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Abstract001

We introduce SensorLLM, a two-stage frame-002
work that enables Large Language Models003
(LLMs) to perform human activity recogni-004
tion (HAR) from sensor data. Despite their005
strong reasoning and generalization capabili-006
ties, LLMs remain underutilized for motion007
sensor data due to the lack of semantic con-008
text in time-series, computational constraints,009
and challenges in processing numerical in-010
puts. SensorLLM addresses these limitations011
through a Sensor-Language Alignment stage,012
where we introduce special tokens for each013
sensor channel and automatically generate tex-014
tual trend descriptions. This alignment en-015
ables LLMs to capture numerical variations,016
channel-specific features, and data of varying017
durations—without requiring human annota-018
tions. In the subsequent Task-Aware Tuning019
stage, we refine the model for HAR classifi-020
cation, achieving performance that matches or021
surpasses state-of-the-art methods. Our results022
demonstrate that SensorLLM evolves into an023
effective sensor learner, reasoner, and classi-024
fier through Sensor-Language Alignment, gen-025
eralizing across diverse HAR datasets. We026
believe this work establishes a foundation027
for future research on time-series and text028
alignment, paving the way for foundation029
models in sensor data analysis. Our codes030
are available at https://anonymous.4open.031
science/r/sensorllm_code-E0FC.032

1 Introduction033

Human Activity Recognition (HAR) is a time-034

series classification task that maps sensor sig-035

nals, such as accelerometer and gyroscope data,036

to human activities. Traditional models like037

LSTM (Guan and Plötz, 2017; Hammerla et al.,038

2016) and DeepConvLSTM (Ordóñez and Roggen,039

2016) learn high-level features but are task-specific040

and struggle to generalize across different sensor041

configurations and activity sets. In contrast, Large042

Language Models (LLMs) (Han et al., 2021) have043

Trend Analysis

Please analyse the sensor data trend variations between 0.0 and 0.49 seconds.

0.0-0.13 seconds: downward; 0.13-0.14 seconds: stable; 0.14-0.34 seconds: upward; 0.34-0.49
seconds: downward.

Number of downward segments: 2; Number of stable segments: 1; Number of upward segments: 1.

Summarization

I need a summary of sensor data's main elements and their trend distributions.

The x-axis accelerometer readings exhibit 3 distinct patterns, with direction changes occurring
four times in total. The data reveals a downward trend for 0.28s, followed by a growth phase of
0.20s, and a stable period lasting 0.01s. Overall, the trend remains downward.

Human Activity Recognition

What human behaviour is showcased in this sensor data that includes 6
channels?

The human activity is walking.

Figure 1: SensorLLM can analyze and summarize
trends in captured sensor data, facilitating human activ-
ity recognition tasks.

shown remarkable success in integrating diverse 044

data types (Wu et al., 2023b; Yin et al., 2023), in- 045

cluding text and images. 046

Enabling LLMs to process sensor data (Jin et al., 047

2023) requires either (1) pretraining or fine-tuning 048

on time-series data (Zhou et al., 2023a), which de- 049

mands substantial computational resources and is 050

hindered by limited and imbalanced labeled data, or 051

(2) leveraging zero-shot and few-shot prompting by 052

converting sensor data into text (Kim et al., 2024; 053

Ji et al., 2024). The latter approach avoids retrain- 054

ing but introduces key challenges: (i) Numerical 055

encoding issues—LLM tokenizers, designed for 056

text, struggle with numerical values, treating con- 057

secutive numbers as independent tokens (Nate Gru- 058

ver and Wilson, 2023) and failing to preserve tem- 059

poral dependencies (Spathis and Kawsar, 2024). 060

(ii) Sequence length constraints—sensor data of- 061

ten exceeds LLMs’ maximum context length, lead- 062

ing to truncation, information loss, and increased 063

computational costs. (iii) Multi-channel complex- 064

ity—LLMs process univariate inputs, making it 065

difficult to encode multi-sensor data in a way that 066

retains inter-channel dependencies. (iv) Prompt en- 067
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gineering challenges—designing effective prompts068

that enable LLMs to interpret numerical sensor069

readings, detect trends and classify activities re-070

mains a challenge (Liu et al., 2023b).071

To address these challenges, we propose Sen-072

sorLLM, a framework that aligns sensor data with073

natural language, allowing LLMs to analyze sen-074

sor data through text-based interactions (see Fig-075

ure 1) without modifying the LLM itself. A major076

challenge is the annotation bottleneck, further com-077

pounded by the complexity and heterogeneity of078

sensor data. Unlike image-text pairs, sensor data079

comprises multi-channel numerical signals with di-080

verse characteristics, making direct interpretation081

and alignment difficult.082

Existing methods (Jin et al., 2024a; Sun et al.,083

2024a) have explored condensed text prototypes084

for alignment, but these approaches often lack in-085

terpretability and require extensive tuning to select086

suitable prototypes. In contrast, we propose an au-087

tomatic text generation approach that aligns with088

human intuition by deriving descriptive trend-based089

text directly from time-series data using statistical090

analyses and predefined templates. This method is091

precise, scalable, and interpretable, eliminating the092

need for manual annotations while preserving es-093

sential sensor characteristics. SensorLLM follows094

a two-stage framework:095

Sensor-Language Alignment Stage. We auto-096

matically generate question-answer pairs to align097

sensor data with text while preserving temporal098

features using a pretrained encoder. The resulting099

embeddings are mapped into a space interpretable100

by the LLM, mitigating issues associated with text-101

specific tokenization. Additionally, we introduce102

special tokens for sensor channels, enabling LLMs103

to effectively capture multi-channel dependencies.104

Task-Aware Tuning Stage. The aligned embed-105

dings are utilized for HAR, leveraging the LLM’s106

reasoning capabilities while keeping its parame-107

ters frozen. This design extends LLMs beyond108

their original training, addressing concerns raised109

by Tan et al. (2024) regarding their applicability110

to time-series data. To our knowledge, this is the111

first approach to integrate sensor data into LLMs112

for sensor data analysis and HAR tasks.113

To our knowledge, this is the first approach to114

integrate sensor data into LLMs for sensor data115

analysis and HAR tasks. The key contributions of116

this work are as follows:117

• We propose a fully automated, human- 118

intuitive approach for aligning time-series 119

data with descriptive text, eliminating the need 120

for manual annotations. Using text similar- 121

ity metrics, human evaluations, and LLM- 122

based assessments, we demonstrate that Sen- 123

sorLLM effectively captures temporal patterns 124

and channel-specific features, enabling robust 125

multimodal understanding. 126

• SensorLLM achieves competitive results 127

across five HAR datasets, matching or sur- 128

passing state-of-the-art models. Experiments 129

further validate that modality alignment and 130

task-specific prompts significantly enhance 131

the LLM’s ability to interpret and classify sen- 132

sor data. 133

• We show that SensorLLM maintains strong 134

performance in the Task-Aware Tuning Stage, 135

even when applied to datasets distinct from 136

those used during alignment, highlighting its 137

robustness and generalizability in HAR tasks. 138

2 Related Work 139

In this section, we discuss recent developments 140

in leveraging LLMs for time-series data, specifi- 141

cally focusing on two categories: (1) LLMs for 142

time series as text and (2) Multimodal Large Lan- 143

guage Models (MLLMs) for sensor data. A broader 144

overview of other related works, including deep 145

learning approaches to HAR and additional LLM- 146

based forecasting methods, is provided in Ap- 147

pendix A.1. 148

LLMs for Time Series as Text. While LLMs 149

excel in processing natural language, applying 150

them directly to time-series data poses unique chal- 151

lenges (Spathis and Kawsar, 2024). Certain meth- 152

ods address this by treating time-series signals as 153

raw text, using the same tokenization as natural lan- 154

guage. Notable examples include PromptCast (Xue 155

and Salim, 2023), which transforms numeric inputs 156

into textual prompts for zero-shot forecasting, and 157

LLMTime (Gruver et al., 2024), which encodes 158

time-series as numerical strings for GPT-like mod- 159

els. However, due to the lack of specialized tok- 160

enizers for numeric sequences, LLMs may fail to 161

capture crucial temporal dependencies and repeti- 162

tive patterns (Spathis and Kawsar, 2024). To miti- 163

gate these issues, several works employ time-series 164

encoders before mapping the resulting embeddings 165

to language model spaces (Liu et al., 2024a; Zhou 166
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et al., 2023c; Xia et al., 2024), thus aligning sen-167

