing

sequences, because −ℓ
′(t)
j,i ≥ 0 when j = yi, and −ℓ

′(t)
j,i ≤ 0 when j ̸= yi. By Lemma D.4, we

have pd > n + K, and hence the set of vectors {µk}Kk=1

⋃
{ξ̃i}ni=1 is linearly independent with

probability measure 1 over the Gaussian distribution for each j ∈ [K], r ∈ [m]. Therefore the
decomposition is unique.

D PROOF OF THEOREM 3.1

We first formally restate Theorem 3.1.

Theorem D.1 (Formal Restatement of Theorem 3.1). Under Condition 2.2, choose initialization
variance σ0 = Θ̃(m−4n−1µ−1) and learning rate η ≤ Õ(1/µ2). For ϵ > 0, if p ≥ C1

log d
m for some

sufficiently large constant C1, then with probability at least 1−O(d−1) over the randomness in the
data, network initialization and pruning, there exists T = Õ(Kη−1σ2−q

0 µ−q +K2m4µ−2η−1ϵ−1)
such that the following holds:

1. The training loss is below ϵ: LS(W̃
(T)) ≤ ϵ.

2. The weights of the CNN highly correlate with its corresponding class signal: maxr γ
(T)
j,r,j ≥

Ω(m−1/q) for all j ∈ [K].

3. The weights of the CNN doesn’t have high correlation with the signal from different classes:
maxj ̸=k,r∈[m] |γ

(T)
j,r,k| ≤ Õ(σ0µ).

4. None of the weights is highly correlated with the noise: maxj,r,i ζ
(T)
j,r,i =

Õ(σ0σn

√
pd), maxj,r,i |ω(T)

j,r,i| = Õ(σ0σn

√
pd).

Moreover, the testing loss is upper-bounded by

LD(W̃
(T)) ≤ O(Kϵ) + exp(−n2/p).

The proof of Theorem 3.1 consists of the analysis of the pruning on the signal and noise for three
stages of gradient descent: initialization, feature growing phase, and converging phase, and the
establishment of the generalization property. We present these analysis in detail in the following
subsections. A special note is that the constant C showing up in the following proof of each sub-
sequent Lemmas is defined locally instead of globally, which means the constant C within each
Lemma is the same but may be different across different Lemma.

D.1 INITIALIZATION

We analyze the effect of pruning on weight-signal correlation and weight-noise correlation at the
initialization. We first present a few supporting lemmas, and finally provide our main result of

16

Under review as a conference paper at ICLR 2023

Lemma D.7, which shows that if the pruning is mild, then it will not hurt the max weight-signal
correlation much at the initialization. On the other hand, the max weight-noise correlation is reduced
by a factor of

√
p.

Lemma D.2. Assume n = Ω(K2 logKd). Then, with probability at least 1− 1/d,

|{i ∈ [n] : yi = j}| = Θ(n/K) ∀j ∈ [K].

Proof. By Hoeffding’s inequality, with probability at least 1− δ/2K, for a fixed j ∈ [K], we have∣∣∣∣∣ 1n
n∑

i=1

I(yi = j)− 1

K

∣∣∣∣∣ ≤
√

log(4K/δ)

2n
.

Therefore, as long as n ≥ 2K2 log(4K/δ), we have∣∣∣∣∣ 1n
n∑

i=1

I(yi = j)− 1

K

∣∣∣∣∣ ≤ 1

2K
.

Taking a union bound over j ∈ [K] and making δ = 1/d yield the result.

Lemma D.3. Assume pm = Ω(log d) and m = poly log d. Then, with probability 1 − 1/d, for all
j ∈ [K], k ∈ [K], we have

∑m
r=1(mj,r)k = Θ(pm), which implies that |Sj

signal| = Θ(pm) for all
j ∈ [K].

Proof. When pm = Ω(log d), by multiplicative Chernoff’s bound, for a given k ∈ [K], we have

P

[∣∣∣∣∣
m∑
r=1

(mj,r)k − pm

∣∣∣∣∣ ≥ 0.5pm

]
≤ 2 exp {−Ω (pm)} .

Take a union bound over j ∈ [K], k ∈ [K], we have

P

[∣∣∣∣∣
m∑
r=1

(mj,r)k − pm

∣∣∣∣∣ ≥ 0.5pm, ∀j ∈ [K], k ∈ [K]

]
≤ 2K2 exp {−Ω (pm)} ≤ 1/d.

Lemma D.4. Assume p = 1/ poly log d. Then with probability at least 1 − 1/d, for all j ∈ [K],
r ∈ [m],

∑d
i=1(mj,r)i = Θ(pd).

Proof. By multiplicative Chernoff’s bound, we have for a given j, r

P

[∣∣∣∣∣
d∑

i=1

(mj,r)i − pd

∣∣∣∣∣ ≥ 0.5pd

]
≤ 2 exp{−Ω(pd)}.

Take a union bound over j, r, we have

P

[∣∣∣∣∣
d∑

i=1

(mj,r)i − pd

∣∣∣∣∣ ≥ 0.5pd, ∀j ∈ [K], r ∈ [m]

]
≤ 2Km exp{−Ω(pd)} ≤ 1/d,

where the last inequality follows from our choices of p,K,m, d.

Lemma D.5. Suppose p = Ω(1/ poly log d), and m,n = poly log d. With probability at least
1− 1/d, we have ∥∥∥ξ̃j,r,i∥∥∥2

2
= Θ(σ2

npd),∣∣∣〈ξ̃j,r,i, ξi′〉∣∣∣ ≤ O(σ2
n

√
pd log d),∣∣∣〈µk, ξ̃j,r,i

〉∣∣∣ ≤ | ⟨µ, ξi⟩ | ≤ O(σnµ
√

log d),

for all j ∈ {−1, 1}, r ∈ [m], i, i′ ∈ [n] and i ̸= i′.

17

Under review as a conference paper at ICLR 2023

Proof. From Lemma D.4, we have with probability at least 1− 1/d,
d∑

k=1

(mj,r)k = Θ(pd), ∀j ∈ [K], r ∈ [m].

For a set of Gaussian random variable g1, . . . , gN ∼ N (0, σ2), by Bernstein’s inequality, with
probability at least 1− δ, we have∣∣∣∣∣

N∑
i=1

g2i − σ2N

∣∣∣∣∣ ≲ σ2

√
N log

1

δ
.

Thus, by a union bound over j, r, i, with probability at least 1− 1/d, we have∥∥∥ξ̃j,r,i∥∥∥2
2
= Θ(σ2

npd).

For i ̸= i′, again by Bernstein’s bound, we have with probability at least 1− δ,∣∣∣〈ξ̃j,r,i, ξi′〉∣∣∣ ≤ O

(
σ2
n

√
pd log

Kmn

δ

)
,

for all j, r, i. Plugging in δ = 1/d gives the result. The proof for | ⟨µ, ξi⟩ | is similar.

Lemma D.6. Suppose we have m independent Gaussian random variables g1, g2, . . . , gm ∼
N (0, σ2). Then with probability 1− δ,

max
i

gi ≥ σ

√
log

m

log 1/δ
.

Proof. By the standard tail bound of Gaussian random variable, we have for every x > 0,(
σ

x
− σ3

x3

)
e−x2/2σ2

√
2π

≤ P [g > x] ≤ σ

x

e−x2/2σ2

√
2π

.

We want to pick a x⋆ such that

P
[
max

i
gi ≤ x⋆

]
= (P [gi ≤ x⋆])

m
= (1− P [gi ≥ x⋆])m ≤ e−m P[gi≥x⋆] ≤ δ

⇒ P[gi ≥ x⋆] = Θ

(
log(1/δ)

m

)
⇒ x⋆ = Θ(σ

√
log(m/(log(1/δ) logm))).

Lemma D.7 (Formal Restatement of Lemma 3.2). With probability at least 1− 2/d, for all i ∈ [n],

σ0σn

√
pd ≤ max

r

〈
w̃

(0)
j,r , ξi

〉
≤
√

2 log(Kmd)σ0σn

√
pd.

Further, suppose pm ≥ Ω(log(Kd)). Then with probability 1− 2/d, for all j ∈ [K],

σ0 ∥µj∥2 ≤ max
r∈Sj

signal

〈
w̃

(0)
j,r ,µj

〉
≤
√
2 log(8pmKd)σ0 ∥µj∥2 .

Proof. We first give a proof for the second inequality. From Lemma D.3, we know that |Sj
signal| =

Θ(pm). The upper bound can be obtained by taking a union bound over r ∈ Sj
signal, j ∈ [K]. To

prove the lower bound, applying Lemma D.6, with probability at least 1− δ/K, we have for a given
j ∈ [K]

max
r∈Sj

signal

〈
w̃

(0)
j,r ,µj

〉
≥ σ0 ∥µj∥2

√
log

pm

logK/δ
.

Now, notice that we can control the constant in pm (by controlling the constant in the lower bound
of p) such that pm/ log(Kd) ≥ e. Thus, taking a union bound over j ∈ [K] and setting δ = 1/d
yield the result.

The proof of the first inequality is similar.

18

Under review as a conference paper at ICLR 2023

D.2 SUPPORTING PROPERTIES FOR ENTIRE TRAINING PROCESS

This subsection establishes a few properties (summarized in Proposition D.10) that will be used
in the analysis of feature growing phase and converging phase of gradient descent presented in
the next two subsections. Define T ⋆ = η−1 poly(1/ϵ, µ, d−1, σ−2

n , σ−1
0 n,m, d). Denote α =

Θ(log1/q(T ⋆)), β = 2maxi,j,r,k

{∣∣∣〈w̃(0)
j,r ,µk

〉∣∣∣ , ∣∣∣〈w̃(0)
j,r , ξi

〉∣∣∣}. We need the following bound
holds for our subsequent analysis.

