
UNCOMP: Can Information Compression Uncover Sparsity? — A
Compressor Design from an Uncertainty-Aware Perspective

Anonymous ACL submission

Abstract

Deploying large language models (LLMs) for001
long-context inference remains challenging due002
to their substantial memory and computational003
demands. While techniques such as Key-Value004
(KV) cache compression are designed to re-005
duce memory usage, they often neglect the006
structured sparsity inherent in the relationship007
between hidden states and their correspond-008
ing KV cache. In this work, we explore the009
role of uncertainty as a potential indicator of010
sparsity within LLMs. We propose UNCOMP,011
an uncertainty-aware framework that leverages012
truncated matrix entropy to identify areas of013
low information content, thereby revealing spar-014
sity patterns that can be used for adaptive com-015
pression. Unlike traditional methods that apply016
uniform compression, UNCOMP dynamically017
adjusts its approach to compression, guided018
by uncertainty measures that reflect the impor-019
tance of various model components. Our analy-020
sis shows that sparsity patterns, when derived021
from uncertainty estimates, can be exploited to022
reveal special long-range dependencies, such023
as retrieval heads and retrieval layers. This per-024
spective not only enhances our understanding025
of how compression can be optimized but also026
provides new insights into the inherent sparsity027
of LLMs during long-context inference. By028
focusing on uncertainty to analyze the sparsity029
pattern in detail, UNCOMP reduces the KV030
cache size to 4.74% of the original, achieves a031
6% prefill speedup, and improves throughput032
by 6.4× — not only delivering strong lossless033
compression performance, but also validating034
the effectiveness of the underlying theoretical035
tool. Our codes are submitted with the paper.036

1 Introduction037

The development of large language models (LLMs)038

drives remarkable progress in natural language pro-039

cessing (Achiam et al., 2023; Kaplan et al., 2020),040

enabling tasks ranging from text generation to com-041

plex reasoning. However, deploying LLMs for042

long-context inference remains resource-intensive, 043

as they demand substantial memory and computa- 044

tion (Shazeer et al., 2017). A commonly adopted 045

optimization, the KV cache (Pope et al., 2023; 046

Liu et al., 2024b), stores keys and values from 047

previous tokens to avoid redundant computations. 048

Nonetheless, maintaining a full KV cache for long 049

sequences imposes considerable memory overhead, 050

which poses a bottleneck (Liu et al., 2024b). 051

To address this, several compression strategies 052

emerge: i) Eviction (Ge et al., 2023; Zhang et al., 053

2024d; Li et al., 2024; Zhang et al., 2024c), ii) 054

Merging (Liu et al., 2024b; Wan et al., 2024; 055

Wang et al., 2024; Zhang et al.), iii) Quantiza- 056

tion (Hooper et al., 2024; Zhang et al., 2024a; Liu 057

et al., 2024e), and iv) Head Pruning (Ainslie et al., 058

2023; Shazeer, 2019; Liu et al., 2024a; Yu et al., 059

2024; Brandon et al., 2024). However, these meth- 060

ods typically operate on sparsity along a single 061

axis—such as pruning attention heads or compress- 062

ing individual layers—without fully capturing how 063

sparsity emerges across the model’s hierarchical 064

structure, overlooking its complexity from different 065

layers and attention heads. To bridge this gap, we 066

introduce Matrix Information Theory (Zhang et al., 067

2023) and propose truncated matrix entropy as a 068

unified framework that connects uncertainty and 069

sparsity in a principled manner. 070

Specifically, existing methods (Zhang et al., 071

2024d; Xiao et al., 2023) often overlook 072

the sparsity pattern shared between hidden 073

states—typically the outputs of the multi-layer per- 074

ceptron (MLP)—and the KV cache. Rather than 075

viewing sparsity as a localized artifact of atten- 076

tion mechanisms, we interpret it as an indicator 077

of low-information regions distributed throughout 078

the hidden states and KV cache. This shift—from 079

the empirical observation layer and head spar- 080

sity (Jiang et al., 2024; Wu et al., 2024; Xiao et al., 081

2024; Cai et al., 2024) to uncertainty-aware com- 082

pression—reveals latent redundancies during long- 083

1

context inference and guides adaptive hidden state084

compression for faster prefill and KV cache evic-085

tion reducing. Our key contributions are as follows:086

1. We propose a novel uncertainty-aware com-087

pression framework grounded in truncated088

matrix entropy, uncovering the relationship be-089

tween information compression patterns and090

sparsity patterns in LLMs. Furthermore, we091

provide a detailed empirical study of the con-092

nection between information compression pat-093

terns and compression algorithms.094

2. We design a two-stage compression frame-095

work that jointly compresses hidden states096

and the KV cache. We are the first to indi-097

rectly compress the KV cache and accelerate098

the prefill stage by compressing the hidden099

states, achieving a 60% speedup in the prefill100

stage, a 4.74% compression ratio, and a 6.4×101

improvement in throughput with negligible102

performance degradation.103

3. We demonstrate that our method maintains104

performance even under aggressive compres-105

sion regimes, including settings where heads106

are entirely removed. In the needle-in-a-107

haystack task, UNCOMP surpasses the full-108

size KV cache baseline at a 9.38% compres-109

sion ratio.110

2 Related Work111

2.1 Attention-Based Token Eviction112

Early works identify distinctive attention patterns113

in the KV cache, such as the attention sink (Liu114

et al., 2024c; Xiao et al., 2023). In addition, prior115

studies (Cai et al., 2024; Yang et al., 2024a) empir-116

ically observe that sparsity increases with model117

depth. Distinct sparsity patterns—such as retrieval118

heads (Xiao et al., 2024; Wu et al., 2024)—are119

also observed across attention heads. However,120

the underlying mechanisms driving these sparsity121

patterns remain to be fully understood.122

Recent methods employ cumulative attention123

scores for selecting subsets of tokens (Zhang et al.,124

2024c; Li et al., 2023; Jiang et al., 2024; Zhang125

et al., 2024d; Ge et al., 2023; Sheng et al., 2023;126

Liu et al., 2024d; Li et al., 2024). These methods127

apply a fixed compression ratio to sparsity patterns128

observed in the layers of the KV cache. However,129

they overlook the compression of hidden states,130

as well as differences in retrieval behaviors across131

layers. This not only degrades the performance 132

of retrieval layers, but also misses the opportunity 133

to accelerate computation in the prefill stage by 134

failing to compress the hidden states. 135

2.2 Information Compression Behavior 136

The sparsity patterns discussed in Section 2.1 are 137

related to the model’s internal information com- 138

pression behavior (Feng et al., 2022). In this paper, 139

we provide a detailed categorization and analysis of 140

the compression patterns across different parameter 141

matrices. Recent work (Delétang et al., 2023) re- 142

veals that models exhibit spontaneous compression 143

behavior during training. Similar phenomena are 144

reported in Tao et al. (2024); Huang et al. (2024). 145

These observations, however, rarely connect infor- 146

mation compression patterns with sparsity patterns. 147

This motivates us to explore the model’s informa- 148

tion compression behavior—through entropy in- 149

creases or decreases—as a means to analyze its 150

sparsity patterns. To achieve this, we introduce 151

Matrix Information Theory (Zhang et al., 2023), a 152

theoretical tool for understanding the information 153

compression behavior. 154

3 Method 155

In this section, to explore the information compres- 156

sion patterns in the model, we derive the definition 157

of truncated matrix entropy and reveal the connec- 158

tion between information compression patterns and 159

sparsity patterns, leading to compression strategy. 160

3.1 Preliminary 161

To define truncated matrix entropy, we first intro- 162

duce the matrix entropy of the token matrix (either 163

from a layer or a head). Let the token matrix be 164

X = [x1,x2, . . . ,xN], where xi ∈ RD is the i-th 165

token vector, and N is the sequence length. The 166

covariance matrix ΣX ∈ RD×D is computed as: 167

ΣX =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T , (1) 168

where x̄ is the mean vector of the sequence X. 169

Based on this covariance matrix, we derive the 170

definition of matrix entropy. Specifically, following 171

Giraldo et al. (2014), the matrix entropy based on 172

ΣX is defined as: 173

Lemma 1 As α → 1 (the entropy measure depend- 174

ing on α), we obtain the definition of the von Neu- 175

mann (matrix) entropy (Von Neumann, 2013): 176

H(ΣX) = −Tr (ΣX log (ΣX)) . (2) 177

2

Lemma 2 Let ΣX be a symmetric positive definite178

matrix with eigenvalues σ = (σ1, σ2, . . . , σD)
T .179

The matrix entropy of ΣX can be expressed as:180

H(ΣX) = −
D∑
i=1

σi log σi, (3)181

where D is the dimension of the covariance matrix.182

We define matrix entropy on the token matrix X183

and provide the proof in Appendix G.184

To provide an intuition of its role in the token ma-185

trix, we introduce effective rank (Roy and Vetterli,186

2007), which links matrix entropy to dimension-187

ality. For the specific definition, please refer to188

Appendix G. Recent works (Zhang et al., 2023;189

Zhuo et al., 2023) investigate the relationship be-190

tween matrix entropy and effective rank. Inspired191

by these studies, we adopt effective rank to quantify192

the effective information across heads and layers193

to explore the model’s information compression194

patterns. Based on these patterns, we set different195

compression ratios for different heads and layers.196

We define the compression ratio ρ for each X as197

the ratio between the compressed length N̂ and the198

original sequence length N , i.e.,199

ρ =
N̂

N
. (4)200

3.2 Truncated Matrix Entropy201

0 20 40 60 80 100 120
SVD n

0.00

0.05

0.10

0.15

0.20

0.25

E
ig

en
va

lu
e

Eigenvalues Plot for NarrativeQA
(Every 4th Series)

head 0
head 4
head 8
head 12
head 16
head 20
head 24
head 28

0 20 40 60 80 100 120
SVD n

0.00

0.05

0.10

0.15

0.20

0.25

E
ig

en
va

lu
e

Eigenvalues Plot for Qasper
(Every 4th Series)

head 0
head 4
head 8
head 12
head 16
head 20
head 24
head 28

Figure 1: The spectrum of ΣQm across two datasets in
LongBench and various heads.

0 4 8 12 16 20 24 28 32
Head

0
4

8
12

16
20

24
28

32
L

ay
er

NarrativeQA

0 4 8 12 16 20 24 28 32
Head

0
4

8
12

16
20

24
28

32
L

ay
er

2WikiMQA

1.5

1.6

1.7

1.8

Tr
un

ca
tio

n
E

ff
ec

tiv
e

R
an

k

1.5

1.6

1.7

1.8

Tr
un

ca
tio

n
E

ff
ec

tiv
e

R
an

k

Figure 2: The heatmap of erankk(ΣQm
) across different

layers and heads.