sor embeddings with textual embeddings in a con-168

trastive or supervised manner.169

MLLMs for Sensor Data. Extending LLMs to170

non-textual domains has gained traction, particu-171

larly through MLLMs that accept inputs beyond172

text, such as images or speech. For sensor data, the173

challenge lies in representing continuous signals ef-174

fectively. Yoon et al. (2024) propose to ground175

MLLMs with sensor data via visual prompting.176

Sensor signals are first visualized as images, guid-177

ing the MLLM to analyze the visualized sensor178

traces alongside task descriptions, which also lower179

token costs compared to raw-text baselines. Sim-180

ilarly, Moon et al. (2023) introduce IMU2CLIP,181

which aligns inertial measurement unit streams182

with text and video in a joint representation space.183

This approach enables wearable AI applications184

like motion-based media search and LM-based mul-185

timodal reasoning, showcasing how sensor data can186

be integrated into broader multimodal frameworks.187

3 Methods188

In this work, we propose SensorLLM, a frame-189

work that aligns sensor data with descriptive text190

through automatically generated question–answer191

pairs. Our goal is to develop a multimodal model192

with reasoning capabilities for analyzing wearable193

sensor data. As shown in Figure 2, SensorLLM194

comprises three core components: (1) a pretrained195

LLM, (2) a pretrained time-series (TS) embedder,196

and (3) an alignment module MLP, all operating in197

a two-stage framework.198

In the Sensor-Language Alignment Stage, a gen-199

erative model aligns sensor readings with text based200

on user instructions (Liu et al., 2023a) and ques-201

tions. In the Task-Aware Tuning Stage, a classifier202

is added on top of the LLM to perform HAR. Cru-203

cially, only the MLP in both stages and the classi-204

fier in the Task-Aware Tuning Stage are trainable,205

while the backbone LLM and TS embedder remain206

frozen. This design yields a highly efficient and207

lightweight training process, requiring only 5.67%208

(535.9M) of the parameters to be trainable in the209

alignment stage and 0.12% (10.5M) in the tuning210

stage.211

3.1 Sensor-Text Data Generation212

Aligning time-series data with text for LLM-based213

tasks is challenging due to the lack of rich semantic214

labels beyond class annotations, making manual215

annotation impractical (Deldari et al., 2024; Hare- 216

samudram et al., 2024). While prior works rely on 217

predefined text prototypes (Sun et al., 2024b; Jin 218

et al., 2024a), we aim for a more human-intuitive 219

representation of sensor data. 220

We argue that time-series data inherently con- 221

tains semantic patterns that can be expressed 222

through descriptive text, from simple numerical 223

trends to statistical insights. To achieve this, we 224

automatically generate descriptive text by analyz- 225

ing observed trends and fluctuations in the data. 226

Using predefined templates, we construct diverse 227

question-answer (QA) pairs that capture trend 228

changes while ensuring accuracy and scalability. 229

These templates (Appendix A.2) are randomly com- 230

bined to enhance diversity. For example: 231

(1) The time-series data represents readings taken 232

from a <S> sensor between <ts> and <te> sec- 233

onds. 234

(2) To sum up, the data exhibited a <T> trend for 235

a cumulative period of <tt> seconds. 236

where T and S denote specific trends and sensor 237

types, and t corresponds to numerical values. 238

3.2 Sensor-Language Alignment 239

As shown in Figure 2 (a), the Sensor-Language 240

Alignment stage employs a generative model to 241

create multimodal sentences that combine single- 242

channel sensor readings with textual descriptions. 243

The sensor data is represented as a matrix X ∈ 244

RC×T , where C is the number of sensor channels 245

and T is the sequence length. Each channel’s data, 246

denoted as Xc for channel c, is processed indepen- 247

dently to preserve its unique characteristics. The 248

data is then divided into non-overlapping segments, 249

Xc
S , where S is the total number of segments. Each 250

segment xs is assigned a random length l within 251

a predefined range, allowing the model to learn 252

from varying temporal patterns and trend varia- 253

tions. This segmentation strategy ensures that both 254

long-term trends and short-term fluctuations are 255

effectively captured in the generated multimodal 256

sentences. 257

We use Chronos (Ansari et al., 2024) as the TS 258

embedder, generating segment embeddings x̂s ∈ 259

R(l+1)×dts , where dts is the feature dimension, and 260

(l+ 1) accounts for the [EOS] token appended dur- 261

ing Chronos tokenization. Prior to inputting sensor 262

segments into Chronos (Appendix A.3), we apply 263
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<x_acc_start> <x_acc_end> ...

...

<z_gyro_start> <z_gyro_end>

Pre-trained
LLM 

Human activity label

Statistics for each
channel:

x-axis accelerometer: 
Mean=-0.00420363, 
StdDev=0.02134742

[...]

z-axis gyroscope: 
Mean=0.04571767, 
StdDev=0.03069701

Softmax

<x_acc_start> How trends in sensor
data evolve? <x_acc_end>

[INST] Please analyse
the input  sensor
readings  (N points,
100Hz) to answer
specific questions.
[/INST]

LLM Embedder LLM EmbedderAlignment
Module

Pre-trained
LLM 

0.0-0.01 seconds: rising
0.01-0.02 seconds: falling
[...]
0.94-0.99 seconds: rising

The sensor data illustrates x-axis accelerometer readings
between 0.0 and 0.99 seconds. [...] The general trend is rising.

(a) Sensor-Language Alignment Stage

<x_acc_start>

(b) Task-Aware Tuning Stage

Alignment
Module

Alignment
Module

LLM
Embedder

LLM
Embedder

LLM
Embedder

LLM
Embedder

Linear 🔥

Alignment Module

MLP🔥

Pre-trained
TS Embedder

Sensor Readings

Sensor Embeddings

Aligned Sensor Embeddings Input Text Embeddings Frozen 🔥 TrainingOutput Text Embeddings

Figure 2: Our proposed SensorLLM framework: (a) Sensor-Language Alignment Stage, where a generative model
aligns sensor readings with automatically generated text; (b) Task-Aware Tuning Stage, where a classification
model leverages the aligned modalities to perform HAR.

instance normalization x̃s = xs−mean(xs)
std(xs)

to stan-264

dardize the data. Llama3-8B (Touvron et al., 2023)265

serves as our LLM backbone.266

Alignment Module. To transform TS embed-267

dings x̂s into text-aligned embeddings âs ∈268

R(l+1)×D for downstream tasks, we introduce an269

alignment projection module. This module, im-270

plemented as a multi-layer perceptron (MLP), first271

maps sensor embeddings to an intermediate space272

of dimension dm and then projects them to the tar-273

get dimension D. Formally,274

âs = W2 · σ(W1x̂s + b1) + b2, (1)275

where W1 ∈ Rdm×dts and W2 ∈ RD×dm are276

learnable weights, b1 and b2 are biases, and σ is277

the GELU activation function (Hendrycks and Gim-278

pel, 2016). This projection ensures that the trans-279

formed embeddings âs are semantically aligned280

with the text embedding space, making them suit-281

able for tasks such as text generation and classifi-282

cation.283

Input Embedding. To integrate sensor data284

into the LLM, we introduce two special tokens285

per sensor channel (e.g., <x_acc_start> and286

<x_acc_end> for the x-axis accelerometer), extend-287

ing the LLM’s embedding matrix from E ∈ RV×D288

to E ∈ RV ′×D, where V ′ = V +2c, with V as the289

vocabulary size and c as the number of channels.290

These special token embeddings are concatenated291

with the aligned sensor embeddings. The final com-292

bined sensor representation ôs ∈ R(l+3)×D is then293

concatenated with instruction and question embed-294

dings to form the full input sequence ẑ ∈ Rk×D, 295

where k is the total number of tokens. 296

Loss Function. SensorLLM processes an input 297

sequence Zs = {zis}Ki=1 consisting of sensor and 298

text embeddings and generates an output sequence 299

Zt = {zit}Ni=1, where zis, z
i
t ∈ V ′, and K and N 300

represent the number of input and output tokens, 301

respectively. The model is trained using a causal 302

language modeling objective, predicting the next 303

token based on previous ones. The optimization 304

minimizes the negative log-likelihood: 305

Lgen = −
N−1∑
i=0

logP (zit|Z<i
t , zs). (2) 306

Loss is computed only on generated tokens, ensur- 307

ing SensorLLM effectively integrates sensor and 308

text embeddings to produce coherent, contextually 309

appropriate responses. 310

3.3 Task-Aware Tuning 311

As shown in Figure 2 (b), the Task-Aware Tuning 312

stage refines the multimodal sensor-text embed- 313

dings for HAR. This stage integrates multi-channel 314

sensor readings with activity labels, aligning tem- 315

poral patterns with human activities. The input 316

sensor data X is segmented into overlapping win- 317

dows of size L with a 50% overlap (Li et al., 2018), 318

forming segments XS ∈ RS×C×L, where S is the 319

number of segments and C is the number of chan- 320

nels. The pretrained alignment module from the 321

first stage maps sensor data to activity labels, pre- 322

serving inter-channel dependencies while learning 323

activity-related patterns. 324
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Input Embedding. For each sensor channel c,325

