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Abstract

The ability to leverage shared behaviors between tasks is critical for sample-efficient1

multi-task reinforcement learning (MTRL). While prior MTRL methods primarily2

focus on parameter and data sharing, these methods do not exploit the fact that3

learning agents often benefit from sharing behaviors when acquiring skills. Few4

behavior-sharing methods exist but are limited to task families requiring only5

directly shareable and similar behaviors. Our goal is to extend the efficacy of6

behavior-sharing to more general task families that could require a mix of shareable7

and conflicting behaviors. Our key insight is an agent’s behavior across tasks can be8

used for mutually beneficial exploration. To this end, we propose a simple MTRL9

framework for identifying shareable behaviors over tasks and incorporating them10

to guide exploration. We empirically demonstrate how behavior sharing improves11

sample efficiency and final performance on manipulation and navigation MTRL12

tasks with conflicting behaviors and is even complementary to parameter sharing.13

Result videos are available at https://sites.google.com/view/qmp-mtrl.14

1 Introduction15

Imagine we are simultaneously learning to solve a diverse set of tasks in the kitchen, such as cooking16

an egg, washing dishes, and boiling water (see Figure 1). Several behaviors are similar across these17

tasks: interacting with the same appliances (like the fridge or faucet) and navigating common paths18

across the kitchen (like going to the countertop). While solving a particular task, humans can easily19

recognize the behaviors that can or cannot be shared from other tasks. This enables us to efficiently20

solve multiple tasks by mutually beneficial exploration.21

Can we replicate how humans naturally learn multiple skills at once, by noticing and utilizing common22

behaviors between them, and create a framework that can do the same efficiently? While typical works23

in multi-task reinforcement learning (MTRL) exploit sharing policy parameters (Vithayathil Varghese24

& Mahmoud, 2020) or relabeled data between tasks (Kaelbling, 1993), behavior-sharing is underex-25

plored and can lead to complementary improvements. Recent works (Teh et al., 2017; Ghosh et al.,26

2018) learn a shared policy distilled (Rusu et al., 2015) from all tasks, and either use it directly or to27

enforce learning of similar behaviors. However, these methods share behavior uniformly across tasks,28

limiting their effectiveness for task families requiring conflicting optimal behaviors from the same29

state. In this work, our goal is to extend the efficiency gains of behavior sharing to such task families.30

Concretely, we propose the problem of selective behavior sharing for improving exploration in31

MTRL. Our key insight is that an agent’s past or current behaviors across tasks can be helpful32

for exploration during training, despite potential conflicts in the final policies, as shown in human33

learners (Tomov et al., 2021). For instance, while boiling water in Figure 1, a household robot can34

start by exploring behaviors found rewarding in other tasks, such as going to the countertop and35

turning the faucet on, instead of randomly exploring the entire kitchen.36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://sites.google.com/view/qmp-mtrl


Cook Egg

Wash Dishes

Boil Water

Make Salad

Unshared Behaviors Transfer [Faucet-On] Simultaneous [Bowl-Fetch]

Figure 1: When an agent learns multiple tasks together, selective behavior-sharing can improve overall
learning efficiency. (Right) Simultaneous Learning: Boil-Water and Make-Salad tasks can learn
the behavior of [Bowl-Fetch] simultaneously. (Center) Transfer Behaviors: The agent first learns
the [Faucet-On] behavior in Boil-Water task, which can be reused to speed up exploration while
learning the Wash-Dishes task. (Left) Unshared Behaviors: Cook-Egg and Wash-Dishes require
conflicting starting behaviors of going to the refrigerator or sink, not suitable for sharing.

