
Jointly Modelling Uncertainty and Diversity for
Active Molecular Property Prediction

Kuangqi Zhou1∗ Kaixin Wang1 Jian Tang2,3 Jiashi Feng4

Bryan Hooi1 Peilin Zhao5 Tingyang Xu5† Xinchao Wang1†

{kzhou,kaixin.wang}@u.nus.edu jian.tang@hec.ca
jshfeng@gmail.com dcsbhk@nus.edu.sg

{masonzhao,tingyangxu}@tencent.com xinchao@nus.edu.sg

1National University of Singapore 2HEC Montreal
3MILA 4ByteDance 5Tencent AI Lab

Abstract

Molecular property prediction is a fundamental task in AI-driven drug discovery.
Deep learning has achieved great success in this task, but relies heavily on abundant
annotated data. However, annotating molecules is particularly costly because it
often requires lab experiments conducted by experts. Active Learning (AL) tackles
this issue by querying (i.e., selecting) the most valuable samples to annotate, ac-
cording to two criteria: uncertainty of the model and diversity of data. Combining
both criteria (a.k.a. hybrid AL) generally leads to better performance than using
only one single criterion. However, existing best hybrid methods rely on some
trade-off hyperparameters for balancing uncertainty and diversity, and hence need
to carefully tune the hyperparameters in each experiment setting, causing great
annotation and time inefficiency. In this paper, we propose a novel AL method
that jointly models uncertainty and diversity without the trade-off hyperparameters.
Specifically, we model the joint distribution of the labeled data and the model
prediction. Based on this distribution, we introduce a Minimum Maximum Prob-
ability Querying (MMPQ) strategy, in which a single selection score naturally
captures how the model is uncertain about its prediction, and how dissimilar the
sample is to the currently labeled data. To model the joint distribution, we adapt
the energy-based models to the non-Euclidean molecular graph data, by learning
chemically-meaningful embedding vectors as the proxy of the graphs. We perform
extensive experiments on binary classification datasets. Results show that our
method achieves superior AL performance, outperforming existing methods by a
large margin. We also conduct ablation studies to verify different design choices.

1 Introduction
AI-driven drug discovery is an important application of machine learning. In drug discovery pipeline,
a fundamental step is to use computational methods to predict the molecular properties (e.g., toxicity
and binding specificity) of candidate compounds [1, 2]. Recently, deep learning models have achieved
great success in molecular property prediction [1, 3–5], but their high performance relies on a large
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amount of annotation. However, annotating molecules is particularly time-consuming and costly,
since it often requires lab experiments or complex computation [3, 6].

One promising way to alleviate this problem is Active Learning (AL) [7], which aims at finding a
strategy for iteratively querying (i.e., selecting) the most valuable data samples to annotate, so as to
maximize model performance under a low annotation budget. AL strategies query samples mainly
based on two criteria: uncertainty of the model [8], and diversity of queried data [9]. Strategies taking
into account both criteria (a.k.a. hybrid strategies) are recently shown to outperform methods based on
only uncertainty or diversity in many learning tasks [10–12]. Existing best hybrid methods generally
rely on some trade-off hyperparameters for balancing uncertainty and diversity [11–15]. For example,
WAAL [12] requires manually-tuned coefficients to obtain a weighted sum of its uncertainty and
diversity terms. EADA [13] relies on two selection ratios for its two-step selection process. These
trade-off hyperparameters are crucial to the AL performance and hence need to be carefully tuned for
each experiment setting.

However, tuning trade-off hyperparameters can cause substantial inefficiency in AL. For one thing,
since these hyperparameters have a large influence on the outcome of corresponding AL strategies,
the selected samples under different choices of the hyperparameters often vary a lot, and thus the total
annotation cost needed for tuning will greatly exceed the budget. For another, the tuning process can
take a long time, since each AL experiment iterates between query selection and model (re)training
for several rounds. One possible way of addressing this drawback is to tune the hyperparameters
in advance on a dataset with small annotation cost. However, this would be problematic when the
dataset used for tuning is not representative. Indeed, for molecular property prediction, finding a
representative dataset for tuning would be difficult, since the properties of interest vary a lot.

In this paper, we propose a novel AL strategy that naturally takes into account uncertainty and
diversity without the need of trade-off hyperparameters. Our strategy is based on a joint distribution
q(x, y) ≜ p(y|x)p(x), which contains information about both uncertainty and diversity: p(y|x) is the
prediction distribution of the model (with input x and prediction y), which is widely used to define
uncertainty metrics [7, 8, 16]; p(x) is the density of the currently annotated data, which is shown to
be useful for identifying samples that can effectively increase data diversity [11, 12, 17].

Specifically, our strategy operates by first maximizing q(x, y) via varying y, and then minimizing
maxy q(x, y) via varying x. We thus name our strategy Minimum Maximum Probability Querying
(MMPQ). Importantly, we show that the selection score of MMPQ can be viewed as the product of
two terms — the first term leads to samples on which the model has low prediction confidence, while
the second favors samples that are dissimilar to labeled data. In this way, the selected samples are
naturally those that the model is most uncertain about, while at the same time being able to increase
the data diversity.

For modelling the joint distribution, we propose to use an Energy-Based Model (EBM) [18, 19], since
it can explicitly output the desired probability value. For training the EBM, we need to tackle one key
challenge in our setting: the variable x in the joint distribution has a non-Euclidean data structure (i.e.,
a molecule graph), which renders the commonly-used EBM training scheme inapplicable [19, 20].
To address this challenge, we take a learned embedding vector z as a proxy of the non-Euclidean
input x, which allows us to train the EBM on z and y with the commonly-used EBM training
scheme. Specifically, inspired from [21, 22], we learn the embeddings by training an autoencoder
to reconstruct the input SMILES strings, which is an expert-defined sequence representation of
molecules. The EBM is trained by Denoising Score Matching (DSM) [20, 23], i.e., to learn the “Stein
score” [24] of q(x, y), which has been shown to be an efficient and robust EBM training scheme.

To evaluate our MMPQ strategy, we apply it to actively train a commonly-used Graph Neural
Network (GNN) [4] on various benchmark datasets of binary molecular property classification.
Extensive results show that MMPQ enables the GNN to achieve high performance with a limited
annotation budget, significantly outperforming other competitive AL methods. We conduct ablation
studies to verify different design choices of our method. In particular, we show that the uncertainty
and diversity terms make complementary contributions to good performance: the diversity term is
important in early iterations of AL, while the uncertainty term is essential in later iterations.
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2 Related Works
Molecular property prediction is a critical step in drug discovery [1, 2, 5]. Traditional methods (e.g.,
based on density function theory [25]) are too slow to be applied in practice. To resolve this problem,
deep learning methods [1, 3, 4, 26, 27] have been widely proposed, which can be categorized into
two types: (1) descriptor-based methods [26, 27] that represent the input molecules as expert-crafted
molecular descriptors (e.g., fingerprints [28]), and (2) GNN-based methods [1, 3, 4] that directly take
molecule graphs as input. As found in [1, 5], GNNs generally outperform descriptor-based methods,
and thus this work focuses on GNN-based molecular property prediction.