we retrieve its aligned sensor embeddings ôcs.326

These embeddings are then concatenated across327

all channels, along with their corresponding statis-328

tical features (mean and variance), to form the final329

input embedding:330

ẑ = ô1s ⊕ ô2s ⊕ · · · ⊕ ôCs ⊕ ẑstat, (3)331

where ẑstat represents the statistical information,332

and C is the number of channels. This ensures333

the model integrates both temporal and statistical334

characteristics for HAR.335

Loss Function. The input token sequence is pro-336

cessed by the LLM, yielding a latent representa-337

tion H ∈ RK×D, where K is the number of to-338

kens and D is the embedding dimension. Due to339

causal masking, we extract the final hidden state,340

h = HK , which encodes all preceding token infor-341

mation. This pooled vector is passed through a fully342

connected layer to produce a prediction vector of343

size M , where M is the number of activity classes.344

The final class probabilities ŷi are obtained via the345

softmax function, and the model is optimized using346

cross-entropy loss:347

Lcls = −
M−1∑
i=0

yi log ŷi, (4)348

where yi is the ground truth label.349

4 Experiments350

In this section, we evaluate SensorLLM in enabling351

LLMs to interpret, reason about, and classify sen-352

sor data for HAR tasks. All experiments are con-353

ducted on NVIDIA A100-80G GPUs. To assess the354

LLM’s ability to learn and generalize from raw sen-355

sor inputs, we ensure that the same training and test-356

ing subjects are used in both the Sensor-Language357

Alignment and Task-Aware Tuning stages. This358

guarantees that test data in the second stage remains359

unseen during alignment, ensuring a fair evaluation360

of generalization. We select Chronos as the TS361

embedder because it has not been pre-trained on362

motion sensor data, making it an ideal candidate for363

evaluating our approach’s robustness in learning364

directly from unprocessed sensor signals.365

4.1 Datasets366

To evaluate the effectiveness and generalizability of367

SensorLLM, we conduct experiments on five pub-368

licly available HAR datasets: USC-HAD (Zhang369

and Sawchuk, 2012), UCI-HAR (Anguita et al., 370

2013), PAMAP2 (Reiss and Stricker, 2012), 371

MHealth (Baños et al., 2014), and CAPTURE- 372

24 (Chan et al., 2024). These datasets differ in 373

sensor placement, sampling rates, channel configu- 374

rations, and activity types, covering both controlled 375

laboratory conditions and free-living environments. 376

Additionally, they vary in scale, with USC-HAD, 377

UCI-HAR, PAMAP2, and MHealth collected from 378

a limited number of subjects, whereas CAPTURE- 379

24 features a large-scale dataset with sensor record- 380

ings from 151 participants in real-world settings. 381

Full dataset details, including subject count, sensor 382

configurations, data splits, activity classes, prepro- 383

cessing steps, and windowing strategies, are pro- 384

vided in Appendix A.6. 385

4.2 Sensor Data Understanding 386

Setup. We train SensorLLM on all five datasets 387

using the same following parameters in the Sensor- 388

Language Alignment Stage: a learning rate of 2e-3, 389

8 epochs, batch size of 4, gradient accumulation 390

steps of 8, and a maximum sequence length of 8192 391

for CAPTURE-24 and 4096 for the other datasets. 392

Evaluation Metrics. We assess SensorLLM’s 393

ability to generate trend descriptions from sensor 394

data, comparing it with the advanced GPT-4o 1 395

to evaluate Sensor-Language Alignment. GPT-4o 396

generates responses based on a predefined prompt 397

(Appendix A.4), following our text template. We 398

employ three evaluation methods: 399

• NLP Metrics. We measure surface-level 400

similarity and n-gram overlap using BLEU- 401

1 (Papineni et al., 2002), ROUGE-1, ROUGE- 402

L (Lin, 2004), and METEOR (Banerjee and 403

Lavie, 2005). We also use SBERT (Reimers 404

and Gurevych, 2019) and SimCSE (Gao et al., 405

2021) to evaluate semantic similarity between 406

model outputs and ground truth. 407

• GPT-4o Evaluation. GPT-4o rates the gen- 408

erated trend descriptions on a scale of 1 to 409

5 (with 5 being the highest) by comparing 410

each output to ground truth and providing ex- 411

planatory feedback. As an advanced LLM, its 412

evaluation ensures a semantic assessment of 413

trend comprehension. 414

• Human Evaluation. Five time-series ex- 415

perts (PhD students, postdocs, and academics) 416

1gpt-4o-2024-08-06(OpenAI, 2024)
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Metric
USC-HAD UCI-HAR PAMAP2 MHealth CAPTURE-24

GPT-4o Ours GPT-4o Ours GPT-4o Ours GPT-4o Ours GPT-4o Ours

BLEU-1 41.43 57.68 37.97 56.78 46.35 60.20 49.97 61.38 46.58 57.10
ROUGE-1 54.92 68.32 51.24 67.63 58.08 69.92 61.11 71.20 58.21 68.11
ROUGE-L 49.00 64.17 44.88 63.05 50.30 66.25 51.99 67.83 48.88 60.90
METEOR 30.51 45.95 26.93 45.81 37.17 52.21 38.50 51.73 31.16 40.51
SBERT 77.22 86.09 76.05 85.01 82.71 87.31 83.15 86.66 83.11 84.83
SimCSE 86.96 93.09 90.23 92.51 89.64 93.82 92.10 93.38 90.10 92.20

GPT-4o 1.67 3.11 1.61 3.20 1.90 3.77 1.69 3.69 1.70 2.32
Human 2.10 4.16 1.94 4.04 2.38 4.70 1.74 4.56 2.30 3.10

Table 1: Evaluation of Sensor Data Trend Analysis Tasks for SensorLLM and GPT-4o. The assessment includes
human and GPT-4o ratings (from 1 to 5, with 5 being the highest), as well as BLEU-1, ROUGE-1, ROUGE-L,
METEOR, SBERT, and SimCSE (in %). The column GPT-4o refers to the trend analysis generated by GPT-4o
itself, while the row GPT-4o refers to GPT-4o’s evaluation of the generated outputs.

score accuracy and quality using the same cri-417

teria as GPT-4o, providing a human-centered418

perspective on the model’s outputs.419

Appendix A.5 details all metrics and scoring420

criteria. We randomly sample 200 instances per421

dataset for both SensorLLM and GPT-4o, then av-422

erage the results for comparison. Because reading423

and comparing lengthy sequences is difficult for hu-424

man annotators, we conduct human evaluation on425

20 shorter sequences per dataset (each containing426

at most 50 time steps).427

Results. Table 1 compares SensorLLM and GPT-428

4o on the Sensor Data Trend Analysis tasks,429

showing that our model consistently outperforms430

GPT-4o across all metrics. BLEU-1, ROUGE-431

1, ROUGE-L, and METEOR primarily focus432

on surface-level lexical or n-gram overlaps and433

SBERT and SimCSE can capture factual correct-434

ness or deeper semantic similarities. Across all435

metrics, SensorLLM generates trend descriptions436

more closely aligned with the ground truth. GPT-4o437

evaluations further highlight SensorLLM’s supe-438

rior ability to capture trend details and coherence,439

whereas GPT-4o struggles with complex numerical440

data and trend observations (Yehudai et al., 2024).441

Human evaluation also favors SensorLLM, particu-442

larly for shorter sequences. CAPTURE-24 results443

are weaker compared to other datasets, likely due444

to its longer sequences being trained with the same445

parameters. Overall, these findings validate the446

effectiveness of our Sensor-Language Alignment447

method in enhancing LLMs’ ability to interpret448

complex numerical sequence. Appendix A.9 pro-449

vides qualitative examples of outputs from both450

models. 451

4.3 Human Activity Recognition 452

Setup. In this section, we evaluate the perfor- 453

mance of SensorLLM on HAR tasks. Each exper- 454

iment runs for five trials, using 8 training epochs, 455

a batch size of 4, gradient accumulation steps of 456

8, and a maximum sequence length of 4096. We 457

report the F1 macro score A.8 to account for class 458

imbalance across different activity categories. 459

Baselines. We benchmark SensorLLM against 460

11 baselines across two categories: (i) TS mod- 461

els—Transformer (Vaswani et al., 2017), In- 462

former (Zhou et al., 2021), NS-Transformer (Liu 463

et al., 2022), PatchTST (Nie et al., 2023), 464

TimesNet (Wu et al., 2023a), and iTrans- 465

former (Liu et al., 2024c); (ii) HAR mod- 466

els—DeepConvLSTM (Ordóñez and Roggen, 467

2016), DeepConvLSTMAttn (Murahari and Plötz, 468

2018), and Attend (Abedin et al., 2021). We also 469

include Chronos+MLP and GPT4TS (Zhou et al., 470

2023a) for a more comprehensive comparison. Full 471

baseline details are in Appendix A.7. 472

Results. Table 2 reports the macro F1 scores 473

(%) averaged over five random runs. SensorLLM 474

achieves the highest performance on four datasets 475

(USC-HAD, PAMAP2, MHealth, CAPTURE-24) 476

and ranks second on UCI-HAR, demonstrating its 477

effectiveness in handling diverse sensor data. 478

Notably, SensorLLM achieves a notable im- 479

provement on the CAPTURE-24 dataset, surpass- 480

ing all baselines by a significant margin with a 481

mean F1-macro score of 48.6%, which is 5.0% 482

higher than Attend (43.6%). On USC-HAD, Sen- 483
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Method USC-HAD UCI-HAR PAMAP2 MHealth CAPTURE-24

