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ABSTRACT

Physiological time-series signals e.g., measured through wearables have received
increasing interest as biomarkers for sleep disorders, stress, anxiety, and other psy-
chiatric disorders, or health conditions. However, open source datasets are scarce
making it difficult to develop strong prediction models for new application areas
without extensive prior data collection. We investigate the possibilities of using
existing datasets as well as different simulation strategies to create a foundational
model transferable to new applications. We evaluate transferability for four dif-
ferent tasks (open source data) and compare the performance of transfer learning
and simulated data augmentations.

1 INTRODUCTION

Previous studies have shown that physiological signals are affected by stress, of which heart rate
(HR) is the most prominent, but blood volume pressure (BVP), electrodermal activity (EDA), and to
some extent temperature (TEMP) have also been related to stress (Giannakakis et al., 2022). In other
domains, like computer vision, it is well known that transfer learning and augmented or simulated
data in addition have the potential to improve model performance (Wang et al., 2019). (Tremblay
et al., 2018) found that using only synthetic training data created by domain randomization and
thereafter fine-tuning with real-life images performed better results than a model trained only on
real-world data. In addition, recent studies (Minor et al., 2020; Alkhalifah et al., 2022) found that
using raw simulated data without any augmentation had significantly worse performance compared
to using an augmented version.

State-of-the-art models for classifying and labeling physiological data consist of several deep-
learning as well as classic machine learning models. As we are interested in transfer learning,
we focus on deep learning architectures. Hu et al. (2022) proposed a well performing deep learning
model that combines a convolutional neural network (CNN), a transformer-based neural network,
and a feedforward neural network (FNN) to classify arrhythmias based on ECG data. Deznabi &
Fiterau (2023) created a framework, MultiWave, that can handle signals sampled at different fre-
quencies, a common issue when dealing with multivariate time series data, and also E4 data. Their
work uses wavelets to decompose signals into sub-signals handled by separate components of the
model, where each output is combined in a gating mechanism. With this technique, they were able to
obtain ‘top performance in stress and affect detection from wearables’(Deznabi & Fiterau, 2023). A
recent study (Theunissen et al., 2021) successfully applied both an autoencoder and a convolutional
autoencoder to predict furnace blowback events from multivariate time series data. Their results
seem promising for building an autoencoder, which can be used for event prediction for time series
data.

Multiple studies have seen a gain in performance by applying pre-trained models for classifying
time series data across multiple domains Zhang et al. (2022); McDermott et al. (2021); Yeh et al.
(2023). In one study Zhang et al. (2022) an encoder is pre-trained using self-supervised learning,
and thereafter fine-tuned to many different independent classification tasks. Using the pre-trained
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model they achieve an average increase of 15.4% in F1-score compared to state-of-the-art baseline
methods.

In this work, we investigate the possibilities of developing a foundational model, increasing perfor-
mance, by using simulations for augmentations as well as transfer learning. We propose a CNN-
based autoencoder to make a foundational model for physiological time series signals with event
prediction and evaluate the event predictions on four different tasks (datasets): Stress under alcohol
use disorder, stress while driving, stress while puzzling, and stress during speech.

2 METHODS

2.1 DATASETS

We use four open source datasets, which are ADARP (Sah et al., 2022), AffectiveROAD (Haouij
et al., 2018), EmoPairCompete (this dataset is anonymized), and WESAD (Schmidt et al., 2018).
The four datasets are selected, because they are physiological datasets with a stress factor, but each
with a different stressor. This adds variability and expands the use of the model to a larger domain
within stress prediction. Furthermore, for simplicity of the task and continuity, the four datasets used
are all collected with the Empatica E4 wristband Empatica (2023b), which is described in appendix
A.

ADARP: A Multi Modal Dataset for Stress and Alcohol Relapse Quantification in Real Life
Setting: In (Sah et al., 2022) a proof-of-concept study was conducted at Washington State Univer-
sity, to examine, whether a wearable sensor can be used to detect stress in patients suffering from
alcohol use disorder (AUD). 11 participants (10 women) were recruited and all received mental
health and AUD treatment at a treatment agency in the state of Washington. Participants were on
average involved in the study for 14 days. During the initial session, the participants were given
an E4 wristband and told to wear it during the day and only take it off when sleeping or at times
when the device could be damaged. The participants were instructed to press the event button when
they felt “more stressed, overwhelmed, or anxious than usual” (Sah et al., 2022). In total 1698
hours of physiological data were collected using E4, with an average of 11.5 hours each day and the
participants tagged 409 events in total.