Two key challenges arise in selectively sharing exploratory behaviors for MTRL: identifying and37

incorporating shareable behaviors. First, the agent must assess the relevance of behaviors from38

other tasks depending on the current state and training progress. For instance, in Figure 1, other39

task policies may be disparately helpful (in blue) or harmful (in red) depending on the state of the40

environment. The second challenge is that initially helpful behaviors can eventually be suboptimal41

for the task. Thus, the prior approaches that use other tasks’ reward-labeled data directly or regularize42

the policy output to copy other task behaviors would likely fail as tasks diverge. Therefore, we need43

an effective mechanism to incorporate other task behaviors as exploration proposals.44

To address these challenges, we propose a simple MTRL framework called Q-switch Mixture of45

Policies (QMP), consisting of a Q-switch for identifying shareable behaviors and is used to guide46

an exploration scheme incorporating a mixture of policies. First, we use the current task’s Q-47

function (Sutton & Barto, 2018), a state and training-progress aware metric, to assess the quality of48

other task policies’ behaviors when applied to the current task. This Q-switch acts as a filter (Nair49

et al., 2018) to evaluate the potential relevance of explorative behaviors from other tasks. Second,50

we replace the data collection policy for each task with a mixture of all task policies gated by the51

Q-switch. Importantly, the mixture is only used for exploration while each policy is still trained52

independently for its own task. Therefore, QMP makes no shared optimality assumptions over tasks.53

Our primary contribution is introducing the problem of selective behavior sharing for improving ex-54

ploration in multi-task reinforcement learning requiring different optimal behaviors. We demonstrate55

that our proposed framework, Q-switch Mixture of Policies (QMP), identifies shareable behaviors56

from other tasks and incorporates them to make exploration efficient. This enables sample-efficient57

multi-task learning in manipulation and navigation tasks. Finally, we demonstrate how behavior58

sharing is complementary to parameter sharing, a typical way of improving MTRL.59

2 Related Work60

Multi-Task Learning for Diverse Task Families. Multi-task learning in diverse task families is61

susceptible to negative transfer between dissimilar tasks that hinders training. Prior works combat62

this by measuring task relatedness through validation loss on tasks (Liu et al., 2022) or influence of63

one task to another (Fifty et al., 2021; Standley et al., 2020) to find task groupings for training. Other64

works focus on the challenge of multi-objective optimization (Sener & Koltun, 2018; Hessel et al.,65

2019; Yu et al., 2020; Schaul et al., 2019; Chen et al., 2018), although recent work has questioned66

the need for specialized methods (Kurin et al., 2022). In a similar light, we posit that prior behavior-67

sharing approaches for MTRL do not work well for diverse task families where different optimal68

behaviors are required, and thus propose to share behaviors via exploration.69

Exploration in Multi-Task Reinforcement Learning. We share the motivation of improving70

exploration in MTRL with several prior works. Bangaru et al. (2016) proposed to encourage agents71

to increase their state coverage by providing an exploration bonus. Zhang & Wang (2021) studied72

sharing information between agents to encourage exploration under tabular MDPs with a regret73
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guarantee. Kalashnikov et al. (2021b) directly leverage data from policies of other specialized tasks74

(like grasping a ball) for their general task variant (like grasping an object). In contrast to these75

approaches, we do not require a pre-defined task similarity measure or exploration bonus. Instead,76

we learn to identify shareable behaviors and use them for improving exploration in online MTRL.77

Sharing in Multi-Task Reinforcement Learning. There are multiple, mostly complementary78

ways to share information in MTRL, including sharing data, sharing parameters or representations,79

and sharing behaviors. In offline MTRL, prior works selectively share data between tasks (Yu80

et al., 2021, 2022). Sharing parameters across policies can speed up MTRL by learning shared81

representations (Xu et al., 2020; D’Eramo et al., 2020; Yang et al., 2020; Sodhani et al., 2021; Misra82

et al., 2016; Perez et al., 2018; Devin et al., 2017; Vuorio et al., 2019; Rosenbaum et al., 2019) and83

can be easily combined with other types of information sharing. Most similar to our work, Teh et al.84

(2017) and Ghosh et al. (2018) share behaviors between multiple policies through policy distillation85

and regularization. However, unlike our work, they share behavior uniformly between policies and86

assume that optimal behaviors are shared across tasks in most states.87

Using Q-functions as filters. Yu et al. (2021) uses Q-functions to filter which data should be shared88

between tasks in a multi-task setting. In the imitation learning setting, Nair et al. (2018) and Sasaki &89

Yamashina (2020) use Q-functions to filter out low-quality demonstrations, so they are not used for90

training. In both cases, the Q-function is used to evaluate some data that can be used for training.91