Active learning improves annotation efficiency by iteratively querying samples based on two criteria:
uncertainty of the task learner [8, 16, 29, 30], and/or diversity of queried data [9, 17, 21]. Uncertainty-
based methods define various uncertainty metrics for querying data [8, 10, 16, 30], while diversity-
based methods aim to find a representative subset of the whole dataset by querying diverse samples [9,
21]. Compared to using only uncertainty or diversity, recent works find that combining the two
criteria (a.k.a. hybrid methods) leads to better performance [10, 11, 13–15]. However, existing hybrid
approaches generally need to balance uncertainty and diversity via some trade-off hyperparameters.
For example, WAAL [12] uses manually-tuned coefficients to weight its uncertainty term and
diversity term. EADA [13] adopts a two-stage querying approach, where each stage requires a
prefixed selection ratio. We note that EADA also trains an EBM for active selection. Our method
differs from EADA mainly in 3 aspects. First, the motivation of EADA to adopt EBMs is to
identify out-of-distribution samples, while we use EBMs for modeling the distribution capturing both
uncertainty and diversity. Second, they train their EBM via contrastive divergence [31], while we use
denoising score matching [20]. Third, they need two separate selection steps with different selection
scores, and require two hyperparameters to trade off between uncertainty and diversity, while we only
have one single selection score that naturally captures both uncertainty and diversity.

Apart from the above, some other hybrid methods rely on trade-off hyperparameters during their
model training process [11, 14, 15]. We note that there is an existing hybrid strategy, BADGE [10],
that is also free from trade-off hyperparameters like ours. However, BADGE [10] assumes that task
learner’s prediction is a faithful proxy of the ground-truth label. This may not hold in early AL
iterations on (typically) small molecule datasets, since the task learner would be inaccurate due to
limited training data.

Energy-based models are a class of powerful methods of explicit generative modeling. Recently,
some works [32–35] leverage EBMs for modeling molecular data. To tackle difficulties caused by
the discrete nature of molecule graphs, [32] leverages a dequantization technique, and [33] designs a
diffusion process based on stochastic differential equations. Different from [32, 33], we propose to
train our EBM on a continuous embedding space of molecules. On the other hand, [34, 35] focuses on
molecule conformation generation, which is essentially a continuous problem, since the conformation
of a molecule is represented by the 3D space coordinates of its atoms.

3 Preliminaries
Problem Setting. We consider batch-mode pool-based active learning [7], a practical setting for
deep models. In each AL round, a batch of samples from the unlabeled pool DU are queried according
to a strategy, annotated by an oracle, and added to the labeled pool DL. The updated DL is then used
to train the task learner. A more formal description of this setting is in Appx. A.1.

Notations. A molecule is represented as a graph G = (V,E), with nodes V and edges E corre-
sponding to atoms and chemical bonds. As in [4, 36–38], we are interested in n binary molecular
properties (e.g., toxicity), which are denoted by a label vector y = (y1, · · · , yn) ∈ {0, 1}n, where
yi = 1 or 0 means the molecule has the i-th property or not. A task learner h(·) is trained to predict
the properties. The i-th output of the task learner, h(G)i, specifies a distribution p(yi|G) over the
predicted label of the i-th property of G, which is essentially a Bernoulli distribution with success
probability h(G)i (denoted as Ber(h(G)i)).

Energy-Based Models. EBMs [18] specify probability density or mass functions as follows:

pθ(x) =
exp(−Eθ(x))

Zθ
, (1)
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where x ∈ RD is a random sample, Eθ(x) is the energy function with learnable parameters θ,
and Zθ =

∫
exp(−Eθ(x)) dx is a normalizing constant. By learning θ, we can use an EBM to

approximate a real data distribution, i.e., pθ ≈ pdata.

Denoising Score Matching. DSM [23, 39] is an efficient approach for training EBMs. Here, the
“(Stein) score” of a distribution f(x) is defined as the log-probability’s first-order gradient function
w.r.t. x, i.e., ∇x log f(x). DSM first disturbs pdata(x) with a pre-defined noise distribution pN (x̃|x),
and then trains the EBM via

E x∼pdata(x)
x̃∼pN (x̃|x)

[
1

2
∥∇x log pθ(x̃)−∇x log pN (x̃|x)∥22

]
. (2)

With a proper pN (x̃|x), we can easily obtain ∇xpN (x̃|x) [39].

4 Method
4.1 The Minimum-Maximum-Probability Query Strategy

Our proposed query strategy is based on the joint distribution of two key probability distributions
used in existing works. The first is the prediction distribution of the task learner, i.e., p(y = ŷ|G)
(abbreviated as p(ŷ|G)), which is widely used to define different uncertainty metrics [7, 8, 16].
The second is the distribution of currently labeled pool DL, denoted as pL(G). As shown in
[11, 12, 17, 21], pL(G) is useful for identifying samples that are dissimilar to the labeled ones, and
annotating these samples effectively increases data diversity. Inspired by these works, we propose to
model the joint distribution of p(y = ŷ|G) and pL(G).

Formally, let q(G, ŷ) denote the joint distribution:

q(G, ŷ) ≜ p(ŷ|G)pL(G), (3)

where we use the boldface ŷ because we may be interested in more than 1 tasks. Note that ŷ is a
random variable following p(ŷ|G), not the ground-truth label of G.

Then, we perform active selection by first maximizing q(G, ŷ) via varying ŷ for each single G, and
then selecting a batch of G that minimizes the obtained maxŷ q(G, ŷ). Denote the selected batch as
B = {G1, · · · , Gb}. Our strategy is formalized as:

B = argmin
G1,··· ,Gb∈DU

(
max
ŷ

q(G1, ŷ), · · · ,max
ŷ

q(Gb, ŷ)

)
. (4)

We name our strategy Minimum-Maximum-Probability Querying (MMPQ). The whole active learning
process with MMPQ strategy is summarized in Appx. A.4.

4.1.1 MMPQ as a Tuning-Free Hybrid Strategy

Here we show that MMPQ naturally captures both uncertainty of the task learner and diversity w.r.t.
the whole data space in a tuning-free manner. First, from Eqn. (4) and Eqn. (3), we can see that the
selection score of MMPQ is:

max
ŷ

q(G, ŷ) =

(
max
ŷ

p(ŷ|G)

)
pL(G). (5)

Then, let pM = maxŷ p(ŷ|G), and it can be seen that the MMPQ strategy essentially selects data
with smaller pM and smaller pL(G).

