
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAWM: ADAPTIVE WORLD MODEL BASED PLAN-
NING FOR AUTONOMOUS DRIVING

Anonymous authors
Paper under double-blind review

ABSTRACT

World model based reinforcement learning (RL) has emerged as a promising ap-
proach for autonomous driving, which learns a latent dynamics model and uses it
to train a planning policy. To speed up the learning process, the pretrain-finetune
paradigm is often used, where online RL is initialized by a pretrained model and
a policy learned offline. However, naively performing such initialization in RL
may result in dramatic performance degradation during the online interactions in
the new task. To tackle this challenge, we first analyze the performance degrada-
tion and identify two primary root causes therein: the mismatch of the planning
policy and the mismatch of the dynamics model, due to distribution shift. We
further analyze the effects of these factors on performance degradation during
finetuning, and our findings reveal that the choice of finetuning strategies plays a
pivotal role in mitigating these effects. We then introduce AdaWM, an Adaptive
World Model based planning method, featuring two key steps: (a) mismatch iden-
tification, which quantifies the mismatches and informs the finetuning strategy,
and (b) alignment-driven finetuning, which selectively updates either the policy or
the model as needed using efficient low-rank updates. Extensive experiments on
the challenging CARLA driving tasks demonstrate that AdaWM significantly im-
proves the finetuning process, resulting in more robust and efficient performance
in autonomous driving systems.

1 INTRODUCTION

Automated vehicles (AVs) are poised to revolutionize future mobility systems with enhanced safety
and efficiency Yurtsever et al. (2020); Kalra & Paddock (2016); Maurer et al. (2016). Despite sig-
nificant progress Teng et al. (2023); Hu et al. (2023); Jiang et al. (2023), developing AVs capable
of navigating complex, diverse real-world scenarios remains challenging, particularly in unforeseen
situations Campbell et al. (2010); Chen et al. (2024). Autonomous vehicles must learn the complex
dynamics of environments, predict future scenarios accurately and swiftly, and take timely actions
such as emergency braking. Thus motivated, in this work, we devise adaptive world model to ad-
vance embodied AI and improve the planning capability of autonomous driving systems.

World model (WM) based reinforcement learning (RL) has emerged as a promising self-supervised
approach for autonomous driving Chen et al. (2024); Wang et al. (2024); Guan et al. (2024); Li et al.
(2024). This end-to-end method maps sensory inputs directly to control outputs, offering improved
efficiency and robustness over traditional modular architectures Yurtsever et al. (2020); Chen et al.
(2024). By learning a latent dynamics model from observations and actions, the system can predict
future events and optimize policy decisions, enhancing generalization across diverse environments.
Recent models like DreamerV2 and DreamerV3 have demonstrated strong performance across both
2D and 3D environments Hafner et al. (2020; 2023).

However, learning a world model and a planning policy from scratch can be prohibitively time-
consuming, especially in autonomous driving, where the state space is vast and the driving envi-
ronment the vehicle might encounter can be very complex Ibarz et al. (2021); Kiran et al. (2021).
Moreover, the learned model may still perform poorly on unseen scenarios Uchendu et al. (2023);
Wexler et al. (2022); Liu et al. (2021). These challenges have led to the adoption of pretraining
and finetuning paradigms, which aim to accelerate learning and improve performance Julian et al.
(2021). In this approach, models are first pretrained on large, often offline datasets, allowing them to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

capture general features that apply across various environments. Following pretraining, the model
is finetuned using task-specific data to adapt to the new environment. Nevertheless, without a well-
crafted finetuning strategy, a pretrained model can suffer significant performance degradation due
to the distribution shift between pretraining tasks and the new task. To illustrate the possible inef-
ficiencies of some commonly used finetuning strategies, such as alternating between updating the
world model in one step and the policy in the next, we present the following motivating example.

1.00 1.02 1.04
Steps 1e5

900

600

300

0

300

Re
wa

rd

Pretraining
Model+Policy
Model-only
Policy-only

Figure 1: Performance comparison of
different finetuning strategies in the left
turn with moderate traffic flow task.

A Motivating Example. Consider an agent pretrained
to make right turns at a four-way intersection, later fine-
tuned for left turns under similar traffic conditions. We
evaluate three finetuning strategies: alternate finetuning
(Model+Policy), model-only finetuning, and policy-only
finetuning. As shown in Figure 1, all strategies ini-
tially experience performance degradation due to distri-
bution shift. However, model-only finetuning demon-
strates significantly faster recovery compared to the other
approaches. This observation reveals a crucial insight:
the transition from right to left turns primarily challenges
the agent’s dynamics model, which must adapt to dif-
ferent spatial-temporal relationships of approaching ve-
hicles. When the dynamics model misaligns with the new
environment, the policy inevitably makes decisions based on inaccurate predictions. Thus, dynam-
ics model mismatch becomes the dominating factor limiting performance. Model-only finetuning
addresses this directly, while alternate and policy-only strategies struggle by failing to prioritize this
critical misalignment.

This example illustrates that effective finetuning requires identifying and prioritizing the dominating
mismatch rather than simply alternating between model and policy updates. This work addresses the
key challenge of determining efficient finetuning strategies by investigating:

When and how should the pretrained dynamics model and planning policy be finetuned to
effectively mitigate performance degradation due to distribution shift?

Building on the insights from our motivated example, we propose AdaWM, an adaptive world model
based planning method designed to fully leverage a pretrained policy and world model while ad-
dressing performance degradation during finetuning. Specifically, our main contributions can be
summarized as follows:

• We quantify the performance gap observed during finetuning and identify two primary root
causes: (1) dynamics model mismatch, and (2) policy mismatch. We then assess the corre-
sponding impact of each on the finetuning performance.

• Based on our theoretical analysis, we introduce AdaWM, Adaptive World Model based planning
for autonomous driving. As shown in Figure 2, AdaWM achieves effective finetuning through
two key steps: (1) Mismatch Identification. At each finetuning step, AdaWM first evaluates the
degree of distribution shift to determine the dominating mismatch that causes the performance
degradation, and (2) Alignment-driven Finetuning, which determines to update either the dynam-
ics model or the policy to mitigate performance drop. This selective approach ensures that the
more dominating mismatch, as identified in the motivated example, is addressed first. Moreover,
AdaWM incorporates efficient update methods for both the dynamics model and the policy, re-
spectively. For dynamics model finetuning, we propose a LoRa-based low-rank adaptation Hu
et al. (2021); Koohpayegani et al. (2024), where only the low-dimensional vectors are updated
to enable a more efficient finetuning. For policy finetuning, we decompose the policy network
into a weighted convex ensemble of sub-units and update only the weights of these sub-units to
further streamline the finetuning process.

• We validate AdaWM on the challenging CARLA environment over a number of tasks, demon-
strating its ability to achieve superior performance in terms of routing success rate (SR) and
time-to-collision (TTC). Our results show that AdaWM effectively mitigates performance drops

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: A sketch of adaptive world model based planning (AdaWM): During pretraining, a dy-
namics model and a planning policy are learned offline. For online adaptation, at each finetuning
step t, AdaWM first identifies the more dominating mismatch that causes the performance degrada-
tion and then carries out alignment-driven finetuning accordingly.

cross various new tasks, confirming the importance of identifying and addressing the dominating
mismatch in the finetuning process.

Related Work. World model based methods have become a promising solution for model-based
learning in high-dimensional visual control tasks, such as Minecraft game Duncan (2011) and Deep-
mind Lab tasks Beattie et al. (2016). By learning a differentiable latent dynamics model, world
model based methods enable the agent to anticipate future states and hence improve the decision
making. In particular, the differentiable world models are often more computationally efficient than
traditional planning techniques Levine & Koltun (2013); Wang et al. (2019); Zhu et al. (2020),
which rely on generating multiple rollouts to identify the best sequence of actions Bertsekas (2021).
Recently, end-to-end autonomous driving systems have gained significant momentum with the avail-
ability of large-scale datasets and robust evaluation tools Hu et al. (2023); Jiang et al. (2023); Chen
et al. (2024). Notably, previous works on using WMs for planning mainly focus on the pretraining
stage, which aims to learn a good policy to solve the new task by using offline datasets. Li et al.
(2024) uses a DreamerV3 structure to learn an autonomous driving agent that is able to address
challenging CARLA tasks after a through training on a comprehensive dataset. Wang et al. (2023)
proposes to use diffusion model to construct a comprehensive representation of the complex envi-
ronment by learning from real-world driving scenarios dataset. Wang et al. (2024) aims to learn a
generative WM through multiview and temporal modeling. Vasudevan et al. (2024) chooses differ-
ent world models based on the behavior prediction on the surrounding vehicles, which also greatly
increases the computation complexity. In this work, we turn our attention to the finetuning process
and aim to address the issue of performance degradation when pretrained models and policies are
applied to the new task. Some recent studies on general RL have explored methods such as jump-
start RL Uchendu et al. (2023), which leverages a pretrained policy as a guide policy during online
learning. Meanwhile, Feng et al. (2023) introduces a framework for offline-to-online finetuning of
MBRL agents that mitigates extrapolation errors in planning via test-time behavior regularization.
Notably, this method solely focusing on finetuning the model based on the model uncertainty evalu-
ation. There are also many works on finetuning the policy, such as through imitation learning Baker
et al. (2022); Hansen et al. (2022) and self-supervised learning Ouyang et al. (2022). In our proposed
AdaWM, we introduce a finetuning strategy that balances the updates to both the model and policy
to mitigate the performance drop in the new tasks.