Zhang et al. (2022) reuses pre-trained policies to learn a new task, using a Q-function as a filter to92

choose which pre-trained policies to regularize to as guidance. In contrast to prior works, our method93

uses a Q-function to evaluate explorative actions from different task policies to gather training data.94

3 Problem Formulation95

Multi-task learning (MTL) aims to improve performance when simultaneously learning multiple96

related tasks by leveraging shared structures (Zhang & Yang, 2021). Multi-task reinforcement learning97

(MTRL) addresses sequential decision-making tasks, where an agent learns behaviors or strategies to98

act optimally in an environment (Kaelbling et al., 1996; Wilson et al., 2007). Therefore, in addition to99

the typical MTL techniques, MTRL can also share behaviors to improve sample efficiency. However,100

current behavior sharing MTRL approaches (Section 2) assume that the optimal behaviors of different101

tasks do not conflict with each other. To address this limitation, we seek to develop a behavior-sharing102

method that can be applied in more general task families for sample-efficient MTRL.103

Multi-Task RL with Behavior Sharing. We aim to simultaneously learn a multi-task set of T tasks.104

Each task Ti is a Markov Decision Process (MDP) defined by the tuple (S,A, T ,Ri, ⇢i, �), with105

shared state space S, action space S, transition probabilities T , and discount factor �. The reward106

function Ri and initial state distribution ⇢i varies by task. We parameterize the multi-task solution as107

T policies {⇡1,⇡2, · · · ,⇡T }, where each policy ⇡i(a|s) represents the action distribution for a given108

state input and quantifies the agent’s behavior on Task Ti. The objective of the agent is to maximize109

the average expected return over all tasks, where tasks are uniformly sampled during training.110

Importantly, we do not make the assumption that optimal task behaviors coincide. Optimal behaviors111

of any two tasks, ⇡⇤
i (a|s) and ⇡⇤

j (a|s), can be different at the same state s, and thus not directly share-112

able. Direct behavior-sharing between Ti and Tj , such as sharing reward-labeled data (Kalashnikov113

et al., 2021a) or behavior regularization (Teh et al., 2017), would lead to suboptimal policies.114

4 Approach115

Our approach for behavior sharing is based on the intuition that humans learn to solve tasks by116

utilizing their knowledge from other tasks (Tomov et al., 2021). To realize this insight in multi-task117

reinforcement learning agents, we propose to selectively share behavior from other tasks to improve118

exploration. Two practical challenges arise from this goal:119

• Identifying shareable behaviors. Behaviors from other task policies should be shared when they120

are potentially beneficial and avoided when known to be conflicting or irrelevant. Therefore, we121

need a mechanism to evaluate behavior-sharing between each pair of tasks.122

• Incorporating shareable behaviors. Having determined the shareable behaviors, we must effec-123

tively employ them for better learning. Without a reward relabeler, we cannot share data directly.124

So, we need a mechanism that can use suggestions from other task policies as a way to explore.125
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Figure 2: Our method (QMP) trains a policy for each task and facilitates behavior sharing in the data
collection phase using a mixture of these policies. For example, in Task 1, each task policy proposes
an action aj . The task-specific Q-switch evaluates each Q1(s, aj) and selects the best behavior to
gather reward-labeled data for training Q1 and ⇡1. Thus, Task 1 will be boosted by incorporating
only high-reward shareable behaviors into ⇡1 and improving Q1 for subsequent Q-switch evaluations.

4.1 QMP: Q-switch Mixture of Policies126

Our approach to address these challenges is inspired by human multi-task learning. Before trying127

a new task, we first acquire a general understanding of the effectiveness of different behaviors in128

achieving the task. We can then identify the most promising behaviors to try and iteratively refine our129

solution and understanding of the task objective. For instance, when attempting to open a cabinet, we130

might recall applicable behaviors like approaching the handle or walking away. By comparing their131

relative effectiveness, we may choose to try the handle. We propose QMP (Figure 2) a novel method132

that follows this intuition with two components. A Q-switch (Section 4.2) relatively ranks behavior133

proposals from a mixture of task policies (Section 4.3) which is used as an exploration mechanism.134