PatchTST 45.2±1.48 86.8±0.84 82.0±0.71 80.0±1.58 35.6±0.89

Ns-Transformer 52.6±2.30 88.0±0.71 78.8±0.84 77.2±1.48 34.8±1.10

Informer 51.2±1.30 86.6±1.14 78.0±1.58 74.0±0.71 35.6±0.55

Transformer 49.6±1.67 85.4±0.89 77.0±0.71 75.2±1.30 32.8±0.84

iTransformer 48.4±1.82 81.8±0.84 76.6±0.55 80.4±1.14 19.8±0.84

TimesNet 52.2±2.39 87.4±1.14 76.2±1.92 78.4±1.52 34.8±0.84

GPT4TS 54.2±2.05 88.2±0.84 80.4±0.89 76.4±1.14 32.8±1.10

Chronos+MLP 44.2±1.30 82.2±0.84 79.8±0.45 83.0±0.71 38.0±0.71

DeepConvLSTM 48.8±2.39 89.2±0.84 78.4±1.52 75.0±1.87 40.4±0.89

DeepConvLSTMAtt 54.0±2.12 89.6 ±1.14 79.2±1.30 77.4±2.19 41.4±0.55

Attend 60.2±2.17 93.2±0.84 84.6±1.14 83.4±1.14 43.6±0.55

SensorLLM 61.2±3.56 91.2±1.48 86.2±1.48 89.4±3.85 48.6±1.14

Table 2: F1-macro results (%) for the Task-Aware Tuning Stage, presented as the mean and standard deviation over
5 random repetitions. The top results for each dataset are highlighted as follows: Bold for the best and underline for
the second-best.

Dataset
Task-only SensorLLM

w/o prompts w/ prompts w/o prompts w/ prompts

USC-HAD 43.4±2.88 45.0±1.58 49.6±1.67 61.2±3.56

UCI-HAR 80.0±2.12 82.0±1.58 89.2±1.10 91.2±1.48

PAMAP2 74.2±2.28 75.4±3.05 83.0±0.71 86.2±1.48

MHealth 76.6±1.34 77.4±3.13 86.6±1.14 89.4±3.85

CAPTURE-24 44.8±0.84 46.0±0.71 47.2±0.84 48.6±1.14

Table 3: The results for SensorLLM trained
with/without text prompts. Task-only refers to conduct-
ing HAR directly bypassing sensor-language alignment.

sorLLM achieves the highest score of 61.2%,484

outperforming Attend, the second-best baseline,485

by 1.0%. Similarly, on PAMAP2, SensorLLM486

achieves a score of 86.2%, exceeding Attend487

(84.6%) by 1.6%. On MHealth, SensorLLM sets488

a new state-of-the-art with a score of 89.4%, sur-489

passing Attend (83.4%) by 6.0%. These results490

highlight SensorLLM’s ability to consistently out-491

perform existing methods across diverse datasets.492

For UCI-HAR, SensorLLM achieves the second-493

best score (91.2%), slightly trailing Attend494

(93.2%). In contrast, Chronos+MLP shows only a495

slight improvement over iTransformer, the lowest-496

performing baseline (82.2% vs. 81.8%), indicating497

that Chronos embeddings alone have limited utility498

for HAR on this dataset. However, our framework499

significantly enhances their effectiveness, highlight-500

ing the robustness of our alignment approach.501

5 Ablation Studies502

Impact of Alignment. To evaluate the impact of503

alignment, we included the Chronos+MLP base-504

line in Section 4.3 to show that SensorLLM’s per-505

formance is not solely driven by Chronos embed- 506

dings. Additionally, we compared SensorLLM 507

with a Task-only model, which skips the Sensor- 508

Language Alignment Stage and directly applies 509

Chronos embeddings and the LLM for HAR. As 510

shown in Table 3, SensorLLM consistently outper- 511

forms the Task-only model across all five datasets, 512

regardless of additional textual input. Notably, the 513

Task-only model often performs on par with or 514

worse than traditional TS baselines, underscoring 515

the importance of our alignment method. These 516

results confirm that Chronos embeddings alone are 517

insufficient for optimal HAR performance and that 518

alignment is essential for enabling LLMs to effec- 519

tively understand sensor data. 520

Impact of Prompts. To assess the role of ad- 521

ditional textual information (e.g., statistical fea- 522

tures for each sensor channel) in the Task-Aware 523

Tuning Stage, we compared SensorLLM’s perfor- 524

mance with and without prompts. As shown in Ta- 525

ble 3, incorporating prompts consistently improves 526

F1-macro scores across all datasets, with a more 527

pronounced effect in the full SensorLLM architec- 528

ture. This demonstrates that the model effectively 529

integrates sensor and textual data, enhancing its 530

ability to capture complex temporal patterns. The 531

results highlight the benefits of multimodal inputs, 532

which enrich sensor data representations and im- 533

prove HAR accuracy. More broadly, the ability to 534

process both sensor signals and textual prompts 535

not only enhances classification performance but 536

also extends LLMs’ potential for tackling complex 537
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sensor-driven tasks in future applications.538

Alignment Module Layers. We investigate the539

effect of hidden layer depth in the alignment mod-540

ule MLP on UCI-HAR, PAMAP2, and MHealth.541

As shown in Figure 3, increasing the number of542

hidden layers from one (1024 → 2048 → 4096)543

to two (1024 → 2048 → 3072 → 4096) led544

to mixed results. The average F1-macro scores545

improved on UCI-HAR (91.2% → 92.0%) and546

MHealth (89.4% → 90.2%), but slightly dropped547

on PAMAP2 (86.2% → 85.8%). These results sug-548

gest that the optimal number of hidden layers varies549

by dataset.550

Effect of Model Size on Performance. To assess551

the impact of model size, we tested SensorLLM-552

3b, a resource-efficient variant using Chronos-base553

and Llama3.2-3b. Experiments were conducted on554

USC-HAD, UCI-HAR, and MHealth. As shown555

in Figure 4, SensorLLM-3b achieves slightly556

lower performance than SensorLLM-8b across all557

datasets, illustrating the trade-off between model558

size and accuracy. However, SensorLLM-3b re-559

mains competitive, outperforming Attend on USC-560

HAD and MHealth, while trailing it only on UCI-561

HAR. These results indicate that SensorLLM-3b562

offers a resource-efficient alternative, maintaining563

strong performance relative to other baselines.564

Cross-Dataset Generalization. To assess the565

robustness of SensorLLM, we conducted cross-566

Stage 1 Stage 2 Results

USC-HAD UCI-HAR 91.0±1.41

UCI-HAR USC-HAD 61.6±2.07

Table 4: Cross-dataset experiments.

dataset experiments, training the Sensor-Language 567

Alignment Stage on USC-HAD and the Task- 568

Aware Tuning Stage on UCI-HAR, and vice versa. 569

These datasets share the same sensor channels but 570

differ in sampling rates. As shown in Table 4, Sen- 571

sorLLM achieves performance comparable to train- 572

ing both stages on the same dataset. This indicates 573

that once modality alignment is established, retrain- 574

ing on new datasets is unnecessary. SensorLLM 575

effectively generalizes to downstream tasks across 576

diverse datasets, demonstrating that the alignment 577

stage enables the LLM to truly understand sensor 578

data, rather than memorizing dataset-specific fea- 579

tures. These results highlight SensorLLM’s poten- 580

tial for broad cross-dataset generalization, laying 581

the groundwork for future TS-LLM models. 582

6 Conclusions 583

We introduced SensorLLM, a multimodal frame- 584

work that aligns sensor data with automatically 585

generated text at a human-perception level, moving 586

beyond machine-level alignment. SensorLLM ef- 587

fectively captures complex sensor patterns, achiev- 588

ing superior performance in HAR tasks. Experi- 589

ments across diverse datasets demonstrate its ro- 590

bustness in handling variable-length sequences, 591

multi-channel inputs, and textual metadata. Cross- 592

dataset results further highlight its strong generaliz- 593

ability without requiring dataset-specific alignment. 594

This work establishes a foundation for Sensor-Text 595

MLLMs, with potential applications for sensor data 596

analysis. We release our code and data generation 597

pipeline to facilitate future research on integrating 598

time-series and text, particularly in low-resource 599

domains. 600

7 Limitations 601

While SensorLLM demonstrates strong perfor- 602

mance in aligning sensor data with LLMs, certain 603

limitations remain, offering directions for future 604

exploration. 605

Classifier-Based Design. To ensure fair compar- 606

isons with existing HAR models (classification 607

models), we adopt a classifier for downstream 608

8



tasks rather than fully exploiting the LLM’s gener-609

ative abilities. Although our results verify that the610

Sensor-Language Alignment Stage can generalize611

across datasets, relying on a fixed-class classifier612

may constrain the model’s adaptability to new ac-613

tivity categories. Future work could explore using614

the LLM in a generative or prompt-based capac-615

ity, enabling broader application scenarios such as616

activity discovery or open-set recognition.617

Scope of Sensor-Text Alignment. Our align-618

ment focuses on mapping sensor data to trend-619

descriptive text, demonstrating clear benefits for620

LLM-based HAR. However, human-intuitive de-621

scriptions of sensor data extend beyond trend622

changes—incorporating frequency-domain fea-623

tures, periodicity, and higher-order patterns may624

further enhance an LLM’s ability to interpret time-625

series data. Future research could investigate626

whether aligning text with alternative sensor char-627

acteristics improves time-series reasoning. This628

could expand the potential of multimodal NLP ap-629

plications in sensor-driven tasks beyond activity630

recognition.631
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A Appendix970