2 ADAWM: ADAPTIVE WORLD MODEL BASED PLANNING

Basic Setting. Without loss of generality, we model the agent’s decision making problem as a
Markov Decision Process (MDP), defined as ⟨S,A, P, r, γ⟩. In particular, S ⊆ Rds represents state
space, andA is the action space for agent, respectively. γ is the discounting factor. At each time step
t, based on observations st ∈ S, agent takes an action at according to a planning policy π : S → A.
The environment then transitions from state st to state st+1 following the state transition dynamics
P (st+1|st, at) : S ×A× S → [0, 1]. In turn, the agent receives a reward rt := r(st, at).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Pretraining: World Model based RL. In the pretraining phase, we aim to learn a dynamics
model WMϕ to capture the latent dynamics of the environment and predict the future environment
state. To train a world model, the observation st is encoded into a latent state zt ∈ Z ⊆ Rd using an
autoencoder qϕ Kingma (2013). Meanwhile, the hidden state ht is incorporated into the encoding
process to capture contextual information from current observations Hafner et al. (2023; 2020), i.e.,
zt ∼ qϕ(zt|ht, st), where ht stores historical information relevant to the current state. We further
denote xt as the model state, defined as follows,

Model State xt := [ht, zt] ∈ X , (1)

The dynamics model WMϕ predicts future states using a recurrent model, such as an Recurrent Neural
Network (RNN) Medsker et al. (2001), which forecasts the next hidden state ht+1 based on the
current action at and model state xt. The obtained hidden state ht+1 is then used to predict the next
latent state ẑt+1 ∼ pϕ(·|ht+1). The dynamics model WMϕ(xt+1|xt, at) is trained by minimizing the
prediction error between these predicted future states and the actual observations. Additionally, the
learned (world) model can also predict rewards and episode termination signals by incorporating the
reward prediction loss Hafner et al. (2023).

Once trained, the dynamics model is used to guide policy learning. The agent learns a planning
policy πω(·|xt) by maximizing its value function

V πω
WMϕ

(xt) ≜ Ext∼WMϕ,a∼πω
[

K∑
i=1

γir(xt+i−1, at+i−1) + γKQπω (xt+K , at+K)], (2)

where the first term is the cumulative reward from a K-step lookahead using the learned dynamics
model, and the second term is the Q-function Qπω (xt, at) = Ea∼πω

[
∑
t γ

tr(xt, at)], which corre-
sponds to the expected cumulative reward when action at is taken at state xt , and the policy πω is
followed thereafter. In this way, the policy learning is informed by predictions from the dynamics
model regarding future state transitions and expected rewards.

Finetuning with the Pretrained Dynamics Model and Policy. Once the pretraining is complete,
the focus is to finetune the pretrained dynamics model WMϕ and policy πω to adapt to the new task
while minimizing performance degradation due to the distribution shift. In particular, at each fine-
tuning step t, the agent conducts planning using the current policy πωt

and dynamics model WMϕt
.

By interacting with environments, the agent is able to collect samples {xt, at, rt} for the new task.
In this work, the primary objective is to develop an efficient finetuning strategy to mitigate the over-
all performance degradation during finetuning. To this end, in what follows, we first analyze the
performance degradation that occurs during finetuning due to the distribution shift. From this anal-
ysis, we identify two root causes contributing to the degradation: mismatch of the dynamics model
and mismatch of the policy.

2.1 IMPACT OF MISMATCHES ON PERFORMANCE DEGRADATION

Performance Gap. When the pretrained model and policy align well with the state transition dy-
namics and the new task, the learning performance should remain consistent. However, in practice,
distribution shifts between the pretraining tasks and the new task can lead to suboptimal planning and
degraded performance when directly using the pretrained model and policy. To formalize this, we
let WMϕ(P) denote the pretrained dynamics model with probability transition matrix P , and WMϕ(P̂)

the dynamics model of the new task with probability transition matrix P̂ . For simplicity, we denote
the policy as π = πω when the context is clear to avoid ambiguity.

Let η denote the learning performance of using model WMϕ and policy π in the pretraining task, and
let η̂ represent the performance of applying WMϕ(P) and policy π to the new task with environment
dynamics P̂ . Using the value function V (x) defined in Equation (2), the performance gap can be
expressed as follows:

η − η̂ = Ex∼ρ0

[
V π
WMϕ(P)(x)− V π

WMϕ(P̂)
(x)
]
, (3)

where ρ0 is the initial state distribution and the second term captures the expected return when the
agent applies the pretrained model and policy to the new task with the underlying dynamics P̂ . Next,
we introduce the latent dynamics model to capture temporal dependencies of the environment.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Latent Dynamics Model. At each time step t, the agent will leverage the dynamics model WMϕ
to generate imaginary trajectories {xt+k, at+k}Kk=1 over a lookahead horizon K > 0. These tra-
jectories are generated based on the current model state xt and actions at sampled from policy π.
Particularly, the dynamics model is typically implemented as a RNN, which computes the hidden
states ht and state presentation zt as follows,

ht+1 = fh(xt, at), zt+1 = fz(ht+1),

where fh maps the current state and action to the next hidden state and fz maps the hidden state to
the next state representation. In our theoretical analysis, following the formulation as in previous
works Lim et al. (2021); Wu et al. (2021), we choose fh = Axt + σh(Wxt + Uat + b) and
fz = σz(V ht+1), where matrices A,W,U, V, b are trainable parameters. Meanwhile, σz is the Lz-
Lipschitz activation functions for the state representation and σh is a Lh-Lipschitz element-wise
activation function (e.g., ReLU Agarap (2018)). Next, we make the following standard assumptions
on latent dynamics model, action and reward functions.

Assumption 1 (Weight Matrices) The Frobenius norms of weight matrices W , U and V are upper
bounded by BW , BU and BV , respectively.

Assumption 2 (Action and Policy) The action input is upper bounded, i.e., |at| ≤ Ba, t = 1, · · · .
Additionally, the policy π is La-Lipschitz, i.e., for any two states x, x′ ∈ X , we have dX(π(·|x) −
π(·|x′)) ≤ LadX(x, x′), where dA and dX are the corresponding distance metrics defined in the
action space and state space.

Assumption 3 The reward function r(x, a) is Lr-Lipschitz, i.e., for all x, x′ ∈ X and a, a′ ∈ A,
we have |r(x, a)− r(x, a′)| ≤ Lr(dX(x, x′) + dA(a, a

′)), where dX and dA are the corresponding
metrics in the state space and action space, respectively.

Characterization of Performance Gap. We start by analyzing the state prediction error at pre-
diction step k = 1, 2, · · · ,K, defined as ϵk = xk − x̂k, where xk is the underlying true state
representation in the new task and x̂k is the predicted state representation by using the pretrained
dynamics model WMϕ. The prediction error arises due to a combination of factors such as distribution
shift between tasks and the generalization limitations of the pretrained dynamics model. To this end,
we decompose the prediction error into two terms,

ϵk = (xk − x̄k) + (x̄k − x̂k) (4)

where x̄k is the underlying true state representation when planning is conducted in the pretraining
tasks. The first term (xk − x̄k) captures the difference between the true states in the current and
pretraining tasks, reflecting the distribution shift between the tasks. The second term (x̄k − x̂k)
stems from the prediction error of the pretrained RNN model on the pretraining task. This decom-
position allows us to rigorously examine the impact of distribution shift and model generalization
by bounding these two components respectively.