▶ Uncertainty. Smaller pM corresponds to samples that the task learner is less confident about.
Specifically, let ŷ∗ = (ŷ∗1 , · · · , ŷ∗n) denote the prediction that achieves pM (i.e., pM = p(ŷ∗|G)),
and ŷ′ = (ŷ′1, · · · , ŷ′n) denote any other prediction that is different from ŷ∗. Note that, since
p(ŷ∗|G)+

∑
ŷ′∈{0,1}n,ŷ′ ̸=ŷ∗ p(ŷ′|G) = 1, smaller pM means that pM is closer to the second-largest

(and all other) predictions, implying that the task learner is more uncertain about its prediction on
molecule G.

▶ Diversity. Smaller pL(G) means that G lies in low-density regions of the distribution of currently
labeled data, and hence is dissimilar to the labeled data. Thus, querying those with small pL(G)
increases the diversity of the obtained labeled pool Dt

L [11, 12, 17, 21].
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Figure 1: Model design and data flow. Colored in blue are inputs and outputs of the labeled pool and
corresponding objective. Those corresponding to the unlabeled pool are in red.

Based on above reasoning, samples with lowest selection score (i.e., those taken by the argmin
operation in Eqn. (4)) are naturally those the model is most uncertain about, while at the same time
being able to increase data diversity. As such, MMPQ does not need a hyperparameter to trade off
between uncertainty and diversity.

4.1.2 Implementation of MMPQ

Since MMPQ is based on the value of q(G, ŷ), we need to model q(G, ŷ) with an explicit deep
generative model. In particular, we instantiate an Energy-Based Model (EBM) using a neural network,
since EBMs have been shown to be quite expressive and stable in distribution modelling [39, 40].
Formally, q(G, ŷ) is modelled by

q(G, ŷ) =
exp(−E(G, ŷ))

Z
, (6)

where E(G, ŷ) is the energy value given by the EBM, and Z is a normalizing constant.

In this subsection, we focus on how to implement MMPQ with the EBM, and thus here we assume
that the EBM is already trained and fixed. Model design and training of the EBM will be presented
later in Sec. 4.2 and Sec. 4.3.

From Eqn. (6), we have

argmin
G

(
max
ŷ

q(G, ŷ)

)
=argmin

G

(
max
ŷ

(log q(G, ŷ) + logZ)

)
=argmin

G

(
−min

ŷ
E(G, ŷ)

)
=argmax

G

(
min
ŷ

E(G, ŷ)

)
.

(7)

This reveals that we can implement MMPQ based on the learned energy values, without the need to
calculate the normalizing constant Z.

One may argue that, minŷ E(G, ŷ) would be difficult to compute for large n, as it involves all
2n possible combinations of (ŷ1, · · · , ŷn). We show in Appx. A.2 that, based on the conditional
independence assumption of labels [41], minŷ E(G, ŷ) can be computed in a task-wise manner.

4.2 Model Design

Designing an EBM for learning q(G, ŷ) is not trivial, since the two variables have different data
structures: G is an attributed graph, while ŷ is a vector. Moreover, learning EBMs for attributed
graphs is itself a challenging open problem, due to the non-Euclidean and discrete nature [32, 42].

To address the above issues, we propose to embed molecules graphs G into a learned embedding space,
and then build the EBM model on ŷ and embeddings z (see Fig. 1). Inspired by Sinha et al. [21], we

5



Jointly Modelling Uncertainty and Diversity for Active Molecular Property Prediction

learn the space by training an Auto-Encoder (AE) to reconstruct its inputs. However, due to graph
isomorphism, directly reconstructing molecule graphs is difficult [22, 43, 44]. We thus propose to
train the AE to reconstruct the molecules’ SMILES strings [45], as shown in Fig. 1. SMILES is a
sequence representation of molecules, where the sub-strings correspond to chemically-meaningful
substructures in molecules (e.g., functional groups). Such a sequence-based reconstruction task
enables the auto-encoder to learn molecules embeddings without struggling to reconstruct graphs.

Formally, let Enc(·) and Dec(·) denote the encoder and decoder respectively, and let Sml(·) denote
the operation of retrieving the SMILES string of a molecule (which can be easily pre-computed
using open-sourced cheminformatics libraries). Then, for a molecule G, the ground-truth and the
reconstructed SMILES strings are

S ≜ Sml(G), Ŝ ≜ Dec(Enc(Sml(G))). (8)

For learning high-quality embeddings, we use both labeled and unlabeled data to train the AE:

Lrec=EG∈DL

[
d(S, Ŝ)

]
+EG′∈DU

[
d(S′, Ŝ′)

]
, (9)

where d(·, ·) is a distance between sequence pairs.

In the rest of this paper, we take z ≜ Enc(Sml(G)) as a proxy of G in some cases, and use x to
denote the tuple (z, ŷ), which is implemented by concatenating z and ŷ.

Following previous works [39, 40], we instantiate the EBM as a “score net” sθ(x), which learns the
score of the target distribution q(x), i.e., ∇x log q(x). When sθ(x) is trained, we use summation to
approximate integral over ∇x log q(x) (see Appx. A.3). An alternative choice is to approximate the
energy function Eθ(x), which however is more difficult than modeling the score, as experimentally
shown in Sec. 5.3.3.

4.3 Model Training

We train the EBM sθ(x) via denoising score matching. With the noise pN (x̃|x) = N (x̃|x, σ2, I),
we have ∇xpN (x̃|x) = − x̃−x

σ2 [39]. Then, the DSM objective is:

LDSM = E x∈DL,
x̃∼N (x̃|x,σ)

[∥∥∥∥sθ(x̃) + x̃− x

σ2

∥∥∥∥2
2

]
, (10)

where we slightly abuse the notation, using x ∈ DL to denote x ∈ {(Enc(Sml(G)), ŷ)|G ∈ DL}.

Note that the second term in the target distribution (Eqn. (3)) is the density of the labeled data only.
Therefore, in Eqn. (10), we calculate LDSM only on the labeled pool DL (cf . the reconstruction
objective in Eqn. (9)).

One challenge of calculating LDSM is that it requires (G, ŷ) pairs i.i.d. sampled from q(G, ŷ), but
we do not have such samples at hand. To address this challenge, we propose a two-step sampling
method: first, randomly pick G from DL; then draw a sample ŷ = {ŷ1, · · · , ŷn} from p(ŷ|G), which
can be implemented by drawing a ŷi ∼ Ber(h(G)i) for all i (under the conditional-independence
assumption of labels).

The EBM and the AE are jointly trained via

Ljoint = LDSM + Lrec. (11)

Pseudo code of model training process is summarized in Appx. A.4.