4m1/q max
j,r,i

{〈
w̃

(0)
j,r ,µyi

〉
, Cnα

µ
√
log d

σnpd
,
〈
w̃

(0)
j,r , ξi

〉
, 3Cnα

√
log d

pd

}
≤ 1 (1)

Remark D.8. To see why Equation (1) can hold under Condition 2.2, we convert everything in terms
of d. First recall from Condition 2.2 that m,n = poly(log d) and µ = Θ(σn

√
d log d) = Θ(1). In

both mild pruning and over pruning we require p ≥ Ω(1/poly log d). Since α = Θ(log1/q(T ⋆)), if
we assume T ⋆ ≤ O(poly(d)) for a moment (which we are going to justify in the next paragraph),
then α = O(log1/q(d)). Then if we set d to be large enough, we have 4m1/qCnαµ

√
log d

σnpd
≤

poly log d√
d

≤ 1. Finally for the quantity 4m1/q maxj,r,i{⟨w̃(0)
j,r ,µyi

⟩, ⟨w̃(0)
j,r , ξi⟩}, by Lemma 3.2,

our assumption of K = O(log d) in Condition 2.2 and our choice of σ0 = Θ̃(m−4n−1µ−1) in
Theorem 3.1 (or Theorem D.1), we can easily see that this quantity can also be made smaller than 1.

Now, to justify that T ⋆ ≤ O(poly(d)), we only need to justify that all the quantities T ⋆ depend on is
polynomial in d. First of all, based on Condition 2.2, n,m = poly log(d) and µ = Θ(σn

√
d log d) =

Θ(1) further implies σ−2
n = Θ(d log2 d). Since Theorem 3.1 only requires σ0 = Θ̃(m−4n−1µ−1),

this implies σ−1
0 ≤ O(poly log d). Hence σ−1

0 n = O(poly log d). Together with our assumption
that ϵ, η ≥ Ω(1/ poly(d)) (which implies 1/ϵ, 1/η ≤ O(poly(d))), we have justified that all terms
involved in T ⋆ are at most of order poly(d). Hence T ⋆ = poly(d).

Remark D.9. Here we make remark on our assumption on ϵ and η in Condition 2.2.

For our assumption on ϵ, since the cross-entropy loss is (1) not strongly-convex and (2) achieves
its infimum at infinity. In practice, the cross-entropy loss is minimized to a constant level, say
0.001. We make this assumption to avoid the pathological case where ϵ is exponentially small in
d (say ϵ = 2−d) which is unrealistic. Thus, for realistic setting, we assume ϵ ≥ Ω(1/ poly(d)) or
1/ϵ ≤ O(poly(d)).

To deal with η, the only restriction we have is η = O(1/µ2) in Theorem 3.1 and Theorem 4.1.
However, in practice, we don’t use a learning rate that is exponentially small, say η = 2−d. Thus,
like dealing with ϵ, we assume η ≥ Ω(1/ poly(d)) or 1/η ≤ O(poly d).

We make the above assumption to simplify analysis when analyzing the magnitude of Fj(X) for
j ̸= y given sample (X, y).

Proposition D.10. Under Condition 2.2, during the training time t < T ⋆, we have

1. γ
(t)
j,r,j , ζ

(t)
j,r,i ≤ α,

2. ω
(t)
j,r,i ≥ −β − 6Cnα

√
log d
pd .

3. γ
(t)
j,r,k ≥ −β − 2Cnαµ

√
log d

σnpd
.

Notice that the lower bound has absolute value smaller than the upper bound.

Proof of Proposition D.10. We use induction to prove Proposition D.10.

Induction Hypothesis: Suppose Proposition D.10 holds for all t < T ≤ T ⋆.

We next show that this also holds for t = T via the following a few lemmas.

19

Under review as a conference paper at ICLR 2023

Lemma D.11. Under Condition 2.2, for t < T , there exists a constant C such that〈
w̃

(t)
j,r − w̃

(0)
j,r ,µk

〉
=

(
γ
(t)
j,r,k ± Cnα

µ
√
log d

σnpd

)
I((mj,r)k = 1),

〈
w̃

(t)
j,r − w̃

(0)
j,r , ξi

〉
= ζ

(t)
j,r,i ± 3Cnα

√
log d

pd
,

〈
w̃

(t)
j,r − w̃

(0)
j,r , ξi

〉
= ω

(t)
j,r,i ± 3Cnα

√
log d

pd
.

Proof. From Lemma D.5, there exists a constant C such that with probability at least 1− 1/d,∣∣∣〈ξ̃j,r,i, ξi′〉∣∣∣∥∥∥ξ̃j,r,i∥∥∥2
2

≤ C

√
log d

pd
,

∣∣∣〈ξ̃j,r,i,µk

〉∣∣∣∥∥∥ξ̃j,r,i∥∥∥2
2

≤ C
µ
√
log d

σnpd
,

| ⟨µk, ξi⟩ |
∥µk∥22

≤ C
σn

√
log d

µ
.

Using the signal-noise decomposition and assuming (mj,r)k = 1, we have

∣∣∣〈w̃(t)
j,r − w̃

(0)
j,r ,µk

〉
− γ

(t)
j,r,k

∣∣∣ = ∣∣∣∣∣
n∑

i=1

ζ
(t)
j,r,i ·

∥∥∥ξ̃j,r,i∥∥∥−2

2
·
〈
ξ̃j,r,i,µk

〉
+

n∑
i=1

ω
(t)
j,r,i

∥∥∥ξ̃j,r,i∥∥∥−2

2
·
〈
ξ̃j,r,i,µk

〉∣∣∣∣∣
≤ C

µ
√
log d

σnpd

n∑
i=1

∣∣∣ζ(t)j,r,i

∣∣∣+ C
µ
√
log d

σnpd

n∑
i=1

∣∣∣ω(t)
j,r,i

∣∣∣
≤ 2C

µ
√
log d

σnpd
nα.

where the second last inequality is by Lemma D.5 and the last inequality is by induction hypothesis.

To prove the second equality, for j = yi,

∣∣∣〈w̃(t)
j,r − w̃

(0)
j,r , ξi

〉
− ζ

(t)
j,r,i

∣∣∣ =
∣∣∣∣∣∣∣

K∑
k=1

γ
(t)
j,r,k · ⟨µk, ξi⟩

∥µk∥22
+
∑
i′ ̸=i

ζ
(t)
j,r,i′ ·

〈
ξ̃j,r,i′ , ξi

〉
∥∥∥ξ̃j,r,i′∥∥∥2

2

+

n∑
i′=1

ω
(t)
j,r,i′

〈
ξ̃j,r,i′ , ξi

〉
∥∥∥ξ̃j,r,i′∥∥∥2

2

∣∣∣∣∣∣∣
≤ C

σn

√
log d

µ

K∑
k=1

|γ(t)
j,r,k|+ C

√
log d

pd

∑
i′ ̸=i

|ζ(t)j,r,i′ |+ C

√
log d

pd

n∑
i′=1

|ω(t)
j,r,i′ |

= C
σn

√
log d

µ
Kα+ 2Cnα

√
log d

pd

≤ 3Cnα

√
log d

pd
.

where the last inequality is by n ≫ K and µ = Θ(σn

√
d log d). The proof for the case of j ̸= yi is

similar.

20

Under review as a conference paper at ICLR 2023

Lemma D.12 (Off-diagonal Correlation Upper Bound). Under Condition 2.2, for t < T , j ̸= yi,
we have that 〈

w̃
(t)
j,r,µyi

〉
≤
〈
w̃

(0)
j,r ,µyi

〉
+ Cnα

µ
√
log d

σnpd
,

〈
w̃

(t)
j,r, ξi

〉
≤
〈
w̃

(0)
j,r , ξi

〉
+ 3Cnα

√
log d

pd
,

Fj(W̃
(t)
j ,xi) ≤ 1.

Proof. If j ̸= yi, then γ
(t)
j,r,k ≤ 0 and we have that〈

w̃
(t)
j,r,µyi

〉
≤
〈
w̃

(0)
j,r ,µyi

〉
+

(
γ
(t)
j,r,yi

+ Cnα
µ
√
log d

σnpd

)
I((mj,r)yi

= 1)

≤
〈
w̃

(0)
j,r ,µyi

〉
+ Cnα

µ
√
log d

σnpd
.

Further, we can obtain 〈
w̃

(t)
j,r, ξi

〉
≤
〈
w̃

(0)
j,r , ξi

〉
+ ω

(t)
j,r,i + 3Cnα

√
log d

pd

≤
〈
w̃

(0)
j,r , ξi

〉
+ 3Cnα

√
log d

pd
.

Then, we have the following bound:

Fj(W̃
(t)
j ,xi) =

m∑
r=1

[σ(⟨w̃j,r,µyi
⟩) + σ(⟨w̃j,r, ξi⟩)]

≤ m2q+1 max
j,r,i

{〈
w̃

(0)
j,r ,µyi

〉
, Cnα

µ
√
log d

σnpd
,
〈
w̃

(0)
j,r , ξi

〉
, 3Cnα

√
log d

pd

}q

≤ 1.

where the first inequality is by Equation (1).

Lemma D.13 (Diagonal Correlation Upper Bound). Under Condition 2.2, for t < T, j = yi, we
have 〈

w̃
(t)
j,r,µj

〉
≤
〈
w̃

(0)
j,r ,µj

〉
+ γ

(t)
j,r,j + Cnα

µ
√
log d

σnpd
,

〈
w̃

(t)
j,r, ξi

〉
≤
〈
w̃

(0)
j,r , ξi

〉
+ ζ

(t)
j,r,i + 3Cnα

√
log d

pd
.

If max{γ(t)
j,r,j , ζ

(t)
j,r,i} ≤ m−1/q , we further have that Fj(W̃

(t)
j ,xi) ≤ O(1).

Proof. The two inequalities are immediate consequences of Lemma D.11. If max{γ(t)
j,r,j , ζ

(t)
j,r,i} ≤

m−1/q , we have

Fj(W̃
(t)
j ,xi) =

m∑
r=1

[σ(⟨w̃j,r,µj⟩) + σ(⟨w̃j,r, ξi⟩)]

≤ 2 · 3qmmax
j,r,i

{
γ
(t)
j,r , ζ

(t)
j,r,i,

∣∣∣〈w̃(0)
j,r ,µj

〉∣∣∣ , ∣∣∣〈w̃(0)
j,r , ξi

〉∣∣∣ , Cnα
µ
√
log d

σnpd
, 3Cnα

√
log d

pd

}q

≤ O(1).

21

Under review as a conference paper at ICLR 2023

Lemma D.14. Under Condition 2.2, for t ≤ T , we have that

1. ω
(t)
j,r,i ≥ −β − 6Cnα

√
log d
pd ;

2. γ
(t)
j,r,k ≥ −β − 2Cnαµ

√
log d

σnpd
.