To analyze the prediction error, we assume the dynamics model is trained using supervised learning
on samples of state-action-state sequence and resulting the empirical loss is ln. We assume the ex-
pected Total Variation (TV) distance between the true state transition probability P and the predicted
dynamics P̂ be upper bounded by EP̂ , i.e., Eπ[DTV(P ||P̂)] ≤ EP̂ . Building on these assumptions
and the analysis developed in Appendix A, the upper bound for the prediction error is derived as
ϵk ≤ Eσ,k.

We now assess the direct impact of the prediction error on the performance gap in Equation (9). As
shown in Equation (2), the value function depends on both the cumulative rewards by K-step rollout
using the pretrained dynamics model and the Q-function at the terminal state. Prediction errors in
the state representation cause the policy to select sub-optimal actions, impacting both immediate
rewards and future state transitions. These errors accumulate over time, distorting the terminal state
and degrading the Q-function evaluation. Moreover, the pretrained policy π was optimized for the
pretraining tasks and may no longer select optimal actions in the new task due to differences in task
objectives and environment dynamics. As a result, the performance gap arises from the compounded
effect of both the prediction errors and the sub-optimality of the planning policy. To quantify this,
we now derive an upper bound for the resulting performance drop.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Let Γ := 1−γK−1

1−γ Lr(1 + Lπ) + γKLQ(1 + Lπ), Emax = maxt Eδ,t and LQ = Lr/(1 − γ).
Meanwhile, we denote the policy shift between the pretrained policy π and the underlying optimal
policy π̂ for the current task to be Eπ := maxxDTV(π|π̂). Then we obtain the following result.

Theorem 1 Given Assumptions 1, 2 and 3 hold, the performance gap, denoted as η − η̂, is upper
bound by:

η − η̂ ≤
(
γK
Emax

1− γK
+ Γ

2γEP̂
1− γK

)
+ Γ

(
4rmaxEπ
1− γ

+
4γEπ
1− γK

)
.

Determine the Dominating Mismatch. The upper bound in Theorem 1 highlights two primary root
causes for performance degradation: the mismatch of dynamics model, represented by term Emax

and Ep̂, where the dynamics model failing to accurately capture the true dynamics of the current
task; and mismatch of policy (Eπ), when the pretrained policy being sub-optimal. As demonstrated
in the motivating example Figure 1, effective finetuning hinges on identifying the dominating root
cause of the performance degradation and prioritizing on its finetuning. Based on the above theoretic
analysis, we have the following criterion to determine the dominating mismatch at each step:

• Update dynamics model if EP̂ ≥ C1Eπ − C2, where C1 =
(
2rmax(1− γk)/(γ − γ2) + 2

)
and

C2 = γK−1Emax

2Γ which implies that the errors from the dynamics model are the dominating cause
of performance degradation, and improving the model’s accuracy will most effectively reduce
the performance gap.

• Update planning policy if Eπ ≥ 1
C1
EP̂ + C2

C1
which indicates that the performance degradation

is more sensitive to suboptimal actions chosen by the policy, and refining the policy will be the
most impactful step toward performance improvement.

Specifically, in the implementation of AdaWM (as outlined in Algorithm 1), we use the TV distances
between the state distributions P and P̂ to estimate the dynamics model mismatch following Janner
et al. (2019) and the policy distributions π and π̂ for the policy mismatch. In particular, at each step,
if DTV(P |P̂) > C ·DTV(π|π̂) where C is a function of C1 and C2, the dynamics model is updated;
otherwise, the policy is updated. It is worth noting that this simplified criteria is in line with the
theoretical insights while reducing computational complexity. The proof of Theorem 1 can be found
in Appendix B.

2.2 ADAWM: MISMATCH IDENTIFICATION AND ALIGNMENT-DRIVEN FINETUNING

Based on the above analysis, we propose AdaWM with efficient finetuning strategy while minimiz-
ing performance degradation. As outlined in Algorithm 1, AdaWM consists of two key components:
mismatch identification and adaptive finetuning.

Mismatch Identification. The first phase of AdaWM is dedicated to identifying the dominant
mismatch between the pretrained task and the current task and two main types of mismatches are
evaluated (line 3 in Algorithm 1): 1) Mismatch of Dynamics Model. AdaWM estimates the Total
Variation (TV) distance between dynamics model by measuring state-action visitation distribution
Janner et al. (2019). This metric helps quantify the model’s inability to predict the current task’s
state accurately, revealing weaknesses in the pretrained model’s understanding of the new task; and
2) Mismatch of Policy. AdaWM calculates the state visitation distribution shift using TV distance
between the state visitation distributions from pretraining and the current task.

Alignment-driven Finetuning. Once the dominant mismatch is identified, AdaWM selectively
finetunes either the dynamics model or the policy based on which component contributes more
to the performance gap. In particular, AdaWM uses the following finetuning method to further
reduce computational overhead and ensures efficiency (line 4-8 in Algorithm 1). 1) Finetuning the
Dynamics Model. AdaWM leverages a LoRA-based Hu et al. (2021) low-rank adaptation strategy
(as known as NoLa Koohpayegani et al. (2024)) to efficiently update the dynamics model. The
model parameters are decomposed into two lower-dimensional vectors: the latent representation
base vector Z and vector Φ. During finetuning, only the weight B of the base vector is updated, i.e.,
B′ ← B,ϕ′ = (B′Z)⊤Φ. 2) Finetuning Planning Policy. AdaWM decomposes the policy network

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 AdaWM: Adaptive World Model based Planning

Require: Pretrained dynamics model WMϕ(P) and policy πω (parameter Ω). Planning horizon K.
Threshold C. Reply buffer B collected from pretraining phase.

1: for finetuning step t = 1, 2, · · · do
2: Collect samplesW = {(x, a, r)} by following current policy πt (parameter ωt) and dynam-

ics model WMt (P) (parameter ϕt).
3: Mismatch Identification: Evaluate the policy mismatch by using samples from B andW to

compute the TV distance as DTV(πt|πω) ≈ maxx ∥πt(a|x)− πω(a|x)∥.
Evaluate the mismatch of the dynamics model by DTV(P |P̂) ≈ ∥P (x, a)− P̂ (x, a)∥1.

4: if DTV(P |P̂) > C ·DTV(πt|πω) then
5: Update dynamics model B′ ← B, ϕt = (B′Z)⊤Φ.
6: else
7: Update policy ∆′ ← ∆, ωt = (∆′)⊤Ω.
8: end if
9: end for

ω into a convex combination of sub-units Ω =
∑D
i=1 δiωi. During finetuning, only the weight vector

∆ = [δ1, · · · , δD] of these sub-units are updated, i.e., ∆′ ← ∆.

3 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of AdaWM by addressing the following two questions:
1) Can AdaWM help to effectively mitigate the performance drop through finetuning in various
CARLA tasks? 2) How does the parameter C in AdaWM impact the finetuning performance.

Experiments Environment. We conduct our experiments in CARLA, an open-source simulator
with high-fidelity 3D environment Dosovitskiy et al. (2017). At each time step t, agent receives
bird-eye-view (BEV) as observation, which unifies the multi-modal information Liu et al. (2023); Li
et al. (2023). Furthermore, by following the planned waypoints, agents navigate the environment by
executing action at, such as acceleration or brake, and receive the reward rt from the environment.
We define the reward as the weight sum of five attributes: safety, comfort, driving time, velocity and
distance to the waypoints. The details of the CARLA environment and reward design are relegated
to Appendix C.

Baseline Algorithms. In our study, we consider three state-of-the-art autonomous driving algo-
rithms as baseline and evaluate their performance when deployed in the new task. Notably, we
use the provided checkpoint of VAD Jiang et al. (2023) and UniAD Hu et al. (2023) trained on
Bench2Drive Jia et al. (2024) dataset for closed-loop evaluation in CARLA. Meanwhile, we also
compare AdaWM with DreamerV3 based learning algorithms adopted by Think2drive Li et al.
(2024).

Pretrain-Finetune. In our experiments, we use the tasks from CARLA leaderboard v2 and
Bench2Drive Jia et al. (2024) for pretraining. The pretraining is conducted for 12 hour training
on a single V100 GPU. After obtaining the pretrained model and policy, we conduct finetuning
phase for one hour on a single V100 GPU. It is important to note that the three baseline algorithms
were originally designed for offline learning, where they were trained on a fixed offline dataset and
expected to generalize well to new tasks. In our comparison, we adhere to the original implementa-
tion of these baseline algorithms and evaluate their performance using the provided offline-trained
checkpoints, as described in their respective papers. While finetuning is not applied to the baseline
algorithms due to their offline nature, this allows us to maintain consistency with their intended
design and ensure a valid comparison of their performance.