AffectiveROAD Dataset (ROAD): The AffectiveROAD dataset (Haouij et al., 2018) is from an
experiment with 14 car drives, from 10 different participants. All participants drove the same route
on three different types of roads. Each participant wore two Empatica E4 wristbands, one on each
wrist, together with various other sensors, which are not relevant in this study. We limit our use to
the E4 wristband on the left wrist since for most experiments the participants were asked to wear the
wristband on their nondominant hand. Over the full drive, the driver has been exposed to different
stressful driving situations. Additionally, the drivers were observed and subjectively evaluated on a
stress metric between 0 and 1, where 0 was not stressed, and 1 was extremely stressed. These scores
were validated by the driver after the session. We used two classes; with 0.75 as our threshold for
stress, resulting in only classifying high stress periods, inspired by Bustos et al. (2021).

EmoPairCompete1: The data is collected through an experiment designed to study emotion and
frustration through prosocial and competitive behaviors. The dataset is comprised of 28 participants
in a semi-controlled stress-inducing task as well as rest periods, each of 5 minutes. We will classify
signals into these two settings as stress or no-stress. During the experiment, all participants wore an
Empatica E4 wristband on their nondominant hand.

WESAD: Multimodal Dataset for Wearable Stress and Affect Detection: WESAD (Schmidt
et al., 2018) is another dataset that combines physiological data with stress exposure. This dataset
contains data from 15 participants. Each participant wore, among other sensors, an Empatica E4
on their non-dominant hand. The data was collected over two hours, in which the participants
went through different scenarios. In the stressful scenario, they were exposed to the Trier Social
Stress Test (TSST) (Kirschbaum et al., 1993). Here, they had to give a 5-minute speech, which the
participants were told could boost their career options. Thereafter, they needed to count down from
2023 in steps of 17 and start over if they made a mistake. Data from this situation are labeled as
stress. Furthermore, there was a baseline scenario, in which participants were sitting/standing at a
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table and provided with magazines containing neutral content. Additionally, they had to watch a set
of funny video clips in the amusing scenarios. The baseline scenario and the amusement scenario are
combined into a non-stress category. In Schmidt et al. (2018) they, among other things, performed a
binary classification task. With their classification, they obtained an accuracy of around 0.88 and an
F1 score of 0.86 using physiological data from the wrist in a random forest model.

2.2 SIMULATION STRATEGIES

To simulate the four physiological signals (HR, BVP, EDA, TEMP) from the E4 wristband, two
Python packages were used, Neurokit2 (Makowski et al., 2021) and JOS-3 (Takahashi et al., 2021).
Neurokit2 can generate EDA (electrodermal activity), ECG (electrocardiography), and PPG (pho-
toplethysmogram) from which we derived BVP and HR. JOS-3 simulates thermal physiology data
and we used it to generate human skin temperatures. It is important to note that each physiological
signal is generated independently, and therefore the correlation between the signals is lacking. Fur-
thermore, we did not find documentation regarding age and physical traits which could be used as
proxies during simulation, to create some of the correlation structures between the individual phys-
iological signals. For BVP, EDA, and HR we had two different ways of simulating the data (Plain
and Fragmented).

Plain: The BVP and HR signals are connected, thus the HR can be calculated based on the BVP
value rather than simulating an unrelated HR signal. Using the interbeat interval, we can transform
it into beats per minute, subsequently, we will down-sample the data to 1 Hz to mimic the data
from the E4 wristband. After extracting the heart rate we scaled the BVP signal such that it has a
mean of 0 and a max of a randomly selected value, as seen in Appendix 4. We simulated EDA data
with a sampling rate of 1000 Hz. The next step was to scale the data such that it had a maximum
value above 0 and a minimum below 20. The final step was to downsample the data to 4Hz using
resampling. For simulating TEMP data, we used JOS-3. The package provides a detailed model,
which can be used to simulate thermal physiology data of human skin temperature at the wrist.