Proof. When j = yi, we have ω
(t)
j,r,i = 0. We only need to consider the case of j ̸= yi. When

ω
(T−1)
j,r,i ≤ −0.5β − 3Cnα

√
log d
pd , by Lemma D.11 we have

〈
w̃

(T−1)
j,r , ξi

〉
≤
〈
w̃

(0)
j,r , ξi

〉
+ ω

(T−1)
j,r,i + 3Cnα

√
log d

pd
≤ 0.

Thus,

ω
(T)
j,r,i = ω

(T−1)
j,r,i − η

n
· ℓ′(T−1)

j,i · σ′
(〈

w̃
(T−1)
j,r , ξi

〉)∥∥∥ξ̃j,r,i∥∥∥2
2
I(j ̸= yi)

= ω
(T−1)
j,r,i

≥ −β − 6Cnα

√
log d

pd
.

When ω
(T−1)
j,r,i ≥ −0.5β − 3Cnα

√
log d
pd , we have

ω
(T)
j,r,i = ω

(T−1)
j,r,i − η

n
· ℓ′(T−1)

j,i · σ′
(〈

w̃
(T−1)
j,r , ξi

〉)∥∥∥ξ̃j,r,i∥∥∥2
2
I(j ̸= yi)

≥ −0.5β − 3Cnα

√
log d

pd
− η

n
σ′

(
0.5β + 3Cnα

√
log d

pd

)∥∥∥ξ̃j,r,i∥∥∥2
2

≥ −β − 6Cnα

√
log d

pd
,

where the last inequality is by setting η ≤ nq−1
(
0.5β + 3Cnα

√
log d
pd

)2−q

(C2σ
2
nd)

−1 and C2 is

the constant such that
∥∥∥ξ̃j,r,i∥∥∥2

2
≤ C2σ

2
npd for all j, r, i in Lemma D.5.

For γ(t)
j,r,k, the proof is similar. Consider I((mj,r)k) = 1. When γ

(t)
j,r,k ≤ −0.5β − Cnαµ

√
log d

σnpd
, by

Lemma D.11, we have〈
w̃

(t)
j,r,µk

〉
≤
〈
w̃

(0)
j,r ,µk

〉
+ γ

(t)
j,r,k + Cnα

µ
√
log d

σnpd
≤ 0.

Hence,

γ
(T)
j,r,k = γ

(T−1)
j,r,k − η

n

n∑
i=1

ℓ
′(T−1)
j,i σ′

(〈
w̃

(T−1)
j,r ,µk

〉)
µ2I(yi = k)

= γ
(T−1)
j,r,k

≥ −β − 2Cnα
µ
√
log d

σnpd
.

22

Under review as a conference paper at ICLR 2023

When γ
(t)
j,r,k ≥ −0.5β − Cnαµ

√
log d

σnpd
, we have

γ
(T)
j,r,k = γ

(T−1)
j,r,k − η

n

n∑
i=1

ℓ
′(T−1)
j,i σ′

(〈
w̃

(T−1)
j,r ,µk

〉)
µ2I(yi = k)

≥ −0.5β − Cnα
µ
√
log d

σnpd
− C2

η

K
σ′
(
0.5β + Cnα

µ
√
log d

σnpd

)
µ2

≥ −β − 2Cnα
µ
√
log d

σnpd
,

where the first inequality follows from the fact that there are Θ(n
K) samples such that I(yi = k),

and the last inequality follows from picking η ≤ K(0.5β + Cnαµ
√
log d

σnpd
)2−qµ−2q−1C−1

2 .

Lemma D.15. Under Condition 2.2, for t ≤ T , we have γ
(t)
j,r,j , ζ

(t)
j,r,i ≤ α.

Proof. For yi ̸= j or r /∈ Sj
signal, γ

(t)
j,r,j , ζ

(t)
j,r,i = 0 ≤ α.

If yi = j, then by Lemma D.12 we have

∣∣∣ℓ′(t)j,i

∣∣∣ = 1− logitj(F ;X) =

∑
i ̸=j e

Fi(X)∑K
i=1 e

Fi(X)
≤ Ke

eFj(X)
. (2)

Recall that

γ
(t+1)
j,r,j = γ

(t)
j,r,j − I(r ∈ Sj

signal)
η

n

n∑
i=1

ℓ
′(t)
j,i · σ′

(〈
w̃

(t)
j,r,µyi

〉)
∥µyi∥

2
2 I(yi = j),

ζ
(t+1)
j,r,i = ζ

(t)
j,r,i −

η

n
· ℓ′(t)j,i · σ′

(〈
w̃

(t)
j,r, ξi

〉)∥∥∥ξ̃j,r,i∥∥∥2
2
I(j = yi).

We first bound ζ
(T)
j,r,i. Let Tj,r,i be the last time t < T that ζ(t)j,r,i ≤ 0.5α. Then we have

ζ
(T)
j,r,i = ζ

(Tj,r,i)
j,r,i − η

n
ℓ
′(Tj,r,i)
i · σ′

(〈
w̃

(Tj,r,i)
j,r , ξi

〉)
I(yi = j)

∥∥∥ξ̃j,r,i∥∥∥2
2︸ ︷︷ ︸

I1

−
∑

Tj,r,i<t<T

η

n
ℓ
′(Tj,r,i)
j,i σ′

(〈
w̃

(t)
j,r, ξi

〉)
I(yi = j)

∥∥∥ξ̃j,r,i∥∥∥2
2︸ ︷︷ ︸

I2

.

We bound I1, I2 separately. We first bound I1 as follows.

|I1| ≤ q
η

n

(
ζ
(Tj,r,i)
j,r,i + 0.5β + 3Cnα

√
log d

pd

)q−1

C2σ
2
npd ≤ q2qn−1ηαq−1C2σ

2
npd ≤ 0.25α,

where the first inequality follows from Lemma D.13, the second inequality follows because β ≤
0.1α and 3Cnα

√
log d
pd ≤ 0.1α, and the last inequality follows because η ≤ n/(q2q+2αq−2σ2

nd).

For Tj,r,i < t < T , by Lemma D.11, we have that
〈
w̃

(t)
j,r, ξi

〉
≥ 0.5α − 0.5β − 3Cnα

√
log d
pd ≥

0.25α and
〈
w̃

(t)
j,r, ξi

〉
≤ α+ 0.5β + 3Cnα

√
log d
pd ≤ 2α.

23

Under review as a conference paper at ICLR 2023

Now we bound I2 as follows

|I2| ≤
∑

Tj,r,i<t<T

η

n
Ke exp {−Fj(X)}σ′

(〈
w̃

(t)
j,r, ξi

〉)
I(yi = j)

∥∥∥ξ̃j,r,i∥∥∥2
2

≤
∑

Tj,r,i<t<T

η

n
Ke exp

{
−σ
(〈

w̃
(t)
j,r, ξi

〉)}
σ′
(〈

w̃
(t)
j,r, ξi

〉)
I(yi = j)

∥∥∥ξ̃j,r,i∥∥∥2
2

≤ qKeη2q−1T ⋆

n
exp(−αq/4q)αq−1σ2

npd

≤ 0.25T ⋆ exp(−αq/4q)αq−2α

≤ 0.25α,

where the first inequality follows from Equation equation 2, the second inequality follows because
Fj(X) ≥ σ

(〈
w̃

(t)
j,r, ξi

〉)
, the fourth inequality follows by choosing η ≤ n/(qKe2q+1σ2

nd), and

the last inequality follows by choosing α = Θ(log1/q(T ⋆)).

Plugging the bounds on I1, I2 finishes the proof for ζ(T)
j,r,i.

To prove γ
(t)
j,r,j ≤ α, we pick η ≤ 1/(qe2q+2µ2) and the rest of the proof is similar.

Lemma D.14 and Lemma D.15 imply Proposition D.10 holds for all t ≤ T .

Induction Ends

D.3 FEATURE GROWING PHASE

In this subsection, we first present a supporting lemma, and then provide our main result of
Lemma D.17, which shows that the signal strength is relatively unaffected by pruning while the
noise level is reduced by a factor of

√
p.

During the feature growing phase of training, the output of Fj(X) = O(1) for all j ∈ [K]. There-

fore, logiti(F,X) = O(1
K) and 1− logiti(F,X) = Θ(1) until

〈
w̃

(t)
j,r,µj

〉
reaches m−1/q .

Lemma D.16. Under the same assumption as Theorem D.1, for T =
nη−1C4σ

2−q
0 (σn

√
pd)−q

C3(2C1)q−1[log d](q−1)/2 , the
following results hold:

• |ζ(t)j,r,i| = O(σ0σn

√
pd) for all j ∈ [K], r ∈ [m], i ∈ [n] and t ≤ T .

• |ω(t)
j,r,i| = O(σ0σn

√
pd) for all j ∈ [K], r ∈ [m], i ∈ [n] and t ≤ T .

Proof. Define Ψ(t) = maxj,r,i{ζ(t)j,r,i, |ω
(t)
j,r,i|}. Then we have

Ψ(t+1)

≤ Ψ(t) +max
j,r,i

 η

n
|ℓ′(t)j,i | · σ

′

〈w̃(0)
j,r , ξi

〉
+

K∑
k=1

γ
(t)
j,r,k

⟨µk, ξi⟩
∥µk∥22

+

n∑
i′=1

Ψ(t)

〈
ξ̃j,r,i′ , ξi

〉
∥∥∥ξ̃j,r,i′∥∥∥2

2

∥∥∥ξ̃j,r,i∥∥∥2
2

≤ Ψ(t) +

η

n
q

(
O(
√

log dσ0σn

√
pd) +K log1/q T ⋆µσn

√
log d

µ2
+

O(σ2
npd) + nO(σ2

n

√
pd log d)

Θ(σ2
npd)

Ψ(t)

)q−1

O(σ2
npd)

≤ Ψ(t) +
η

n

(
O(
√
log dσ0σn

√
pd) +O(Ψ(t))

)q−1

O(σ2
npd),

where the second inequality follows by |ℓ′(t)j,i | and applying the bounds from Lemma D.5, and the
last inequality follows by choosing 2K log T⋆

σnd
√
p = Õ(1/

√
d) ≪ σ0. Let C1, C2, C3 be the con-

stants for the upper bound to hold in the big O notation. For any T =
nη−1C4σ

2−q
0 (σn

√
pd)−q

C3(2C1)q−1[log d](q−1)/2 =

24

Under review as a conference paper at ICLR 2023

Θ(
nη−1σ2−q

0 (σn

√
pd)−q

[log d](q−1)/2), we use induction to show that

Ψ(t) ≤ C4σ0σn

√
pd, ∀t ∈ [T]. (3)

Suppose that Equation equation 3 holds for t ∈ [T ′] for T ′ ≤ T − 1. Then

Ψ(T ′+1) ≤ Ψ(T ′) +
η

n

(
C1

√
log dσ0σn

√
pd+ C2C4σ0σn

√
pd
)q−1

C3σ
2
npd

≤ Ψ(T ′) +
η

n

(
2C1

√
log dσ0σn

√
pd
)q−1

C3σ
2
npd

≤ (T ′ + 1)
η

n

(
2C1

√
log dσ0σn

√
pd
)q−1

C3σ
2
npd

≤ T
η

n

(
2C1

√
log dσ0σn

√
pd
)q−1

C3σ
2
npd

≤ C4σ0σn

√
pd,

where the last inequality follows by picking T =
nη−1C4σ

2−q
0 (σn

√
pd)−q

C3(2C1)q−1[log d](q−1)/2 = Θ(
nη−1σ2−q

0 (σn

√
pd)−q

[log d](q−1)/2).