5 Experiments
5.1 Experiment Setup

We run experiments under the batch-mode pool-based AL setting (elaborated in Appx. A.1). The
labeled pool is initialized by randomly selecting 10% samples of the entire training; the initial
unlabeled pool is the rest 90%. Then 10 AL rounds are performed; in each round, an unlabeled
batch of 4% samples of the entire training set is queried, so the total annotation budget is 50%
of the training set. We use the BACE, BBBP, HIV and SIDER datasets from the widely-used
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Figure 2: Active learning performance of MMPQ (ours) and baseline hybrid methods. “Round 0”
corresponds to the performance on initial labeled pool. Note y-axis has an offset for clear comparison.

Figure 3: Active learning performance of MMPQ (ours) and uncertainty-based or diversity-based
methods. “Round 0” corresponds to the performance on initial labeled pool. Note y-axis has an offset
for clear comparison.

MoleculeNet benchmark [5] (also included in the Open Graph Benchmark [46]). Statistics and
detailed descriptions of the datasets are in Appx. A.5. Following [4], we use scaffold split, with
train/val/test = 80%/10%/10%. We use AUROC as the performance metric, as suggested in [5].
Please refer to Appx. A.6 for implementation details.

5.2 Active Learning Performance

We compare MMPQ against following 8 baselines, with U, D and H denoting Uncertainty-based,
Diversity-based and Hybrid methods respectively: Random (random selection), Entropy (U) (se-
lecting samples with the largest prediction entropy), MC-Dropout (U) [8], CoreSet (D) [9], ASGN
(D) [47], BADGE (H) [10], WAAL (H) [12], EADA (H) [13]. Among them, ASGN is the only
existing method that investigates AL in molecular property prediction. BADGE, WAAL and EADA
are representative hybrid methods, and are state-of-the-art on many image classification datasets. We
note that there are other hybrid methods [11, 14, 15], but their code is not or only partly released.
We fail to reproduce their results, and hence do not include them for comparison. To avoid cluttered
presentation, we show results of baseline hybrid methods in Fig. 2, and those of uncertainty-based or
diversity-based methods in Fig. 3. In both figures, we include results of our MMPQ and the Random
baseline.

Results: From the figures, we can see that our MMPQ outperforms the baselines on all 4 datasets.
Specifically, on HIV, our MMPQ achieves 0.7302 AUROC in the 3-rd active round (using only 22%
annotations of the entire training set), which is very close to the performance of using 100% of the
annotations (0.7344). This also explains why the performance of MMPQ almost saturates after the
3-rd round. Furthermore, the performance of hybrid methods requiring trade-off hyperparameters, i.e.,
WAAL and EADA, is not stable. In particular, though WAAL achieves performance comparable to
our proposed MMPQ on BACE, it performs quite unsatisfactorily on HIV. Similarly, EADA performs
well on SIDER but is the worst baseline on HIV. By contrast, our method achieves consistently
superior performance. One may note that the performance of WAAL and EADA at round 0 is quite
different from that of other methods. The reason is that, in other methods, the task learner is only
trained with classification loss on the currently labeled data. Contrarily, in WAAL and EADA, apart
from classification loss, the task learner is also trained with some auxiliary loss (i.e., adversarial loss

7
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Figure 4: (a) AL performance of MMPQ, U.O. and D.O. strategies. (b) Mean ground-truth-label loss
of data queried by MMPQ or D.O. strategy. (c) Mean average Tanimoto similarity of data queried by
MMPQ or U.O. strategy.

in WAAL, and free-energy alignment loss in EADA). Therefore, even though the training data at
round 0 are the same across all methods, the WAAL and EADA can have different performance.

5.3 Ablation Studies

Here we conduct ablative experiments on HIV, which is the largest dataset used (see Tab. 1).

5.3.1 Uncertainty or Diversity Only

In Sec. 4.1.1, we show that our MMPQ strategy captures both uncertainty and diversity through the
two terms in Eqn. (5) respectively. Here we ablatively study the effectiveness of the two terms. Since
we have only 1 target property on HIV, we use ŷ instead of ŷ. Specifically, under the setup described
in Sec. 5.1, we compare our MMPQ with another two strategies based on the trained EBM:

• The U.O. strategy that considers Uncertainty Only: querying data with minimum pM =
maxŷ p(ŷ|G). Let ŷ∗ denote the predicted label that achieves pM . Then, based on the learned
EBM, pM can be calculated by:

pM =
exp(−E(G, ŷ∗))∑

ŷ∈{0,1} exp(−E(G, ŷ))
. (12)

• The D.O. strategy that considers Diversity Only: querying those with minimum pL(G):

pL(G) ∝
∑

ŷ{0,1}
exp(−E(G, ŷ)). (13)

In Fig. 4 (a), as AL proceeds, the performance of the U.O. strategy rises slower than that of MMPQ
or the D.O. strategy, though the final performance of U.O. (at round 10) is as good as MMPQ.
On the other hand, the D.O. strategy reaches a peak very quickly (i.e., at the 2-nd AL round),
but then its performance degrades as more data are annotated for training. One possible reason
for such degradation is that the data queried in later rounds cannot provide the task learner with
useful information about the learning task. Adding these data to the training pool may lead to
overfitting, since more data means more training iterations. This shows that uncertainty and diversity
are complementary to each other — diversity is important in early AL stages, while uncertainty is
critical in later stages. Interestingly, this corroborates the finding in [48].

Furthermore, we then dig deeper into the advantages of the MMPQ strategy, by examining how
the two terms in Eqn. (5) affect the queried data. For studying the effectiveness of the uncertainty-
based term maxŷ p(ŷ|G), we examine whether the queried data of the MMPQ strategy have higher
uncertainty than those of the D.O. strategy (since MMPQ and D.O. only differ in this term). Note
that, since HIV has only 1 property of interest, this term becomes p(ŷ|G). For measuring uncertainty,
distribution-based metrics such as entropy and classification margin are often used. However, for
binary classification (as in our case), these metrics are equivalent to selecting those with the smallest
p(ŷ|G). Therefore, instead of these metrics, we adopt the ground-truth-label loss, as used in [30].
For the t-th AL round, we calculate the mean loss of data in the current queries Dt

L. As shown in
Fig. 4 (b), compared with the D.O. strategy, queries of our MMPQ have larger ground-truth-label
loss, suggesting larger uncertainty of the task learner.
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Figure 5: Performance of different (z0, ŷ0, K). Figure 6: DSM loss of modeling score or energy.

For the diversity-based term pL(G), we examine whether queries of MMPQ have smaller chemical
similarity (i.e., larger diversity) than those of U.O. strategy (since of MMPQ and U.O. only differ in
this term). We adopt the Tanimoto similarity [49], which is a widely used expert-defined molecular
similarity metric. Formally, let Tij denote the Tanimoto similarity between molecule Gi and Gj , and
we calculate the mean Average Similarity (mAS) among molecules in Dt

L:

mAS =
1

N t
L(N

t
L − 1)

∑
Gi,Gj∈Dt

L,j ̸=i
Tij . (14)

Fig. 4 (c) shows that queries of MMPQ are less chemically similar than those of U.O., implying
larger diversity.