4.2 Identifying Shareable Behaviors135

Similar to how a human learning a new task may try out the wrong skill a few times before landing136

on the correct skill, an RL agent does not know which behaviors are beneficial for sharing between137

tasks at first. This is simply because it does not yet know the optimal behavior or understand the task138

objective. So we can only identify shareable behaviors by estimating the value of different behaviors139

based on our current experience and continue to update this estimate as we become more proficient.140

In MTRL, estimating sharing of behaviors from policy ⇡j to ⇡i depends on the task at hand Task i, the141

environment state s, and the behavior proposal of the other policy at that state ⇡j(s). Therefore, we142

must identify shareable behaviors in a task and state-dependent way, being aware of how all the task143

policies ⇡j change over the course of training. For example, two task policies, such as Boil-Water144

and Make-Salad in Figure 1, may share only a small segment of behavior or may initially benefit145

from shared exploration of a common unknown environment. But eventually, their behaviors become146

conflicting or irrelevant to each other as the policies diverge into their own task-specific behaviors.147

Q-switch: We propose to utilize each task’s learned Q-function to evaluate shareable behaviors. The148

Q-function, Qi(s, a), of Task i estimates the expected discounted return of the policy after taking149

action a at state s (Watkins & Dayan, 1992). Although this is an estimate acquired during training, it150

is a critical component in many state-of-the-art RL algorithms (Haarnoja et al., 2018; Lillicrap et al.,151

2015). It has also been used as a filter for high-quality training data (Yu et al., 2021; Nair et al., 2018;152

Sasaki & Yamashina, 2020), suggesting the Q-function is effective for evaluating and comparing153

actions during training. Thus, we use the Q-function as a switch that rates action proposals from154

other tasks’ policies for the current task’s state s. While the Q-function could be biased when queried155

with out-of-distribution actions from other policies, we will explain how this is corrected in practice156

in the next section on how the Q-switch is used in behavior sharing. Thus, this simple and intuitive157

function is state and task-dependent, gives the current best estimate of which behaviors are most158

helpful (those with high Q-values) and conflicting or irrelevant behaviors (those with low Q-values),159

and is quickly adaptive to changes in its own and other policies during online learning.160
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4.3 Incorporating Shareable Behaviors161

We propose to use other task policies as behavioral suggestions to aid the exploration of the current162

task. This enables us to incorporate helpful behaviors from other tasks without assuming access to a163

reward re-labeler. Furthermore, this allows the agent to observe the effect of a proposed behavior in164

the current task, so only the behaviors with high task rewards are effectively incorporated into the165

task policy through the training process. This makes our sharing mechanism applicable to general166

task families, including those with eventually conflicting optimal behaviors.167

Mixture of Policies: To allow for selective behavior sharing, we use a mixture of all task policies to168

gather training data for each task. Training a mixture of policies is a popular approach in hierarchical169

RL (Çelik et al., 2021; Daniel et al., 2016; End et al., 2017; Goyal et al., 2019) to attain reusable170

skills. In MTRL, we aim to benefit similarly from reusable behaviors. The main differences are that171

each policy is specialized to a particular task and the mixture is only used to gather exploratory data.172

To this end, we define a mixture policy ⇡mix
i (a|s) for each task i over all the task policies ⇡j . At each173

timestep, ⇡mix
i uses Q-switch to choose the best-scored policy ⇡⇤

j at any state and samples an action174

from that policy, a ⇠ ⇡⇤
j (Figure 2). This mixture allows us to activate multiple policies at different175

states in an episode, so we can selectively incorporate shareable behaviors from various tasks in a task176

and state dependent way. And while there are more sophisticated ways of scoring and incorporating177

policy proposals, such as defining a probabilistic mixture, we found that our simple method QMP178

works well in practice while requiring minimal hyperparameter tuning or computational overhead.179

Importantly, the mixture of policies is used only to gather training data and is not trained directly as a180

common policy. Instead, each task policy ⇡i is trained with data gathered for its own task Ti by the181

mixture of policies ⇡mix
i with the assistance of Qi as a switch (see Figure 2). The only difference to182

conventional RL is that the training dataset is generated by ⇡mix
i and not ⇡i directly, thus benefiting183

from shared behaviors through exploration without being limited by tasks with conflicting behaviors.184