To uncover information compression patterns202

in the token matrix, how do we determine which203

matrix—key (Km), query (Qm), value (Vm), or 204

hidden state (Hm)—best captures the compression 205

patterns in the token matrices? To answer this 206

question, we propose truncated matrix entropy. 207

Observation To gain insight, we first focus on 208

the spectrum of ΣQm (Tang et al., 2024b) across 209

different heads in the model’s final layer. Figure 1 210

reveals: i) The initial part of the eigenvalue distri- 211

bution varies significantly, suggesting that only a 212

small portion of the feature components are active. 213

ii) Eigenvalue distributions across heads differ sig- 214

nificantly in the leading part, prompting us to use 215

this part to calculate the model’s effective rank and 216

distinguish head types. 217

A key observation from Figure 2 is that, in dif- 218

ferent layers, there are heads with abnormally high 219

entropy, with most of them found in the middle lay- 220

ers (9-15). Later empirical experiments show that 221

these high-entropy heads and their corresponding 222

layers are associated with special sparsity patterns 223

that have long-range dependency (retrieval layers). 224

Discussion By Lemma 2, the covariance matrix 225

used for computing the matrix entropy must be pos- 226

itive definite. Therefore, we calculate the effective 227

rank of ΣQm using a positive definite submatrix. 228

Furthermore, as shown in Figure 1, we observe 229

a distinct elbow point (Thorndike, 1953), where 230

the eigencomponents preceding the elbow point 231

represent the principal components of the matrix. 232

Based on the above observations, we select the 233

top-k eigenvalues before the elbow point (Kaiser, 234

1960) and compute the effective rank. This leads 235

to the definition of truncated effective rank, which 236

quantify uncertainty through the effective rank of a 237

submatrix: 238

Hk(ΣX) = −
k∑

i=1

σi log σi, (5) 239

240
erankk(ΣX) = exp (Hk (ΣX)) . (6) 241

With erankk(ΣX) defined, we begin classifying the 242

compression patterns and exploring the estimation 243

of the compression ratio of Hm across layers and 244

Km, Vm across heads. 245

Observation We visualize the entropy variation 246

trends of Qm, Km, and Vm across different lay- 247

ers and datasets in Figure 3. The figure reveals 248

the following: i) Qm and Km exhibit more pro- 249

nounced trends of entropy increase or decrease 250

compared to Vm (notably, Vm and Hm demonstrate 251

similar compression patterns; see Appendix A), 252

suggesting that Qm and Km serve as stronger in- 253

dicators of information compression than Vm and 254

3

0 5 10 15 20 25 30
Layers

66

68

70

72

74

76

78

E
ff

ec
tiv

e
R

an
k

(a) Effective Rank of Qm

0 5 10 15 20 25 30
Layers

49

50

51

52

53

54

55

Tr
un

ca
tio

n
E

ff
ec

tiv
e

R
an

k

(b) Truncation Effective Rank of Qm

0 5 10 15 20 25 30
Layers

66

68

70

72

74

76

E
ff

ec
tiv

e
R

an
k

(c) Effective Rank of Km

0 5 10 15 20 25 30
Layers

51

52

53

54

55

Tr
un

ca
tio

n
E

ff
ec

tiv
e

R
an

k

(d) Truncation Effective Rank of Km

0 5 10 15 20 25 30
Layers

50

55

60

65

70

75

80

85

E
ff

ec
tiv

e
R

an
k

(e) Effective Rank of Vm

0 5 10 15 20 25 30
Layers

44

46

48

50

52

54

Tr
un

ca
tio

n
E

ff
ec

tiv
e

R
an

k

(f) Truncation Effective Rank of Vm

narrativeqa
qasper
multifieldqa_en
hotpotqa

2wikimqa
musique
trec
triviaqa

passage_count
passage_retrieval_en
qmsum
samsum

lcc
repobench-p
gov_report
multi_news

Figure 3: Effective rank and truncated effective rank for
the Qm, Km, and Vm across different layers.

Hm. ii) Truncated effective rank and full effec-255

tive rank display markedly different variation pat-256

terns, particularly in Qm and Km, highlighting257

fundamentally different behaviors in information258

compression. iii) As model depth increases, the259

inter-layer erankk(ΣQm) and erankk(ΣKm) show260

a decreasing trend, indicating increasingly sparse261

structures (Wang et al., 2023). iv) From the initial262

to the final layer, the truncated matrix entropy of263

Qm decreases more significantly than that of Km,264

and its average entropy is also lower, reinforcing265

its role as an effective indicator.266

Discussion Based on the above observations, to267

better connect information compression patterns268

with sparsity patterns, we select Qm as a proxy to269

estimate the sparsity characteristics of Km, Vm,270

and Hm and design the two-stage compression271

strategy presented in the next section.272

3.3 Uncertainty-Aware Compression Strategy273

In this section, we provide a detailed explanation274

of how truncated matrix entropy is used to guide275

compression. We first introduce the preparation276

stage, followed by a two-stage compression strat-277

egy, along with the mapping between information278

compression and sparsity patterns. The workflow279

of our method is illustrated in Figure 4.280

3.3.1 Preparation Stage281

Observation We first observe in Figure 2 that282

attention head information compression patterns283

remain consistent across datasets, suggesting that284

the sparsity pattern of heads is not data-dependent.285

Design Since the head information compression 286

pattern is not data-dependent, we first sample 500 287

data points from Wikitext2 (Merity, 2016) before 288

inference to pre-group the heads. These samples 289

are used to group the model heads and set com- 290

pression ratios for each group, which helps identify 291

the retrieval heads in the KV cache. Specifically, 292

after inputting d = 500 data points into the model, 293

we save the KV cache of all data and calculate the 294

erankk(Σ
(i,h)
Qm

) for each head of each data point. 295

Then, we average it to obtain ˆerankk(Σh
Qm

) as the 296

grouping metric for the inference stage: 297

ˆerankk(Σ
h
Qm

) =
1

d

d∑
i=1

erankk(Σ
(i,h)
Qm

), (7) 298

where i is the i-th data point, and h is the h-th head. 299

3.3.2 Layer-Group Compression 300

For the first-stage compression, we focus on com- 301

pressing the hidden states Hm and attempt to iden- 302

tify retrieval-layer. 303

Observation Previous KV cache compression 304

methods (Zhang et al., 2024c,d) do not reduce com- 305

putation, as they evict the KV cache only after pre- 306

fill. In contrast, we compress hidden states before 307

generating the KV cache, saving both computation 308

and memory. From Figure 3(b), we observe that 309

some layers show an increase in entropy, indicating 310

that the token matrix is unsuitable for compression 311

as it aggregates information. 312

Design Specifically, we divide the L layers into 313

C groups, ensuring that the token length within 314

each group remains consistent across layers. By 315

applying the compression patterns in Figure 3(a), 316

we compress layers where inter-layer entropy re- 317

duction ∆ ci falls below a threshold ϵ, determining 318

the total compression stages C: 319

∆ci = erankk(Σ
i
Qm

)− erankk(Σ
i+1
Qm

), (8) 320
321

C =

L−1∑
i=1

1(∆ci > ϵ > 0), (9) 322

where 1 is the indicator function that evaluates to 1 323

if the entropy reduction between layer i and i+ 1 324

exceeds the threshold ϵ, and 0 otherwise. Eq. (8) is 325

a partition function determining the division of the 326

model’s layers into C groups. The context size at 327

each subsequent group is calculated by 328

Ni+1 = Ni +∆n, i = 1, 2, . . . , C − 1, (10) 329

where ∆n (hyperparameter) represents the incre- 330

ment between consecutive groups. With the token 331

4

Compressed
Length

Compressed
Length

Prefill

Decoding

Inference Stage

Dynamic Eviction

Key
Value

Compressed
Length

1

Head-Group
Compression

Layer-Group
Compression

Last �
Cumulative Attention Score

Original Sequence
Length

G
R

O
U

P 1
G

R
O

U
P n

Truncated
Erank

�� for Head1

�� for Head2

�� for Head�

�� for Head3

Rank

GROUP 4

GROUP 8

GROUP 1

GROUP 5

Streaming Heads

Retrieval Heads

Layer-Group Compression

�
�� Truncated Erank Trend

GROUP 1 GROUP 2

Retrieval Layer
GROUP 3 GROUP n

Key
Value

Key
Value

Key
Value

Key
Value

Key
Value

Key
Value

Key
Value

G
R

O
U

P 1
G

R
O

U
P n

Preparation Stage

Head-Group Decision

Figure 4: Overview of UNCOMP. Darker colors indicate more retained hidden states and a weaker compression
(i.e., a higher ρ) corresponding to higher attention scores.

budget Ni for each group i determined, hidden332

state eviction starts from the second group, while333

the first group’s hidden states remain full-size to334

preserve information in early layers.335

Hidden State Eviction We observe that H(i)
m and336

V
(i)
m share the same information compression pat-337

tern. Based on this observation, we decide to use338

the attention scores to determine the eviction strat-339

egy for H(i)
m . From group 2 to group C, we predict340

token eviction in H
(i+1)
m using the attention scores341

of the last token in the ith layer, retaining the to-342

kens with the highest Ni+1 attention scores. After343

generating H
(i+1)
m , we map H

(i+1)
m to the three ma-344

trices Q(i+1)
m , K(i+1)

m , and V
(i+1)
m . Please refer to345

Appendix H for more details.346

Retrieval Layer We select our retrieval layers347

based on the maximum entropy increase layer and348

use average interpolation to merge it with the pa-349

rameters of the final layer to improve performance.350

351
3.3.3 Head-Group Compression352

After the prefill stage ends, we compress the KV353

cache size of each head to a fixed size Ni,1. The354

initial number of heads in each group is consistent.355

356

0 4 8 12 16 20 24 28 32
Head

0
4

8
12

16
20

24
28

32
L

ay
er

NarrativeQA

0 4 8 12 16 20 24 28 32
Head

0
4

8
12

16
20

24
28

32
L

ay
er

2WikiMQA

1.55

1.60

1.65

1.70

Tr
un

ca
tio

n
E

ff
ec

tiv
e

R
an

k

1.55

1.60

1.65

1.70

Tr
un

ca
tio

n
E

ff
ec

tiv
e

R
an

k

Figure 5: The heatmap of erankk(ΣQm
) across different

layers and heads in LLaMa3.