3.1 PERFORMANCE COMPARISONS

In this section, we compare the learning performance among our proposed AdaWM and the baseline
algorithms in terms of the time-to-collision (TTC) and success rate (SR), i.e., the percentage of trails
that the agent is able to achieve the goal without any collisions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Pre-RTM03 ROM03 RTD12 LTM03 LTD03
Algorithm TTC↑ SR↑ TTC↑ SR↑ TTC ↑ SR↑ TTC↑ SR↑ TTC↑ SR↑

UniAD 1.25 0.48 0.92 0.13 0.07 0.05 0.05 0.04 0.03 0.04
VAD 0.96 0.55 0.95 0.15 0.15 0.12 0.05 0.10 0.09 0.10

DreamerV3 1.16 0.68 0.95 0.40 0.42 0.32 0.25 0.28 0.15 0.35
AdaWM 1.16 0.68 2.05 0.82 1.25 0.66 1.32 0.72 1.92 0.70

Table 1: Performance comparison in four evaluation tasks. (RO/RT/LT: Roundabout / Right Turn /
Left Turn, M/D: Moderate / Dense traffic, 03 and 12 indicate different Towns.)

Evaluation Tasks. In our experiments, we evaluate the proposed AdaWM and the baseline methods
on a series of increasingly difficult autonomous driving tasks. These tasks are designed to assess
each model’s ability to generalize to the new task and traffic condition. The first task closely mir-
rors the pretraining scenario, while subsequent tasks introduce more complexity and challenge. In
particular, during pretraining, AdaWM is trained on Pre-RTM03 task, which involves a Right Turn
in Moderate traffic in Town 03. Following the pretraining, we evaluate the learning performance in
four tasks, respectively: 1) Task ROM03: This task is a ROundabout in Moderate traffic in Town 03.
While it takes place in the same town as the pretraining task, the introduction of a roundabout adds
complexity to the driving scenario; 2) Task RTD12: This task features a Right Turn in Dense traffic
in Town 12. The increased traffic density and different town environment make this task more chal-
lenging than the pretraining task; 3) Task LTM03: This task involves a Left Turn in Moderate traffic
in Town 03. Although it takes place in the same town and traffic conditions as the pretraining task,
the switch to a left turn introduces a new challenge; and 4) Task LTD03: The most challenging task
as it involves a Left Turn in Dense traffic in Town 03. The combination of heavy traffic and a left
turn in a familiar town environment makes this task the hardest in the evaluation set. We summarize
the evaluation results in Table 1 and Table 2. We also include the learning curve in Figure 3.

Evaluation Results. The evaluation results in Table 1 demonstrate that AdaWM consistently out-
performs the baseline algorithms across various autonomous driving tasks, showing significant im-
provements in both success rate (SR, also known as completion rate) and time-to-collision (TTC).
Starting with Task ROM03, which closely resembles the pretraining scenario Pre-RTM03 (right
turn, moderate traffic in Town 03), our method achieved a TTC of 2.05 and an SR of 0.82. This far
exceeds the performance of the baseline methods, where DreamerV3, VAD, and UniAD achieved
TTC values of 0.95, 0.95, and 0.92, respectively, and much lower success rates, with the highest
being 0.40 by DreamerV3. This significant difference highlights AdaWM’s ability to adapt more
effectively even in familiar environments. In the most challenging task, LTD03 (left turn with dense
traffic in Town 03), AdaWM continues to excel, achieving a TTC of 1.92 and an SR of 0.70. In
contrast, DreamerV3, the best-performing baseline, reached only 0.15 in TTC and 0.35 in SR, while
both VAD and UniAD struggled with TTC values below 0.1 and SRs as low as 0.04. Similar trends
are observed in Tasks RTD12 (right turn, dense traffic in Town 12) and LTM03 (left turn, moder-
ate traffic in Town 03), where AdaWM consistently outperforms the baseline methods, achieving
both higher TTC and SR scores. These results affirm that AdaWM’s adaptive finetuning approach
significantly improves performance across various challenging tasks, ensuring both safer and more
reliable decision-making.

Further analysis through ablation studies (Table 2) highlights the performance gain attributed to
AdaWM’s alignment-driven finetuning strategy. The model-only and policy-only finetuning meth-
ods showed considerable improvements compared to no finetuning, yet AdaWM surpassed both
approaches by maintaining consistently high TTC and SR values across all tasks. For instance, in
Task ROM03 (roundabout, moderate traffic in Town03), AdaWM achieved a TTC of 2.05 and an
SR of 0.82, surpassing the model-only (TTC 0.95, SR 0.60) and policy-only (TTC 0.46, SR 0.72)
approaches. These results demonstrate that AdaWM’s finetuning strategy, which adaptively adjusts
the model or policy based on the results from mismatch identification, provides the most robust
performance in complex driving scenarios.

3.2 ABLATION STUDIES

Determine the Dominating Mismatch during Finetuning. We compare the changes of two mis-
matches, mismatch of dynamics model and mismatch of policy, for different finetuning strategies in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1.000 1.025 1.050
Steps 1e5

1200

800

400

0

400

Re
wa

rd
Pretraining
AdaWM
Model-only
Policy-only

(a) ROM03.

1.000 1.025 1.050
Steps 1e5

1200

800

400

0

400

Re
wa

rd

Pretraining
AdaWM
Model-only
Policy-only

(b) RTD12.

1.000 1.025 1.050
Steps 1e5

1200

800

400

0

400

Re
wa

rd

Pretraining
AdaWM
Model-only
Policy-only

(c) LTM03.

1.000 1.025 1.050
Steps 1e5

1200

800

400

0

400

Re
wa

rd

Pretraining
AdaWM
Model-only
Policy-only

(d) LTD03.

Figure 3: Learning curves of different finetuning strategies in four evaluation tasks.

1.02 1.05 1.08
Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

TV
 D

ist
an

ce

Dynamics Model
Policy

(a) Model-only finetuning.

1.2 1.6
Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

TV
 D

ist
an

ce Dynamics Model
Policy

(b) Policy-only finetuning.

1.025 1.050 1.075
Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

TV
 D

ist
an

ce

Dynamics Model
Policy

(c) AdaWM.

Figure 4: The mismatches of the dynamics model and policy during the finetuning.

1.02 1.05 1.08
Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

TV
 D

ist
an

ce

Dynamics Model
Policy

(a) C = 2.

1.05 1.10
Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

TV
 D

ist
an

ce

Dynamics Model
Policy

(b) C = 10.

1.05 1.10
Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

TV
 D

ist
an

ce

Dynamics Model
Policy

(c) C = 50.

Figure 5: The mismatches of the dynamics model and policy with different value of C.

Figure 4. It can be seen from Figure 4a that model-only finetuning often leads to a deterioration in
policy performance, as indicated by a significant increase in TV distance. This suggests that while
the model adapts to new task, the policy struggles to keep pace, resulting in suboptimal decision-
making. Conversely, as shown in Figure 4b, policy-only finetuning reduces the TV distance between
policies, but this comes at the cost of an increased mismatch of dynamics model, signaling a grow-
ing discrepancy between the learned dynamics model and the actual environment. In contrast, in
Figure 4c, we show that our proposed alignment-driven finetuning method in AdaWM can effec-
tively align both factors in the new task. By selectively adjusting the model or policy at each step,
this adaptive method prevents either error from escalating dramatically, maintaining stability and
ensuring better performance throughout the finetuning process.