Together, the Mixture of Policies, ⇡mix
i enables multi-task exploration guided by Q-switch, the185

current task’s objective. While it is possible for the Q-switch to choose a harmful action due to186

error on an out-of-distribution action, it still helps exploration analogous to Q-learning. The agent187

observes the environment rewards after taking this action and will update its Q-function. Thus, any188

helpful behaviors seen in exploration are incorporated into ⇡i through policy optimization. In contrast,189

conflicting or irrelevant behaviors, which represent an error in Qi’s estimation, are used to update190

and correct Qi and thus the Q-switch. In addition, Q-switch starts as a uniform mixture but develops191

a stronger preference for policy ⇡i as it becomes more proficient in task i. Consequently, cross-task192

behavior-sharing naturally decreases as ⇡i specializes and requires less exploration.193

5 Experiments194

5.1 Environments195

To evaluate our proposed method, we experiment with multi-task designs in navigation and manip-196

ulation environments shown in Figure 3. When evaluating the effectiveness of selective behavior197

sharing, the complexity of these multi-task environments is determined not only by individual task198

difficulty, more importantly, by the degree of similarity in behaviors between tasks. Thus to create199

challenging benchmarks, we ensure each task set includes tasks with either conflicting or irrelevant200

behavior. Further details on task setup and implementation are in Appendix Section A.2.201

Multistage Reacher: The agent is tasked to solve 5 tasks of controlling a 6 DoF Jaco arm to reach202

multiple goals in an environment simulated in the MuJoCo physics engine (Todorov et al., 2012). In 4203

out of the 5 tasks, the agent must reach 3 different sub-goals in order with some coinciding segments204

between tasks. In the 5th task, the agent’s goal is to stay at its initial position for the entire episode.205

The observation space does not include the goal location, which must be figured out from the reward.206

Thus, for the same states, the 5th task directly conflicts with all the other tasks.207

Maze Navigation: In this environment, the point mass agent has to control its 2D velocity to208

navigate through the maze and reach the goal, where both start and goal locations are fixed in each209

task. The observation consists of the agent’s current position and velocity. But, it lacks the goal210

location, which should be inferred from the dense reward based on the distance to the goal. Based211

on the environment proposed in Fu et al. (2020), we define 10 tasks with different start and goal212

locations. The optimal paths for different tasks have segments that coincide and that directly conflict.213
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Task 4: Stay

Task 0

Task 1

Task 0

Task 1

Task 4: Stay

(a) Multistage Reacher (b) Maze Navigation

door open 

door close 

drawer open 

drawer close 

(c) Meta-World

Figure 3: Environments & Tasks: (a) Multistage Reacher. The agent must reach 3 ordered subgoals
in each task except Task 4, where the agent must stay at its initial position. See Appendix Table 1 for
goal locations. (b) Maze Navigation. The agent (green circle) must navigate through the maze to
reach the goal (red circle). Example paths for 4 other tasks are shown in orange. (c) Meta-World
Manipulation. Consisting of tasks: door open, door close, drawer open, drawer close.

Meta-World Manipulation: We follow the modified 4-task shared-space setup of the Meta-World214

environment (Yu et al., 2019) proposed in Yu et al. (2021). It places the door and drawer objects next215

to each other on the same tabletop so that all 4 tasks (door open, door close, drawer open, drawer216

close) are solvable in a simultaneous multi-task setup, making it amenable to our problem domain217

(unlike the original MT10 task set which is built over separate environments). The observation space218

consists of the robot’s proprioceptive state, the drawer handle state, the door handle state, and the219

goal location. While there are no directly conflicting behaviors between tasks, there are irrelevant220

behaviors. Thus, policies should learn to share behaviors when interacting with the same object while221

ignoring irrelevant behavior from policies that only interact with the other object.222