Head Information Compression Pattern To fur- 357

ther reveal the similar information compression pat- 358

terns within the group of heads, we visualize the 359

truncated matrix entropy distribution across differ- 360

ent heads of LLaMa3 in Figure 5. We observe that 361

every four groups of heads exhibit a clearly similar 362

information compression pattern, suggesting they 363

share the same sparsity pattern. This is due to the 364

use of the Group Query Attention (GQA) (Ainslie 365

et al., 2023) technique during training, highlighting 366

the significant influence of the training method on 367

the inference approach. 368

Observation To further explore the mapping be- 369

tween information compression patterns and spar- 370

sity patterns, and for the convenience of ablation, 371

we divide the attention heads into two groups: one 372

with a cache size of 96 and the other with a cache 373

size of 32. We set up three configurations: one 374

where the group with a high truncated matrix en- 375

tropy cache size is set to 96 and the other to 32, one 376

where the group with a low truncated matrix en- 377

tropy cache size is set to 96 and the other to 32, and 378

one where all attention heads are randomly divided 379

into two groups. These are referred to as High 380

Entropy, Low Entropy, and Random Group, respec- 381

tively. As shown in Table 2, we find that heads 382

with a higher truncated matrix entropy require a 383

higher compression ratio (i.e., weaker compres- 384

sion), which often leads to better performance. 385

Design To leverage this sparsity, heads are ranked 386

by ˆerankk(Σ
(i,h)
Qm

), grouped into M (hyperparam- 387

eter), and then ordered based on the average 388
ˆerankk(Σ

(i,h)
Qm

) within each group. To calculate the 389

5

Methods

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg. Time
(s / sample)

NtrvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum

PCount
PRe Lcc RB-P

Llama2-7B-chat-hf, KV Size = FULL

FullKV 19.34 18.61 35.19 30.66 28.42 10.05 25.19 20.18 25.73 63.00 83.62 41.60 5.00 10.00 61.40 55.45 33.34 0.96

Llama-2-7B-chat-hf, KV Size = 384 , Compressibility is 9.38% (Except CHAI method)

H2O 14.96 14.60 17.40 26.72 27.97 6.11 17.83 18.76 20.17 47.00 77.56 39.39 4.50 5.00 57.08 50.31 27.84 0.94
StreamingLLM 13.71 13.68 19.40 26.97 28.03 6.78 15.13 18.87 18.27 46.50 80.02 40.85 4.50 5.00 56.84 51.56 27.88 0.88

SnapKV 16.27 17.34 30.37 33.04 27.82 9.92 19.34 20.33 22.63 59.50 83.50 38.45 5.50 12.50 59.18 55.28 31.94 0.82
PyramidKV 16.86 18.26 31.01 31.59 27.93 8.69 19.88 20.15 22.43 62.00 83.86 38.98 5.50 10.00 58.94 52.80 31.81 0.84

CHAI 16.75 16.91 34.69 26.09 20.80 9.20 20.79 20.23 23.33 57.00 75.52 35.67 4.00 6.33 50.10 46.55 29.00 1.51
Quest 17.31 19.55 32.18 30.25 27.20 9.48 22.82 19.25 25.99 62.50 83.26 40.37 5.00 5.25 58.81 53.24 32.03 0.96

Double-Sparse 17.27 19.85 32.30 29.45 28.54 9.90 20.88 19.84 25.38 61.50 83.48 40.56 5.25 8.00 52.27 51.97 31.65 1.02
RazorAttention 16.88 19.33 32.44 31.28 27.81 9.46 24.29 20.02 23.19 61.00 83.85 40.28 5.00 12.00 54.71 52.29 32.11 1.21

Ours-group-stage 17.70 20.28 30.98 30.35 27.37 9.29 22.25 20.60 24.04 63.00 83.68 38.27 4.50 6.50 58.02 53.79 31.91 0.57
Ours-group 17.12 19.20 32.09 30.99 27.88 9.27 23.20 20.10 24.72 62.50 84.72 39.33 5.50 11.10 59.71 54.15 32.60 0.83

Llama2-13B-chat-hf, KV Size = FULL

FullKV 18.20 26.07 37.06 36.20 32.44 14.19 25.82 20.20 26.00 66.50 87.49 35.93 3.12 11.50 53.29 52.73 34.17 2.21

Llama-2-13B-chat-hf, KV Size = 384 , Compressibility is 9.38% (Except CHAI method)

H2O 14.11 18.36 22.78 33.03 27.58 12.94 18.97 18.69 20.37 53.50 85.75 34.15 3.55 6.00 50.97 47.56 29.27 2.57
StreamingLLM 13.23 18.47 23.76 34.50 29.62 11.09 18.67 18.47 17.89 52.50 84.93 32.54 3.55 7.00 40.60 42.86 28.11 1.96

SnapKV 17.09 22.77 34.37 36.73 31.04 13.02 19.70 20.00 22.91 62.00 87.48 37.44 4.05 11.50 51.76 51.27 32.70 1.93
PyramidKV 16.33 22.81 34.19 37.54 30.25 13.82 19.79 20.11 23.14 64.50 86.45 36.62 4.05 12.00 52.06 50.58 32.77 3.50

CHAI 17.06 23.51 31.01 33.70 27.78 11.73 23.03 19.59 24.66 65.00 86.18 15.93 4.00 8.50 45.57 48.74 30.37 2.50
Quest 17.07 26.36 34.56 34.50 29.62 13.19 23.79 19.71 25.32 64.00 84.93 36.46 2.62 9.50 52.12 49.85 32.73 1.86

Double-Sparse 17.42 25.10 31.85 33.27 29.89 12.61 24.00 19.88 25.68 67.00 86.48 35.97 2.85 14.31 51.95 51.27 33.10 1.98
RazorAttention 17.28 25.43 36.88 35.27 30.11 12.89 25.02 20.17 24.98 65.00 84.29 35.28 3.81 11.00 51.89 49.29 33.04 2.44

Ours-group-stage 16.02 23.90 35.19 36.66 30.50 14.19 19.71 19.69 23.78 62.00 86.04 35.91 3.55 8.50 49.37 46.73 31.98 1.32
Ours-group 18.27 24.33 37.12 36.46 29.83 13.57 21.15 20.84 24.07 67.50 87.96 36.42 3.55 12.00 51.50 50.72 33.46 1.95

Llama3-8B-Instruct, KV Size = FULL

FullKV 23.31 31.18 38.09 43.67 35.26 21.43 28.42 22.90 26.64 73.50 89.76 42.20 4.78 67.88 60.12 56.76 41.62 2.98

Llama-3-8B-Instruct, KV Size = 384 , Compressibility is 4.74% (Except CHAI method)

H2O 18.80 13.76 21.20 38.90 31.38 14.81 20.38 20.70 22.03 61.00 82.07 39.49 5.12 66.92 58.59 54.98 35.63 3.98
StreamingLLM 19.39 10.44 21.98 39.39 30.03 14.29 20.37 20.82 22.62 57.50 82.89 39.73 5.25 68.00 58.68 55.67 35.44 2.78

SnapKV 21.47 19.77 33.97 43.10 32.79 21.48 21.69 22.01 22.92 63.00 89.69 39.78 5.06 67.83 60.19 56.82 38.85 2.68
PyramidKV 22.08 19.43 32.99 42.51 32.01 19.62 21.73 22.24 22.74 71.00 89.59 40.51 4.23 68.50 58.92 53.92 38.88 2.78

CHAI 18.99 23.44 31.82 33.37 22.63 19.07 24.46 21.74 23.78 69.00 89.28 37.15 4.92 67.75 44.44 36.12 35.50 4.20
Quest 21.35 23.40 34.56 32.94 31.34 14.93 19.68 22.18 26.07 71.00 88.30 41.32 5.37 67.06 54.26 46.25 37.50 2.84

Double-Sparse 21.92 29.86 33.09 27.85 29.49 11.11 27.89 21.41 26.66 71.00 88.52 40.80 5.68 65.55 57.18 54.77 38.30 2.98
RazorAttention 22.36 26.85 34.28 42.87 34.28 20.85 24.28 21.28 24.98 69.00 89.28 40.28 4.28 67.00 58.28 52.87 39.56 3.02

Ours-group-stage 21.32 26.42 33.98 43.18 35.38 19.76 22.47 22.13 22.89 72.00 90.26 39.29 4.81 60.50 61.97 57.61 39.62 1.79
Ours-group 22.27 26.57 36.04 43.18 35.25 20.57 22.71 22.31 22.80 72.00 90.71 40.59 5.21 68.00 61.85 58.31 40.52 2.70

Qwen2.5-7B-Instruct, KV Size = 8k

FullKV 23.64 40.50 50.03 43.44 46.28 26.67 32.94 22.50 25.32 69.00 88.22 39.87 3.72 63.00 6.70 3.93 36.61 2.45

Qwen2.5-7B-Instruct, KV Size = 384 , Compressibility is 9.38% (Except CHAI method)

H2O 20.62 23.90 27.84 36.66 34.71 19.84 25.49 19.64 21.67 39.50 82.55 37.89 5.25 16.50 8.33 10.96 26.96 3.14
StreamingLLM 17.20 21.26 32.74 37.54 36.97 18.64 25.14 18.81 23.54 45.00 73.39 32.10 6.58 16.50 9.10 7.29 26.36 2.64

SnapKV 24.16 36.32 47.64 42.64 42.60 23.42 25.64 20.87 21.64 65.00 87.45 37.65 5.37 69.50 5.78 6.13 35.11 2.63
PyramidKV 21.72 34.32 45.25 44.43 41.43 24.93 23.72 20.51 20.18 59.50 87.09 36.49 4.68 69.00 5.68 5.84 34.05 2.61

CHAI 22.98 38.42 42.68 43.69 39.65 22.58 24.58 20.64 21.87 66.00 86.98 36.97 4.89 69.00 3.64 5.64 34.39 3.48
Quest 24.36 36.84 48.25 42.65 40.80 24.68 23.54 20.23 22.58 65.00 86.54 37.61 4.89 67.00 8.12 8.26 35.08 2.89

Double-Sparse 23.56 37.24 48.64 43.54 41.26 24.54 30.29 20.41 23.43 66.00 87.65 36.54 4.36 68.00 6.34 5.64 35.47 2.76
RazorAttention 21.45 35.68 47.29 42.76 39.86 24.86 24.98 20.18 21.28 66.00 88.24 37.51 5.89 70.00 6.12 8.24 35.02 2.88

Ours-group-stage 25.13 40.22 48.49 44.21 40.67 24.75 26.05 21.37 22.04 65.00 88.47 37.76 5.05 70.50 8.44 6.37 35.91 1.64
Ours-group 23.91 40.31 48.41 43.97 41.89 23.81 25.89 21.10 21.91 66.00 89.26 37.59 4.69 70.00 8.38 6.20 35.83 2.71

Table 1: Performance Comparison across Different Tasks: Ours-group-stage compresses both hidden states and KV
cache, while Ours-group compresses only the KV cache. Ours-group-stage is 68.42% faster than FullKV, with only
a 1.43% performance loss. All methods compress key and value caches at the same compression ratio.