The Impact of Parameter C. In Table 3, we study the effect of different parameter C on four
tasks (ROM03, RTD12, LTM03, LTD03) in terms of TTC and SR. Notably, when C becomes too
large, AdaWM’s performance deteriorates, as it essentially reduces to policy-only finetuning. This is
reflected in the sharp drop in both TTC and SR for high C values, such as C = 100, across all tasks.
On the other hand, very small C values result in suboptimal performance due to insufficient updates
to the dynamics model, underscoring the importance of alignment-driven finetuning for achieving
robust learning. Meanwhile, the results demonstrate that AdaWM performs well across a wide range
of C values (between 2 and 50). As further illustrated in Figure 5, AdaWM effectively controls mis-
matches in both the policy and the dynamics model for C = 2, 10, and 50. For instance, in Figure 5b,
when the mismatch in the dynamics model becomes more pronounced than in the policy, AdaWM
prioritizes fine-tuning the dynamics model, which in turn helps reduce policy sub-optimality and
preserves overall performance. Conversely, in Figure 5a and Figure 5c, when the policy mismatch is
more dominant, AdaWM identifies and fine-tunes the policy accordingly. These results emphasize
AdaWM’s adaptability in managing different sources of mismatch, ensuring efficient fine-tuning
and strong performance across a variety of tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ROM03 RTD12 LTM03 LTD03
Algorithm TTC ↑ SR↑ TTC ↑ SR↑ TTC ↑ SR ↑ TTC↑ SR↑

No finetuning 0.95 0.40 0.42 0.32 0.25 0.28 0.15 0.35
Policy-only 0.46 0.72 1.21 0.63 0.21 0.61 0.62 0.61
Model-only 0.95 0.60 0.83 0.48 1.39 0.68 1.49 0.63

Model+Policy 0.72 0.52 0.92 0.50 1.09 0.60 1.21 0.58
AdaWM 2.05 0.82 1.25 0.66 1.32 0.72 1.92 0.70

Table 2: Ablation studies on different finetuning strategies.

ROM03 RTD12 LTM03 LTD03
C TTC↑ SR↑ TTC↑ SR↑ TTC ↑ SR↑ TTC↑ SR↑
0.5 1.23 0.58 1.16 0.50 1.15 0.47 1.27 0.52
2 1.82 0.70 1.20 0.57 1.28 0.68 1.73 0.63
5 2.05 0.82 1.25 0.66 1.32 0.72 1.92 0.70
10 2.15 0.85 1.25 0.62 1.24 0.62 2.01 0.72
50 1.86 0.71 0.87 0.51 1.30 0.68 1.78 0.62
100 1.17 0.45 0.62 0.46 0.92 0.43 1.05 0.32

Table 3: Ablation studies on C.

4 CONCLUSION

In this work, we propose AdaWM, an Adaptive World Model based planning method that miti-
gates performance drops in world model based reinforcement learning (RL) for autonomous driving.
Building on our theoretical analysis, we identify two primary causes for the performance degrada-
tion: mismatch of the dynamics model and mismatch of the policy. Building upon our theoretical
analysis, we propose AdaWM with two core components: mismatch identification and alignment-
driven finetuning. AdaWM evaluates the dominating source of performance degradation and applies
selective low-rank updates to the dynamics model or policy, depending on the identified mismatch.
Extensive experiments on CARLA demonstrate that AdaWM significantly improves both route suc-
cess rate and time-to-collision, validating its effectiveness. This work emphasizes the importance of
choosing an efficient and robust finetuning strategy in solving challenging real-world tasks. There
are several promsing avenues for future research. First, exploring the generalization of AdaWM to
other domains beyond autonomous driving could broaden its applicability. Additionally, extending
AdaWM to multi-agent setting that accounts for the interaction among agents could further enhance
its robustness in complex real-world environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

AdaWM is developed to improve finetuning in world model based reinforcement learning, specif-
ically for autonomous driving applications. The focus is on addressing performance degradation
due to distribution shifts, ensuring safer and more reliable decision-making in dynamic environ-
ments. While AdaWM aims to enhance the adaptability and robustness of autonomous systems,
ethical considerations are paramount. These include ensuring that the system operates safely under
real-world conditions, minimizing unintended biases from pretraining data, and maintaining trans-
parency in how decisions are made during finetuning. Additionally, the societal implications of
deploying autonomous driving technologies, such as their impact on public safety and employment,
require ongoing attention. Our commitment is to ensure that AdaWM contributes positively and
responsibly to the future of autonomous driving systems.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we will provide detailed documentation and instructions
to replicate the experiments conducted on the CARLA environment, along with hyperparameters
and experimental settings. These resources will enable researchers and practitioners to reproduce
our results and apply AdaWM to other tasks or environments, facilitating further research in adaptive
world model based reinforcement learning.

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by imitating
the best and synthesizing the worst. arXiv preprint arXiv:1812.03079, 2018.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Dimitri Bertsekas. Multiagent reinforcement learning: Rollout and policy iteration. IEEE/CAA
Journal of Automatica Sinica, 8(2):249–272, 2021.

Mark Campbell, Magnus Egerstedt, Jonathan P How, and Richard M Murray. Autonomous driving
in urban environments: approaches, lessons and challenges. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1928):4649–4672, 2010.

Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and Hongyang Li. End-
to-end autonomous driving: Challenges and frontiers. arXiv preprint arXiv:2306.16927, 2023.

Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and Hongyang Li. End-
to-end autonomous driving: Challenges and frontiers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
open urban driving simulator. In Conference on robot learning, pp. 1–16. PMLR, 2017.

Sean C Duncan. Minecraft, beyond construction and survival. 2011.

Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, and Xiaolong Wang. Fine-
tuning offline world models in the real world. In Conference on Robot Learning, pp. 425–445.
PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yanchen Guan, Haicheng Liao, Zhenning Li, Jia Hu, Runze Yuan, Yunjian Li, Guohui Zhang, and
Chengzhong Xu. World models for autonomous driving: An initial survey. IEEE Transactions on
Intelligent Vehicles, 2024.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang, Vikash Kumar, and Aravind Rajeswaran.
Modem: Accelerating visual model-based reinforcement learning with demonstrations. arXiv
preprint arXiv:2212.05698, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
Tianwei Lin, Wenhai Wang, et al. Planning-oriented autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17853–17862, 2023.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How to
train your robot with deep reinforcement learning: lessons we have learned. The International
Journal of Robotics Research, 40(4-5):698–721, 2021.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Xiaosong Jia, Zhenjie Yang, Qifeng Li, Zhiyuan Zhang, and Junchi Yan. Bench2drive: To-
wards multi-ability benchmarking of closed-loop end-to-end autonomous driving. arXiv preprint
arXiv:2406.03877, 2024.

Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie Chen, Helong Zhou, Qian Zhang, Wenyu
Liu, Chang Huang, and Xinggang Wang. Vad: Vectorized scene representation for efficient au-
tonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion, pp. 8340–8350, 2023.

Ryan Julian, Benjamin Swanson, Gaurav Sukhatme, Sergey Levine, Chelsea Finn, and Karol Haus-
man. Never stop learning: The effectiveness of fine-tuning in robotic reinforcement learning. In
Conference on Robot Learning, pp. 2120–2136. PMLR, 2021.

Nidhi Kalra and Susan M Paddock. Driving to safety: How many miles of driving would it take
to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy and
Practice, 94:182–193, 2016.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Soroush Abbasi Koohpayegani, KL Navaneet, Parsa Nooralinejad, Soheil Kolouri, and Hamed Pir-
siavash. Nola: Compressing lora using linear combination of random basis. In The Twelfth
International Conference on Learning Representations, 2024.

Sergey Levine and Vladlen Koltun. Guided policy search. In International conference on machine
learning, pp. 1–9. PMLR, 2013.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hongyang Li, Chonghao Sima, Jifeng Dai, Wenhai Wang, Lewei Lu, Huijie Wang, Jia Zeng, Zhiqi
Li, Jiazhi Yang, Hanming Deng, et al. Delving into the devils of bird’s-eye-view perception: A
review, evaluation and recipe. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2023.

Qifeng Li, Xiaosong Jia, Shaobo Wang, and Junchi Yan. Think2drive: Efficient reinforcement
learning by thinking in latent world model for quasi-realistic autonomous driving (in carla-v2).
arXiv preprint arXiv:2402.16720, 2024.

Soon Hoe Lim, N Benjamin Erichson, Liam Hodgkinson, and Michael W Mahoney. Noisy recurrent
neural networks. Advances in Neural Information Processing Systems, 34:5124–5137, 2021.

Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.

Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela L Rus, and Song
Han. Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye view representation. In
2023 IEEE international conference on robotics and automation (ICRA), pp. 2774–2781. IEEE,
2023.

Markus Maurer, J Christian Gerdes, Barbara Lenz, and Hermann Winner. Autonomous driving:
technical, legal and social aspects. Springer Nature, 2016.

Larry R Medsker, Lakhmi Jain, et al. Recurrent neural networks. Design and Applications, 5(64-67):
2, 2001.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Siyu Teng, Xuemin Hu, Peng Deng, Bai Li, Yuchen Li, Yunfeng Ai, Dongsheng Yang, Lingxi Li,
Zhe Xuanyuan, Fenghua Zhu, et al. Motion planning for autonomous driving: The state of the art
and future perspectives. IEEE Transactions on Intelligent Vehicles, 8(6):3692–3711, 2023.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 34556–34583. PMLR, 2023.