Therefore, by induction, we have Ψ(t) ≤ C4σ0σn

√
pd for all t ∈ [T].

Lemma D.17 (Formal Restatement of Lemma 3.3). Under the same assumption as Theorem D.1,
there exists time T1 = log 2m−1/q

log(1+Θ(η
K)µqσq−2

0)
= O(Kη−1σ2−q

0 µ−q log 2m−1/q) such that

1. maxr γ
(T1)
j,r,j ≥ m−1/q for j ∈ [K].

2. |ζ(t)j,r,i|, |ω
(t)
j,r,i| ≤ O(σ0σn

√
pd) for all j ∈ [K], r ∈ [m], i ∈ [n] and t ≤ T1.

3. |γ(t)
j,r,k| ≤ O(σ0µ poly log d) for all j, k ∈ [K], j ̸= k, r ∈ [m] and t ≤ T1.

Proof. Consider a fixed class j ∈ [K]. Denote T1 to be the last time for

t ∈
[
0,

nη−1C4σ
2−q
0 (σn

√
pd)−q

C3(2C1)q−1[log d](q−1)/2

]
satisfying maxr γ

(t)
j,r ≤ m−1/q . Then for t ≤ T1,

maxj,r,i ζ
(t)
j,r,i, |ω

(t)
j,r,i| ≤ O(σ0σp

√
pd) ≤ O(m−1/q) and maxj,r γ

(t)
j,r,j . Thus, by Lemma D.13,

we obtain that Fj(W̃
(t),xi) ≤ O(1), ∀yi = j. Thus, ℓ′(t)j,i = Θ(1). For j ∈ Sj

signal, we have

γ
(t+1)
j,r,j

= γ
(t)
j,r,j −

η

n

n∑
i=1

ℓ
′(t)
j,i · σ′

〈w̃(0)
j,r ,µj

〉
+ γ

(t)
j,r,j +

n∑
i′=1

ζ
(t)
j,r,i

〈
ξ̃j,r,i,µj

〉
∥∥∥ξ̃j,r,i∥∥∥2

2

+

n∑
i′=1

ω
(t)
j,r,i

〈
ξ̃j,r,i,µj

〉
∥∥∥ξ̃j,r,i∥∥∥2

2

 ∥µj∥22 I(yi = j)

≥ γ
(t)
j,r,j −

η

n

n∑
i=1

ℓ
′(t)
j,i σ

′
(〈

w̃
(0)
j,r ,µj

〉
+ γ

(t)
j,r,j −O(nσ0σnpd

σnµ
√
log d

σ2
npd

)

)
I(yi = j).

Let γ̂(t)
j,r,j = γ

(t)
j,r,j +

〈
ŵ

(0)
j,r ,µj

〉
− O(nσ0σn

√
pdσnµ

√
log d

σ2
npd

) and A(t) = maxr γ̂
(t)
j,r,j . Note that by

our choice of µ, we have nµ
√
log d

σnpd
= o(1). Since maxr

〈
w̃

(0)
j,r ,µj

〉
≥ Ω(σ0µ) by Lemma D.7,

maxr

〈
w̃

(0)
j,r ,µj

〉
≥ Ω(σ0µ)−O(nσ0σnpd

σnµ
√
log d

σ2
npd

) = Ω(σ0µ). Then we have

A(t+1) ≥ A(t) − η

n

n∑
i=1

ℓ
′(t)
j,i σ

′(A(t))µ2I(yi = j)

≥ A(t) +Θ(
η

K
)µ2[A(t)]q−1

≥ (1 + Θ(
η

K
µ2[A(t)]q−2))A(t)

≥ (1 + Θ(
η

K
µqσq−2

0))A(t).

25

Under review as a conference paper at ICLR 2023

Therefore, the sequence A(t) will exponentially grow and will reach 2m−1/q within
log 2m−1/q

log(1+Θ(η
K)µqσq−2

0)
= O(Kη−1σ2−q

0 µ−q log 2m−1/q) ≤ Θ(
nη−1σ2−q

0 (σn

√
pd)−q

[log d](q−1)/2). Thus,

maxr γ
(t)
j,r ≥ A(t) −maxj,r |

〈
w̃

(0)
j,r ,µj

〉
| ≥ 2m−1/q −O(σ0µ) ≥ 2−m−1/q = m−1/q .

Now we prove that under the same assumption as Theorem D.1, for T = O(Kη−1σ2−q
0 µ−q), we

have |γ(t)
j,r,k| ≤ O(σ0µ poly log d) for all r ∈ [m], j, k ∈ [K], j ̸= k and t ≤ T .

We show that there exists a time T ′ ≥ T such that for all t ≤ T ′, maxj,r,k |γ(t)
j,r,k| ≤

O(σ0µ poly log d). Let T ′ = O(K2η−1σ2−q
0 µ−q log d).

Define Φ(t) = maxr∈[m], j,k∈[K], j ̸=k{|γ
(t)
j,r,k|}. Since we assume T ≤ Θ(

nη−1σ2−q
0 (σn

√
pd)−q

[log d](q−1)/2), by

Lemma D.16, we have ζ
(t)
j,r,i, |ω

(t)
j,r,i| ≤ O(σ0σn

√
pd).

Φ(t+1)

≤ Φ(t) + max
j,r,k,i

 η

n

n∑
i=1

I(yi = k)|ℓ′(t)j,i |σ
′

〈w̃(0)
j,r ,µk

〉
+

n∑
i′=1

ζ
(t)
j,r,i′

〈
ξ̃j,r,i′ ,µk

〉
∥∥∥ξ̃j,r,i′∥∥∥2

2

+

n∑
i′=1

ω
(t)
j,r,i′

〈
ξ̃j,r,i′ ,µk

〉
∥∥∥ξ̃j,r,i′∥∥∥2

2

µ2

≤ Φ(t) +

η

K

1

K
q

(
O(σ0µ

√
log d) + nO(σ0σn

√
pd)

σnµ
√
log d

σ2
npd

)

)q−1

µ2

≤ Φ(t) +
qη

K2

(
O(σ0µ

√
log d)

)q−1

µ2,

where the first inequality follows because γ(t)
j,r,k < 0, the second inequality follows because there are

Θ(n/K) samples from a given class k and |ℓ′(t)j,i | = Θ(1
K), and the last inequality follows because

µ = σn

√
d log d. Now, let C be the constant such that the above holds with big O. Then, we use

induction to show that Φ(t) ≤ C2σ0µ for all t ≤ T . We proceed as follows.

Φ(t+1) ≤ Φ(t) +
qη

K2

(
Cσ0µ

√
log d

)q−1

µ2

≤ T
qη

K2

(
Cσ0µ

√
log d

)q−1

µ2

≤ C2σ0µpoly log d,

where the last inequality follows by picking T =
C2K

2η−1σ2−q
0 µ−q√log d

Cq−1 =

O(K2η−1σ2−q
0 µ−q log d).

D.4 CONVERGING PHASE

In this subsection, we show that gradient descent can drive the training loss toward zero while the
signal in the feature is still large. An important intermediate step in our argument is the development
of the following gradient upper bound for multi-class cross-entropy loss.

In this phase, we are going to show that

• maxr γ
(t)
j,r,j ≥ m1/q for all j ∈ [K].

• maxj ̸=k,r∈[m] |γ
(t)
j,r,k| ≤ β1 where β1 = Õ(σ0µ).

• maxj,r,i{ζ(t)j,r,i, |ω
(t)
j,r,i|} ≤ β2 where β2 = O(σ0σn

√
pd)

Define W⋆ as follows:

w⋆
j,r = w

(0)
j,r +Θ(m log(1/ϵ))

µj

µ2
.

26

Under review as a conference paper at ICLR 2023

Lemma D.18. Based on the result from the feature growing phase,
∥∥∥W̃(T1) − W̃⋆

∥∥∥2
F

≤
O(Km3 log2(1/ϵ)µ−2).

Proof. We first compute∥∥∥W̃(T1) − W̃(0)
∥∥∥2
F

=

K∑
j=1

m∑
r=1

∥∥∥∥∥∥∥γ(T1)
j,r,j

µj ⊙mj,r

µ2
+
∑
k ̸=j

γ
(T1)
j,r,k

µk ⊙mj,r

µ2
+
∑
i

ζ
(T1)
j,r,i

ξ̃j,r,i∥∥∥ξ̃j,r,i∥∥∥2
2

+
∑
i

ω
(T1)
j,r,i

ξ̃j,r,i∥∥∥ξ̃j,r,i∥∥∥2
2

∥∥∥∥∥∥∥
2

2

≤
∑
j

∑
r

γ
(T1)
j,r,j

1

µ
+
∑
k ̸=j

γ
(T1)
j,r,k

1

µ
+
∑
i

ζ
(T1)
j,r,i

1∥∥∥ξ̃j,r,i∥∥∥
2

+
∑
i

ω
(T1)
j,r,i

1∥∥∥ξ̃j,r,i∥∥∥
2

2

≤
∑
j

∑
r

(
Õ(

1

µ
) +KÕ(σ0) + nÕ(σ0)

)2

≤
∑
j

∑
r

Õ(
1

µ2
)

= Õ(Km
1

µ2
),

where the first inequality follows from triangle inequality, the second inequality follows from
Lemma D.17, and the last inequality follows from our choice of σ0. On the other hand,∥∥∥W̃(0) − W̃⋆

∥∥∥2
F
=
∑
j,r

m2 log2(1ϵ)
1

µ2
= O(Km3 log2(1/ϵ)

1

µ2
).