A.1 More related work971

Deep learning in human activity recognition.972

Over the last decade, HAR has transitioned from973

hand-crafted feature extraction to deep learning974

models capable of automatic feature learning.975

Early work by Kwapisz et al. (2011) utilized ma-976

chine learning techniques, such as decision trees977

and MLPs, to classify activities using features ex-978

tracted from wearable sensor data. Later, Hare-979

samudram et al. (2019) demonstrated that opti-980

mized feature extraction within the Activity Recog-981

nition Chain (ARC) could rival or outperform end-982

to-end deep learning models. Deep learning mod-983

els, particularly CNNs and LSTMs, have since be-984

come dominant in HAR. Bevilacqua et al. (2019)985

developed a CNN-based model for HAR, while986

Ha and Choi (2016) introduced CNN-pf and CNN-987

pff architectures that apply partial and full weight988

sharing for better feature extraction. Other no-989

table works include Perception-Net Kasnesis et al.990

(2019), which leverages 2D convolutions for multi-991

modal sensor data, and InnoHAR (Xu et al., 2019),992

which combines Inception CNN and GRUs for mul-993

tiscale temporal feature learning. A dual-stream994

network utilizing convolutional layers and LSTM995

units, known as ConvLSTM, was employed by996

Yuki et al. (2018) to analyze complex temporal997

hierarchies with streams handling different time998

lengths. The combination of attention mechanisms999

with recurrent networks to enhance the computa-1000

tion of weights for hidden state outputs has also1001

been demonstrated by DeepConvLSTM (Kasnesis1002

et al., 2019) in capturing spatial-temporal features.1003

Large Language Models for Time-Series Fore-1004

casting. LLMs have achieved remarkable suc-1005

cess in text-related tasks, and their utility has ex-1006

panded into time-series forecasting. Xue and Salim1007

(2023) presents PromptCast, which redefines time-1008

series forecasting as a natural language generation1009

task by transforming numerical inputs into textual1010

prompts, enabling pre-trained language models to1011

handle forecasting tasks with superior generaliza-1012

tion in zero-shot settings. Gruver et al. (2023) ex-1013

plores encoding time-series as numerical strings,1014

allowing LLMs like GPT-3 and LLaMA-2 to per-1015

form zero-shot forecasting, matching or surpass-1016

ing the performance of specialized models, while1017

highlighting challenges in uncertainty calibration1018

due to model modifications like RLHF. Zhou et al.1019

(2023b) demonstrates that pre-trained language and 1020

image models, such as a Frozen Pretrained Trans- 1021

former (FPT), can be adapted for diverse time- 1022

series tasks like classification, forecasting, and 1023

anomaly detection, leveraging self-attention mecha- 1024

nisms to bridge the gap between different data types 1025

and achieving state-of-the-art performance across 1026

various tasks. Jin et al. (2024b) highlights the trans- 1027

formative potential of LLMs for time-series analy- 1028

sis by integrating language models with traditional 1029

analytical methods. Jin et al. (2024a) introduces a 1030

reprogramming framework that aligns time-series 1031

data with natural language processing capabilities, 1032

enabling LLMs to perform time-series forecast- 1033

ing without altering the core model structure. Cao 1034

et al. (2024) presents TEMPO, a generative trans- 1035

former framework based on prompt tuning, which 1036

adapts pre-trained models for time-series forecast- 1037

ing by decomposing trends, seasonality, and resid- 1038

ual information. Sun et al. (2024b) proposes TEST, 1039

an innovative embedding technique that integrates 1040

time-series data with LLMs through instance-wise, 1041

feature-wise, and text-prototype-aligned contrast, 1042

yielding improved or comparable results across var- 1043

ious applications. Chang et al. (2024) develops 1044

a framework that enhances pre-trained LLMs for 1045

multivariate time-series forecasting through a two- 1046

stage fine-tuning process and a novel multi-scale 1047

temporal aggregation method, outperforming tradi- 1048

tional models in both full-shot and few-shot scenar- 1049

ios. Finally, Liu et al. (2024b) introduces UniTime, 1050

a unified model that leverages language instruc- 1051

tions and a Language-TS Transformer to handle 1052

multivariate time series across different domains, 1053

demonstrating enhanced forecasting performance 1054

and zero-shot transferability. 1055

LLMs for Human Activity Recognition. While 1056

LLMs like ChatGPT have demonstrated remark- 1057

able performance in various NLP tasks, their effec- 1058

tiveness in HAR remains limited due to challenges 1059

in interpreting sensor data. These models often 1060

struggle to distinguish between activities that share 1061

similar objects, requiring more advanced prompt 1062

engineering to highlight activity-specific details. 1063

(Xia et al., 2023) proposed an unsupervised ap- 1064

proach to HAR using ChatGPT, leveraging two- 1065

stage prompts to infer activities from object se- 1066

quences without manual descriptions. The method 1067

demonstrates superior performance on three bench- 1068

mark datasets, marking a significant advancement 1069

in applying language models to activity recognition 1070
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tasks. Similarly, Ji et al. (2024) explored LLMs1071

for zero-shot HAR using raw IMU data, showing1072

that GPT-4 can outperform both traditional and1073

deep learning models in simple HAR tasks without1074

domain-specific adaptations, highlighting LLMs’1075

potential in sensor-based systems.1076

A.2 Data Generation1077

We generate text data from sensor readings us-1078

ing predefined sentence templates (5, Tables 6„ 7).1079

These templates are randomly selected to create di-1080

verse question-answer (QA) pairs. To enhance vari-1081

ability, we employ GPT-4o to generate synonymous1082

variations. Each sentence contains placeholders1083

for numerical values (e.g., timestamps, sensor read-1084

ings) or textual information, which are dynamically1085

replaced to produce coherent QA pairs aligned with1086

the sensor data.1087

Trend Description Templates

• {start_time}s to {end_time}s: {trend}

• {start_time} seconds to {end_time} seconds:
{trend}

• {start_time} to {end_time} seconds: {trend}

• {start_time}-{end_time} seconds: {trend}

• {start_time}-{end_time}s: {trend}

• {start_time}s-{end_time}s: {trend}

Table 5: Examples of answer templates used for trend
descriptions.

The system prompt instructs the model on how1088

to respond to generated questions, incorporating1089

dataset-specific attributes such as sensor frequency1090

and sampling rate. These tailored prompts ensure1091

responses align with the unique characteristics of1092

each dataset. Below is the system prompt template1093

used for all datasets:1094

• A dialogue between a researcher and an AI1095

assistant. The AI analyzes a sensor time-1096

series dataset (N points, sampled at {sam-1097

ple_rate}Hz) to answer specific questions,1098

demonstrating its analytical capabilities and1099

the potential for human-AI collaboration in1100

interpreting sensor data.1101

A.3 Chronos 1102

Chronos (Ansari et al., 2024) is a pretrained proba- 1103

bilistic time-series framework that tokenizes real- 1104

valued time-series data into discrete representations 1105

for language model training. It utilizes scaling and 1106

quantization to transform time-series data into a 1107

fixed vocabulary, enabling T5-based (Raffel et al., 1108

2020) models to learn from tokenized sequences us- 1109

ing cross-entropy loss. Pretrained on diverse public 1110

and synthetic datasets, Chronos surpasses exist- 1111

ing models on familiar datasets and demonstrates 1112

strong zero-shot performance on unseen tasks, mak- 1113

ing it a versatile tool for time-series forecasting 1114

across domains. 1115

Time-Series Tokenization and Quantization. 1116

Chronos converts time-series data into discrete to- 1117

kens through a two-step process: normalization 1118

and quantization. Mean scaling is first applied to 1119

ensure consistency across different time series: 1120

x̃ =
x

mean(|x|)
(5) 1121

Next, the normalized values are quantized using 1122

B bin centers c1, . . . , cB and corresponding bin 1123

edges b1, . . . , bB−1, mapping real values to discrete 1124

tokens via: 1125

q(x) =


1 if −∞ ≤ x < b1,

2 if b1 ≤ x < b2,
...
B if bB−1 ≤ x < ∞.

(6) 1126

Special tokens such as PAD and EOS are added 1127

to handle sequence padding and denote the end of 1128

sequences, allowing Chronos to process variable- 1129

length inputs efficiently within language models. 1130

Objective Function. Chronos models the tok- 1131

enized time series using a categorical distribution 1132

over the vocabulary Vts, minimizing the cross- 1133

entropy loss: 1134

ℓ(θ) = −
H+1∑
h=1

|Vts|∑
i=1

1(zC+h+1 = i)

· log pθ(zC+h+1 = i | z1:C+h)

(7) 1135

where C is the historical context length, H is 1136

the forecast horizon, and pθ is the predicted token 1137

distribution. 1138
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Trend Description Templates

• Kindly provide a detailed analysis of the trend changes observed in the {data}.

• Please offer a comprehensive description of how the trends in the {data} have evolved.

• I would appreciate a thorough explanation of the trend fluctuations that occurred within the
{data}.