Arun Balajee Vasudevan, Neehar Peri, Jeff Schneider, and Deva Ramanan. Planning with adaptive
world models for autonomous driving. arXiv preprint arXiv:2406.10714, 2024.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforce-
ment learning. arXiv preprint arXiv:1907.02057, 2019.

Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, and Jiwen Lu. Drivedreamer: Towards
real-world-driven world models for autonomous driving. arXiv preprint arXiv:2309.09777, 2023.

Yuqi Wang, Jiawei He, Lue Fan, Hongxin Li, Yuntao Chen, and Zhaoxiang Zhang. Driving into
the future: Multiview visual forecasting and planning with world model for autonomous driving.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14749–14759, 2024.

Benjamin Wexler, Elad Sarafian, and Sarit Kraus. Analyzing and overcoming degradation in warm-
start reinforcement learning. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4048–4055. IEEE, 2022.

Zhe Wu, David Rincon, Quanquan Gu, and Panagiotis D Christofides. Statistical machine learning
in model predictive control of nonlinear processes. Mathematics, 9(16):1912, 2021.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey of autonomous
driving: Common practices and emerging technologies. IEEE access, 8:58443–58469, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Guangxiang Zhu, Minghao Zhang, Honglak Lee, and Chongjie Zhang. Bridging imagination and
reality for model-based deep reinforcement learning. Advances in Neural Information Processing
Systems, 33:8993–9006, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix

A PROOF OF UPPER BOUND OF PREDICTION ERROR

We first present the results on the upper bound of the prediction error in Lemma 1 below. For brevity,

we denote M = BVBU
(BW)k−1
BW−1 , Ψk(δ, n) = ln +3

√
log(2

δ)
2n +O

(
d

MBa(1+
√

2 log(2)k)
√

n

)
, where d is the

dimension of the latent state representation and N1 = LhLzLaUV , N2 = LhLzVW + LzV A.
Then we obtain the following result on the upper bound of the prediction error.

Lemma 1 Under Assumptions 1 and 2, we have that with probability at least 1 − δ, the prediction
error ϵk, for k ≥ 1, is upper bounded by

ϵK ≤
K∑
j=1

N j
1

(√
Ψh(δ, n) + 1/δ(N2Ex + 2hBx(EP̂ − EP))

)
:= Eδ,K

Proof. We decompose the prediction error into two terms,
ϵk = (xk − x̄k) + (x̄k − x̂k) (5)

where x̄k is the underlying true state representation.

• (xk − x̄k): distribution shift between the pretraining task and the new task
• (x̄k − x̂k): the generalization error of the pre-trained RNN model on the pre-training task.

Next, we derive the upper bound for each term respectively.

Upper bound for (xk − x̄k). Let the expected total-variation distance between the pretraining task
to be P̂ (x′|x, a) and the new task to be P (x′|x, a) be upper bounded by EP , i.e., Eπ[DTV(P ||P̄)] ≤
EP .

Following the same line as in Lemma B.2 Janner et al. (2019), we assume
max
t

Ex∼P t(z)DKL

(
P (x′ | x) ∥P̄ (x′ | x)

)
≤ EP ,

and the initial distributions are the same.

Then we have the marginal state visitation probability is upper bounded by
1

2

∑
x

|ρt+k(x)− ρ̄t+k(x)| ≤ kEP .

Meanwhile, for simplicity, we define the following notations to characterize the prediction error at
k time step.

E[xt+k] =ρk ≥ 0,

E[x̄t+k] =ρ̄k ≥ 0,

ϵ̄k :=xk − x̄k,

where ρk = Ex∼ρk(x)[x] =
∑
x xρ

k(x) is the mean value of the marginal visitation distribution at
time step k (starting from time step 0).

Then we obtain the upper bound for the non-stationary part of the prediction error as follows,

E[ϵ̄k] :=ρk − ρ̄k ≤ 2kBxEP

Upper bound for (x̄k − x̂k). We consider the setting where RNN model is obtained by training on
n i.i.d. samples of state-action-state sequence {xt, at, xt+1} and the empirical loss is ln with loss
function f . Denote ϵRNN

k := x̄k − x̂k. The RNN is trained to map the one step input, i.e., xt, at, to
the output xt+1. Particularly, the world model leverage the RNN to make prediction over the future
steps. Following the standard probably approximately correct (PAC) learning analysis framework,
we first recall the following results Wu et al. (2021) on the RNN generalization error. For brevity,

we denote M = BVBU
(BW)k−1
BW−1 , Ψk(δ, n) = ls +3

√
log(2

δ)
2n +O

(
d

MBa(1+
√

2 log(2)k)
√

n

)
, where d is the

dimension of the latent state representation

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lemma 2 (Generalization Error of RNN) Assume the weight matrices satisfy Assumption 1 and
the input satisfies Assumption 2. Assume the training and testing datasets are drawn from the same
distribution. Then with probability at least 1 − σ, the generalization error in terms of the expected
loss function has the upper bound as follows,

E[f(xi,t+k − x̄i,t+k] ≤ ln + 3

√
log
(
2
δ

)
2n

+O

(
Lrdy

dMBa(1 +
√

2 log(2)k)√
n

)

In particular, the results in Lemma 2 considers the least square loss function and the generalization
bound only applies to the case when the data distribution remains the same during the testing. In
our case, since the testing and training sets are collected from the same simulation platform thus
following the same dynamics. For simplicity, in our problem setting, we assume the underlying
distribution of input {xt, at} is assumed to be uniform. Subsequently, we establish the upper bound
for the generalization error. Let ϵt+k = xi,t+k− x̄i,t+k, then we have, with probability at least 1−δ,

ϵRNN
k ≤

√
Ψk(δ, n) (6)

Error Accumulation and Propagation. We first recall the decomposition of the prediction error as
follows.

ϵk = ϵRNN
k + ϵ̄k (7)

Then by using the Lipschitz properties of the activation functions and Assumption 2, we obtain the
upper bound for the error,

ϵk =ϵRNN
k + ϵ̄k

≤ϵRNN
t+k + LhLzV (Wϵx,t+k + ULaϵx,t+k−1)

=ϵRNN
t+k + LhLzVWϵx,t+k + LhLzV ULaϵx,t+k−1

=ϵRNN
t+k + (LhLzVW + LzV A)ϵi,x,t+k + LhLzV ULaϵi,x,t+k−1

:=Mt+k +Nϵx,t+k−1 (8)

where

Mt+k :=ϵRNN
t+k + (LhLzVW + LzV A)ϵx,t+k

N :=LhLzV ULa.

Notice that in the stationary part of the prediction error, we have |ϵx,t+k| = |ϵt+k|. Furthermore,
by abuse of notation, we apply Equation (8) recursively and obtain the relationship between the
prediction error at k rollout horizon and the gap from the input, i.e.,

ϵt+k ≤Mt+k +Nϵt+k−1

≤Mt+k +NMt+k−2

≤ · · ·

≤
k∑
h=0

NhMt+k−h +Nkϵt

Taking expectation on both sides gives us,

E[ϵt+k] ≤
k∑
h=0

NhE[Mt+k−h] +NkE[ϵt]

≤
k∑
h=0

Nh(2hBxEP +N1Ex +E[ϵRNN
t+h]),

where N1 = LhLzVW + LzV A.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The Upper Bound of the Prediction Error. Then by invoking Markov inequality, we have the
upper bound for ϵt with probability at least 1− δ as follows,

ϵt+k ≤
k∑
h=1

Nh

(
1

δ
(2hBxEP +N1Ex) +

√
Ψt(n, δ)

)
:= Eδ,t

B PROOF OF THEOREM 1

Next, we quantify the performance gap when using the pre-trained policy and model in the current
task.

η − η̂ = Ez∼P,a∼πω,WMϕ

[
K∑
i=1

γir(zi, ai) +Q(zK , aK)

]
−Ez∼P̂ ,a∼πω,WMϕ

[
K∑
i=1

γir(zi, ai) +Q(zK , aK)

]

=

(
Ez∼P,a∼πω,WMϕ

[
K∑
i=1

γir(zi, ai)

]
−Ez∼P̂ ,a∼πω,WMϕ

[
K∑
i=1

γir(zi, ai)

])
+ γK

(
Ez∼P,a∼πω,WMϕ [Q(zK , aK)]−Ez∼P̂ ,a∼πω,WMϕ

[Q(zK , aK)]
)

(9)

Note the first term on the RHS is associated with the modeling error and the sub-optimality of the
policy, while the second term is only relevant to modeling error. In what follows, we recap the
formulation for world-model based RL.