Thus, we obtain∥∥∥W̃(T1) − W̃⋆
∥∥∥2
F
≤ 4

∥∥∥W̃(T1) − W̃(0)
∥∥∥2
F
+ 4

∥∥∥W̃(0) − W̃⋆
∥∥∥2
F
≤ O(Km3 log2(1/ϵ)

1

µ2
).

Lemma D.19 (Gradient Upper Bound). Under Condition 2.2, for t ≤ T ⋆, there exists constant
C = O(Km2/q max{µ2, σ2

npd}) such that∥∥∥∇LS(W̃
(t))⊙M

∥∥∥2
F
≤ CLS(W̃

(t)).

Proof. We need to prove that |ℓ′(t)yi,i
|
∥∥∥∇F (W̃(t),xi)⊙M

∥∥∥2
F
≤ C. Assume yi ̸= j. Then we obtain∥∥∥∇Fj(W̃j ,xi)⊙M

∥∥∥
F
≤
∑
r

∥∥∥σ′
(〈

w̃
(t)
j,r,µyi

〉)
µyi

+ σ′
(〈

w̃
(t)
j,r, ξi

〉)
ξ̃i

∥∥∥
2

≤
∑
r

σ′
(〈

w̃
(t)
j,r,µyi

〉)
∥µyi

∥2 + σ′
(〈

w̃
(t)
j,r, ξi

〉)∥∥∥ξ̃i∥∥∥
2

≤ m1/q
[
Fj(W̃j ,xi)

](q−1)/q

max{µ,Cσn

√
pd}

≤ m1/q max{µ,Cσn

√
pd},

where the first and second inequality follow from triangle inequality, the third inequality follows
from Hölder’s inequality, and the last inequality follows from Lemma D.12. Similarly, on the other
hand, if yi = j, then∥∥∥∇Fyi(W̃)⊙M

∥∥∥
F
≤ m1/q

[
Fyi(W̃yi

,xi)
](q−1)/q

max{µ,Cσn

√
pd}.

27

Under review as a conference paper at ICLR 2023

Therefore,∑
j ̸=yi

|ℓ′(t)j,i |
∥∥∥∇Fj(W̃j ,xi)⊙Mj

∥∥∥2
F
≤
∑
j ̸=yi

|ℓ′(t)j,i |m
2/qO(max{µ2, σ2

npd})

= |ℓ′(t)yi,i
|m2/qO(max{µ2, σ2

npd})

≤ Ke exp{−Fyi(xi)}m2/qO(max{µ2, σ2
npd}),

and

|ℓ′(t)yi,i
|
∥∥∥∇Fyi(W̃yi ,xi)⊙Myi

∥∥∥2
F

≤ Ke exp{−Fyi
(xi)}m2/q

[
Fyi

(W̃yi
,xi)

]2(q−1)/q

O(max{µ2, σ2
npd},

where the inequality follows from Equation equation 2. Thus,

K∑
j=1

|ℓ′(t)j,i |
2
∥∥∥∇Fj(W̃j ,xi)⊙Mj

∥∥∥2
F

≤ |ℓ′(t)yi,i
|

K∑
j=1

|ℓ′(t)j,i |
∥∥∥∇Fj(W̃j ,xi)⊙Mj

∥∥∥2
F

≤ |ℓ′(t)yi,i
|Ke exp{−Fyi(xi)}m2/qO(max{µ2, σ2

npd}
([

Fyi(W̃yi ,xi)
](q−1)/q

+ 1

)
≤ |ℓ′(t)yi,i

|O(Km2/q max{µ2, σ2
npd}), (4)

where the first inequality follows because |ℓ′(t)j,i | ≤ |ℓ′(t)yi,i
|, and the last inequality uses the fact that

exp{−x}(1 + x(q−1)/q) = O(1) for all x ≥ 0.

The gradient norm can be bounded by

∥∥∥∇LS(W̃
(t))
∥∥∥2
F
≤

(
1

n

n∑
i=1

∥∥∥∇L(W̃(t),xi)
∥∥∥
F

)2

=

 1

n

n∑
i=1

√√√√ K∑
j=1

|ℓ′(t)j,i |2
∥∥∥∇Fj(W̃

(t)
j ,xi)

∥∥∥2
F

2

≤

(
1

n

n∑
i=1

|ℓ′(t)yi,i
|
∥∥∥∇F (W̃

(t)
j ,xi)

∥∥∥
F

)2

≤

(
1

n

n∑
i=1

√
|ℓ′(t)yi,i

|O(Km2/q max{µ2, σ2
nd})

)2

≤ O(Km2/q max{µ2, σ2
nd})

1

n

n∑
i=1

|ℓ′(t)yi,i
|

≤ O(Km2/q max{µ2, σ2
nd})LS(W̃

(t)),

where the first inequality uses triangle inequality, the second inequality follows because |ℓ′(t)j,i | ≤
|ℓ′(t)yi,i

|, the third inequality uses the bound equation 4, the fourth inequality uses Jensen’s inequality

and the last inequality follows because |ℓ′(t)yi,i
| ≤ ℓ

(t)
i .

Lemma D.20. For T1 ≤ t ≤ T ⋆, we have for all j ̸= yi,〈
∇Fyi

(W̃(t)
yi
,xi),W̃

⋆
yi

〉
−
〈
∇Fj(W̃

(t)
j ,xi),W̃

⋆
j

〉
≥ q log

2qK

ϵ
.

28

Under review as a conference paper at ICLR 2023

Proof of Lemma D.20. The proof of this lemma depends on the next two lemmas.

Lemma D.21. For T1 ≤ t ≤ T ⋆ and j = yi, we have
〈
∇Fj(W̃

(t)
j ,xi),W̃

⋆
j

〉
≥ Θ(m1/q log(1/ϵ)).

Proof. By Lemma D.17, we have

max
r

{〈
w̃

(t)
j,r,µj

〉}
= max

r

〈
w̃

(0)
j,r ,µj

〉
+ γ

(t)
j,r,j +

n∑
i=1

ζ
(t)
j,r,i

〈
ξ̃j,r,i,µj

〉
∥∥∥ξ̃j,r,i∥∥∥2

2

+

n∑
i=1

ω
(t)
j,r,i

〈
ξ̃j,r,i,µj

〉
∥∥∥ξ̃j,r,i∥∥∥2

2

≥ m−1/q −O(σ0µ

√
log d)−O(nσ0σn

√
d
µ
√
log d

σnpd
)

≥ Θ(m−1/q),

where the last inequality follows by picking σ0 ≤ O(m−1n−1µ−1(log d)−1/2). On the other hand,∣∣∣〈w̃(t)
j,r, ξi

〉∣∣∣ ≤ ∣∣∣〈w̃(0)
j,r , ξi

〉∣∣∣+ |ω(t)
j,r,i|+ |ζ(t)j,r,i|+O(n

√
log d

pd
α) +O(n

µ
√
log d

σnpd
α) ≤ O(1),

(5)
where the first inequality follows from Lemma D.11 and the second inequality follows from Equa-
tion (1) and Proposition D.10. Therefore,〈

∇Fj(W̃
(t)
j ,xi),W̃

⋆
j

〉
=
∑
r

σ′
(〈

w̃
(t)
j,r,µj

〉) 〈
µj , w̃

⋆
j,r

〉
+
∑
r

σ′
(〈

w̃
(t)
j,r, ξi

〉) 〈
ξi, w̃

⋆
j,r

〉
≥
∑
r

σ′
(〈

w̃
(t)
j,r,µj

〉)
Θ(m log(1/ϵ))−

∑
r

O(σ0σn

√
pd log d+

σn

√
log d

µ
m log(1/ϵ))

≥ Θ(m1/q log(1/ϵ))−O(mσ0σn

√
pd log d+

σn

√
log d

µ
m2 log(1/ϵ))

≥ Θ(m1/q log(1/ϵ)),

where the last inequality follows because mσ0σn

√
pd log d = o(1) and σn

√
log d
µ m2 = o(1) by our

choices of µ, σ0.

Lemma D.22. For T1 ≤ t ≤ T and j ̸= yi, we have
〈
∇Fj(W̃

(t)
j ,xi),W̃

⋆
j

〉
≤ O(1).

Proof. First we have〈
w̃

(t)
j,r,µyi

〉
=
〈
w̃

(0)
j,r ,µyi

〉
+ γ

(t)
j,r,yi

+

n∑
i=1

ζ
(t)
j,r,i

〈
ξ̃j,r,i,µj

〉
∥∥∥ξ̃j,r,i∥∥∥2

2

+

n∑
i=1

ω
(t)
j,r,i

〈
ξ̃j,r,i,µj

〉
∥∥∥ξ̃j,r,i∥∥∥2

2

≤ O(σ0µ
√

log d+ σ0µ poly log d+ nσ0σn

√
pd

σnµ
√
log d

σ2
npd

)

≤ O(1), (6)
where the first inequality follows from Lemma D.7, Lemma D.5 and Lemma D.17, and the last
inequality follows from our choices of σ0, µ. Then, we have〈

∇Fj(W̃
(t)
j ,xi),W̃

⋆
j

〉
=
∑
r

σ′
(〈

w̃
(t)
j,r,µyi

〉) 〈
µyi , w̃

⋆
j,r

〉
+
∑
r

σ′
(〈

w̃
(t)
j,r, ξi

〉) 〈
ξi, w̃

⋆
j,r

〉
≤ mO(σ0µ

√
log d) +mO(σ0σn

√
d log d+m log(1/ϵ)

σn

√
log d

µ
)

≤ O(1),

29

Under review as a conference paper at ICLR 2023

where the second inequality follows from Equation equation 6 and Equation equation 5, and the last
inequality follows from our choices of µ, σ0.