5.2 Baselines223

We used Soft Actor-Critic (SAC) Haarnoja et al. (2018) for all models. We first compare different224

forms of cross-task behavior-sharing in isolation from other forms of information-sharing. Then, we225

show how behavior-sharing complements parameter-sharing. For the non-parameter sharing version,226

we use the same architectures and SAC hyperparameters for policies across all baselines.227

• No-Shared-Behaviors consists of T RL agents where each agent is assigned one task and trained228

to solve it without any behavior sharing with other agents. In every training iteration, each agent229

collects the data for its own task and uses it for training.230

• Fully-Shared-Behaviors is a single SAC agent that learns one shared policy for all tasks, which231

outputs the same action for a given state regardless of task (thus naturally does parameter sharing232

too). For the fairness of comparison, we adjusted the size of the networks, batch size, and number233

of gradient updates to match those of other models with multiple agents.234

• Divide-and-Conquer RL (DnC) (Ghosh et al. (2018)) uses an ensemble of T policies that shares235

behaviors through policy distillation and regularization. We modified the method for multi-task236

learning by assigning each of the policies to a task and evaluating only the task-specific policy.237

• DnC (Regularization Only) is a no policy distillation variant of DnC we propose as a baseline.238

• UDS (Data Sharing) proposed in Yu et al. (2022) shares data between tasks, relabelling with239

minimum task reward. We modified this offline RL algorithm for our online set-up.240

• QMP (Ours) learns T policies sharing behaviors via Q-switch and mixture of policies.241

For further details on baselines and implementation, please refer to Appendix Section A.4.242

6 Results243

We conduct experiments to answer the following questions: (1) How does our method of selectively244

sharing exploratory behaviors compare with other forms of behavior sharing? (2) How crucial is245

adaptive behavior sharing? (3) Can QMP effectively identify shareable behaviors? (4) Is behavior246

sharing complementary to parameter sharing?247
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3x samples

20% gain

15% gain

QMP(Ours) No-Share Fully-Share DnC (reg-only)DnC

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg-only)DnC

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg)DnC UDS

Figure 4: Comparison of average multitask success rate, over 10 evaluation episodes per task and 5
seeds for each method. The dashed lines highlight the gains of our proposed method (QMP) over the
best baseline. QMP outperforms the baselines in terms of the rate of convergence (3x in Multistage
Reacher) and the task performance (20% in Maze Navigation and 15% Meta-World Manipulation).

6.1 Baselines: How exploration sharing compares to other forms of behavior sharing?248

To verify QMP’s efficacy as a behavior sharing mechanism, we compare against several behavior249

sharing baselines on 3 environments: Multistage Reacher (5 tasks), Maze Navigation (10 tasks), and250

Meta-World Manipulation (4 Tasks) in Figure 4. Overall, QMP outperforms other methods in terms251

of sample efficiency and final performance across all task sets.252

In Multistage Reacher, our method reaches 100% success rate at 0.5 million environment steps, while253

DnC (reg.), the next best method, takes 3 times the number of steps to fully converge. The rest of the254

methods fail to attain the maximum success rate. The UDS baseline performs the worst, illustrating255

that data sharing can be ineffective without ground truth rewards. The Fully-Shared-Behaviors256

baseline performs similarly, highlighting the challenge of the conflicting behaviors between tasks.257

In the Maze Navigation environment, we test the scalability of our method to a larger 10-task set.258

QMP successfully solves 8 tasks out of 10, while other methods plateau at around a 60% success rate.259

In the Meta-World Manipulation environment, our method reaches almost 100% success rate after 8260

million environment steps while other methods plateau at around 85%. This is significant because261

this task set contains a majority of irrelevant behavior: between policies interacting with the door262

versus the drawer and between pulling on the object handles versus pushing. The fact that QMP263

still outperforms other methods validates our hypothesis that shared behaviors can be helpful for264

exploration even if the optimal behaviors are different. We note that the Fully-Shared-Behaviors265

baseline performs very well initially but quickly plateaus. The initial performance is likely due to266

the shared policy also benefiting from shared parameters across tasks, whereas the other methods267

learn separate networks for each task. However, the tasks eventually diverge based on the object to be268

manipulated, making full behavior-sharing suboptimal.269

6.2 Ablations: How crucial is adaptive behavior sharing?270

Figure 5: An adaptive state and task
dependent Q-switch is crucial.