Then, by follow the same line as in Janner et al. (2019), let Γ := 1−γL−1

1−γ Lr(1+Lπ)+γLLQ(1+Lπ),
Emax = maxt Eδ,t and LQ = Lr/(1 − γ). Meanwhile, we denote the policy divergence to be
Eπ := maxzDTV(π|π̂). Let the expected total-variation distance between the true state transition
probability P̂ (z′|z, a) and the predicted (current tasks) one P (z′|z, a) be upper bounded by EP̂ , i.e.,
Eπ[DTV(P̃ ||P̂)] ≤ EP̂ . Then we obtain the first term is upper bounded by

Lemma 3 Given Assumption 3 holds, the first term in Equation (9) is upper bounded by,

Γ

(
2γ(EP̂ + 2Eπ)

1− γK
+

4rmaxEπ
1− γ

)
(10)

By using the definition of Q-function and the upper bound of the prediction error in Lemma 1, we
obtain that the second term in Eqn. 9 is upper bounded by

γK
Emax

1− γ

By combining the upper bounds of the two terms, we obtain the upper bound in Theorem 1.

B.1 DERIVATION OF C1 AND C2

Next, we derive the parameter C1 and C2 in AdaWM (ref. Section 2.1).

The RHS of the inequality in Theorem 1 can be divided into two parts, i.e.,(
γK
Emax

1− γK
+ Γ

2γEP̂
1− γK

)
+ Γ

(
4rmaxEπ
1− γ

+
4γEπ
1− γK

)
,

where the first part is relevant to the dynamics model mismatch and the second part is related to the
policy mismatch. Evidently, when the first term is larger than the second one, we have the dynamics
mismatch to be more dominant, i.e.,

(
γK
Emax

1− γK
+ Γ

2γEP̂
1− γK

)
> Γ

(
4rmaxEπ
1− γ

+
4γEπ
1− γK

)
→EP̂ ≥

(
2rmax(1− γk)/(γ − γ2) + 2

)
Eπ −

γK−1Emax

2Γ
:= C1Eπ − C2,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where C1 =
(
2rmax(1− γk)/(γ − γ2) + 2

)
and C2 = γK−1Emax

2Γ .

Similarly, we obtain that when Eπ ≥ 1
C1
EP̂ + C2

C1
, the policy mismatch is more dominant. To

summarize, we have,

• Update dynamics model if EP̂ ≥ C1Eπ − C2, where C1 =
(
2rmax(1− γk)/(γ − γ2) + 2

)
and

C2 = γK−1Emax

2Γ which implies that the errors from the dynamics model are the dominating cause
of performance degradation, and improving the model’s accuracy will most effectively reduce
the performance gap.

• Update planning policy if Eπ ≥ 1
C1
EP̂ + C2

C1
which indicates that the performance degradation

is more sensitive to suboptimal actions chosen by the policy, and refining the policy will be the
most impactful step toward performance improvement.

C EXPERIMENTS DETAILS

CARLA Environment The vehicle’s state consists of two primary sources of information: envi-
ronmental observations and the behavior of surrounding vehicles. Environmental observations are
captured through sensors such as cameras, radar, and LiDAR, providing information about objects
in the environment and their geographical context. Following standard approaches Bansal et al.
(2018); Chen et al. (2023), we represent the vehicle’s state using a bird’s-eye view (BEV) semantic
segmentation image of size 128× 128.

In our experiments, we use a discrete action space. At each time step, the agent selects both acceler-
ation and steering angle. The available choices for acceleration are [−2, 0, 2], and for steering angle
are [−0.6,−0.2, 0, 0.2, 0.6].
We design the reward as the weighted sum of six different factors, i.e.,

Rt = w1Rsafe + w2Rcomfort + w3Rtime + w4Rvelocity + w5Rori + w6Rtarget,

In particular,

• Rsafe is the time to collision to ensure safety
• Rcomfort is relevant to jerk behavior and acceleration
• Rtime is to punish the time spent before arriving at the destination
• Rvelocity is to penalize speeding when the velocity is beyond 5m/s and the leading vehicle is

too close
• Rori is to penalize the large orientation of the vehicle
• Rtarget is to encourage the vehicle to follow the planned waypoints

CARLA Benchmark tasks. We use the same configuration for scriveners and routes as defined
in the Bench2Drive dataset Jia et al. (2024). In particular, we consider the following tasks:

• SignalizedJunctionRightTurn Town03 Route26775 Weather2 (Pre-RTM03)
• NoScenario Town03 Route27530 Weather25 (ROM03)
• NonSignalizedJunctionRightTurn Town12 Route7979 Weather0 (RTD12)
• SignalizedJunctionLeftTurn Town03 Route26700 Weather22 (LTM03)
• NonSignalizedJunctionLeftTurn Town03 Route27000 Weather23 (LTD03)

The evaluation metric is evaluated when the agent is navigating along the pre-determined waypoints.
Below are the list of the tasks configuration considered in our experiments.

Pre-RTM03
Pre −RTM03 : &S i g n a l i z e d J u n c t i o n R i g h t T u r n T o w n 0 3 R o u t e 2 6 7 7 5 W e a t h e r 2

env :
wor ld :

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

town : Town03
Weather : 2
Route : 26775

name : Pre −RTM03
o b s e r v a t i o n . e n a b l e d : [camera , c o l l i s i o n , b i r d e y e w p t]
<<: * c a r l a w p t
l a n e s t a r t p o i n t : [6 . 0 , −101 .0 , 0 . 1 , −90 .0]
e g o p a t h : [[6 . 0 , −101 .0 , 0 . 1] , [−126 , 214 , 0 . 1]]
u s e r o a d w a y p o i n t s : [True , F a l s e]
u s e s i g n a l : True

ROM03
ROM03: &NoScenar io Town03 Route27530 Weather25

env :
wor ld :

town : Town03
Weather : 25
Route : 26530

name : ROM03
o b s e r v a t i o n . e n a b l e d : [camera , c o l l i s i o n , b i r d e y e w p t]
<<: * c a r l a w p t
l a n e s t a r t p o i n t : [1 2 . 0 , 2 1 . 0 , 0 . 1 , −90 .0]
e g o p a t h : [[1 2 . 0 , 2 1 . 0 , 0 . 1] , [2 2 6 , 132 , 0 . 1]]
u s e r o a d w a y p o i n t s : [True , F a l s e]
u s e s i g n a l : True

RTD12
RTD12 : &N o n S i g n a l i z e d J u n c t i o n R i g h t T u r n T o w n 1 2 R o u t e 7 9 7 9 W e a t h e r 0

env :
wor ld :

town : Town12
Weather : 0
Route : 7979

name : RTD12
o b s e r v a t i o n . e n a b l e d : [camera , c o l l i s i o n , b i r d e y e w p t]
<<: * c a r l a w p t
l a n e s t a r t p o i n t : [2 7 . 0 , 1 0 1 . 0 , 0 . 1 , −90 .0]
e g o p a t h : [[2 7 . 0 , 1 0 1 . 0 , 0 . 1] , [−89 , 231 , 0 . 1]]
u s e r o a d w a y p o i n t s : [True , F a l s e]
u s e s i g n a l : F a l s e

LTM03
LTM03 : &S i g n a l i z e d J u n c t i o n L e f t T u r n T o w n 0 3 R o u t e 2 6 7 0 0 W e a t h e r 2 2

env :
wor ld :

town : Town03
Weather : 22
Route : 26700

name : LTM03
o b s e r v a t i o n . e n a b l e d : [camera , c o l l i s i o n , b i r d e y e w p t]
<<: * c a r l a w p t
l a n e s t a r t p o i n t : [1 1 . 0 , −21 .0 , 0 . 1 , −90 .0]
e g o p a t h : [[1 1 . 0 , −21 .0 , 0 . 1] , [−71 , 127 , 0 . 1]]
u s e r o a d w a y p o i n t s : [True , F a l s e]
u s e s i g n a l : True

LTD03

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Dimension L

GRU recurrent units 2048
CNN multiplier 64

Dense hidden units 768
MLP layers 4

Parameters 77M

Table 4: Model Sizes Hafner et al. (2023).