Applying the lower bound and upper bound from Lemma D.21 and Lemma D.22, we have〈
∇Fyi

(W̃(t)
yi
,xi),W̃

⋆
yi

〉
−
〈
∇Fj(W̃

(t)
j ,xi),W̃

⋆
j

〉
≥ Θ(m1/q log(1/ϵ))−O(1)

≥ q log
2qK

ϵ
.

Lemma D.23. Under the same assumption as Theorem D.1, we have∥∥∥W̃(t) − W̃⋆
∥∥∥2
F
−
∥∥∥W̃(t+1) − W̃⋆

∥∥∥2
F
≥ 5ηLS(W̃

(t))− ηϵ.

Proof. To simplify our notation, we define F̂
(t)
j (xi) =

〈
∇Fj(W̃

(t)
j ,xi),W̃

⋆
j

〉
.

We use the fact that the network is q-homogeneous.∥∥∥W̃(t) − W̃⋆
∥∥∥2
F
−
∥∥∥W̃(t+1) − W̃⋆

∥∥∥2
F

= 2η
〈
∇LS(W̃

(t))⊙M,W̃(t) − W̃⋆
〉
− η2

∥∥∥∇LS(W̃
(t))⊙M

∥∥∥2
F

=
2η

n

n∑
i=1

K∑
j=1

ℓ
′(t)
j,i

[
qFj(W̃

(t)
j ;xi, yi)−

〈
∇Fj(W̃

(t)
j ,xi),W̃

⋆
j

〉]
− η2

∥∥∥∇LS(W̃
(t))⊙M

∥∥∥2
F

≥ 2qη

n

n∑
i=1

log(1 + K∑
j=1

eFj−Fyi)− log(1 +

K∑
j=1

e(F̂j−F̂yi
)/q)

− η2
∥∥∥∇LS(W̃

(t))⊙M
∥∥∥2
F

≥ 2qη

n

n∑
i=1

[
ℓ(W̃(t);xi, yi)− log(1 +Ke− log(2qK/ϵ))

]
− η2

∥∥∥∇LS(W̃
(t))⊙M

∥∥∥2
F

≥ 2qη

n

n∑
i=1

[
ℓ(W̃(t);xi, yi)−

ϵ

2q

]
− η2

∥∥∥∇LS(W̃
(t))⊙M

∥∥∥2
F

≥ CηLS(W̃
(t))− ηϵ,

where the first inequality follows from the convexity of the cross-entropy loss with softmax, the
second inequality follows from Lemma D.20, the third inequality follows because log(1 + x) ≤ x,
and the last inequality follows from Lemma D.19 for some constant C.

Lemma D.24 (Formal Restatement of Lemma 3.5). Under the same assumption as Theorem

D.1, choose T2 = T1 +
∥W̃(T1)−W̃⋆∥2

F

2ηϵ = T1 + Õ(Km3 log2(1/ϵ)µ−2). Then for any time

t during this stage, we have maxr γ
(t)
j,r,j ≥ m1/q for all j ∈ [K], maxj,r,i{|ζ(t)j,r,i|, |ω

(t)
j,r,i|} ≤

2β1, maxj ̸=k,r∈[m]{|γ
(t)
j,r,k|} ≤ 2β2, and

1

t− T1

t∑
s=T1

LS(W̃
(s)) ≤

∥∥∥W̃(T1) − W̃⋆
∥∥∥2
F

Cη(t− T1)
+

ϵ

C
.

Proof. From Lemma D.17, we have maxrγ
(T1)
j,r,j ≥ m1/q and since γ(t) is an increasing sequence

over t, we have maxrγ
(t)
j,r,j ≥ m1/q for all t ∈ [T1, T2]. We have∥∥∥W̃(s) − W̃⋆

∥∥∥2
F
−
∥∥∥W̃(s+1) − W̃⋆

∥∥∥2
F
≥ CηLS(W̃

(s))− ηϵ.

30

Under review as a conference paper at ICLR 2023

Taking a telescopic sum from T1 to t yields

t∑
s=T1

LS(W̃
(s)) ≤

∥∥∥W̃(T1) − W̃⋆
∥∥∥2
F
+ ηϵ(t− T1)

Cη
.

Combining Lemma D.18, we have

t∑
s=T1

LS(W̃
(s)) ≤ O(η−1

∥∥∥W̃(T1) − W̃⋆
∥∥∥2
F
) = O(η−1Km3 log2(1/ϵ)µ−2). (7)

Define Ψ(t) = maxj,r,i{ζ(t)j,r,i, |ω
(t)
j,r,i|} and Φ(t) = maxj ̸=k,r∈[m] |γ

(t)
j,r,k| and β2 = Õ(σ0µ). Now

we use induction to prove Ψ(t) ≤ 2β1 and Φ(t) ≤ 2β2. Suppose the result holds for time t ≤ t′.
Then

Ψ(t+1) ≤ Ψ(t) +max
j,r,i

 η

n
|ℓ′(t)j,i | · σ

′

〈w̃(0)
j,r , ξi

〉
+

K∑
k=1

γ
(t)
j,r,k

⟨µk, ξi⟩
∥µk∥22

+

n∑
i′=1

Ψ(t)

〈
ξ̃j,r,i′ , ξi

〉
∥∥∥ξ̃j,r,i′∥∥∥2

2

∥∥∥ξ̃j,r,i∥∥∥2
2

≤ Ψ(t) +

η

n
qmax

i
|ℓ′(t)yi,i

|

(
O(
√

log dσ0σn

√
pd) +K log1/q T ⋆µσn

√
log d

µ2

+
O(σ2

npd) + nO(σ2
n

√
pd log d)

Θ(σ2
npd)

Ψ(t)

)q−1

O(σ2
npd)

≤ Ψ(t) +
η

n

n∑
i=1

|ℓ′(t)yi,i
|
(
O(
√
log dσ0σn

√
pd) +O(Ψ(t))

)q−1

O(σ2
npd),

where the second inequality follows by |ℓ′(t)j,i | ≤ |ℓ′(t)yi,i
| and applying the bounds from Lemma D.5,

and the last inequality follows by choosing K log1/q T⋆

√
d

= Õ(1√
d
) ≪ σ0σn

√
pd. Unrolling the

recursion by taking a sum from T1 to t′ we have

Ψ(t′+1)
(i)

≤ Ψ(T1) +
η

n

t′∑
s=T1

n∑
i=1

|ℓ′(s)yi,i
|O(σ2

npd poly log d)βq−1
1

(ii)

≤ Ψ(T1) +
η

n
O(σ2

npd poly log d)βq−1
1

t′∑
s=T1

n∑
i=1

ℓ
(s)
i

= Ψ(T1) +
η

n
O(σ2

npd poly log d)βq−1
1

t′∑
s=T1

LS(W̃
(s))

(iii)

≤ Ψ(T1) +
1

n
O(Km3µ−2σ2

npd poly log d)βq−1
1

(iv)

≤ β1 + Õ(Km3)βq−1
1

(v)

≤ 2β1,

where (i) follows from induction hypothesis Ψ(t) ≤ 2β1, (ii) follows from the property of cross-
entropy loss with softmax |ℓ′j,i| ≤ |ℓ′yi,i

| ≤ ℓi, (iii) follows from Equation equation 7, (iv) follows
from our choice of µ, n,K, and (v) follows because Õ(Km3)β1

q−2 ≤ Õ(Km3σ0σn

√
pd) ≤ 1.

Therefore, by induction Ψ(t) ≤ 2β1 holds for time t ≤ t′ + 1.

31

Under review as a conference paper at ICLR 2023

On the other hand,

Φ(t′+1)

(i)

≤ Φ(t) + max
j,r,k,i

 η

n

n∑
i=1

I(yi = k)|ℓ′(t)j,i |σ
′

〈w̃(0)
j,r ,µk

〉
+

n∑
i′=1

ζ
(t)
j,r,i′

〈
ξ̃j,r,i′ ,µk

〉
∥∥∥ξ̃j,r,i′∥∥∥2

2

+

n∑
i′=1

ω
(t)
j,r,i′

〈
ξ̃j,r,i′ ,µk

〉
∥∥∥ξ̃j,r,i′∥∥∥2

2

µ2

(ii)

≤ Φ(t) +Θ(
η

K
)max

j,i
|ℓ′(t)j,i |

(
O(σ0µ

√
log d) + nO(σ0σn

√
pd)

σnµ
√
log d

σ2
npd

)

)q−1

µ2

(iii)

≤ Φ(T1) +Θ(
η

K
)µ2

t∑
s=T1

n∑
i=1

ℓ
(s)
i

(
O(σ0µ

√
log d)

)q−1

(iv)

≤ β2 +O(m3)βq−1
2

(v)

≤ 2β2,

where (i) follows because γ
(t)
j,r,k ≤ 0, (ii) follows from Lemma D.7 and Lemma D.5, (iii) follows

because maxj,i |ℓ′(t)j,i | ≤ maxi |ℓ′(t)yi,i
| ≤ maxi ℓ

(t)
i ≤

∑
i ℓ

(t)
i , (iv) follows from Equation equation 7,

and (v) follows because O(m3)βq−2
2 ≤ Õ(m3σ0µ) ≤ 1.

D.5 GENERALIZATION ANALYSIS

In this subsection, we show that pruning can purify the feature by reducing the variance of the noise
by a factor of p when a new sample is given.

Now the network has parameter

w̃⋆
j,r = w̃

(0)
j,r +

K∑
k=1

γ⋆
j,r,k

µk ⊙mj,r

µ2
+

n∑
i=1

ζ⋆j,r,i
ξ̃j,r,i∥∥∥ξ̃j,r,i∥∥∥2

2

+

n∑
i=1

ω⋆
j,r,i

ξ̃j,r,i∥∥∥ξ̃j,r,i∥∥∥2
2

.

We have
∥∥w̃⋆

j,r

∥∥
2

= O(σ0

√
pd + µ−1 log1/q(T ⋆) + Kσ0 poly log d + nσ0σn

√
pd 1

σn

√
pd
) =

O(σ0

√
pd).

Lemma D.25 (Formal Restatement of Lemma 3.6). With probability at least 1 −
2Km exp

(
− (2m)−4/q

O(σ2
0σ

2
npd)

)
,

max
j,r

∣∣〈w̃⋆
j,r, ξ

〉∣∣ ≤ (2m)−2/q.