5.3.2 Robustness of Energy Calculation

In this part, we investigate the robustness of MMPQ w.r.t. how energy is calculated. Specifically, we
consider the choice of zero-energy point, and the number of points for approximating the integral
(i.e., K in Eqn. (18)).

In the above experiments, we set the zero-energy point as (z0 = z̄U , ŷ0 = 0), where z̄U is the where
z̄U is the mean embedding of the unlabeled pool, and let K = 100. We name this setting the “default
setting”, and denote it with the triple (z̄U , 0, 100).

Then, based on (z̄U , 0, 100), we vary one of the three hyperparameters while keeping the other two
unchanged, and run AL experiments under the setup described in Sec. 5.1. Specifically, we set (1)
z0 ∈ {z̄L, z̄F }, where z̄L and z̄F are the mean embedding of the Labeled pool and that of the Full
training set; (2) ŷ0 = 1; (3) K ∈ {50, 500}. Fig. 5 shows the AL performance of the above settings
and the default one. We can see that the AL performance of different settings are similar, which
demonstrates that the MMPQ strategy is robust to the above hyperparameters.

5.3.3 Implementing EBM by Modeling Energy

As introduced in Sec. 4.2, we instantiate the EBM as a score net learning the score of the true
distribution. An alternative is to implement the EBM as an energy net modeling the energy function.

We try this alternative in our experiments, but find that the training process fails to converge. Specifi-
cally, the energy net is also built on the embedding space of the AE, and has the same architecture as
the score net, except that the final layer has an output dimension of 1 and a ReLU activation (since
the energy is a non-negative scalar). The training objective of the energy net (denoted as Eθ) is

E x∈DL,
x̃∼N (x̃|x,σ)

[∥∥∥∥−∇xEθ(x̃) +
x̃− x

σ2

∥∥∥∥2
2

]
. (15)

Fig. 6 shows the loss curve (in a log scale) under best-tuned hyperparameters (i.e., those yielding
lowest loss). For comparison, the loss curve on HIV of our score net used in the MMPQ experiment
in Sec. 5.2 is also given. We can see that, even with the best-tuned hyperparameters, the training
process of Eθ cannot converge well.
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6 Conclusion and Limitation
We propose Maximum Minimum Probability Querying (MMPQ), a hybrid active learning method
for molecular property prediction, without the need to manually trade off between uncertainty and
diversity. The strategy is based on an EBM that models the joint distribution of labeled data and
task learner’s prediction. The EBM is built in an embedding space learned by an auto-encoder that
reconstructs molecules’ SMILES string. We propose training the EBM via denoising score matching.
Once the EBM is trained, MMPQ selects data according to one single selection criterion that naturally
captures the uncertainty of the task learner and high diversity w.r.t. in the data space.

One limitation of our approach is that it is only applicable to binary classification tasks. This is
because we use the maximum prediction probability as an uncertainty metric, which is equivalent
to the commonly-used entropy metric only in the binary case. When extending to categorical
classification or regression, our used metric may not well reflect model uncertainty. In Appx. A.8,
we discuss one possible solution to address this limitation by utilizing a new uncertainty metric. In
our further work, we look forward to introducing our proposed model to model zoos for knowledge
reassembly [50, 51].
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A Appendix
A.1 Pool-based batch-mode active learning setting

In this setting, we are given an initial pool of labeled data D0
L of size N0

L, and an unlabeled pool D0
U

of size N0
U > N0

L. Our goal is to design an AL algorithm that performs T rounds of querying [7].
In the t-th round (1 ⩽ t ⩽ T ), a batch of b samples, denoted as Bt, are selected from Dt−1

U . Then,
an oracle (e.g., in our case, a chemist) annotates the queried samples, which are then moved from
the unlabeled pool to the labeled pool. Formally, let Bt

anno denote annotated selected batch, and then
the pools are updated by Dt

L = Dt−1
L ∪ Bt

anno, and Dt
U = Dt−1

U \ Bt; accordingly N t
L = N t−1

L + b,
N t

U = N t−1
U −b. The obtained Dt

L is then used to train a task learner h(·) — the model that performs
the target learning task at hand (e.g., molecular property prediction in our case). In this paper, the
task learner is a Graph Neural Networks (GNN) [52].

Note that, the union of Dt
L and Dt

U is always the whole training set, i.e., Dtrain = Dt
L ∪ Dt

U ,∀t ⩾ 0.
Aside from Dtrain, we also have a validation set Dval and a test set Dtest, which are held-out and
disjoint from Dtrain, for performing model selection and evaluation on the task learner. For brevity,
we omit the round index t unless necessary.

A.2 Calculating minimum energy for large n

As mentioned in Sec. 4.1.2, we can calculate minŷ E(G, ŷ) in a task-wise manner, under the
assumption that the n labels are conditionally independent. Here we elaborate on the calculation.

In multi-label classification, the n labels are often assumed to be independent given the input. In our
case, this is formulated as: p(ŷ|G) =

∏n
i=1 p(yi|G). Thus, we have

argmin
ŷ

E(G, ŷ)

= argmax
ŷ

q(G, ŷ)

= argmax
ŷ

p(ŷ1, · · · , ŷn|G)pL(G)

= argmax
ŷ

(∏n

i=1
p(ŷi|G)

)
=

(
argmax

ŷ1

p(ŷ1|G), · · · , argmax
ŷn

p(ŷn|G)

)
.

(16)

This shows that we can calculate argminŷ E(G, ŷ) by simply taking(
argmaxŷ1

p(ŷ1|G), · · · , argmaxŷn
p(ŷn|G)

)
, without the need of calculating the energy

for all 2n possible combinations of (ŷ1, · · · , ŷn).

A.3 Energy calculation

Our EBM models the score ∇x log q(x) instead of the energy E(x). For obtaining the energy value
E(x), we use summation to approximate integral over ∇x log q(x) after training the EBM.

Specifically, the energy of any point x can be calculated through the following line integral:

E(x) = E(x0) +

∫
P

∇x log q(x) · dx, (17)

where · denotes a vector inner product. The two terms on the right hand side are explained as follows.

The first term E(x0) is the energy of an arbitrarily chosen reference point x0. For selecting queries,
we only need the relative energy value. Therefore, without loss of generality, we can take any
reference point x0 as the zero-energy point, i.e., letting E(x0) = 0.

The second term is an integral along a path P from x0 to x. Since the true score ∇x log q(x) is a
conservative vector field, the integral result does not depend on the choice of P (assuming that the
EBM approximates ∇x log q(x) well). We thus calculate the integral along the directed line segment
from x0 to x, denoted as

∫ x

x0
.
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Finally, the (relative) energy of x can be calculated by

E(x) =

∫ x

x0

∇x log q(x) · dx

≈
∑K

k=0
(xk+1 − xk) · ∇x log q(xk+1)

=
∑K

k=0
(xk+1 − xk) · sθ(xk+1),

(18)

where {x1, · · · ,xK} denote K points evenly distributed along the directed line segment, and xK+1 ≜
x.