We look at the importance of an adaptive, state-dependent271

Q-switch by comparing QMP to two ablations where we272

replace the Q-switch with a fixed sampling distribution over273

task policies to select which policy is used for exploration.274

• QMP-Uniform replaces the Q-switch with a uniform dis-275

tribution over policies to verify the importance of selective276

and adaptive behavior sharing.277

• QMP-Domain-Knowledge replaces the Q-switch with a278

hand-crafted, fixed policy distribution based on domain279

knowledge of the relationship between tasks (i.e., sam-280

pling probabilities proportional to the number of shared281

sub-goal sequences between tasks in Multistage Reacher,282

see Appendix A.2 for details) to verify the importance of283

adaptive and training-progress aware behavior sharing.284
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(a) Cross-task sharing proportion (b) Behavior-sharing over training (c) Behavior & parameter sharing

Figure 6: (a) Proportion of shared behavior on Reacher Multistage averaged over training: Each cell
(row i, col j) represents sharing contribution of Policy j for Task i (diagonal zeroed out for contrast).
(b) Mixture probabilities of other policies over the course of training for Task 0 in Multistage Reacher:
behavior-sharing decreases as ⇡0 improves. Q-switch shares the least from the conflicting task Policy
4, shown in red. Full analysis for all tasks in Appendix Figure 9. (c) Combining our proposed method
with parameter sharing using a multi-head shared architecture (in pink) outperforms both components
on their own: SAC with shared parameters (purple) and our method without shared parameters (blue).

In Figure 5, we see QMP-Uniform reaches around 60% success rate, lower than the worst performing285

behavior sharing baseline, demonstrating that a poor choice of Q-switch can significantly hinder286

learning in our framework. Uniformly randomly using other task policies for exploration can inject a287

significant amount of low-reward data, making learning inefficient.288

For QMP-Domain-Knowledge, we assign the probability of selecting ⇡j for Task i by the number of289

shared sub-goal sequences between Tasks i and j. QMP-Domain performs well initially but plateaus290

early. An improvement over QMP-Uniform shows the importance of task-dependent behavior sharing,291

while the performance deficit from QMP suggests that state-dependent and training-adaptive sharing292

is necessary. Crucially, defining such a specific domain-knowledge-based mixture of policies is293

generally impractical and requires knowing the tasks beforehand. While we specifically designed294

the Multistage Reacher for this didactic analysis, such domain knowledge is exponentially harder to295

define for complex tasks, especially if we want a state-dependent mixture.296

6.3 Can QMP effectively identify shareable behaviors?297

Figure 6a analyzes the effectiveness of the Q-switch in identifying shareable behaviors by visualizing298

the average proportion that each task policy is selected for another task over the course of training in299

the Multistage Reacher environment. This average mixture composition statistic intuitively analyzes300

whether QMP identifies shareable behaviors between similar tasks and avoids behavior sharing301

between conflicting or irrelevant tasks. As we expect, the Q-switch for Task 4 utilizes the least302

behavior from other policies (bottom row), and Policy 4 shares the least with other tasks (rightmost303

column). Since the agent at Task 4 is rewarded to stay at its initial position, this behavior conflicts304

with all the other goal-reaching tasks. Of the remaining tasks, Task 0 and 1 share the most similar305

goal sequence, so it is intuitive why they benefit from shared exploration and are often selected by306

their respective Q-switches. Finally, unlike the other tasks, Task 3 receives only a sparse reward and307

therefore relies heavily on shared exploration. In fact, QMP demonstrates the greatest advantage in308

this task (Appendix Figure 8). Furthermore, we see that total behavior sharing decreases throughout309

training in all tasks (Figure 6b), which demonstrates a naturally arising preference in the Q-switch310

for its own task-specific policy as it becomes more proficient.311

We qualitatively analyze behavior sharing by visualizing a rollout of QMP during training for the312