Fragmented: Simulating 3 seconds signal and varying input parameter for the Neurokit’s simulate
functions. To create real-world-like PPG data, we chose to first simulate electrocardiogram (ECG)
data using ECGSYN described by McSharry et al. (2003) to obtain HR for a 9-second segment.
Using these HR segments, we further divided it into 3-second intervals. The HR value in the first
second of each segment was used as HR input to simulate 3 seconds of BVP data at 64Hz. This pro-
cess continued by concatenating each interval together until we had simulated the desired interval.
Lastly, we scaled the BVP data in the same way as we did in the plain method. A visualization of
the process can be seen in Appendix 4.

2.3 MODEL

We use a semi-supervised CNN-based autoencoder with two frequency inputs, which are concate-
nated in the embedded latent layer. The model has two heads, one using a reconstruction loss
(unsupervised) calculated with MSELoss, and the other a classification loss (supervised) calculated
using BCEWithLogitsLoss, see Fig. 1. When pre-training and transferring a model, we use three of
the datasets combined with either plain, fragmented, or no-simulated data. When we do not use a
transfer model we only train using the target data and one of the three simulation strategies (Fig. 2
in Appendix). Code availability GitHub.

3 RESULTS

The results are summarised in Table 1 and 2. The tasks in ADARP, EmoPairCompete, and to
some extent ROAD have better predictions when using 5-minute windows for prediction than 1-
minute windows, whereas this seems to be reversed for WESAD. Even so, the results for WESAD
are significantly improved when using transfer learning with a model pre-trained on the other three
datasets.

In general, there is a performance improvement when using transfer learning, even when the tasks in
the datasets are not directly related and the optimal time windowing differs for the tasks. The frag-
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Figure 1: Model architecture for 1-minute data. The model takes input in both 4Hz and 64Hz,
and each frequency has 3 convolutional layers followed by batch normalization, Leaky ReLu, max
pooling, and dropout. Thereafter by concatenating the two frequency embeddings, we obtain our
bottleneck of 75 nodes. Finally, the four reconstructed signals are outputted stacked together.

Transfer Simulation ADARP EmoPairCompete ROAD WESAD
No No 0.26 (0.10) 0.53 (0.05) 0.55 (0.08) 0.89 (0.04)
No Plain 0.21 (0.06) 0.46 (0.07) 0.56 (0.09) 0.89 (0.04)
No Fragmented 0.21 (0.07) 0.50 (0.05) 0.50 (0.17) 0.84 (0.06)
Yes No 0.25 (0.00) 0.48 (0.07) 0.67 (0.07) 0.95 (0.01)
Yes Plain 0.28 (0.09) 0.51 (0.07) 0.52 (0.09) 0.95 (0.01)
Yes Fragmented 0.22 (0.06) 0.52 (0.03) 0.63 (0.03) 0.96 (0.01)

Table 1: Average F1-score of 10 runs. Standard deviation in parentheses. For 1-minute windows.

Transfer Simulation ADARP EmoPairCompete ROAD WESAD
No No 0.39 (0.15) 0.54 (0.13) 0.75 (0.16) 0.86 (0.10)
No Plain 0.56 (0.13) 0.49 (0.22) 0.75 (0.08) 0.88 (0.06)
No Fragmented 0.63 (0.10) 0.56 (0.21) 0.65 (0.18) 0.81 (0.10)
Yes No 0.52 (0.09) 0.60 (0.04) 0.79 (0.05) 0.74 (0.15)
Yes Plain 0.48 (0.18) 0.54 (0.07) 0.70 (0.04) 0.84 (0.04)
Yes Fragmented 0.59 (0.17) 0.73 (0.05) 0.72 (0.06) 0.93 (0.12)

Table 2: Average F1-score of 10 runs. Standard deviation in parentheses. For 5-minute windows.

mented simulation strategy outperforms the plain strategy under transfer learning but is questionable
or at least varying in performance when transfer learning is not included.