A.4 Pseudo codes

Alg. 1 and Alg. 2 show the pseudo codes of MMPQ and the model training process, respectively.
Notations used can be found in Appx. A.1.

Algorithm 1 Active learning with MMPQ

Input: Initial labeled pool D0
L, unlabeled pool D0

U , number of rounds T , number of queries per
round b, EBM, task learner

1: Train task learner with D0
L, perform model selection using Dval, and test the learner on Dtest

2: for t ∈ {0, · · · , T} do
3: Train the EBM (Sec. 4.3)
4: // perform active selection
5: Select a batch of b samples Bt according to Eqn. (4)
6: Annotate Bt and obtain Bt

anno
7: Dt

L = Dt−1
L ∪ Bt

anno, Dt
U = Dt−1

U \ Bt

8: // train and test task learner
9: Train task learner with Dt

L, perform model selection using Dval, and test the learner on Dtest
10: end for
Output: Performance on Dtest for t ∈ {0, · · · , T}

Algorithm 2 Training process

Input: EBM sθ, AE encoder Enc and decoder Dec, and task learner h (trained and fixed)
1: while not converge do
2: Randomly sample G from DL, G′ from DU

3: Sample ŷ by drawing ŷi from Ber(h(G)i)
4: x = (Enc(Sml(G)), ŷ)
5: Calculate Ljoint with Eqn. (9), (10), (11)
6: Update sθ, Enc and Dec with Ljoint
7: end while

Output: Trained EBM and AE

A.5 Dataset information

We use the BACE, BBBP, HIV and SIDER datasets from MoleculeNet [5]. Here we give a brief
introduction to these datasets:

• BACE: Human β-secretase 1 (a.k.a. BACE-1) is an enzyme in human body. It is recently found
that inhibition of BACE-1 can slow down the development of Alzheimer’s disease. The BACE
dataset contains experimentally measured binding (i.e., effective in inhibition) results (binarized)
of 1,513 candidate inhibitors of BACE-1.

• BBBP: The Blood–Brain Barrier (BBB) is a highly selective semipermeable border that prevents
solutes in the blood from non-selectively crossing into the extracellular fluid of the central
nervous system. For designing drugs to cure some brain disorder, one major challenge is to
ensure that the obtained drug is able to go through BBB. The BBBP dataset provides binary
labels for 2,039 molecules on their ability to permeate BBB.
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• HIV: The HIV dataset provides the experimentally tested ability to inhibit HIV replication for
41,127 molecules.

• SIDER: SIDER is an abbreviation of Side Effect Resource, which is a database of marketed
drugs and their adverse drug reactions (i.e., side effects). The SIDER dataset contains the results
of 1,427 drugs on 27 kinds of side effects.

Statistics of the datasets are in Tab. 1.

Table 1: Statistics of used datasets

BACE SIDER BBBP HIV

Number of Tasks 1 27 1 1
Number of Molecules 1,513 1,427 2,039 41,127

We note that the TOX21, TOXCAST, MUV and PCBA datasets in the MoleculeNet benchmark [5]
are also often used. However, we find they contain a large number of molecules whose properties not
fully provided by the dataset creator.

To see this, for each property of the 4 datasets, we show in Fig. 7 the numbers of molecules whose
ground truth labels are provided or not. We can see that, there are a large number of label-not-provided
molecules for each property that needs to be predicted. This violates the general assumption in AL
that the oracle can correctly annotate each query. Thus we do not run experiments on these datasets.

Figure 7: Ratios of molecules whose ground truth properties are provided or not. The x-axis ticks
correspond to the index of properties. We sort the properties by the ratio of label-not-provided
molecules in ascending order.

A.6 Implementation details

To obtain reliable results, we randomly sample 50 initial labeled pools in advance, and run each AL
experiment with all these pools and 10 random seeds per pool. The reported performance is averaged
across all initial pools and seeds (i.e., 50× 10 = 500 runs).

The AE for reconstructing the SMILES strings is a Transformer [22, 53], which has been shown
to be effective in sequence modeling. The EBM is a 5-layer Multi-Layer Perceptron with residual
connections, ReLU activation function [54], and Layer Normalization [55] between each hidden
layer. We use the RdKit library3 to pre-generate SMILES strings, and follow [22] to tokenize the
strings. We instantiate the task learner with a 5-layer GINE architecture [4], which is widely used for
molecular property prediction [4, 36, 37].

Before the active learning procedure, the AE is pretrained on the dataset of interest for 5,000 epochs
with learning rate of 5e-4. In each AL round, the auto-encoder and EBM are jointly trained with batch
size of 128. The learning rates are 2e-4 for the auto-encoder and 1e-3 for the EBM. The standard
deviation of the Gaussian noise used in DSM is 10. The criterion for training convergence is that
there are 10 batches whose DSM loss (see Eqn. (10)) is no larger than 0.015, which is obtained in our
pilot experiments. The maximum number of training epochs is 2500. The used optimizer is Adam.
The task learner is trained for 50 epochs with batch size of 128, learning rate of 1e-3, and the Adam
optimizer. Note that the task learner is re-initialized before it is trained and tested. For calculating the

3https://www.rdkit.org/
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(relative) energy, we use points for approximation, i.e., K = 100 (see Eqn. (18)), and set zero-energy
point as (z0 = z̄U , ŷ0 = 0), where z̄U is the mean embedding of the unlabeled pool:

z̄U =
1

NU

∑
G∈DU

Enc(Sml(G)). (19)

A.7 Numerical results

Tab. 2, Tab. 3, Tab. 4 and Tab. 5 show the numerical results (including mean and standard deviation)
of Fig. 2 and Fig. 3. Tab. 6 shows the numerical results of Fig. 4. Tab. 7 shows the numerical results
of Fig. 5.