• Could you examine the {data} in depth and explain the trend shifts observed step by step?

• Detail the {data}’s trend transitions.

• Could you assess the {data} and describe the trend transformations step by step?

• Could you analyze the trends observed in the {data} over the specified period step by step?

• Can you dissect the {data} and explain the trend changes in a detailed manner?

• What trend changes can be seen in the {data}?

Summary Templates

• Could you provide a summary of the main features of the input {data} and the distribution of
the trends?

• Please give an overview of the essential attributes of the input {data} and the spread of the
trends.

• Describe the salient features and trend distribution within the {data}.

• Give a summary of the {data}’s main elements and trend apportionment.

• Summarize the {data}’s core features and trend dissemination.

• Outline the principal aspects and trend allocation of the {data}.

• Summarize the key features and trend distribution of the {data}.

• I need a summary of {data}’s main elements and their trend distributions.

Table 6: Examples of question templates used for trend description and summary generation.
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Summary 1: Trend Count

• Number of {trend} trends: {num}

• Count of {trend} trends: {num}

• Number of {trend} segments: {num}

• Count of {trend} segments: {num}

Summary 2: Sensor Data Context

• The given {data_name} represents {sensor_name} sensor readings from {start_time}s to
{end_time}s.

• The {data_name} contains {sensor_name} sensor readings recorded between {start_time} and
{end_time} seconds.

• The {sensor_name} sensor readings collected from {start_time} to {end_time} seconds are
presented in this {data_name}.

Summary 3: Trend Change Statistics

• The data exhibits {trend_num} distinct trends, with {change_num} trend changes observed.

• Across {trend_num} trends, the data shows {change_num} occurrences of trend shifts.

• {trend_num} trends are present, with {change_num} instances of trend changes.

Summary 4: Cumulative Trend Analysis

• To sum up, the data exhibited a {trend_type} trend for a total duration of {total_time} seconds.

• Overall, the data showed a {trend_type} trend spanning {total_time} seconds.

• In conclusion, the trend was {trend_type} over {total_time} seconds.

Summary 5: Overall Trend Summary

• The overall trend is {overall_trend}.

• The primary trend detected is {overall_trend}.

• Looking at the broader pattern, the trend is {overall_trend}.

Table 7: Examples of answer templates used for summaries.
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This approach offers two key advantages: (i)1139

Seamless integration with language models, requir-1140

ing no architectural modifications, and (ii) Flexible1141

distribution learning, enabling robust generaliza-1142

tion across diverse time-series datasets.1143

A.4 GPT-4o Prompt for Sensor Data Trend1144

Analysis1145

Table 8 presents the system prompt used to generate1146

trend-descriptive texts from sensor data, providing1147

a structured framework for GPT-4o to analyze and1148

respond to specific questions. This standardized1149

prompt ensures consistency in GPT-4o’s interpreta-1150

tion of time-series data, allowing direct comparison1151

with descriptions produced by SensorLLM.1152

Prompt A dialogue between a curious re-
searcher and an AI assistant. The
AI analyzes a sensor time-series
dataset (N points, {sr}Hz sampling
rate) to answer specific questions.

Please output your answer in the
format like this example:
{example from ground-truth}

Now, analyze the following:
Input: {sensor_data} How trends in
the given sensor data evolve?
Output:

Table 8: Prompt for GPT-4o to generate descriptive texts
based on the given numerical sensor data.

We evaluate GPT-4o’s ability to interpret numer-1153

ical sensor data by assessing its responses against1154

human evaluations and NLP metrics. This com-1155

parison benchmarks GPT-4o’s performance against1156

SensorLLM, highlighting differences in how both1157

models process time-series data trends. The re-1158

sults demonstrate the effectiveness of SensorLLM’s1159

Sensor-Language Alignment Stage.1160

A.5 Evaluation Metrics for Sensor-Language1161

Alignment Stage1162

In this section, we describe the various evaluation1163

metrics used to assess the performance of Sensor-1164

LLM in generating trend descriptions from sen-1165

sor data. Each metric offers a distinct perspective1166

on model performance, ranging from surface-level1167

textual similarity to more complex semantic align-1168

ment.1169

BLEU-1 (Papineni et al., 2002). BLEU (Bilin- 1170

gual Evaluation Understudy) is a precision-based 1171

metric commonly used to evaluate machine- 1172

generated text by comparing it to reference texts. 1173

BLEU-1 focuses on unigram (single-word) overlap, 1174

assessing the lexical similarity between the gener- 1175

ated and reference text. While useful for measur- 1176

ing word-level matches, BLEU-1 does not capture 1177

deeper semantic meaning, making it most effective 1178

for surface-level alignment. 1179

ROUGE-1 and ROUGE-L (Lin, 2004). 1180

ROUGE (Recall-Oriented Understudy for Gisting 1181

Evaluation) evaluates the recall-oriented over- 1182

lap between generated text and reference text. 1183

ROUGE-1 focuses on unigram recall, similar 1184

to BLEU-1 but emphasizing how much of the 1185

reference text is captured. ROUGE-L measures 1186

the longest common subsequence, assessing 1187

both precision and recall in terms of structure 1188

and content overlap, though it does not evaluate 1189

semantic accuracy. 1190

METEOR (Banerjee and Lavie, 2005). ME- 1191

TEOR (Metric for Evaluation of Translation with 1192

Explicit Ordering)combines precision and recall, 1193

with additional alignment techniques such as stem- 1194

ming and synonym matching. Unlike BLEU and 1195

ROUGE, METEOR accounts for some degree of 1196

semantic similarity. However, its emphasis is still 1197

on word-level alignment rather than factual accu- 1198

racy or meaning. 1199

SBERT (Reimers and Gurevych, 2019). 1200

SBERT (Sentence-BERT) 2 is a metric that 1201

generates sentence embeddings using the BERT 1202

architecture. It computes cosine similarity between 1203

embeddings of the generated and reference 1204

texts, providing a deeper assessment of semantic 1205

similarity beyond lexical matches. 1206

SimCSE (Gao et al., 2021). SimCSE (Simple 1207

Contrastive Sentence Embedding) 3 introduces a 1208

contrastive learning approach to fine-tune language 1209

models for sentence embeddings. By applying 1210

different dropout masks to the same sentence, it 1211

generates positive examples, encouraging similar 1212

embeddings for semantically identical sentences 1213

while distinguishing different ones. 1214

2https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

3https://huggingface.co/princeton-nlp/sup-simcse-
roberta-large
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GPT-4o Evaluation. In addition to the NLP met-1215