Dataset High Entropy Random Group Low Entropy

Qasper 15.40 11.70 10.60
Musique 6.96 4.47 4.50

GovReport 14.88 7.31 3.20
TREC 55.50 32.50 30.45
PCount 5.00 3.97 3.90

Lcc 50.00 32.50 30.55
Average 24.62 15.49 13.86

Table 2: Head Sparsity Patterns.

token budget for each head, we define a step size390

∆ng, progressively reducing the KV cache context391

size from Ni,1 which corresponds to the largest392

truncated effective rank, down to Ni,M as follows:393

Ni,g+1 = Ni,g −∆ng, g = 1, 2, . . . ,M. (11)394

where Ni,g represents the context size for the g-th395

head group at layer i, and ∆ng is the fixed step396

size between consecutive groups. During decoding,397

each head maintains its context window based on 398

the group’s token budget Ni,g. 399

Dynamic KV Cache Eviction We maintain a 400

fixed cumulative attention score window (Li et al., 401

2024), wi,h, with a budget size of Ni,g, where h 402

refers to the head. The window wi,h is computed 403

by summing the attention scores of the last l tokens 404

from the h-th head in the i-th layer, retaining the 405

top Ni,g tokens with the highest scores. As new 406

tokens are generated, the token with the lowest 407

cumulative attention score in wi,h is evicted. 408

Retrieval Head When M = 2, we can divide the 409

heads into two groups: retrieval heads and stream- 410

ing heads. Compared to previous methods (Xiao 411

et al., 2024; Tang et al., 2024a) that required spe- 412

6

cially designed datasets and complex searches, we413

reduce the retrieval head identification from 1.2414

hour to 1.6 minute, achieving a 45× speedup in415

retrieval head identification.416

4 Experiment417

4.1 Experimental Settings418

We evaluate three LLMs: Llama2-7B/13B-chat-419

hf (Touvron et al., 2023), Llama-3-8B-Inst (AI,420

2024), and Qwen2.5-7B-Instruct (Yang et al.,421

2024b). UNCOMP is compared to KV cache422

eviction techniques, including H2O (Zhang et al.,423

2024d), PyramidKV (Zhang et al., 2024c),424

SnapKV (Li et al., 2024), Double-Sparse (Yang425

et al., 2024c), Quest (Tang et al., 2024b), Stream-426

LLM (Xiao et al., 2023), RazorAttention (Tang427

et al., 2024a) and CHAI (Agarwal et al., 2024).428

UNCOMP is assessed on LongBench (Bai et al.,429

2023) and ‘Needle in a Haystack’ task (Liu et al.,430

2024c). Results of InfiniteBench (Zhang et al.,431

2024b) and RULER (Hsieh et al., 2024) are pro-432

vided in Appendix E.433

4.2 Memory-Constrained Setting434

Main Results We divide the heads in the KV435

cache into 8 groups, with Ni,1 = 640 and ∆ng =436

74. For fairness, the KV cache size of all heads in437

other models is set to 384. From Table 1, we draw438

the following conclusions: i) UNCOMP achieves439

the best performance, especially on LLaMA3, as440

we reveal in Section 3.3.3 that grouping settings441

with a compression ratio performs better due to442

their training with GQA. This leads to certain heads443

sharing the same sparsity patterns, resulting in a444

speedup up to 60% per instance with a 4.68% com-445

pression ratio. ii) UNComp exhibits near-lossless446

performance in certain models, especially com-447

pared to the full-size KV cache setting in Llama2-448

7B/13B-chat-hf, with only a 0.74% performance449

loss down to a 9.38% compression ratio. iii) The450

method most similar to our head grouping approach451

is CHAI. With a KV cache compression ratio lower452

than CHAI’s 68.55%, our method achieved 5.4×453

faster inference speed.454

Head Pruning To further explore the relation-455

ship between the information compression pattern456

and the sparsity pattern, we compare performance457

under extreme compression settings. For this inves-458

tigation, we divide the heads into two groups. As459

shown in Table 3, when the compression ratio of460

the KV cache is set to 1.56%, our method shows461

a substantial enhancement over existing methods.462

Llama2-7B-chat-hf, KV Size = 64

Methods Qasper Musique GovReport TREC PCount Lcc Average
FullKV 18.61 10.05 25.19 63.00 5.00 61.40 30.54

H2O 13.84 1.33 8.57 18.00 0.50 28.86 11.85
StreamingLLM 14.26 0.79 8.37 18.50 4.00 29.81 12.62

SnapKV 15.70 6.15 11.16 40.50 5.00 43.77 20.38
PyramidKV 16.10 6.58 12.07 46.00 5.50 46.09 22.06

Quest 16.50 6.01 10.42 53.50 5.00 46.09 22.92
Double-Sparse 16.30 5.92 16.23 51.00 5.00 42.00 22.74

Ours-group-stage 17.57 6.58 15.25 59.00 4.50 49.75 25.44
Ours-group 15.40 6.96 14.88 55.50 5.00 50.00 24.62

Llama2-7B-chat-hf, KV Cache Size of One Group With Extreme Compression

Methods Qasper Musique GovReport TREC PCount Lcc Average
FullKV 18.61 10.05 25.19 63.00 5.00 61.40 30.54

Remain-256 19.67 9.80 20.19 63.00 5.50 60.28 29.74
Remain-128 18.67 9.75 20.02 63.00 5.50 59.60 29.42
Remain-64 18.13 9.79 19.84 63.00 5.50 58.09 29.06
Remain-32 18.04 9.24 19.31 63.00 5.50 57.04 28.69
Remain-16 18.48 8.08 18.21 63.00 5.00 47.29 26.68
Remain-12 17.31 8.78 18.16 62.00 5.00 45.23 26.08

Delete-2-heads 18.30 8.58 18.98 63.00 5.50 59.38 28.96
Delete-4-heads 13.29 7.96 19.12 62.50 5.50 53.94 27.05
Delete-8-heads 12.64 6.60 9.87 63.50 3.21 37.87 22.28

CHAI Delete-2-heads 18.99 10.20 23.65 69.00 4.00 55.28 30.18
CHAI Delete-4-heads 16.75 9.20 20.79 57.00 4.00 50.10 26.30
CHAI Delete-8-heads - - - - - - -

RA Delete-2-heads 18.27 10.84 24.87 64.00 4.00 59.87 30.31
RA Delete-4-heads 13.28 7.28 22.89 63.00 4.00 56.91 27.89
RA Delete-8-heads 8.91 4.29 7.19 54.00 3.00 32.98 18.40

Table 3: Extreme Compression Ratio.

We further explore the minimum achievable com- 463

pression ratio for the group with the lower effective 464

rank, as detailed in Table 3 where Ours-remain- 465

tokens-N indicates the retention of N tokens per 466

attention head, while the other group maintains 467

a KV cache size of 512. Furthermore, Delete-K- 468

head denotes the complete pruning of K heads per 469

layer, contingent on the effective rank order. The 470

results show that our method maintains high ac- 471

curacy with only 12 tokens retained in streaming 472

heads or after pruning certain heads. We primarily 473

compare with CHAI, as it also uses head group- 474

ing for pruning and maintains strong performance 475

after removing heads. The performance of CHAI 476

crashes when the cache size is only 64 or when 8 477

heads are removed, so its performance is not pro- 478

vided. This finding further supports the validity 479

of our way of identifying special sparse pattern, 480

such as retrieval heads and streaming heads. We 481

also compared our method with the RazorAttention 482

(RA) approach, which prunes heads based on re- 483

trieval heads identification. Although RA shows 484

some advantages under extreme compression rates, 485

its performance still falls short of ours even when 486

8 heads are pruned. 487

Inference Time Latency and Performance We 488

analyze the inference time latency and the specific 489

time costs of each component. To achieve reliable 490

time analysis, we synchronize the CPU and GPU 491

clock frequencies to facilitate our measurements. 492

We sample 150 data points from the MultifieldQA 493

and use the Llama2 model to measure the overhead 494

in a single batch on a NVIDIA A100 80G GPU. 495

We analyze the duration of the prefill stage, the 496

decoding duration, the total duration of the stage 497

7

Methods NVIDIA A100 80G GPU

Inference Prefill Decoding Max Memory

FullKV 129.13 77.34 51.79 25900
StreamingLLM 170.42 90.28 80.14 22908

H2O 140.93 90.56 50.37 22936
PyramidKV 126.03 78.98 47.05 22938

SnapKV 123.71 78.71 45.00 22920
Quest 170.59 110.33 60.26 22940

Ours-group 137.84 79.25 58.59 22900
Ours-group-stage 105.47 48.18 57.29 22988

Table 4: Time Consumption (s) and Memory Usage
(MB) Analysis on an GPU. The open-source code of
double-sparse does not implement a true token eviction
strategy, so it is not compared here. The initial KV
cache size is 384 per layer, with a batch size of 1.

inference, and the maximum memory usage.498

In Table 4, we compare our experimental results,499

where the prompt and generated token lengths are500

3712 and 384, and present the following obser-501

vations: i) The prefill stage takes up more time502

throughout the inference process. ii) UNComp pri-503

marily accelerates the prefill stage, achieving up to504

60.52% acceleration over the full-size KV cache in505

a single batch, mainly benefiting from the compres-506

sion of Hm in the first stage. iii) For throughput507

analysis, experiments with a prompt length of 2048508

and generation lengths of 8096 for ultra-long gener-509

ation show that FullKV supports a maximum batch510

size of 6 with a token generation time of 15.67ms.511

In comparison, UNComp supports a batch size of512

32 with a token generation time of 2.45ms, deliv-513

ering 6.4× the throughput of FullKV. Details of514

other prompt lengths and generation text lengths515

can be found in Appendix C.516

Methods Llama2-4k Llama3-8k

FullKV 98.70 84.99
H2O 61.14 51.56

StreamingLLM 50.14 42.36
PyramidKV 93.24 79.08

SnapKV 94.50 81.27
Quest 95.50 81.02

Double-Sparse 96.30 82.12
CHAI 97.80 84.20

Ours-group 98.42 84.13
Ours-group-stage 98.80 83.73

Ours-group-retrieval-layer 98.56 85.02

Table 5: Needle-in-a-haystack results. The interpolation
between the retrieval layer and the model’s final layer is
denoted as Ours-group-retrieval-layer.

Needle in a Haystack Task The results show517

that UNComp outperforms FullKV at a 9.38% com-518

pression rate. Table 5 compares Llama2-4k and519

Llama3-8k, both with a max KV cache size of 384.520

This indicates that our uncertainty measurement521

method can identify the special retrieval layers and522

effectively retrieve key information.523

The Ratio of Recent Tokens to Historical To-524

kens A peculiar phenomenon in KV cache com-525

279/233(Pe:30.86 Co:0.87)

28

27

26

25

24

23

22

21

20
0 5 10 15 20 25 30

(a)Matrix Entropy Trend Diagram for
Cumulative Attention Score

M
at

rix
 E

nt
ro

py
 T

re
nd

Layer 0-31

fullkv(Pe:33.34 Co:1.00)
504/8(Pe:32.44 Co:0.98)
497/33(Pe:32.46 Co:0.99)
454/58(Pe:32.51 Co:0.96)
429/83(Pe:32.37 Co:0.96）

354/158(Pe:31.49 Co:0.93)

204/308(Pe:30.42 Co:0.78)
104/408(Pe:30.24 Co:0.62)

(b)Pearson Correlation Coefficient and
Performance vs History/Recent

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

32.5

32.0

31.5

31.0

30.5

100 101

Pe
ar

so
n

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Pr
ef

or
m

an
ce

History/Recent

Pearson Correlation
Performance

Figure 6: Comparison of inter-layer matrix entropy
trends for different H/R, where H/R represents the
ratio of the length of historical tokens (H) to the length
of recent tokens (R), under the fixed cache size setting.