Proof. Since
〈
w̃⋆

j,r, ξ
〉

follows a Gaussian distribution with variance O(σ2
0σ

2
npd), we have

P
[∣∣〈w̃⋆

j,r, ξ
〉∣∣ ≥ (2m)−2/q

]
≤ 2 exp

(
− (2m)−4/q

O(σ2
0σ

2
npd)

)
.

Applying a union bound over j ∈ [K], r ∈ [m] gives the result.

Theorem D.26 (Formal Restatement of Generalization Part of Theorem 3.1). Under the same as-
sumptions as Theorem D.1, within Õ(Kη−1σ2−q

0 µ−q +K2m4µ−2η−1ϵ−1) iterations, we can find
W̃⋆ such that

• LS(W̃
⋆) ≤ ϵ.

• LD ≤ O(Kϵ) + exp(−n2/p).

Proof. Let E be the event that Lemma D.25 holds. Then, we can divide LD(W̃
⋆) into two parts:

E[ℓ(F (W̃⋆,x))] = E[I(E)ℓ(F (W̃⋆,x))]︸ ︷︷ ︸
I1

+E[I(Ec)ℓ(F (W̃⋆,x))]︸ ︷︷ ︸
I2

.

32

Under review as a conference paper at ICLR 2023

Since LS(W̃
⋆) ≤ ϵ, for each class j ∈ [K] there must exist one training sample (xi, yi) ∈ S

with yi = j such that ℓ(F (W̃⋆,xi)) ≤ Kϵ ≤ 1 by pigeonhole principle. This implies that∑
j′ ̸=j exp(Fj′(xi)− Fj(xi)) ≤ 2Kϵ. Conditioning on the event E , by Lemma D.25, we have

|Fj(W̃
⋆,x)− Fj(W̃

⋆,xi)| ≤
∑
r

σ(
〈
w̃⋆

j,r, ξi
〉
) +

∑
r

σ(
〈
w̃⋆

j,r, ξ
〉
)

≤
∑
r

(2m)−1 +
∑
r

(2m)−1

≤ 1.

Thus, we have exp(Fj′(x)− Fj(x)) ≤ 2Kϵe2 = O(Kϵ). Next we bound the term I2.

ℓ(F (W̃⋆,x)) = log

1 +
∑
j′ ̸=y

exp(Fj′(x)− Fy(x))

≤ log

1 +
∑
j′ ̸=y

exp(Fj′(x))

≤
∑
j′ ̸=y

log(1 + exp(Fj′(x)))

≤ K +
∑
j′ ̸=y

Fj′(x)

= K +
∑
j′ ̸=y

σ(
〈
w̃⋆

j′,r,µy

〉
) + σ(

〈
w̃⋆

j′,r, ξ
〉
)

≤ K +Km(O(σ0µ
√
log d))q + Õ(m(σ0σn

√
d)q) ∥ξ/σn∥q2

≤ 2K + ∥ξ/σn∥q2 , (8)

where the first inequality follows because Fy(x) ≥ 0, the second and third inequalities fol-
low from the property of log function, and the last inequality follows from our choice of σ0 ≤
Õ(m−4n−1σ−1

n d−1/2). We further have

I2 ≤
√
E[I(E)]

√
E[ℓ(F (W̃⋆,x))2]

≤
√

P(Ec)

√
4K2 + E ∥ξ/σn∥2q2

≤ exp(−Cm−2/qσ−2
0 σ−2

n p−1d−1 + log(d))

≤ exp(−n2/p),

where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows
from Equation equation 8, the third inequality follows from Lemma D.25, and the last inequality
follows because σ0 ≤ Õ(m−4n−1σ−1

n d−1/2).

E PROOF OF THEOREM 4.1

In this section, we show that there exists a relatively large pruning fraction (i.e., small p) such that
while gradient descent is still able to drive the training error toward zero, the learned model yields
poor generalization. We first provide a formal restatement of Theorem 4.1.
Theorem E.1 (Formal Restatement of Theorem 4.1). Under Condition 2.2, choose initialization
variance σ0 = Θ̃(m−4n−1µ−1) and learning rate η ≤ Õ(1/µ2). For ϵ > 0, if p = Θ(1

Km log d),

then with probability at least 1 − 1/ log(d), there exists T = O(η−1nσq−2
0 σ−q

n (pd)−q/2 +
η−1ϵ−1m4nσ−2

n (pd)−1) such that the following holds:

1. The training loss is below ϵ: LS(W̃
(T)) ≤ ϵ.

33

Under review as a conference paper at ICLR 2023

2. The model weight doesn’t learn any of its corresponding signal at all: γ
(t)
j,r,j = 0 for all

j ∈ [K], r ∈ [m].

3. The model weights is highly correlated with the noise: maxr∈[m] ζ
(T)
j,r,i ≥ Ω(m−1/q) if

yi = j.

Moreover, the testing loss is large:

LD(W̃
(T)) ≥ Ω(logK).

The proof of Theorem 4.1 consists of the analysis of the over-pruning for three stages of gradient
descent: initialization, feature growing phase, and converging phase, and the establishment of the
generalization property. We present these analysis in detail in the following subsections.

E.1 INITIALIZATION

Lemma E.2. When m = poly log d and p = Θ(1
Km log d), with probability 1−O(1/ log d), for all

class j ∈ [K] we have |Sj
signal| = 0.

Proof. First, the probability that a given class j receives no signal is (1−p)m. We use the inequality
that

1 + t ≥ exp {O(t)} ∀t ∈ (−1/4, 1/4).

Then the probability that |Sj
signal| = 0, ∀j ∈ [K] is given by

(1− p)
Km ≥ exp {−O (pKm)} ≥ 1−O

(
1

log d

)
.

E.2 FEATURE GROWING PHASE

Lemma E.3 (Formal Restatement of Lemma 4.3). Under the same assumption as Theorem E.1,
there exists T1 < T ⋆ such that T1 = O(η−1nσq−2

0 σ−q
n (pd)−q/2) and we have

• maxr ζyi,r,i ≥ m−1/q for all i ∈ [n].

• maxj,r,i |ω(t)
j,r,i| = Õ(σ0σn

√
pd).

• maxj,r,k |γ(t)
j,r,k| ≤ Õ(σ0µ).

Proof. First of all, recall that from Definition C.1 we have for j = yi〈
w̃

(t)
j,r, ξi

〉
=
〈
w̃

(0)
j,r , ξi

〉
+ ζ

(t)
j,r,i +

∑
k ̸=j

γ
(t)
j,r,k

〈
µk, ξ̃j,r,i

〉
µ2

+
∑
i′ ̸=i

ζ
(t)
j,r,i

〈
ξ̃j,r,i′ , ξi

〉
∥∥∥ξ̃j,r,i′∥∥∥2

2

+

n∑
i′=1

ω
(t)
j,r,i

〈
ξ̃j,r,i′ , ξi

〉
∥∥∥ξ̃j,r,i′∥∥∥2

2

.

Let

B
(t)
i = max

j=yi,r

{
ζ
(t)
j,r,i +

〈
w̃

(0)
j,r , ξi

〉
−O(n log1/q T ⋆

√
log d

pd
)−O(nσ0σn

√
pd

√
log d

pd
)

}
.

Since maxj=yi,r

〈
w̃

(0)
j,r , ξi

〉
≥ Ω(σ0σn

√
pd), we have

B
(0)
i ≥ Ω(σ0σn

√
pd)−O(n log1/q T ⋆

√
log d

pd
)−O(nσ0σn

√
pd

√
log d

pd
) ≥ Ω(σ0σn

√
pd).

34

Under review as a conference paper at ICLR 2023

Let Ti to be the last time that ζ(t)j,r,i ≤ m−1/q . We can compute the growth of B(t)
i as

B
(t+1)
i ≥ B

(t)
i +Θ(

ησ2
npd

n
)[B

(t)
i]q−1

≥ B
(t)
i +Θ(

ησ2
npd

n
)[B

(0)
i]q−2B

(t)
i

≥

(
1 + Θ

(
ησq−2

0 σq
np

q/2dq/2

n

))
B

(t)
i .

Therefore, B(t)
i will reach 2m−1/q within Õ(η−1nσq−2

0 σ−q
n (pd)−q/2) iterations.

On the other hand, by Proposition D.10, we have |ω(t)
j,r,i| ≤ β+6Cnα

√
log d
pd = O(σ0σn

√
pd log d).

E.3 CONVERGING PHASE

From the first stage we know that

w̃
(T1)
j,r = w̃

(0)
j,r ++

∑
k ̸=j

γ
(t)
j,r,k

µk ⊙mj,r

µ2
+

n∑
i=1

ζ
(T1)
j,r,i

ξ̃j,r,i∥∥∥ξ̃j,r,i∥∥∥2
2

+

n∑
i=1

ω
(T1)
j,r,i

ξ̃j,r,i∥∥∥ξ̃j,r,i∥∥∥2
2

.

Now we define W̃⋆ as follows:

w̃⋆
j,r = w̃

(0)
j,r +Θ(m log(1/ϵ))

 n∑
i=1

I(j = yi)
ξ̃j,r,i∥∥∥ξ̃j,r,i∥∥∥2

2

 .

Lemma E.4. Based on the result from feature growing phase,
∥∥∥W̃(T1) − W̃⋆

∥∥∥
F

≤
O(m2n1/2 log(1/ϵ)σ−1

n (pd)−1/2).

Proof. We derive the following bound:∥∥∥W̃(T1) − W̃⋆
∥∥∥
F

≤
∥∥∥W̃(T1) − W̃(0)

∥∥∥
F
+
∥∥∥W̃(0) − W̃⋆

∥∥∥
F

≤
∑
j,r

∥∥∥∥∥∥
∑
k ̸=j

γ
(t)
j,r,k

µk

µ2

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥
n∑

i=1

ζ
(T1)
j,r,i

ξ̃j,r,i∥∥∥ξ̃j,r,i∥∥∥2
2

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥
n∑

i=1

ω
(T1)
j,r,i

ξ̃j,r,i∥∥∥ξ̃j,r,i∥∥∥2
2

∥∥∥∥∥∥∥
2

+Θ(m2n1/2 log(1/ϵ)σ−1
n (pd)−1/2)

≤ Km(O(
√
Kσ0) +O(n1/2σ−1

n (pd)−1/2 log1/q T ⋆)) + Õ(m2n1/2 log(1/ϵ)σ−1
n (pd)−1/2)

≤ Õ(m2n1/2 log(1/ϵ)σ−1
n (pd)−1/2),

where the first inequality follows from triangle inequality, the second inequality follows from the
expression of W(T1),W⋆, and the third inequality follows from Lemma D.5 and the fact that ζ(t)j,r,i >
0 if and only if j = yi.