Table 2: Numerical results on BACE. “Round 0” corresponds to performance on initial labeled pools.
0 1 2 3 4 5

Random 0.5488 ± .0090 0.5477 ± .0233 0.5556 ± .0243 0.5513 ± .0204 0.5803 ± .0202 0.5975 ± .0196
Entropy 0.5489 ± .0122 0.5469 ± .0172 0.5525 ± .0166 0.5463 ± .0153 0.5566 ± .0161 0.5691 ± .0152
MC-Dropout 0.5510 ± .0110 0.5469 ± .0158 0.5460 ± .0172 0.5413 ± .0163 0.5581 ± .0142 0.5730 ± .0144
CoreSet 0.5497 ± .0113 0.5491 ± .0204 0.5591 ± .0225 0.5563 ± .0212 0.5731 ± .0216 0.5867 ± .0198
ASGN 0.5480 ± .0120 0.5570 ± .0234 0.5634 ± .0217 0.5572 ± .0220 0.5814 ± .0209 0.5934 ± .0219
WAAL 0.5557 ± .0076 0.5699 ± .0141 0.5882 ± .0136 0.6087 ± .0127 0.6108 ± .0155 0.6170 ± .0148
EADA 0.5704 ± .0085 0.5662 ± .0126 0.5685 ± .0101 0.5729 ± .0118 0.5762 ± .0104 0.5827 ± .0099
Badge 0.5501 ± .0118 0.5478 ± .0168 0.5606 ± .0136 0.5569 ± .0157 0.5795 ± .0156 0.5910 ± .0143
MMPQ (Ours) 0.5501 ± .0129 0.5690 ± .0175 0.5935 ± .0183 0.5904 ± .0172 0.6108 ± .0164 0.6160 ± .0152

6 7 8 9 10

Random 0.6032 ± .0201 0.6178 ± .0187 0.6246 ± .0190 0.6278 ± .0192 0.6309 ± .0188
Entropy 0.5749 ± .0149 0.5869 ± .0158 0.5958 ± .0163 0.6012 ± .0142 0.6077 ± .0156
MC-Dropout 0.5759 ± .0139 0.5846 ± .0132 0.5938 ± .0153 0.5989 ± .0137 0.6025 ± .0139
CoreSet 0.5885 ± .0186 0.5946 ± .0200 0.6062 ± .0189 0.6084 ± .0176 0.6107 ± .0191
ASGN 0.5952 ± .0175 0.6099 ± .0192 0.6237 ± .0208 0.6269 ± .0201 0.6355 ± .0188
WAAL 0.6223 ± .0147 0.6241 ± .0132 0.6244 ± .0130 0.6356 ± .0137 0.6357 ± .0119
EADA 0.5867 ± .0127 0.5918 ± .0101 0.5955 ± .0102 0.6050 ± .0087 0.6110 ± .0122
Badge 0.5965 ± .0117 0.6117 ± .0163 0.6191 ± .0151 0.6245 ± .0161 0.6314 ± .0144
MMPQ (Ours) 0.6176 ± .0133 0.6274 ± .0165 0.6286 ± .0143 0.6337 ± .0146 0.6381 ± .0142

Table 3: Numerical results on BBBP. “Round 0” corresponds to performance on initial labeled pools.
0 1 2 3 4 5

Random 0.5944 ± .0099 0.6059 ± .0212 0.6101 ± .0218 0.6214 ± .0213 0.6271 ± .0216 0.6344 ± .0183
Entropy 0.5950 ± .0085 0.6047 ± .0122 0.6055 ± .0156 0.6122 ± .0157 0.6125 ± .0139 0.6176 ± .0116
MC-Dropout 0.5945 ± .0088 0.6035 ± .0130 0.6023 ± .0172 0.6065 ± .0144 0.6071 ± .0153 0.6105 ± .0147
CoreSet 0.5931 ± .0087 0.6036 ± .0199 0.6088 ± .0195 0.6134 ± .0163 0.6169 ± .0182 0.6218 ± .0149
ASGN 0.5936 ± .0074 0.6013 ± .0176 0.6079 ± .0184 0.6231 ± .0161 0.6278 ± .0158 0.6379 ± .0145
WAAL 0.5852 ± .0102 0.5923 ± .0177 0.6076 ± .0169 0.6088 ± .0173 0.6134 ± .0159 0.6183 ± .0164
EADA 0.6014 ± .0075 0.6036 ± .0112 0.6058 ± .0137 0.6073 ± .0130 0.6122 ± .0136 0.6149 ± .0087
Badge 0.5923 ± .0068 0.6030 ± .0086 0.6060 ± .0104 0.6155 ± .0075 0.6191 ± .0092 0.6229 ± .0075
MMPQ (Ours) 0.5943 ± .0075 0.6349 ± .0121 0.6361 ± .0123 0.6389 ± .0126 0.6413 ± .0097 0.6454 ± .0087

6 7 8 9 10

Random 0.6373 ± .0198 0.6434 ± .0198 0.6458 ± .0185 0.6509 ± .0190 0.6533 ± .0184
Entropy 0.6202 ± .0123 0.6237 ± .0135 0.6267 ± .0105 0.6295 ± .0127 0.6312 ± .0125
MC-Dropout 0.6105 ± .0126 0.6164 ± .0133 0.6191 ± .0143 0.6243 ± .0122 0.6284 ± .0118
CoreSet 0.6245 ± .0153 0.6268 ± .0129 0.6300 ± .0151 0.6334 ± .0170 0.6363 ± .0166
ASGN 0.6396 ± .0142 0.6457 ± .0141 0.6470 ± .0145 0.6493 ± .0149 0.6516 ± .0152
WAAL 0.6231 ± .0144 0.6195 ± .0139 0.6257 ± .0171 0.6253 ± .0168 0.6287 ± .0139
EADA 0.6163 ± .0103 0.6180 ± .0115 0.6196 ± .0091 0.6211 ± .0095 0.6224 ± .0104
Badge 0.6234 ± .0091 0.6267 ± .0079 0.6288 ± .0094 0.6350 ± .0077 0.6364 ± .0076
MMPQ (Ours) 0.6465 ± .0083 0.6490 ± .0087 0.6530 ± .0112 0.6565 ± .0084 0.6585 ± .0082
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Table 4: Numerical results on SIDER. “Round 0” corresponds to performance on initial labeled
pools.

0 1 2 3 4 5

Random 0.5203 ± .0072 0.5248 ± .0165 0.5251 ± .0172 0.5279 ± .0150 0.5309 ± .0155 0.5339 ± .0138
Entropy 0.5205 ± .0081 0.5224 ± .0123 0.5261 ± .0168 0.5270 ± .0103 0.5289 ± .0119 0.5309 ± .0105
MC-Dropout 0.5197 ± .0084 0.5240 ± .0146 0.5255 ± .0144 0.5306 ± .0110 0.5333 ± .0115 0.5364 ± .0124
CoreSet 0.5205 ± .0073 0.5230 ± .0161 0.5271 ± .0184 0.5283 ± .0167 0.5305 ± .0161 0.5346 ± .0145
ASGN 0.5203 ± .0073 0.5217 ± .0163 0.5279 ± .0159 0.5314 ± .0161 0.5332 ± .0148 0.5354 ± .0159
WAAL 0.5262 ± .0064 0.5267 ± .0150 0.5299 ± .0159 0.5300 ± .0144 0.5348 ± .0137 0.5357 ± .0144
EADA 0.5269 ± .0069 0.5270 ± .0091 0.5295 ± .0100 0.5307 ± .0085 0.5337 ± .0104 0.5371 ± .0058
Badge 0.5213 ± .0067 0.5247 ± .0075 0.5258 ± .0100 0.5265 ± .0084 0.5310 ± .0068 0.5339 ± .0080
MMPQ (Ours) 0.5204 ± .0054 0.5246 ± .0087 0.5282 ± .0070 0.5308 ± .0087 0.5363 ± .0068 0.5421 ± .0068