pression: selecting an appropriate proportion of 526

recent tokens can maintain the inter-layer compres- 527

sion trend, thereby enabling optimal performance. 528

We find that the model’s performance is sensitive 529

to the number of recent tokens (the hyperparame- 530

ter l), for calculating cumulative attention scores. 531

Our analysis shows that this is due to the special 532

information compression ratio between recent and 533

historical tokens. As shown in Figure 6(a), dif- 534

ferent proportions of historical and recent tokens 535

exhibit distinct trends across layers. The matrix en- 536

tropy trend of a compressed KV cache, when more 537

similar to the full KV cache across layers, indicates 538

better performance under the same compression ra- 539

tio. This is validated through experiments using the 540

pearson correlation coefficient to quantify the cor- 541

relation between the trends of different information 542

compression patterns (i.e., changing the proportion 543

of historical tokens and recent tokens across all 544

layers under a fixed token budget). As depicted in 545

Figure 6 (b), when the inter-layer trend of the com- 546

pressed KV cache exhibits a higher similarity to 547

the trend of the full-size KV cache, we can achieve 548

optimal performance. 549

5 Conclusion 550

We propose UNCOMP, an uncertainty-aware 551

method for compressing hidden states and KV 552

cache in LLMs. Using truncated matrix entropy 553

to measure uncertainty across layers and heads, 554

UNCOMP adaptively adjusts compression ratios, 555

balancing memory efficiency, computational effi- 556

ciency, and performance. Experiments show that 557

UNCOMP achieves up to 60% speedup in the pre- 558

fill stage, 6.4× throughput improvement, and com- 559

presses the KV cache down to 4.74% of its original 560

size, with only a mild performance loss. UNCOMP 561

outperforms state of the art in many tasks, demon- 562

strating its effectiveness for LLM inference. 563

8

Limitations564

Our two-stage compression method UNCOMP565

demonstrates promising results in accelerating in-566

ference and reducing memory overhead. The567

method performs well on tasks such as the needle-568

in-a-haystack benchmark, further exploration is569

needed to assess its effectiveness on tasks involv-570

ing dense, context-dependent dependencies, such571

as machine translation or dialogue systems.572

Potential Risks573

While our approach improves the efficiency of long-574

context inference in LLMs through uncertainty-575

aware compression, it also introduces new consid-576

erations. Dynamically adapting compression based577

on uncertainty may lead to unintended information578

loss if uncertainty estimates are miscalibrated, po-579

tentially affecting model fidelity in critical tasks.580

Moreover, the ability to uncover long-range depen-581

dencies such as retrieval heads could inadvertently582

expose internal model mechanisms in ways that583

may be exploitable. As such, careful validation,584

transparency in deployment, and alignment with re-585

sponsible AI practices are essential to ensure these586

optimizations yield beneficial and trustworthy out-587

comes without compromising model integrity or588

user trust.589

References590

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama591
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,592
Diogo Almeida, Janko Altenschmidt, Sam Altman,593
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.594
arXiv preprint arXiv:2303.08774.595

Saurabh Agarwal, Bilge Acun, Basil Homer, Mostafa El-596
houshi, Yejin Lee, Shivaram Venkataraman, Dimitris597
Papailiopoulos, and Carole-Jean Wu. 2024. Chai:598
Clustered head attention for efficient llm inference.599
arXiv preprint arXiv:2403.08058.600

Meta AI. 2024. Llama 3: A family of large language601
models. https://llama.meta.com. Instruction-602
tuned version.603

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury604
Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.605
2023. Gqa: Training generalized multi-query trans-606
former models from multi-head checkpoints. arXiv607
preprint arXiv:2305.13245.608

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,609
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao610
Liu, Aohan Zeng, Lei Hou, et al. 2023. Longbench:611
A bilingual, multitask benchmark for long context612
understanding. arXiv preprint arXiv:2308.14508.613

William Brandon, Mayank Mishra, Aniruddha 614
Nrusimha, Rameswar Panda, and Jonathan Ragan 615
Kelly. 2024. Reducing transformer key-value cache 616
size with cross-layer attention. arXiv preprint 617
arXiv:2405.12981. 618

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu 619
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao 620
Chang, Junjie Hu, et al. 2024. Pyramidkv: Dynamic 621
kv cache compression based on pyramidal informa- 622
tion funneling. arXiv preprint arXiv:2406.02069. 623

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 624
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 625
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 626
Nakano, Christopher Hesse, and John Schulman. 627
2021. Training verifiers to solve math word prob- 628
lems. arXiv preprint arXiv:2110.14168. 629

Grégoire Delétang, Anian Ruoss, Paul-Ambroise 630
Duquenne, Elliot Catt, Tim Genewein, Christo- 631
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, 632
Matthew Aitchison, Laurent Orseau, et al. 2023. 633
Language modeling is compression. arXiv preprint 634
arXiv:2309.10668. 635

Ruili Feng, Kecheng Zheng, Yukun Huang, Deli Zhao, 636
Michael Jordan, and Zheng-Jun Zha. 2022. Rank 637
diminishing in deep neural networks. Advances in 638
Neural Information Processing Systems, 35:33054– 639
33065. 640

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 641
Jiawei Han, and Jianfeng Gao. 2023. Model tells you 642
what to discard: Adaptive kv cache compression for 643
llms. arXiv preprint arXiv:2310.01801. 644

Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C 645
Principe. 2014. Measures of entropy from data using 646
infinitely divisible kernels. IEEE Transactions on 647
Information Theory, 61(1):535–548. 648

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, 649
Michael W Mahoney, Yakun Sophia Shao, Kurt 650
Keutzer, and Amir Gholami. 2024. Kvquant: 651
Towards 10 million context length llm inference 652
with kv cache quantization. arXiv preprint 653
arXiv:2401.18079. 654

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan- 655
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang, 656
and Boris Ginsburg. 2024. Ruler: What’s the real 657
context size of your long-context language models? 658
arXiv preprint arXiv:2404.06654. 659

Yuzhen Huang, Jinghan Zhang, Zifei Shan, and Junx- 660
ian He. 2024. Compression represents intelligence 661
linearly. arXiv preprint arXiv:2404.09937. 662

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, 663
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua 664
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, 665
et al. 2024. Minference 1.0: Accelerating pre-filling 666
for long-context llms via dynamic sparse attention. 667
arXiv preprint arXiv:2407.02490. 668

9

https://llama.meta.com
https://llama.meta.com
https://llama.meta.com
https://llama.meta.com

Henry F Kaiser. 1960. The application of electronic669
computers to factor analysis. Educational and psy-670
chological measurement, 20(1):141–151.671

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B672
Brown, Benjamin Chess, Rewon Child, Scott Gray,673
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.674
Scaling laws for neural language models. arXiv675
preprint arXiv:2001.08361.676

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin.677
2023. Compressing context to enhance inference678
efficiency of large language models. arXiv preprint679
arXiv:2310.06201.680

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat681
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,682
Patrick Lewis, and Deming Chen. 2024. Snapkv:683
Llm knows what you are looking for before genera-684
tion. arXiv preprint arXiv:2404.14469.685

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,686
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong687
Ruan, Damai Dai, Daya Guo, et al. 2024a.688
Deepseek-v2: A strong, economical, and efficient689
mixture-of-experts language model. arXiv preprint690
arXiv:2405.04434.691

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholam-692
reza Haffari, and Bohan Zhuang. 2024b. Minicache:693
Kv cache compression in depth dimension for large694
language models. arXiv preprint arXiv:2405.14366.695

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-696
jape, Michele Bevilacqua, Fabio Petroni, and Percy697
Liang. 2024c. Lost in the middle: How language698
models use long contexts. Transactions of the Asso-699
ciation for Computational Linguistics, 12:157–173.700

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao701
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-702
lidis, and Anshumali Shrivastava. 2024d. Scis-703
sorhands: Exploiting the persistence of importance704
hypothesis for llm kv cache compression at test time.705
Advances in Neural Information Processing Systems,706
36.707

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,708
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,709
and Xia Hu. 2024e. Kivi: A tuning-free asymmet-710
ric 2bit quantization for kv cache. arXiv preprint711
arXiv:2402.02750.712

Stephen Merity. 2016. The wikitext long term depen-713
dency language modeling dataset. Salesforce Meta-714
mind, 9.715

Alexander Peysakhovich and Adam Lerer. 2023. At-716
tention sorting combats recency bias in long context717
language models. arXiv preprint arXiv:2310.01427.718

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,719
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan720
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-721
ciently scaling transformer inference. Proceedings722
of Machine Learning and Systems, 5:606–624.723

Olivier Roy and Martin Vetterli. 2007. The effective 724
rank: A measure of effective dimensionality. In 2007 725
15th European signal processing conference, pages 726
606–610. IEEE. 727

Noam Shazeer. 2019. Fast transformer decoding: 728
One write-head is all you need. arXiv preprint 729
arXiv:1911.02150. 730

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, 731
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff 732
Dean. 2017. Outrageously large neural networks: 733
The sparsely-gated mixture-of-experts layer. arXiv 734
preprint arXiv:1701.06538. 735

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo- 736
han Li, Max Ryabinin, Beidi Chen, Percy Liang, 737
Christopher Ré, Ion Stoica, and Ce Zhang. 2023. 738
Flexgen: High-throughput generative inference of 739
large language models with a single gpu. In Inter- 740
national Conference on Machine Learning, pages 741
31094–31116. PMLR. 742

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan 743
Hong, Yiwu Yao, and Gongyi Wang. 2024a. Razo- 744
rattention: Efficient kv cache compression through 745
retrieval heads. arXiv preprint arXiv:2407.15891. 746

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, 747
Baris Kasikci, and Song Han. 2024b. Quest: Query- 748
aware sparsity for efficient long-context llm inference. 749
arXiv preprint arXiv:2406.10774. 750

Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muen- 751
nighoff, Zhongwei Wan, Ping Luo, Min Lin, and 752
Ngai Wong. 2024. Scaling laws with vocabulary: 753
Larger models deserve larger vocabularies. arXiv 754
preprint arXiv:2407.13623. 755

Robert L Thorndike. 1953. Who belongs in the family? 756
Psychometrika, 18(4):267–276. 757

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 758
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 759
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 760
Bhosale, et al. 2023. Llama 2: Open founda- 761
tion and fine-tuned chat models. arXiv preprint 762
arXiv:2307.09288. 763

John Von Neumann. 2013. Mathematische grundlagen 764
der quantenmechanik, volume 38. Springer-Verlag. 765

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan 766
Tao, Zhihong Zhu, Xin Wang, Siqi Luo, Jing Xiong, 767
and Mi Zhang. 2024. D2o: Dynamic discriminative 768
operations for efficient generative inference of large 769
language models. arXiv preprint arXiv:2406.13035. 770

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, 771
Fandong Meng, Jie Zhou, and Xu Sun. 2023. Label 772
words are anchors: An information flow perspective 773
for understanding in-context learning. arXiv preprint 774
arXiv:2305.14160. 775

10

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia776
Zhang. 2024. Model tells you where to merge: Adap-777
tive kv cache merging for llms on long-context tasks.778
arXiv preprint arXiv:2407.08454.779

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao780
Peng, and Yao Fu. 2024. Retrieval head mechanisti-781
cally explains long-context factuality. arXiv preprint782
arXiv:2404.15574.783

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian784
Guo, Shang Yang, Haotian Tang, Yao Fu, and Song785
Han. 2024. Duoattention: Efficient long-context llm786
inference with retrieval and streaming heads. arXiv787
preprint arXiv:2410.10819.788