Lemma E.5. For T1 ≤ t ≤ T ⋆, we have〈
∇Fyi

(W̃yi
,xi),W̃

⋆
yi

〉
−
〈
∇Fj(W̃j ,xi),W̃

⋆
j

〉
≥ q log

2qK

ϵ
.

Lemma E.6. For T1 ≤ t ≤ T ⋆ and j = yi, we have〈
∇Fj(W̃

(t)
j ,xi),W̃

⋆
j

〉
≥ Θ(m1/q log(1/ϵ)).

35

Under review as a conference paper at ICLR 2023

Proof. By Lemma D.5, we have
〈
ξ̃j,r,i, w̃

⋆
j,r

〉
= Θ(m log(1/ϵ)) and by Lemma E.3 for j = yi,

maxr

〈
w̃

(t)
j,r, ξi

〉
≥ maxr ζj,r,i −maxr

〈
w̃

(0)
j,r , ξi

〉
−O(n

√
log d
d α) ≥ Θ(m−1/q). Then we have

〈
∇Fj(W̃

(t)
j ,xi),W̃

⋆
j

〉
=

m∑
r=1

σ′
(〈

w̃
(t)
j,r, ξi

〉)〈
ξ̃j,r,i, w̃

⋆
j,r

〉
≥ Θ(m1/q log(1/ϵ)).

Lemma E.7. For T1 ≤ t ≤ T ⋆ and j ̸= yi, we have

〈
∇Fj(W̃

(t)
j ,xi),W̃

⋆
j

〉
≤ O(1).

Proof. We first compute
〈
w̃⋆

j,r, ξi
〉
=
〈
w̃

(0)
j,r , ξi

〉
+ Θ(m log(1/ϵ))

∑n
i=1 I(j = yi)

⟨ξ̃j,r,i,ξi⟩
∥ξ̃j,r,i∥2

2

=

O(σ0σn

√
pd log d). Further,

〈
w̃

(t)
j,r, ξi

〉
=
〈
w̃

(0)
j,r , ξi

〉
+
∑
k ̸=j

γ
(t)
j,r,k

〈
µk, ξ̃j,r,i

〉
µ2

+

n∑
i=1

ζ
(t)
j,r,i

〈
ξ̃j,r,i, ξi

〉
∥∥∥ξ̃j,r,i∥∥∥2

2

+

n∑
i=1

ω
(t)
j,r,i

〈
ξ̃j,r,i, ξi

〉
∥∥∥ξ̃j,r,i∥∥∥2

2

≤ O(σ0σn

√
pd log d),

where the inequality follows from Lemma D.5 and Lemma D.15. Thus, we have

〈
∇Fj(W̃

(t)
j ,xi),W̃

⋆
j

〉
=

m∑
r=1

σ′
(〈

w̃
(t)
j,r, ξi

〉)〈
ξ̃j,r,i, w̃

⋆
j,r

〉
≤ mO

(
σ0σn

√
pd log d

)q
≤ O(1),

where the last inequality follows from our choice of σ0 ≤ Õ(m−1/qµ−1).

Lemma E.8. Under the same assumption as Theorem E.1, we have

∥∥∥W(t) −W⋆
∥∥∥2
F
−
∥∥∥W(t+1) −W⋆

∥∥∥2
F
≥ CηLS(W̃

(t))− ηϵ.

36

Under review as a conference paper at ICLR 2023

Proof. To simplify our notation, we define F̂ (t)
j (xi) =

〈
∇Fj(W̃

(t)
j ,xi),W̃

⋆
j

〉
. The proof is exactly

the same as the proof of Lemma D.23.∥∥∥W̃(t) − W̃⋆
∥∥∥2
F
−
∥∥∥W̃(t+1) − W̃⋆

∥∥∥2
F

= 2η
〈
∇LS(W̃

(t))⊙M,W̃(t) − W̃⋆
〉
− η2

∥∥∥∇LS(W̃
(t))⊙M

∥∥∥2
F

=
2η

n

n∑
i=1

K∑
j=1

ℓ
′(t)
j,i

[
qFj(W̃

(t)
j ;xi, yi)−

〈
∇Fj(W̃

(t)
j ,xi),W̃

⋆
j

〉]
− η2

∥∥∥∇LS(W̃
(t))⊙M

∥∥∥2
F

≥ 2qη

n

n∑
i=1

log(1 + K∑
j=1

eFj−Fyi)− log(1 +

K∑
j=1

e(F̂j−F̂yi
)/q)

− η2
∥∥∥∇LS(W̃

(t))⊙M
∥∥∥2
F

≥ 2qη

n

n∑
i=1

[
ℓ(W̃(t);xi, yi)− log(1 +Ke− log(2qK/ϵ))

]
− η2

∥∥∥∇LS(W̃
(t))⊙M

∥∥∥2
F

≥ 2qη

n

n∑
i=1

[
ℓ(W̃(t);xi, yi)−

ϵ

2q

]
− η2

∥∥∥∇LS(W̃
(t))⊙M

∥∥∥2
F

≥ CηLS(W̃
(t))− ηϵ,

where the first inequality follows from the convexity of the cross-entropy loss with softmax, the
second inequality follows from Lemma D.20, the third inequality follows because log(1 + x) ≤ x,
and the last inequality follows from Lemma D.19 for some constant C > 0.

Lemma E.9 (Formal Restatement of Lemma 4.4). Under the same assumption as Theorem E.1,

choose T2 = T1 + ⌈∥
W̃(T1)−W̃⋆∥2

F

2ηϵ ⌉ = T1 + Õ(η−1ϵ−1m4nσ−2
n (pd)−1). Then for any time t

during this stage we have maxj,r |ω(t)
j,r,i| = O(σ0

√
pd) and

1

t− T1

t∑
s=T1

LS(W̃
(s)) ≤

∥∥∥W̃(T1) − W̃⋆
∥∥∥2
F

Cη(t− T1)
+

ϵ

C
.

Proof. We have ∥∥∥W̃(s) − W̃⋆
∥∥∥2
F
−
∥∥∥W̃(s+1) − W̃⋆

∥∥∥2
F
≥ CηLS(W̃

(s))− ηϵ.

Taking a telescopic sum from T1 to t yields

t∑
s=T1

LS(W̃
(s)) ≤

∥∥∥W̃(T1) − W̃⋆
∥∥∥2
F
+ ηϵ(t− T1)

Cη
.

Combining Lemma E.4, we have

t∑
s=T1

LS(W̃
(s)) ≤ O(η−1

∥∥∥W̃(T1) − W̃⋆
∥∥∥2
F
) = Õ(η−1m4nσ−2

n (pd)−1).

E.4 GENERALIZATION ANALYSIS

Theorem E.10 (Formal Restatement of the Generalization Part of Theorem 4.1). Under the same as-
sumption as Theorem E.1, within O(η−1nσq−2

0 σ−q
n (pd)−q/2 + η−1ϵ−1m4nσ−2

n (pd)−1) iterations,
we can find W̃(T) such that LS(W̃

(T)) ≤ ϵ, and LD(W̃
(t)) ≥ Ω(logK).

37

Under review as a conference paper at ICLR 2023

Proof. First of all, from Lemma E.9 we know there exists t ∈ [T1, T2] such that LS(W̃
(T)) ≤ ϵ.

Then, we can bound

∥∥∥w̃(t)
j,r

∥∥∥
2
=

∥∥∥∥∥∥∥w̃(0)
j,r +

∑
k ̸=j

γ
(t)
j,r,k

µk

µ2
+

n∑
i=1

ζ
(t)
j,r,i

ξ̃j,r,i∥∥∥ξ̃j,r,i∥∥∥2
2

+

n∑
i=1

ω
(t)
j,r,i

ξ̃j,r,i∥∥∥ξ̃j,r,i∥∥∥2
2

∥∥∥∥∥∥∥
2

≤
∥∥∥w̃(0)

j,r

∥∥∥
2
+
∑
k ̸=j

|γ(t)
j,r,k|

1

µ
+

n∑
i=1

ζ
(t)
j,r,i

1∥∥∥ξ̃j,r,i∥∥∥
2

+

n∑
i=1

|ω(t)
j,r,i|

1∥∥∥ξ̃j,r,i∥∥∥
2

≤ O(σ0

√
d) + Õ(nσ−1

n (pd)−1/2).

Consider a new example (x, y). Taking a union bound over r, with probability at least 1− d−1, we
have ∣∣∣〈w(t)

y,r, ξ
〉∣∣∣ = Õ(σ0σn

√
d+ n(pd)−1/2),

for all r ∈ [m]. Then,

Fy(x) =

m∑
r=1

σ
(〈

w̃
(t)
j,r,µy

〉)
+ σ

(〈
w̃

(t)
j,r, ξ

〉)
≤ mmax

r

∣∣∣〈w(t)
y,r, ξ

〉∣∣∣q
≤ mÕ(σq

0σ
q
nd

q/2 + nq(pd)−q/2)

≤ 1,

where the last inequality follows because σ0 ≤ Õ(m−1/qµ−1) and d ≥ Ω̃(m2/qn2). Thus, with
probability at least 1− 1/d,

ℓ(F (W̃(t);x)) ≥ log(1 + (K − 1)e−1).

38

	Introduction
	Related Works

	Preliminaries and Problem Formulation
	Settings

	Mild Pruning
	Main result
	Proof Outline

	Over Pruning
	Experiments
	Simulations to Verify Our Results
	On the Real World Dataset

	Discussion and Future Direction
	Experiment Details
	Further Experiment Results
	Preliminary for Analysis
	Proof of Mild Pruning
	Initialization
	Supporting Properties for Entire Training Process
	Feature Growing Phase
	Converging Phase
	Generalization Analysis

	Proof of Over Pruning
	Initialization
	Feature Growing Phase
	Converging Phase
	Generalization Analysis