LTD03 : &N o n S i g n a l i z e d J u n c t i o n L e f t T u r n T o w n 0 3 R o u t e 2 7 0 0 0 W e a t h e r 2 3
env :

wor ld :
town : Town03
Weather : 23
Route : 27000

name : LTD03
o b s e r v a t i o n . e n a b l e d : [camera , c o l l i s i o n , b i r d e y e w p t]
<<: * c a r l a w p t
l a n e s t a r t p o i n t : [9 . 0 , −47 .0 , 0 . 1 , −90 .0]
e g o p a t h : [[9 . 0 , −47 .0 , 0 . 1] , [8 3 , 229 , 0 . 1]]
u s e r o a d w a y p o i n t s : [True , F a l s e]
u s e s i g n a l : F a l s e

D TERMINOLOGY

In this work, we distinguish world model and dynamics model. The key difference lies in their
scope and functionality. A world model Ha & Schmidhuber (2018) is a comprehensive internal
representation that an agent builds to understand its environment, including not just the state transi-
tions (dynamics) but also observations, rewards, and potentially agent intentions. It enables agents
to simulate future trajectories, plan, and predict outcomes before acting. In contrast, a dynamics
model is a more specific component focused solely on predicting how the environment’s state will
evolve based on the current state and the agent’s actions. While the dynamics model predicts state
transitions, the world model goes further by incorporating how the agent perceives the environment
(observation model) and the rewards it expects to receive (reward model).

E WORLD MODEL TRAINING

We use Dreamer v3 Hafner et al. (2023) structure, i.e., encoder-decoder, RSSM Hafner et al. (2019),
to train the world model and adopt the Large model for all experiments with dimension summarized
in Table 4. We first restate the hyper-parameters in Table 5.

Learning BEV Representation. The BEV representation can be learnt by using algorithms such
as BevFusion Liu et al. (2023), which is capable of unifying the cameras, LiDAR, Radar data into
a BEV representation space. In our experiment, we leverage the privileged information provided by
CARLA Dosovitskiy et al. (2017), such as location information and map topology to construct the
BEVs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Name Symbol Value
General

Replay capacity (FIFO) — 106

Batch size B 16
Batch length T 64
Activation — LayerNorm+SiLU

World Model
Number of latents — 32
Classes per latent — 32

Reconstruction loss scale βpred 1.0
Dynamics loss scale βdyn 0.5

Representation loss scale βrep 0.1
Learning rate — 10−4

Adam epsilon ϵ 10−8

Gradient clipping — 1000

Actor Critic
Imagination horizon H 15

Discount horizon 1/(1− γ) 333
Return lambda λ 0.95

Critic EMA decay — 0.98
Critic EMA regularizer — 1

Return normalization scale S Per(R, 95)− Per(R, 5)
Return normalization limit L 1
Return normalization decay — 0.99

Actor entropy scale η 3 · 10−4

Learning rate — 3 · 10−5

Adam epsilon ϵ 10−5

Gradient clipping — 100

Table 5: Dreamer v3 hyper parameters Hafner et al. (2023).

World Model Training. The world model is implemented as a Recurrent State-Space Model
(RSSM) Hafner et al. (2019; 2023) to learn the environment dynamics, encoder, reward, continuity
and encoder-decoder. We list the equations from the RSSM mode as follows:

RSSM


Sequence model: ht = fϕ(ht−1, zt−1, at−1)

Encoder: zt ∼ qϕ(zt|ht, xt)
Dynamics predictor: ẑt ∼ pϕ(ẑt|ht)
Reward predictor: r̂t ∼ pϕ(r̂t|ht, zt)
Continue predictor: ĉt ∼ pϕ(ĉt|ht, zt)
Decoder: x̂t ∼ pϕ(x̂t|ht, zt)

(11)

We follow the same line as in Dreamer v3 Hafner et al. (2023) to train the parameter ϕ. We include
the following verbatim copy of the loss function considered in their work.

Given a sequence batch of inputs x1:T , actions a1:T , rewards r1:T , and continuation flags c1:T ,
the world model parameters ϕ are optimized end-to-end to minimize the prediction loss Lpred, the
dynamics loss Ldyn, and the representation loss Lrep with corresponding loss weights βpred = 1,
βdyn = 0.5, βrep = 0.1:

L(ϕ) .
= Eqϕ

[∑T
t=1(βpredLpred(ϕ) + βdynLdyn(ϕ) + βrepLrep(ϕ))

]
. (12)

Lpred(ϕ)
.
= − ln pϕ(xt|zt, ht)− ln pϕ(rt|zt, ht)− ln pϕ(ct|zt, ht)

Ldyn(ϕ)
.
= max

(
1,KL[sg(qϕ(zt|ht, xt))|| pϕ(zt|ht)]

)
Lrep(ϕ)

.
= max

(
1,KL[qϕ(zt|ht, xt) ||sg(pϕ(zt|ht))]

) (13)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Actor-Critic Learning. We consider the prediction horizon to be 16 as the same as in Dreamer v3
while training the actor-critic networks. We follow the same line as in Dreamer v3 and consider the
actor and critic defined as follows.

Actor: at ∼ πθ(at|xt)
Critic: vψ(xt) ≈ Epϕ,πθ

[Rt],
(14)

where Rt
.
=
∑∞
τ=0 γ

τrt+τ with discounting factor γ = 0.997. Meanwhile, to estimate returns that
consider rewards beyond the prediction horizon, we compute bootstrapped λ-returns that integrate
the predicted rewards and values:

Rλt
.
= rt + γct

(
(1− λ)vψ(st+1) + λRλt+1

)
RλT

.
= vψ(sT) (15)

E.1 TRAINING DATASET: BENCH2DRIVE

In our experiments, we use the open source Bench2Drive dataset Jia et al. (2024); Li et al. (2024),
which is a comprehensive benchmark designed to evaluate end-to-end autonomous driving (E2E-
AD) systems in a closed-loop manner. Unlike existing benchmarks that rely on open-loop evalua-
tions or fixed routes, Bench2Drive offers a more diverse and challenging testing environment. The
dataset consists of 2 million fully annotated frames, collected from 10,000 short clips distributed
across 44 interactive scenarios, 23 weather conditions, and 12 towns in CARLA. This diversity al-
lows for a more thorough assessment of autonomous driving capabilities, particularly in corner cases
and complex interactive situations that are often underrepresented in other datasets.

A key feature of Bench2Drive is its focus on shorter evaluation horizons compared to the CARLA
v2 leaderboard. While the CARLA v2 leaderboard uses long routes (7-10 kilometers) that are chal-
lenging to complete without errors, Bench2Drive employs shorter, more manageable scenarios1.
This approach allows for a more granular assessment of driving skills and makes the benchmark
more suitable for reinforcement learning applications.

Checkpoints. In particular, for VAD and UniAD, we directly use the checkpoint provide by Jia
et al. (2024), which are trained on the whole Bench2drive dataset.

F VISUALIZATION OF MODEL PREDICTION

In Figure 6, Figure 7 , Figure 8,Figure 9 and Figure 10, we show the comparative visualization
of world model predictions across five different training settings (AdaWM, Alternate finetuning,
model-only finetuning, policy-only finetuning, and no finetuning) reveals distinct performance pat-
terns in the ROM03 task over 60 time steps. In each visualization set, the ego vehicle (red car) and
surrounding agents (green cars) are shown with their respective planned trajectories (blue line for
ego, yellow lines for others) across three rows: ground truth bird’s-eye view (BEV), world model
predicted BEV, and prediction error. All configurations exhibit increasing prediction errors as the
time horizon extends further into the future, consistent with the growing uncertainty in long-term
predictions. However, AdaWM demonstrates superior performance with notably smaller prediction
errors compared to the other finetuning approaches, suggesting its enhanced capability in maintain-
ing accurate world model predictions over extended time horizons.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 6: Prediction results for 65 time steps in AdaWM.

Figure 7: Prediction results for 65 time steps with alternate finetuning mechanism.

Figure 8: Prediction results for 65 time steps with only model finetuning.

Figure 9: Prediction results for 65 time steps with only policy finetuning.

Figure 10: Prediction results for 65 time steps without finetuning.

23

	Introduction
	AdaWM: Adaptive World Model based Planning
	Impact of Mismatches on Performance Degradation
	AdaWM: Mismatch Identification and Alignment-driven Finetuning

	Experimental Results
	Performance Comparisons
	Ablation Studies

	Conclusion
	Proof of Upper bound of Prediction Error
	Proof of thm:upper
	Derivation of C1 and C2

	Experiments Details
	Terminology
	World Model Training
	Training Dataset: Bench2Drive

	Visualization of Model Prediction