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song789
Han, and Mike Lewis. 2023. Efficient streaming790
language models with attention sinks. arXiv preprint791
arXiv:2309.17453.792

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin793
Zhang, and Hai Zhao. 2024a. Pyramidinfer: Pyra-794
mid kv cache compression for high-throughput llm795
inference. arXiv preprint arXiv:2405.12532.796

Qwen An Yang, Baosong Yang, Beichen Zhang,797
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan798
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-799
ran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei800
Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Jun-801
yang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin802
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin803
Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,804
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang805
Su, Yi-Chao Zhang, Yunyang Wan, Yuqi Liu, Zeyu806
Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan,807
and Zekun Wang. 2024b. Qwen2.5 technical report.808
ArXiv, abs/2412.15115.809

Shuo Yang, Ying Sheng, Joseph E Gonzalez, Ion810
Stoica, and Lianmin Zheng. 2024c. Post-training811
sparse attention with double sparsity. arXiv preprint812
arXiv:2408.07092.813

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu.814
2024. Effectively compress kv heads for llm. arXiv815
preprint arXiv:2406.07056.816

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali817
Shrivastava. 2024a. Kv cache is 1 bit per channel: Ef-818
ficient large language model inference with coupled819
quantization. arXiv preprint arXiv:2405.03917.820

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang821
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai,822
Shuo Wang, Zhiyuan Liu, et al. 2024b. ∞ bench:823
Extending long context evaluation beyond 100k to-824
kens. In Proceedings of the 62nd Annual Meeting of825
the Association for Computational Linguistics (Vol-826
ume 1: Long Papers), pages 15262–15277.827

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu,828
Wayne Xiong, Yue Dong, Baobao Chang, Junjie Hu,829
Wen Xiao, et al. 2024c. Pyramidkv: Dynamic kv830
cache compression based on pyramidal information831
funneling. arXiv preprint arXiv:2406.02069.832

Yifan Zhang, Zhiquan Tan, Jingqin Yang, Weiran 833
Huang, and Yang Yuan. 2023. Matrix information 834
theory for self-supervised learning. arXiv preprint 835
arXiv:2305.17326. 836

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, 837
Zhenyu Zhang, Shiwei Liu, and Rongrong Ji. Cam: 838
Cache merging for memory-efficient llms inference. 839
In Forty-first International Conference on Machine 840
Learning. 841

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 842
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 843
dong Tian, Christopher Ré, Clark Barrett, et al. 2024d. 844
H2o: Heavy-hitter oracle for efficient generative in- 845
ference of large language models. Advances in Neu- 846
ral Information Processing Systems, 36. 847

Zhijian Zhuo, Yifei Wang, Jinwen Ma, and Yisen Wang. 848
2023. Towards a unified theoretical understanding of 849
non-contrastive learning via rank differential mecha- 850
nism. arXiv preprint arXiv:2303.02387. 851

11

https://api.semanticscholar.org/CorpusID:274859421

Appendix852

A Implementation details853

A.1 Machine Environment854

Main of our experiments are conducted on eight855

AMD MI210 64G GPUs. Some experiments are856

conducted on NVIDIA A100 80GB GPUs. Based857

on our comparison, apart from significant differ-858

ences in inference speed, the final performance859

shows slight differences.860

A.2 Model Selection861

In all of our experiments, the model weights862

are obtained from Hugging Face. Specif-863

ically, for the Llama architectures, we uti-864

lize the following versions: Llama2-7B em-865

ploys ‘meta-llama/Llama-2-7b-chat-hf‘, Llama2-866

13B utilizes ‘meta-llama/Llama-2-13b-chat-hf‘,867

and Llama3-8B adopts ‘meta-llama/Meta-Llama-868

3-8B-Instruct‘. For the Qwen architecture, we use869

the ‘Qwen/Qwen2.5-7B-Instruct‘ version.870

A.3 Hyperparameter Setting871

We conduct the experiment in a scenario with an872

average KV cache size of 384 per layer. For the873

baselines, all hyperparameters are taken from the874

open-source code repository.875

For our method, the experiment is governed by876

five main hyperparameters, the selection of last l877

token’s cumulative attention score, the threshold ϵ,878

maximum KV cache size of the head in each layer879

N
′
i,1, fixed step size ∆ng and ∆n .880

For various models, we configure the parameters881

as follows: l = 8, N
′
i,1 = 640, ∆ng = 74 and ∆n =882

512. Threshold ϵ is set to 0.3 for Llama2-7B, 0.5883

for Llama2-13B, 0.4 for Llama3-8B and 0.3 for884

Qwen2.5-7B.885

B Details of Evaluation886

Longbench is the first benchmark for assessing the887

long-context understanding capabilities of large888

language models in a bilingual and multitask frame-889

work. It evaluates multilingual capabilities in890

both Chinese and English, consisting of six ma-891

jor categories and twenty-one tasks. Key applica-892

tion scenarios include single-document QA, multi-893

document QA, summarization, few-shot learning,894

synthetic tasks, and code completion. We use Long-895

bench to evaluate the performance of our method896

on contextual input tasks. The details of metrics at897

Table 6.898

Dataset Metric Language Data Length

NarrativeQA F1 English 200
Qasper F1 English 200
MultifieldQA F1 English 150
HotpotQA F1 English 200
2WikiMQA F1 English 200
Musique F1 English 200
GovReport range-l English 200
QMSum range-l English 200
MultiNews range-l English 200
trec classification accuracy English 200
TriviaQA F1 English 200
SAMSum range-l English 200
PCount exact match accuracy English 200
PRe exact match accuracy English 200
Lcc edit similarity Python/C#/Java 500
RB-P edit similarity Python/Java 500

Table 6: The details of statistics in LongBench

Additionally, once the data sample is encoded 899

into tokens, if its length exceeds the model’s maxi- 900

mum input length, we truncate it by taking equal 901

portions from the beginning and the end. 902

C Throughput Analysis 903

To thoroughly investigate the inference perfor- 904

mance of the model, we conduct experiments on 905

an NVIDIA A100 80G GPU. We randomly sam- 906

ple 96 data points from the Wikitext2 dataset, with 907

strict control over the token lengths for both the 908

prompt and generation phases. Detailed analyses 909

of memory usage and throughput are provided in 910

the Table 7 . We can observe that under the setting 911

of a prompt length of 3712 and a generation length 912

of 384 for this short generated text, our method 913

achieves up to 2.96 times throughput. 914

D Ablation Study 915

D.1 Truncation Strategy 916

Llama-2-7B-chat-hf, KV Cache Size=384

Top k Qasper QMSum SAMSum Lcc Average

Top 16 19.28 20.38 39.45 59.72 34.71
Top 32 19.34 20.51 39.35 59.93 34.78
Top 64 18.75 20.43 39.36 59.86 34.60
Top all 18.14 20.14 38.52 59.51 34.08

Table 8: Truncation Strategy

In this section, we examine truncation strategies, 917

with a focus on evaluating the effectiveness of el- 918

bow points. We conduct tests using various el- 919

bow points by selecting different top k eigenval- 920

ues and compared the results to cases where no 921

elbow points are applied. As demonstrated in Table 922

8, the results demonstrate a 0.70% performance 923

gap between the truncated and untruncated settings, 924

highlighting the efficacy of our approach. 925

12

Llama2-7B-chat-hf, KV Cache Size = 384, Prompt+Generate is 3712+384

Batch Size Ours-group-stage Ours-group FullKV

ms/token max memory used(MB) ms/token max memory used(MB) ms/token max memory used(MB)

1 28.055 23492 28.536 23080 25.691 24690
4 7.910 37526 8.504 37516 13.806 44220
8 4.822 59014 5.436 59036 11.823 72444

10 5.340 69802 5.887 69780 - Out-of-Memory
12 3.994 80514 4.567 80522 - Out-of-Memory

Llama2-7B-chat-hf, KV Cache Size = 384, Prompt+Generate is 4032+64

Batch Size Ours-group-stage Ours-group FullKV

ms/token max memory used(MB) ms/token max memory used(MB) ms/token max memory used(MB)

1 34.782 24298 39.231 24312 36.596 24240
4 13.671 41180 18.458 41170 23.952 41146
8 10.186 66560 15.074 66580 21.944 66532

10 9.907 79198 14.603 79206 21.482 79168
12 9.464 79140 14.150 79174 - Out-of-Memory

Table 7: Throughput Analysis

Llama2-7B-chat-hf, KV Cache Size=384

Group Number KV cache size in different groups Qasper HotpotQA QMSum SAMSum Lcc Average

2 groups 32/736 18.23 30.96 19.82 40.05 57.13 33.24
3 groups 32/384/736 18.90 30.53 19.95 40.04 58.29 33.54
4 groups 32/266/502/736 19.29 30.48 20.10 41.03 59.37 34.05
5 groups 32/208/384/560/736 19.58 31.17 20.72 40.61 58.93 34.20
8 groups 32/132/232/332/436/536/636/736 19.34 31.04 20.16 40.92 59.48 34.19

2 groups 256/512 19.67 30.98 20.20 39.36 60.28 34.10
3 groups 256/384/512 19.45 31.29 20.24 39.63 59.63 34.05
4 groups 256/342/427/512 19.20 30.99 20.10 39.33 59.71 33.87
5 groups 256/320/384/448/512 19.71 30.95 20.22 39.60 59.99 34.09
8 groups 256/296/332/368/404/440/476/512 19.55 31.02 20.59 39.10 59.39 33.93

Table 9: Group Number Analysis

D.2 Number of Head Groups926

In this section, we analyze the impact of the num-927

ber of groups on performance. As illustrated in928

Table 9, when the KV cache size between groups929

changes minimally, the maximum performance dif-930

ference with changes in the number of groups is931

only 0.23%. However, when there is a significant932

disparity between the maximum and minimum KV933

cache sizes of the groups, increasing the number934

of groups tends to enhance performance, with a935

performance improvement of 0.96%. It indicates936

that the number of groups is highly correlated with937

the distribution of KV cache sizes within groups,938

and the greater the disparity in sparse patterns, the939

better the performance.940

D.3 Matrix Entropy and Attention Variance941

In this section we discuss the grouping policy. We942

provide the compression ratio estimates based on943

the variance of attention scores in Table 10, evalu-944

ated under two KV cache sizes, 384 and 64. The945

results clearly highlight our advantages, especially946

under the budget of 64. This suggests that solely947

relying on compression ratio estimation based on948

attention is unreasonable, as attention itself is sub-949

ject to biases such as the attention sink(Xiao et al., 950

2023) and recency bias(Peysakhovich and Lerer, 951

2023). It is necessary to introduce additional unbi- 952

ased compression estimation methods. 953

E Supplementary Dataset Comparison 954

E.1 RULER 955

RULER (Hsieh et al., 2024) is a novel synthetic 956

benchmark designed to comprehensively evalu- 957

ate the capabilities of long-context language mod- 958

els (LMs). Unlike the traditional Needle-in-a- 959

Haystack (NIAH) test, which focuses solely on 960

retrieval tasks, RULER provides flexible config- 961

urations to support customized sequence lengths 962

and task complexities. It extends the vanilla NIAH 963

test by introducing diverse variations in the types 964

and quantities of “needles" and adding new task 965

categories, such as multi-hop tracing and aggre- 966

gation, to assess capabilities beyond simple con- 967

text search. The results are shown in Table 11, 968

where the Llama-3-8B-Instruct model is used, and 969

other settings are consistent with those in the pre- 970

vious section A.3. The experiments are conducted 971

on a single A100 80G GPU. Our method demon- 972

13

Methods

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NtrvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum

PCount
PRe Lcc RB-P

Variance KV (384) 16.75 18.15 32.09 32.42 27.29 8.50 19.46 20.42 22.94 62.50 84.65 38.64 5.50 12.00 58.59 52.98 32.06
Uncomp (384) 17.33 19.34 34.16 31.54 28.23 10.04 20.38 20.51 23.33 63.00 84.11 39.35 5.50 9.50 59.93 54.87 32.57

Variance KV (64) 8.75 13.58 12.24 20.27 13.38 3.89 8.76 15.73 13.98 29.50 56.22 30.35 5.00 5.45 37.10 30.47 19.04
Uncomp (64) 14.05 15.40 25.56 26.28 21.96 6.96 14.88 18.83 17.58 55.50 81.61 34.74 5.00 5.00 50.00 45.55 27.43

Table 10: Comparison of entropy and variance of truncated matrices

RULER(8k) niah single 1 niah single 2 niah single 3 niah multikey 1 niah multikey 2 niah multikey 3 niah multivalue niah multiquery vt cwe fwe qa 1 qa 2 average

FullKV 8k 100.00 100.00 100.00 98.80 88.20 97.60 95.40 99.40 98.60 97.74 83.93 67.40 50.80 90.61

UNComp 100.00 99.80 3.80 99.40 72.80 0.00 81.55 74.75 93.88 20.78 53.93 64.40 49.60 62.67
SnapKV 100.00 99.80 1.60 98.80 72.60 0.00 78.00 71.05 94.36 21.16 49.60 64.80 50.00 61.67
PyramidKV 100.00 98.40 0.00 98.40 66.00 0.00 63.60 42.55 81.96 8.16 41.00 65.00 48.60 54.90
CHAI 35.00 22.80 23.40 22.00 3.80 0.60 23.40 23.80 11.24 0.66 7.00 25.80 21.80 17.02
H2O 2.80 3.80 5.80 5.40 4.00 3.00 4.60 5.20 4.60 34.60 85.87 42.00 39.60 18.56

RULER(4k) niah single 1 niah single 2 niah single 3 niah multikey 1 niah multikey 2 niah multikey 3 niah multivalue niah multiquery vt cwe fwe qa 1 qa 2 average

FullKV 4k 100.00 100.00 100.00 99.40 100.00 98.80 99.15 99.85 99.72 99.80 94.20 81.40 58.00 94.64

UNComp 100.00 99.80 18.80 95.60 98.80 0.00 93.00 93.00 95.84 56.06 78.07 81.40 57.20 74.43
SnapKV 100.00 99.60 8.00 99.40 97.40 0.00 88.30 87.70 95.80 52.86 76.33 81.40 56.60 72.57
PyramidKV 100.00 99.40 0.60 98.60 91.80 0.00 65.85 49.40 78.84 10.50 66.20 81.00 55.40 61.35
CHAI 44.40 54.00 46.60 36.60 14.00 7.20 53.40 52.60 17.16 13.00 25.60 59.40 30.20 34.94
H2O 10.40 12.60 13.00 14.60 9.20 7.00 12.25 13.15 8.64 82.94 93.00 81.80 40.00 30.66

Table 11: Performance comparison of methods on RULER benchmark across different context lengths. The first
section shows results for an 8k context, while the second section highlights 4k context performance.

strates superior performance, while PyramidKV’s973

relatively poor performance suggests that setting974

a separate compression rate for each layer may975

hinder the effective context length of the model.976

Therefore, an appropriate grouping strategy for the977

layers is essential.978

E.2 InfiniteBench979

InfiniteBench(Zhang et al., 2024b) is a state-of-980

the-art benchmark designed to evaluate language981

models’ ability to process, understand, and reason982

over extremely long contexts exceeding 100k to-983

kens. By pushing context lengths 10 times beyond984

traditional datasets, InfiniteBench aims to advance985

applications of LLMs and enable high-level interac-986

tions in scenarios requiring extensive context com-987

prehension. Results are showed at Table 12, where988

the Llama-3-8B-Instruct model is used, and other989

settings are consistent with the previous section990

A.3. Our method demonstrates exceptional robust-991

ness and is the only approach that surpasses the992

performance of FullKV.993

E.3 Evaluating Generalization on Reasoning994

Task995

To verify the generalization of our method, we996

conducted a comparison of experiments on the997

GSM8K (Cobbe et al., 2021) dataset, and the re-998

sults are shown in the table 13. The experiment999

demonstrates the superiority of our method in few-1000

shot reasoning performance. We also found that1001

our method significantly outperforms other meth- 1002

ods in a zero-shot setting, which suggests that our 1003

approach may be able to identify a sparse pattern in 1004

the absence of samples, thereby avoiding the loss 1005

of reasoning capability. 1006

Table 13: Based on the input question, half of the to-
kens are kept at a time, while for few-shot prompts,
the 384 KV cache size is consistently maintained. We
compare the experimental results under 6-shot and 12-
shot conditions. The experiments are performed using
Llama2-7B-chat-hf.

Method(Number of tokens) Zero-shot(112)) 6-shot(1251) 12-shot(2321)

FullKV 24.63 27.14 26.91
StreamingLLM 5.68 26.46 24.68
H2O 5.31 27.82 27.14
CHAI 5.69 3.87 4.06
SnapKV 5.53 26.61 24.48
PyramidKV 2.35 24.49 24.68
Ours-group 12.05 27.89 27.68
Ours-group-stage 12.86 26.23 26.84

F Analysis about Truncated Effective 1007

Rank of Hidden States 1008

Figure 7 shows the entropy trend of sample of the 1009

Wikitext2. It can be seen that the matrix entropy of 1010

hidden states increases layer by layer, which indi- 1011

cates that the information compression pattern is 1012

completely consistent with Vm. This is an interest- 1013

ing phenomenon because the Keys and queries in 1014

the KV cache share the same pattern, while the val- 1015

ues share the same pattern as the hidden states. We 1016

believe this may be due to the positional encodings 1017

14

Method En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Code.Run Math.Calc Math.Find Retrieve.PassKey Retrieve.Number Retrieve.KV Average

FullKV 12.55 0.27 42.79 1.00 4.04 22.34 0.00 0.00 38.57 6.27 6.44 4.80 14.38

uncomp 11.74 0.23 44.98 3.80 3.00 21.57 0.00 0.00 38.57 6.27 6.44 0.00 14.77
snapkv 11.59 0.28 42.36 1.00 4.01 21.83 0.00 0.00 38.29 6.27 6.61 0.00 14.22
pyramidkv 11.34 0.23 40.61 2.50 4.03 22.08 0.00 0.00 38.57 6.27 6.78 0.00 14.26
chai 9.69 0.37 34.06 8.00 3.26 24.97 0.00 0.00 27.43 4.58 5.93 1.20 12.79
h2o 10.99 0.18 44.98 3.50 3.98 22.08 0.00 0.00 37.71 1.69 1.69 0.00 14.24

Table 12: Performance comparison of various methods on InfiniteBench across different tasks, including summa-
rization, QA, mathematical reasoning, and code-related benchmarks. The “Average" column represents the overall
average performance.

0 5 10 15 20 25 30
Layers

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

Ef
fe

ct
iv

e
Ra

nk

Hidden States Effective Rank Trend

0 5 10 15 20 25 30
Layers

1.5

1.6

1.7

1.8

1.9

Tr
un

ca
tio

n
Ef

fe
ct

iv
e

Ra
nk

Hidden States Truncation Effective Rank Trend

Figure 7: Effective rank and truncated effective rank of hidden states across different layers.

assigned to both the Queries and Keys. This also1018

reveals a widespread connection between different1019

types of parameters in the model, suggesting that1020

predicting the sparse pattern of one set of parame-1021

ters using another set is feasible.1022

G Appendix for Proofs1023

The effective rank of ΣX, denoted erank(ΣX), is1024

defined as (Roy and Vetterli, 2007):1025

erank(ΣX) = exp(H(ΣX)). (12)1026

Lemma 3 The rank of the covariance matrix ΣX1027

is upper bounded by the rank of the input matrix1028

X:1029
rank(ΣX) ≤ rank(X). (13)1030

Lemma 4 Eq. (12) can be interpreted as the di-1031

mension of the affine subspace spanned, i.e., the1032

effective dimensionality of the token matrix in the1033

head and layer dimensions. The bounds are:1034

1 ≤ erank(ΣX) ≤ rank(ΣX) ≤ D. (14)1035

We use erank(ΣX) to quantify the information of1036

token matrix representations, providing a unified1037

uncertainty measure for both the KV cache and1038

hidden states.1039

Proof Lemma 1 1040

1041

Proof. To derive the von Neumann entropy 1042

from the Rényi entropy, we first need to clarify the 1043

relationship between the two. The von Neumann 1044

entropy can be seen as a special case of the Rényi 1045

entropy in the limit where the Rényi parameter 1046

α → 1. The Rényi entropy is defined as: 1047

Sα(ΣX) =
1

1− α
log (Tr((ΣX)α)) , (15) 1048

where α is the order of the Rényi entropy, ΣX is 1049

the density matrix, and Tr(ρα) is the trace of the 1050

density matrix raised to the power of α. To derive 1051

the von Neumann entropy, we need to examine the 1052

limit of the Rényi entropy as α → 1. Let’s consider 1053

the form of the Rényi entropy: 1054

Sα(ΣX) =
1

1− α
log

(∑
i

σα
i

)
, (16) 1055

where σi are the eigenvalues of the density matrix 1056

ΣX. As α → 1, we can apply L’Hôpital’s rule to 1057

compute this limit: 1058

S(ΣX) = lim
α→1

Sα(ρ) = lim
α→1

1

1− α
log

(∑
i

σα
i

)
(17) 1059

15

To proceed, consider the Taylor expansion of1060 ∑
i σ

α
i :1061 ∑
i

σα
i =

∑
i

σi · e(α−1) log σi

≈
∑
i

σi (1 + (α− 1) log σi)

= 1 + (α− 1)
∑
i

σi log σi

(18)1062

Thus,1063

Sα(ΣX) ≈ 1

1− α
log

(
1 + (α− 1)