Drawer Open task in Meta-World Manipulation (Appendix Figure 10). We see that it switches313

between all task policies as it approaches the drawer, uses drawer-specific policies as it grasps the314

handle, and opening-specific policies as it pulls the drawer open. In conjunction with the overall315

results, this supports our claim that QMP can effectively identify shareable behaviors between tasks.316

6.4 Is behavior sharing complementary to parameter sharing?317

It is important that our method is compatible with other forms of multitask reinforcement learning318

that share different kinds of information, especially parameter sharing, which is very effective under319
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low sample regimes (Borsa et al., 2016; Sodhani et al., 2021) as we saw in the initial performance320

of Fully-Shared-Behaviors in Meta-World Manipulation. While we use completely separate policy321

architectures for previous experiments to isolate the effect of behavior sharing, QMP is flexible to322

any design where we can parameterize T task-specific policies. A commonly used technique to share323

parameters in multi-task learning is to parameterize a single multi-task policy with a multi-head324

network architecture. Each head of the network outputs the action distribution for its respective task.325

We can easily run QMP with such a parameter-sharing multi-head network architecture by running326

SAC on the multi-head network and replacing the data collection policy with ⇡mix
i .327

We compare the following methods on the Maze Navigation environment in Figure 6c.328

• Parameters Only: a multi-head SAC policy sharing parameters but not behaviors over tasks.329

• Behaviors Only: Separate task policy networks with QMP behavior sharing.330

• Parameters + Behaviors: a multi-head SAC network sharing behaviors via QMP exploration.331

We find that sharing Parameters + Behaviors greatly improves the performance over both the Shared-332

Parameters-Only baseline and Shared-Behaviors-Only variant of QMP. This demonstrates the additive333

effect of these two forms of information sharing in MTRL. The agent initially benefits from the334

sample efficiency gains of the multi-head parameter-sharing architecture, while behavior sharing335

with QMP accelerates the exploration via the selective mixture of policies to keep learning even after336

the parameter-sharing effect plateaus. This result demonstrates the compatibility between QMP and337

parameter sharing as key ingredients to sample efficient MTRL.338

7 Limitations339

Figure 7: QMP shares conservatively.

When we have prior knowledge that a task set has lit-340

tle or no conflicting behaviors, methods like DnC, with341

uniform behavior sharing and a tunable hyperparameter342

governing the strength of sharing, can fully leverage343

shared behavior between tasks and work very efficiently.344

In contrast, QMP does not assume a-priori that behaviors345

are fully shareable and therefore shares behavior selec-346

tively and adaptively as it learns the tasks. As a result, it347

can be more conservative in the amount of shared behav-348

ior and, thus, less sample efficient compared to methods349

specific to these task families. Essentially, QMP is a350

robustly efficient MTRL method applicable to a variety351

of task sets, but trades off on absolute performance on352

either end of the spectrum (i.e., fully non-conflicting or353

fully conflicting tasks). We found this to be the case in a multi-task set where a Walker agent learns354

different gaits with no directly conflicting behaviors like walking, balancing, and crawling: QMP355

still outperforms no shared behavior or fully shared behavior baselines but DnC (Reg. only) works356

best (see Figure 7 and Appendix Section A.3.3). However, in task sets with potentially conflicting357

behaviors or where the similarity in task behaviors is not known, we believe QMP to be the best358

option for robust multi-task behavior sharing as demonstrated in Section 6.1.359

8 Conclusion360

We introduce the problem of selective behavior sharing to improve exploration in MTRL for tasks361

requiring differing optimal behaviors. We propose Q-switch Mixture of Policies (QMP), that in-362

corporates behaviors between tasks for exploration through a value-guided selection over behavior363

proposals. Experimental results on manipulation and navigation tasks demonstrate that our proposed364

method effectively learns to share behavior to improve the rate of convergence and task performance365

in task families even with conflicting or irrelevant behaviors, which highlights the importance of366

selective behavior sharing. We further show that our method is complementary to parameter sharing,367

a popular MTRL strategy, demonstrating the effectiveness of behavior sharing in conjunction with368

other forms of information sharing in MTRL. Promising future directions include extending explo-369

ration improvements of selective behavior sharing problems where tasks are not necessarily learned370

simultaneously, such as transfer learning and continual learning in RL.371
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