rics, we also employed GPT-4o as a human-like1216

evaluator. Given its strong reasoning and compre-1217

hension abilities, GPT-4o was tasked with scoring1218

the generated text based on its alignment with the1219

ground truth. GPT-4o evaluated the correctness,1220

completeness, and coherence of the trend descrip-1221

tions and assigned a score from 1 to 5, accompanied1222

by an explanation (see Table 9). This type of evalu-1223

ation provides insights into how well the generated1224

outputs capture the nuances of sensor data trends1225

in a manner similar to human understanding.1226

Human Evaluation. Finally, five human experts1227

assessed the correctness and quality of the gener-1228

ated trend descriptions. Following the same criteria1229

as GPT-4o, they rated the outputs on a scale from1230

1 to 5, focusing on the factual accuracy and coher-1231

ence of the descriptions. This manual evaluation1232

serves as an important benchmark for the model’s1233

performance from a human perspective, ensuring1234

that the generated outputs are not only technically1235

correct but also practically useful for human inter-1236

pretation.1237

A.6 Datasets1238

We used five datasets in our study:1239

USC Human Activity Dataset (USC-HAD).1240

USC-HAD (Zhang and Sawchuk, 2012) consists1241

of six sensor readings from body-worn 3-axis ac-1242

celerometers and gyroscopes, collected from 141243

subjects. The data is sampled at 100 Hz across six1244

channels and includes 12 activity class labels. For1245

evaluation, we use data from subjects 13 and 14 as1246

the test set, while the remaining subjects’ data are1247

used for training. A window size w ∈ [5, 200] is1248

used in alignment stage, and w = 200 with stride1249

of 100 are used in HAR.1250

UCI Human Activity Recognition Dataset (UCI-1251

HAR). UCI-HAR (Anguita et al., 2013) includes1252

data collected from 30 volunteers performing six1253

activities while wearing a smartphone on their1254

waist. The embedded accelerometer and gyroscope1255

sensors sampled data at 50 Hz across six channels.1256

The dataset was partitioned into 70% for training1257

and 30% for testing. A window size w ∈ [5, 200] is1258

used in alignment stage, and w = 128 with stride1259

of 64 is used in HAR.1260

Physical Activity Monitoring Dataset1261

(PAMAP2). PAMAP2 (Reiss and Stricker,1262

2012) includes data from nine subjects wearing1263

IMUs on their chest, hands, and ankles. IMUs 1264

capture the acceleration, gyroscope, and magne- 1265

tometer data across 27 channels and include 12 1266

activity class labels. For our experiments, data 1267

from subjects 105 and 106 are used as the test set, 1268

with the remaining subjects’ data used for training. 1269

The sample rate is downsampled from 100 Hz to 1270

50 Hz. A window size w ∈ [5, 100] is used in 1271

alignment stage, and w = 100 with stride of 50 in 1272

HAR. 1273

Mobile Health Dataset (MHealth). 1274

MHealth (Baños et al., 2014) contains body 1275

motion and vital sign recordings from ten volun- 1276

teers. Sensors were placed on the chest, right wrist, 1277

and left ankle of each subject. For our experiments, 1278

we used acceleration data from the chest, left ankle, 1279

and right lower arm, along with gyroscope data 1280

from the left ankle and right lower arm, resulting 1281

in a total of 15 channels. The data is sampled at 50 1282

Hz and includes 12 activity class labels. Data from 1283

subjects 1, 3, and 6 is used as the test set, while the 1284

remaining subjects’ data are used for training. We 1285

use a window size w ∈ [5, 100] in alignment stage 1286

and w = 100 with stride of 50 in HAR. 1287

CAPTURE-24. CAPTURE-24 (Chan et al., 1288

2024) is a large-scale dataset featuring 3-channel 1289

wrist-worn accelerometer data collected in free- 1290

living settings for over 24 hours per participant. 1291

It includes annotated data from 151 participants, 1292

making it significantly larger than existing datasets. 1293

We used the first 100 participants as the training 1294

set and the remaining 51 as the test set. For each 1295

subject, sequences were windowed, and 5% of the 1296

data was randomly selected for training and testing. 1297

The sample rate was downsampled from 100 Hz to 1298

50 Hz and it includes 10 activity class labels. Dur- 1299

ing the alignment stage, we used a variable window 1300

size w ∈ [10, 500], while in the HAR, we fixed 1301

w = 500 with a stride of 250. 1302

Each dataset includes multiple activity classes, 1303

and the proportion of each class in the dataset is 1304

shown in Table 10. 1305

A.7 Baselines for Task-Aware Tuning Stage 1306

In Task-Aware Tuning Stage, we compare Sensor- 1307

LLM against several state-of-the-art baseline mod- 1308

els for time-series classification and human activity 1309

recognition (HAR). These models were selected 1310

for their strong performance in relevant tasks, pro- 1311

viding a thorough benchmark for evaluating Sen- 1312

sorLLM’s effectiveness. 1313
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Prompt Please evaluate the model-generated trend descriptions against the ground
truth. Rate each pair based on the degree of accuracy, using a scale from 1
to 5, where 1 represents the lowest correctness and 5 represents the highest.
Deduct 1 point for minor errors in the trend description, and 2-3 points for
moderate errors.

Provide your score (1-5) and a brief explanation in the format:
"score#reason" (e.g., 4#The description of trend changes slightly differs
from the ground truth).

Now, please proceed to score the following:
Model: {model_output}
Human: {ground_truth}
Output:

Output example 1: 2#Significant discrepancies in segment durations and trend counts com-
pared to ground-truth.

Output example 2: 5#The model’s description matches the human-generated text accurately.

Table 9: Prompt and output examples for GPT-4o in evaluating model-generated texts and ground-truth.

Dataset # Classes Classes Proportions (%)

USC-HAD 12

Sleeping, Sitting, Elevator down,
Elevator up, Standing, Jumping,
Walking downstairs, Walking right,
Walking forward, Running forward,
Walking upstairs, Walking left

12.97, 9.06, 6.04, 5.94, 8.6, 3.62,
7.61, 9.81, 13.15, 5.72, 8.22, 9.25

UCI-HAR 6
Standing, Sitting, Laying,
Walking, Walking downstairs,
Walking upstairs

18.69, 17.49, 19.14,
16.68, 13.41, 14.59

PAMAP2 12

Lying, Sitting, Standing,
Ironing, Vacuum cleaning,
Ascending stairs, Descending stairs,
Walking, Nordic walking, Cycling,
Running, Rope jumping

10.25, 9.52, 10.11,
11.82, 9.14, 6.3,
5.67, 12.77, 9.52,
8.42, 3.57, 2.91

MHealth 12

Climbing stairs, Standing still,
Sitting and relaxing, Lying down,
Walking, Waist bends forward,
Frontal elevation of arms,
Knees bending (crouching),
Jogging, Running, Jump front
& back, Cycling

8.91, 8.95, 8.95,
8.95, 8.95, 8.26,
8.7, 8.53, 8.95,
8.95, 2.96, 8.95

CAPTURE-24 10

Sleep, Household-chores, Walking,
Vehicle, Standing, Mixed-activity,
Sitting, Bicycling, Sports,
Manual-work

37.45, 6.5, 6.16,
3.83, 3.25, 3.49,
37.07, 1.03, 0.43, 0.79

Table 10: Dataset classes and Proportions
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Transformer (Vaswani et al., 2017). The Trans-1314

former model is a widely-used architecture in var-1315

ious tasks, including time-series forecasting and1316

classification. It uses self-attention mechanisms to1317

capture long-range dependencies in sequential data,1318

making it highly effective for modeling complex1319

temporal relationships.1320

Informer (Zhou et al., 2021). Informer is a1321

transformer-based model designed for long se-1322

quence time-series data. It addresses key limita-1323

tions of standard Transformers, such as high time1324

complexity and memory usage, through three inno-1325

vations: ProbSparse self-attention, which reduces1326

time complexity; self-attention distilling, which1327

enhances efficiency by focusing on dominant pat-1328

terns; and a generative decoder that predicts entire1329

sequences in a single forward pass.1330

NS-Transformer (Liu et al., 2022). Non-1331

stationary Transformers (NS-Transformer) tackles1332

the issue of over-stationarization in time-series by1333

balancing series predictability and model capability.1334

It introduces Series Stationarization to normalize1335

inputs and De-stationary Attention to restore in-1336

trinsic non-stationary information into temporal1337

dependencies.1338

PatchTST (Nie et al., 2023). PatchTST is a1339

Transformer-based model for multivariate time se-1340

ries tasks, using subseries-level patches as input to-1341

kens and a channel-independent approach to reduce1342

computation and improve efficiency. This design1343

retains local semantics and allows for longer his-1344

torical context, significantly improving long-term1345

forecasting accuracy.1346

TimesNet (Wu et al., 2023a). TimesNet is a ver-1347

satile backbone for time series analysis that trans-1348

forms 1D time series into 2D tensors to better cap-1349

ture intraperiod and interperiod variations. This 2D1350

transformation allows for more efficient modeling1351

using 2D kernels. It also introduces TimesBlock to1352

adaptively discovers multi-periodicity and extracts1353

temporal features from transformed 2D tensors us-1354

ing a parameter-efficient inception block.1355

iTransformer (Liu et al., 2024c). iTransformer1356

reimagines the Transformer architecture by apply-1357

ing attention and feed-forward networks to inverted1358

dimensions. Time points of individual series are1359

embedded as variate tokens, allowing the attention1360

mechanism to capture multivariate correlations,1361

while the feed-forward network learns nonlinear 1362

representations for each token. 1363

DeepConvLSTM (Ordóñez and Roggen, 2016). 1364

DeepConvLSTM integrates four consecutive con- 1365

volutional layers followed by two LSTM layers to 1366

effectively capture both spatial and temporal dy- 1367

namics in sensor data. The final output vector is 1368

passed through a fully connected layer, and the soft- 1369

max function is applied to produce activity class 1370

probabilities as the model’s final output. 1371

DeepConvLSTMAttn (Murahari and Plötz, 1372

2018). DeepConvLSTMAttn enhances the orig- 1373

inal DeepConvLSTM by integrating an attention 1374

mechanism to improve temporal modeling in HAR 1375

tasks. Instead of using the last LSTM hidden state 1376

for classification, the attention mechanism is ap- 1377

plied to the first 7 hidden states, representing his- 1378

torical temporal context. These states are trans- 1379

formed through linear layers to generate attention 1380

scores, which are passed through softmax to pro- 1381

duce weights. The weighted sum of the hidden 1382

states is combined with the last hidden state to 1383

form the final embedding for classification. 1384

Attend (Abedin et al., 2021). The Attend model 1385

use the latent relationships between multi-channel 1386

sensor modalities and specific activities, apply data- 1387

agnostic augmentation to regularize sensor data 1388

streams, and incorporate a classification loss cri- 1389

terion to minimize intra-class representation dif- 1390

ferences while maximizing inter-class separability. 1391

These innovations result in more discriminative ac- 1392

tivity representations, significantly improving HAR 1393

performance. 1394

Chronos+MLP. Chronos (Ansari et al., 1395

2024)+MLP is a baseline designed to evaluate 1396

whether the performance gains in SensorLLM are 1397

solely attributable to Chronos and the MLP. In 1398

SensorLLM, Chronos is used to generate sensor 1399

embeddings, which are then mapped by the MLP 1400

for input into the LLM to perform HAR. Since 1401

Chronos does not natively support classification 1402

tasks and only processes single-channel data, we 1403

adapt it for HAR by inputting each channel’s 1404

data separately into Chronos. The resulting 1405

sensor embeddings for all channels are then 1406

concatenated and fed into an MLP, which acts as 1407

a classifier. This setup allows us to benchmark 1408

against a simpler framework and validate the 1409

unique contributions of SensorLLM’s design. 1410
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GPT4TS (Zhou et al., 2023a). GPT4TS is a uni-1411