∑
i

σi log σi

)
(19)1064

As α → 1, we can use the approximation log(1+1065

x) ≈ x for small x. Therefore, we get:1066

Sα(ΣX) ≈ −
∑
i

σi log σi (20)1067

which is exactly the expression for the von Neu-1068

mann entropy:1069

H(ΣX) = −Tr(ΣX log(ΣX)) (21)1070

Proof Lemma 21071

1072

Proof. In this section, we present a continu-1073

ous proof of the transformation from the matrix1074

entropy formula to the eigenvalue form.1075

H(ΣX) = −Tr (ΣX log (ΣX)) (22)1076

Given that ΣX is a symmetric positive definite1077

matrix, we can perform an eigenvalue decomposi-1078

tion:1079

ΣX = UΛU⊤ (23)1080

where U is an orthogonal matrix composed of1081

eigenvectors, and Λ is a diagonal matrix whose1082

entries are the eigenvalues σ1, σ2, . . . , σD. The1083

logarithm of ΣX can then be written as:1084

log(ΣX) = U log(Λ)U⊤ (24)1085

where log(Λ) is a diagonal matrix whose elements1086

are log(σ1), log(σ2), . . . , log(σD). Substituting1087

these into the entropy expression:1088

H(ΣX) = −Tr
(
UΛU⊤U log(Λ)U⊤

)
(25)1089

Since U⊤U = I, this simplifies to:1090

H(ΣX) = −Tr (Λ log(Λ)) (26) 1091

For a diagonal matrix, the trace is the sum of its 1092

diagonal elements. Therefore, we have: 1093

H(ΣX) = −
D∑
i=1

σi log(σi) (27) 1094

This concludes the proof that the matrix entropy 1095

formula can be written as the sum of the eigenval- 1096

ues of ΣX. 1097

Proof Lemma 3 1098

Proof. Let X ∈ Rn×p be a matrix representing 1099

n observations and p variables. The covariance 1100

matrix ΣX of X is defined as: 1101

ΣX =
1

n− 1
X⊤X (28) 1102

The goal is to determine the relationship between 1103

the rank of the matrix X and the rank of its covari- 1104

ance matrix ΣX. 1105

The rank of the matrix X, denoted as rank(X), 1106

is the number of linearly independent columns in 1107

X, and it satisfies the inequality: 1108

rank(X) ≤ min(n, p) (29) 1109

Since the covariance matrix ΣX is given by 1110

ΣX = 1
n−1X

⊤X, it is a p × p symmetric matrix. 1111

The rank of ΣX, denoted rank(ΣX), is determined 1112

by the product X⊤X. The rank of this product is 1113

bounded by the rank of X, so we have the following 1114

inequality: 1115

rank(ΣX) ≤ rank(X) (30) 1116

This shows that the rank of the covariance matrix 1117

ΣX cannot exceed the rank of the original matrix 1118

X. In the case where the number of observations n 1119

is greater than or equal to the number of variables 1120

p (i.e., n ≥ p), and the columns of X are linearly 1121

independent, the rank of X is equal to p, meaning 1122

rank(X) = p. In this scenario, the matrix X⊤X 1123

has full rank, which implies that the covariance 1124

matrix ΣX will also have full rank. Therefore, we 1125

have rank(ΣX) = p, and the rank of the covariance 1126

matrix is equal to the rank of the original matrix, 1127

i.e., rank(ΣX) = rank(X). 1128

On the other hand, when the number of obser- 1129

vations is less than the number of variables (i.e., 1130

n < p), the rank of X is constrained by the number 1131

of observations, such that rank(X) ≤ n. Conse- 1132

quently, the rank of the covariance matrix ΣX is 1133

16

also limited by n, meaning rank(ΣX) ≤ n. Since1134

n < p in this case, the covariance matrix is rank-1135

deficient, and we have rank(ΣX) < p.1136

In general, the rank of the covariance matrix1137

ΣX is less than or equal to the rank of the origi-1138

nal matrix X. Specifically, rank(ΣX) = rank(X)1139

when the number of observations n ≥ p and the1140

columns of X are linearly independent. However,1141

when n < p, the covariance matrix ΣX will be1142

rank-deficient, such that rank(ΣX) < p.1143

Proof Lemma 41144

Proof. The entropy H(ΣX) of a set of singular1145

values σ1, σ2, . . . , σD is given by the formula:1146

H(σ1, σ2, . . . , σD) = −
D∑
i=1

σi log σi. (31)1147

The trace of ΣX, Tr(ΣX), is 1. Since entropy mea-1148

sures the uncertainty or disorder in a distribution,1149

we can establish certain bounds for the entropy1150

based on the structure of the singular values.1151

First, we note that if the distribution is concen-1152

trated entirely at a single value (i.e., all but one of1153

the singular values are zero), then the entropy will1154

be minimized at 0. Specifically:1155

H(1, 0, . . . , 0) = 0. (32)1156

On the other hand, the entropy is maximized when1157

the singular values are uniformly distributed. In1158

the case of a uniform distribution over D singular1159

values, we have:1160

σ1 = σ2 = · · · = σD =
1

D
, (33)1161

and the entropy in this case is:1162

H

(
1

D
,
1

D
, . . . ,

1

D

)
= −D

(
1

D
log

1

D

)
= logD.

(34)1163

Thus, we have the inequality:1164

0 = H(1, 0, . . . , 0) ≤ H(σ1, σ2, . . . , σD) ≤ logD.
(35)1165

The effective rank is defined as:1166

erank(ΣX) = exp(H(σ1, σ2, . . . , σD)), (36)1167

which quantifies the "effective" number of singu-1168

lar values that are significantly contributing to the1169

rank of the matrix. Since H(σ1, σ2, . . . , σD) is1170

bounded by logD, it follows that the effective rank1171

is bounded by:1172

1 ≤ erank(ΣX) ≤ D. (37)1173

Equality holds at the lower bound if and only if 1174

(σ1, σ2, . . . , σD) = (1, 0, . . . , 0), that is, when all 1175

but one singular value is zero. In this case, the 1176

singular value vector is: 1177

σ = (∥σ∥1, 0, . . . , 0)T , (38) 1178

where ∥σ∥1 = 1. Hence, erank(ΣX) = 1. 1179

Next, suppose that only k singular values of A 1180

are non-zero for some k ∈ {1, 2, . . . , D}. In this 1181

case, the rank of A is given by rank(A) = k, and 1182

the entropy only depends on the non-zero singular 1183

values. Thus, we have: 1184

H(σ1, σ2, . . . , σD) = H(σ1, σ2, . . . , σk), (39) 1185

where σ1, σ2, . . . , σk are the non-zero singular val- 1186

ues. Since entropy is maximized when these non- 1187

zero singular values are uniformly distributed, we 1188

have: 1189

H(σ1, σ2, . . . , σk) ≤ log k. (40) 1190

Hence, the effective rank satisfies: 1191

erank(ΣX) ≤ rank(ΣX) ≤ D, (41) 1192

with equality erank(ΣX) = rank(ΣX) if and only 1193

if the non-zero singular values are uniformly dis- 1194

tributed, i.e., 1195

(σ1, . . . , σk, σk+1, . . . , σD) =

(
1

k
, . . . ,

1

k
, 0, . . . , 0

)
,

(42) 1196

or equivalently: 1197

σ = (∥σ∥1/k, . . . , ∥σ∥1/k, 0, . . . , 0)T . (43) 1198

In this case, the effective rank coincides with the 1199

actual rank of the matrix, since the singular values 1200

contribute equally to the rank. 1201

H A Comprehensive Walk-Through 1202

We present the detailed procedure of the algorithm 1203

during the preparation phase in Algorithm 1. This 1204

step is designed to identify consistent attention 1205

head behaviors across different layers and input 1206

samples by leveraging truncated matrix entropy. 1207

Specifically, for each sample in a batch of 500, we 1208

tokenize the input and perform a full forward pass 1209

through the transformer’s self-attention layers. At 1210

each layer, we calculate the truncated entropy El,h 1211

for every attention head h, which serves as a proxy 1212

for information compression. 1213

17

Algorithm 1 Head Group Identification (Prepara-
tion Phase)

1: for each input sample xi in the 500-sample
batch do

2: Tokenize xi
3: Forward xi through all self-attention layers
4: for each layer l do
5: for each head h do
6: Compute truncated entropy El,h

(Assign h to one of 8 clusters based on El,h)
7: end for
8: end for
9: Save head cluster labels for all layers

10: end for
11: for each head h across all layers do
12: Assign final group label by majority vote
13: end for

Each head is then assigned to one of eight1214

clusters according to its entropy value, provid-1215

ing a coarse-grained categorization of its behavior.1216

These per-sample cluster assignments are aggre-1217

gated across the dataset, and for each head, a final1218

group label is determined by majority voting. This1219

group label serves as a stable representation of the1220

head’s functional role and is used in subsequent1221

stages of our method.1222

In Algorithm 2, we detail the inference phase1223

that incorporates dynamic KV cache compression1224

based on the entropy-driven head groupings derived1225

during the preparation phase. The process begins1226

with initialization, where the group labels for each1227

attention head are loaded, and the cache size is1228

configured accordingly.1229

During the Prefill stage, for each transformer1230

layer l, the algorithm evaluates the entropy shift1231

between Ql and Ql−1. If the difference exceeds1232

a threshold ϵ, the hidden states are compressed to1233

minimize redundant information. Subsequently,1234

each head’s KV cache is selectively compressed1235

based on its assigned group label, balancing effi-1236

ciency with retention of critical information. The1237

MLP block is then forwarded as usual.1238

In the Decoding stage, for every new token, each1239

layer performs head-wise attention using a dynam-1240

ically updated KV cache. The cache is expanded1241

by concatenating the new token with existing head-1242

specific cache entries, enabling efficient autoregres-1243

sive decoding. After processing through the MLP,1244

a new token is generated, and the KV cache is up-1245

dated accordingly. This dynamic approach ensures1246

Algorithm 2 Inference Phase with Dynamic KV
Cache Compression

1: Init: Load head group labels and set the size
of kv cache per head

2: Prefill:
3: for each transformer layer l do
4: if l > 0 and erankk(Ql) - erankk(Ql−1) >

ϵ then
5: Compress hidden states
6: end if
7: for each head h do
8: Compress the h-th head of kv cache

based on group
9: end for

10: end for
11: Forward MLP

12: Decoding:
13: for each new token t do
14: for each transformer layer l do
15: for each head h do
16: Concatenate the new token with old

the h-th head of kv cache and compute atten-
tion using concatenated the h-th head kv cache

17: end for
18: end for
19: Emit one token and update kv cache
20: Forward MLP
21: end for

computational and memory efficiency while main- 1247

taining model performance. 1248

18

	Introduction
	Related Work
	Attention-Based Token Eviction
	Information Compression Behavior

	Method
	Preliminary
	Truncated Matrix Entropy
	Uncertainty-Aware Compression Strategy
	Preparation Stage
	Layer-Group Compression
	Head-Group Compression

	Experiment
	Experimental Settings
	Memory-Constrained Setting

	Conclusion
	Implementation details
	Machine Environment
	Model Selection
	Hyperparameter Setting

	Details of Evaluation
	Throughput Analysis
	Ablation Study
	Truncation Strategy
	Number of Head Groups
	Matrix Entropy and Attention Variance

	Supplementary Dataset Comparison
	RULER
	InfiniteBench
	Evaluating Generalization on Reasoning Task

	Analysis about Truncated Effective Rank of Hidden States
	Appendix for Proofs
	A Comprehensive Walk-Through