4 DISCUSSION AND CONCLUSION

In this work, we explored the potential of augmentation and transfer learning strategies toward de-
veloping a foundation model for physiological time-series data. As presented in the results, in all
instances, except for EmoPairCompete 1-minute, the predictions are improved by including one or
both of the simulated data and transfer learning methods. Additionally, similar to the results pro-
vided in (Minor et al., 2020; Alkhalifah et al., 2022), we find that using the fragmented simulation
method generally outperforms the plain simulation method, as it augments the data to a greater
extent. However, the general performance is not sufficiently high, and we observe considerable vari-
ability both in conclusions and between runs, indicating a need for continued research into strategies
and methods for models robust to domain shifts and in-the-wild applications.
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A EMPATICA E4

To ensure the data is ecologically valid, we need a method to capture data while participants are
unconstrained by traditional laboratory settings. The benefit of collecting data in the wild is that it
offers the opportunity to capture data from individuals in their natural environment and provides a
more true-to-life basis. Therefore, wearable sensors such as wristbands and smartwatches present
great opportunities for the non-invasive and convenient acquisition of multimodal signals. There
exists a vast range of different brands and models of portable devices to collect signals with varying
precision. Empatica’s E4 wristband (Empatica, 2023b) (Garbarino et al., 2014) is classified as an IIa
medical device (Group) in the European Union and approved by The US Food and Drug Adminis-
tration (FDA)(Emp, 2024). This supports the E4 wristband as a non-invasive medical device to be
able to collect data in naturalistic settings. For this thesis, we will only examine the data collected
from an E4 wristband. The wristband has four different sensors:

1. A photoplethysmography (PPG) sensor to measure blood volume pulse (BVP), from where
heart rate (HR) among others can be derived.

2. An electrodermal activity sensor to measure electrodermal activity (EDA).
3. An infrared thermopile sensor to measure skin temperature (TEMP).
4. A 3-axis accelerometer sensor, to capture movements of the wristband (ACC).

Three signals are measured with the PPG sensor: BVP, HR, and inter-beat interval (IBI). Both HR
and IBI are calculated from the BVP signal. Heart rate (HR) is extracted by peak detection on the
BVP signal and then smoothing the signal with a window of 10 seconds according to the website
of Empatica2. IBI is also derived based on BVP; however, with movement above 30% of the time,
the variability of heart rate cannot be reliably calculated from the IBI signal. Due to the design and
uncontrolled aspect of in-the-wild recording, IBI and heart rate variability will not be used in this
thesis.

In addition to the four sensors, the wristband includes an event mark button to tag events based on
the need and an internal real-time clock that timestamps the data, including a button press.

A.1 BLOOD VOLUME PULSE (BVP)

BVP is the change in the volume of blood over time and can be detected with a PPG sensor (Empat-
ica, 2023a) and with E4 it is captured at a sample rate of 64Hz. Blood pressure can be described by
different measures such as systolic blood pressure (SBP) and diastolic blood pressure (DBP), among
others. In Giannakakis et al. (2022) 15 different studies have been examined and all of them have
shown a significant increase in SBP and DBP during stress.

A.2 HEART RATE (HR)

HR is the average number of beats in some time interval. The E4 wristband provides this signal at
a sampling rate of 1Hz, which is frequently referred to as beats per minute (BPM) (Rautaharju &
Rautaharju, 2007). According to Giannakakis et al. (2022) and their review, HR is the most notable
feature that significantly increases during stress. Here 23 different studies are examined, where 18
report a significant increase during stress, and the last 5 report no significant difference in HR during
stress.

2https://support.empatica.com/hc/en-us/articles/360029469772-E4-data-HR-csv-explanation
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A.3 ELECTRODERMAL ACTIVITY (EDA)

EDA is a measure of variation in the electrical properties of the skin. It is a general measure, that
can be split into different features, the most commonly used are the tonic (electrodermal level)
and phasic (electrodermal response) part (Boucsein, 2012). Multiple features of EDA have been
reviewed in Giannakakis et al. (2022), where the studies found a significant and a non-significant
increase during stress. Most studies (9) have examined the phasic part of EDA, which are peaks in
the signal typically as a response to a stimulus. Of these 9 studies, 7 reported a significant increase
during stress, and 2 reported no significant difference. With the E4 wristband, the coupling of the
electrodes with the skin can take around 15 minutes and is measured at a sampling rate of 4 Hz.

A.4 SKIN TEMPERATURE (TEMP)

TEMP is the temperature of the skin. They are reported in degrees Celsius (◦C). From the E4 wrist-
band, TEMP is measured on either the left or right wrist with a sampling rate of 4Hz. Giannakakis
et al. (2022) reviewed studies showing either a significant increase or decrease in skin temperature
during stress conditions. These skin temperatures are reported for various locations on the body, but
none of them specifically around the wrist. One study specifically looking at wrist TEMP and stress
did not find significant differences in TEMP during stress (Vinkers et al., 2013).