fied framework that leverages a frozen pre-trained1412

language model (e.g., GPT-2 (Radford et al., 2019))1413

to achieve state-of-the-art or comparable perfor-1414

mance across various time-series analysis tasks,1415

including classification, forecasting (short/long-1416

term), imputation, anomaly detection, and few-1417

shot/zero-sample forecasting. The authors also1418

found that self-attention functions similarly to PCA,1419

providing a theoretical explanation for the versatil-1420

ity of transformers.1421

A.8 Evaluation Metrics for Task-Aware1422

Tuning Stage1423

In our evaluation, we use the F1-macro score to1424

assess the model’s performance across datasets.1425

F1-macro is particularly suitable for datasets with1426

imbalanced label distributions, which is common1427

in Human Activity Recognition (HAR) tasks where1428

certain activities are overrepresented while others1429

have fewer samples. Unlike the micro F1 score,1430

which emphasizes the performance on frequent1431

classes, F1-macro treats each class equally by cal-1432

culating the F1 score independently for each class1433

and then averaging them.1434

The formula for the F1-macro score is:1435

F1-macro =
1

C

C∑
i=1

F1i (8)1436

where C is the total number of classes, and F1i is1437

the F1 score for class i. The F1 score for each class1438

is calculated as:1439

F1i =
2× Precisioni × Recalli

Precisioni + Recalli
(9)1440

The precision and recall for each class are defined1441

as:1442

Precisioni =
TPi

TPi + FPi
(10)1443

Recalli =
TPi

TPi + FNi
(11)1444

where TPi, FPi, and FNi represent the number of1445

true positives, false positives, and false negatives1446

for class i, respectively. This metric ensures that1447

performance is evaluated fairly across all classes,1448

regardless of the frequency of each label, making1449

it a robust measure for imbalanced datasets.1450

A.9 Sensor-Language Alignment Stage 1451

Output Examples 1452

Tables 11 and 12 present two examples of the trend 1453

analysis results generated by SensorLLM and GPT- 1454

4o based on the input sensor data. From the results, 1455

it is evident that SensorLLM outperforms GPT-4o 1456

across both shorter and medium-length sequences. 1457

This demonstrates that our approach enables LLMs 1458

to better understand numerical variations, as well as 1459

accurately compute the time duration represented 1460

by the input sequences based on their length and 1461

the given sample rate. In contrast, current large 1462

language models struggle with directly interpreting 1463

numerical data, as their tokenization methods are 1464

not well-suited for tasks such as comparing numer- 1465

ical values or counting (Yehudai et al., 2024). 1466
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Sensor readings: [-9.8237, -9.4551, -10.007, -11.273, -11.258, -11.677, -11.774, -11.638,
-11.195, -11.087, -10.833, -11.044, -11.393, -11.943, -12.168, -15.455,
-12.967, -12.326, -12.515, -13.195, -12.634, -11.873, -12.002, -11.583,
-10.859, -10.349, -9.831, -9.1622, -8.2721, -6.9299, -6.255, -5.5998]

Ground-truth: 0.0 seconds to 0.02 seconds: growing
0.02 seconds to 0.06 seconds: declining
0.06 seconds to 0.08 seconds: growing
0.08 seconds to 0.12 seconds: declining
0.12 seconds to 0.2 seconds: growing
0.2 seconds to 0.3 seconds: declining
0.3 seconds to 0.34 seconds: growing
0.34 seconds to 0.38 seconds: declining
0.38 seconds to 0.42 seconds: growing
0.42 seconds to 0.44 seconds: declining
0.44 seconds to 0.62 seconds: growing

Total growing trends: 6
Total declining trends: 5

From 0.0s to 0.62s, normalized left-ankle y-axis accelerometer data is
showcased in the sensor data. Examining the data, we notice 2 clear trend
characteristics, with the trend fluctuating a total of eleven times. The
analysis reveals that the data’s declining inclination persisted for a total
of 0.24 seconds, and a growing trend within a span of 0.38 seconds. The
general trend observed is growing.

SensorLLM: 0.0 to 0.02 seconds: ascending
0.02 to 0.08 seconds: descending
0.08 to 0.1 seconds: ascending
0.1 to 0.12 seconds: descending
0.12 to 0.2 seconds: ascending
0.2 to 0.28 seconds: descending
0.28 to 0.32 seconds: ascending
0.32 to 0.36 seconds: descending
0.36 to 0.4 seconds: ascending
0.4 to 0.42 seconds: descending
0.42 to 0.62 seconds: ascending

Count of ascending segments: 6
Count of descending segments: 5

The time series data encapsulates normalized left-ankle y-axis accelerome-
ter sensor readings from 0.0 seconds to 0.62 seconds. Two separate trends
and nine trend shifts are observed in the data. The analysis reveals that the
data’s descending inclination persisted for a total of 0.22 seconds, and an
ascending trend for a sum of 0.40 seconds. The trend overall is ascending.

GPT-4o Evaluation: 3#Moderate errors in trend durations and shifts compared to ground truth.

GPT-4o’s output: 0.0s to 0.02s: rising
0.02s to 0.06s: falling
0.06s to 0.08s: rising
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0.08s to 0.1s: falling
0.1s to 0.12s: rising
0.12s to 0.14s: falling
0.14s to 0.3s: rising

Total rising segments: 4
Total falling segments: 3

The normalized left-ankle y-axis accelerometer sensor readings recorded
within the 0.0 to 0.3 second timeframe are presented in this sensor data.
The input data displays three individual trends, with a comprehensive
change count reaching 7. The examination reveals that the data’s falling
inclination endured for an aggregate of 0.08 seconds, succeeded by a rising
trend for a cumulative period of 0.22 seconds, and a steady pattern for a
total of 0.00 seconds. The dominant trend is rising.

GPT-4o Evaluation: 2#Significant discrepancies in trend durations and counts between model
and ground-truth.

Table 11: Example 1 of SensorLLM and GPT-4o Generated Descriptions with Ground-Truth and GPT-4o Evaluation

Sensor readings: [0.53137, 0.53137, 0.53137, 0.51176, 0.51176, 0.51176, 0.45098, 0.45098,
0.45098, 0.45098, 0.45882, 0.45882, 0.45882]

Ground-truth: 0.0 seconds to 0.04 seconds: stable
0.04 seconds to 0.06 seconds: decreasing
0.06 seconds to 0.1 seconds: stable
0.1 seconds to 0.12 seconds: decreasing
0.12 seconds to 0.18 seconds: stable
0.18 seconds to 0.2 seconds: increasing
0.2 seconds to 0.24 seconds: stable

Number of stable trends: 4
Number of decreasing trends: 2
Number of increasing trends: 1

The sensor data represents readings taken from a normalized right-lower-
arm x-axis gyroscope sensor between 0.0 and 0.24 seconds. Analysis
reveals three separate trends within the data, undergoing a cumulative
total of seven shifts in direction. Encapsulating the outcomes, the data’s
decreasing trend stretched across a total time of 0.04 seconds, came after
an increasing pattern observed over 0.02 seconds, and a stable trend for
0.18 seconds in total. The dominant trend is decreasing.

SensorLLM: 0.0s to 0.04s: consistent
0.04s to 0.06s: downward
0.06s to 0.1s: consistent
0.1s to 0.12s: downward
0.12s to 0.18s: consistent
0.18s to 0.2s: upward
0.2s to 0.24s: consistent

23



Number of consistent segments: 4
Number of downward segments: 2
Number of upward segments: 1

The sensor data illustrates normalized right-lower-arm x-axis gyroscope
sensor readings between 0.0 and 0.24 seconds. The input data displays
three individual trends, with a comprehensive change count reaching 7. To
encapsulate, the data’s downward trend spanned a combined duration of
0.04 seconds, and then an upward pattern for a sum of 0.02 seconds, and a
consistent trend for an accumulated time of 0.18 seconds. The overarching
trend is characterized as downward.

GPT-4o Evaluation: 5#The model’s description matches the ground truth accurately.

GPT-4o’s output: 0.0s to 0.06s: steady
0.06s to 0.12s: falling
0.12s to 0.14s: steady
0.14s to 0.16s: rising
0.16s to 0.18s: steady

Total steady segments: 3
Total rising segments: 1
Total falling segments: 1

The normalized right-lower-arm x-axis gyroscope sensor readings
recorded within the 0.0 to 0.18 second timeframe are presented in this
sensor data. The input data displays three individual trends, with a compre-
hensive change count reaching 5. The examination reveals that the data’s
falling inclination endured for an aggregate of 0.06 seconds, succeeded by
a rising trend for a cumulative period of 0.02 seconds, and a steady pattern
for a total of 0.10 seconds. The dominant trend is steady.

GPT-4o Evaluation: 2#Significant discrepancies in trend durations and counts compared to
ground-truth.

Table 12: Example 2 of SensorLLM and GPT-4o Generated Descriptions with Ground-Truth and GPT-4o Evaluation
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