Variable Description Number of classes
Age All ages from 5 to 70 years old 66
Weather Winter, Spring, Summer, Autumn, and indoors 5
Physical condition Fit, normal, or poor shape 3
Gender Female or male 2

Table 3: The variables we use to create a grid for simulating data for each unique combination of
variables. In total, we have 66 · 5 · 3 · 2 = 1980 different combinations of conditions to simulate.
These variables are realized based on the parameters presented in table 4.

Find model with best
accuarcy+F1-score

in validation set

Pre-train

     Train and validation data

Simulated
Open-
sourceOpen-

sourceOpen-
source

     Test data (Not used in pre-train)

Open-
source

x10

Average F1-score

Fine-tuning

Open-
source

x10

Final result

Figure 2: Validation strategy. One of the three simulation strategies is used for augmenting data in
the training phase with either none, plain simulation, or fragmented simulation data. Three of the
datasets are used for training when transfer learning is deployed. The target dataset is split in 80%
for training, and 10% for both validation and testing.
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Parameter Range/Values Step size
BVP & HR

Standard deviation HR noise [-1, 1] 0.1
Physical condition effect on

average HR
{good = -5 normal = 0,

poor = 5}
Physical condition effect on

standard deviation HR
{good = 10, normal = 8,

poor = 6}
Genders effect on HR {female = +8, male = 0}
The average HR for

5 to 9 years old [70, 115] 1

The average HR for
above 10 years old [60, 100] 1

Scale value for BVP [0.001, 500] 0.001
EDA

Drift for EDA [-0.1, 0.1] 0.001

SCR peak True/False with a
probability of 0.1 for true

EDA amplitude of laplace noise [0.2, 2] 0.01
TEMP

BMI for good physical condition [16, 27] 0.01
BMI for normal physical condition [18.5, 25] 0.01
BMI for poor physical condition [15.5, 18.5] ∪ [25, 40] 0.01
Weight BMI * height* height
Height for 5 to 9-year-olds in m. [1.03, 1.39] 0.01
Height for 10 to 14-year-olds in m. [1.29, 1.7] 0.01
Height for female above 15

year olds in m. [1.5, 1.9] 0.01

Height for male above 15
year olds in m. [1.65, 2.05] 0.01

Humidity based on weather
{winter = 89, spring = 85,

summer = 78, fall = 76,
indoor = 45}

Temperature for winter [-18, 12.5] 0.5
Temperature for spring [-15, 25] 0.5
Temperature for summer [1.5, 32] 0.5
Temperature for fall [-6, 24] 0.5
Temperature for indoor [15, 28] 0.5
Icl for winter [1.10, 1.5] 0.01
Icl for spring [0.5, 1.1] 0.01
Icl for summer [0.3, 0.8] 0.01
Icl for fall [0.5, 1.1] 0.01
Icl for indoor [0.35, 0.9] 0.01

CI based on physical condition {good = 4.2, normal = 3.5,
poor = 2.8}

Wind speed indoor 0.1
Wind speed not indoor [0, 25] 0.1
Posture [sitting, laying, standing]
Activity [1, 4.4] 0.1

Table 4: The parameters for simulating data using Neurokit2 and JOS-3. The parameters are defined
to realize our variables in 3.
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  x minutes

Simulate BVP data Scale BVP data
(BVP scale)

Initial temperature
model

3 seconds 

Simulate skin
temperature

Final temperature
data

Simulate EDA data Scale EDA data
(EDA scale)

Downsample EDA
(FFT)

Extract HR Downsample HR
(Linear)

Figure 3: The plain method.

  x minutes

          9 seconds 

3 seconds 

Simulate BVP data
(ECG_HR)

Scale BVP data
(BVP scale)

Extract HR
(BVP signal)

Downsample HR
(Index)

Simulate EDA data Scale EDA data
(EDA scale)

Downsample EDA
(Index)

Initial temperature
model

Final temperature
data

Simulate skin
temperature

Simulate ECG data
(HR_avg, HR_std)

x3

Figure 4: The fragmented method. Process of simulating BVP and HR data for a given interval of
x minutes using the fragmented method. First, we simulate ECG signals for every 9 seconds. Then
HR for each of the three 3-second intervals is used as input to simulate 3 seconds of BVP signals.
When all x minutes of BVP signals are simulated the HR is extracted from BVP signals based on
the peaks.
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