6 7 8 9 10

Random 0.5313 ± .0134 0.5363 ± .0137 0.5399 ± .0150 0.5405 ± .0148 0.5463 ± .0164
Entropy 0.5290 ± .0124 0.5335 ± .0118 0.5369 ± .0107 0.5381 ± .0118 0.5420 ± .0094
MC-Dropout 0.5356 ± .0145 0.5408 ± .0124 0.5454 ± .0085 0.5455 ± .0105 0.5483 ± .0103
CoreSet 0.5330 ± .0155 0.5356 ± .0160 0.5388 ± .0148 0.5395 ± .0169 0.5423 ± .0146
ASGN 0.5339 ± .0136 0.5361 ± .0141 0.5388 ± .0140 0.5397 ± .0130 0.5410 ± .0125
WAAL 0.5351 ± .0130 0.5380 ± .0147 0.5418 ± .0130 0.5464 ± .0130 0.5473 ± .0121
EADA 0.5387 ± .0081 0.5405 ± .0080 0.5433 ± .0081 0.5436 ± .0090 0.5449 ± .0085
Badge 0.5322 ± .0084 0.5363 ± .0080 0.5410 ± .0081 0.5433 ± .0075 0.5468 ± .0070
MMPQ (Ours) 0.5405 ± .0066 0.5455 ± .0079 0.5494 ± .0066 0.5497 ± .0073 0.5519 ± .0065

Table 5: Numerical results on HIV. “Round 0” corresponds to performance on initial labeled pools.
0 1 2 3 4 5

Random 0.6928 ± .0109 0.6928 ± .0241 0.6967 ± .0260 0.6971 ± .0224 0.7015 ± .0244 0.7030 ± .0213
Entropy 0.6949 ± .0098 0.7005 ± .0199 0.7076 ± .0213 0.7094 ± .0158 0.7100 ± .0139 0.7097 ± .0164
MC-Dropout 0.6946 ± .0075 0.7016 ± .0118 0.7063 ± .0122 0.7106 ± .0140 0.7105 ± .0115 0.7123 ± .0114
CoreSet 0.6933 ± .0116 0.6954 ± .0194 0.6996 ± .0234 0.7014 ± .0206 0.7036 ± .0173 0.7037 ± .0200
ASGN 0.6940 ± .0070 0.6999 ± .0173 0.6980 ± .0206 0.6984 ± .0177 0.6989 ± .0169 0.6999 ± .0160
WAAL 0.6587 ± .0121 0.6849 ± .0202 0.6936 ± .0200 0.6973 ± .0200 0.6960 ± .0209 0.6991 ± .0171
EADA 0.6311 ± .0119 0.6558 ± .0170 0.6713 ± .0170 0.6810 ± .0175 0.6865 ± .0175 0.6899 ± .0145
Badge 0.6958 ± .0086 0.7019 ± .0119 0.7054 ± .0150 0.7080 ± .0095 0.7096 ± .0103 0.7125 ± .0097
MMPQ (Ours) 0.6954 ± .0073 0.7198 ± .0121 0.7262 ± .0125 0.7302 ± .0123 0.7302 ± .0103 0.7293 ± .0112

6 7 8 9 10

Random 0.7065 ± .0184 0.7107 ± .0198 0.7123 ± .0177 0.7144 ± .0211 0.7165 ± .0216
Entropy 0.7122 ± .0184 0.7135 ± .0152 0.7146 ± .0152 0.7161 ± .0154 0.7190 ± .0159
MC-Dropout 0.7128 ± .0132 0.7142 ± .0124 0.7142 ± .0126 0.7161 ± .0115 0.7164 ± .0109
CoreSet 0.7054 ± .0177 0.7072 ± .0170 0.7090 ± .0193 0.7111 ± .0188 0.7110 ± .0164
ASGN 0.7060 ± .0162 0.7101 ± .0155 0.7155 ± .0138 0.7196 ± .0119 0.7225 ± .0152
WAAL 0.7001 ± .0199 0.7019 ± .0159 0.7021 ± .0185 0.7063 ± .0166 0.7055 ± .0183
EADA 0.6929 ± .0146 0.6943 ± .0136 0.6957 ± .0122 0.6971 ± .0155 0.6970 ± .0157
Badge 0.7143 ± .0103 0.7153 ± .0091 0.7153 ± .0092 0.7155 ± .0107 0.7159 ± .0100
MMPQ (Ours) 0.7294 ± .0113 0.7291 ± .0109 0.7294 ± .0103 0.7300 ± .0099 0.7302 ± .0077
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Table 6: Numerical results of Fig. 4 (a). “Round 0” corresponds to performance on initial labeled
pools.

0 1 2 3 4 5

MMPQ 0.6954 ± .0073 0.7198 ± .0121 0.7262 ± .0125 0.7302 ± .0123 0.7302 ± .0103 0.7293 ± .0112
U.O. 0.6943 ± .0077 0.7074 ± .0116 0.7126 ± .0127 0.7172 ± .0111 0.7208 ± .0113 0.7216 ± .0102
D.O. 0.6947 ± .0069 0.7218 ± .0104 0.7192 ± .0110 0.7197 ± .0088 0.7193 ± .0085 0.7192 ± .0106

6 7 8 9 10

MMPQ 0.7294 ± .0113 0.7291 ± .0109 0.7294 ± .0103 0.7300 ± .0099 0.7302 ± .0077
U.O. 0.7239 ± .0075 0.7269 ± .0084 0.7274 ± .0090 0.7282 ± .0091 0.7288 ± .0098
D.O. 0.7191 ± .0127 0.7184 ± .0106 0.7177 ± .0097 0.7169 ± .0112 0.7160 ± .0105

Table 7: Numerical results of Fig. 5. “Round 0” corresponds to performance on initial labeled pools.
0 1 2 3 4 5

(z̄L, 0, 100) 0.6922 ± .0089 0.7176 ± .0115 0.7252 ± .0153 0.7291 ± .0103 0.7292 ± .0121 0.7291 ± .0138
(z̄F , 0, 100) 0.6941 ± .0097 0.7189 ± .0115 0.7245 ± .0151 0.7293 ± .0141 0.7296 ± .0132 0.7299 ± .0126
(z̄U , 0, 50) 0.6942 ± .0085 0.7217 ± .0108 0.7282 ± .0106 0.7283 ± .0106 0.7285 ± .0111 0.7292 ± .0110
(z̄U , 0, 500) 0.6940 ± .0096 0.7193 ± .0140 0.7248 ± .0162 0.7287 ± .0113 0.7281 ± .0125 0.7294 ± .0123
(z̄U , 1, 100) 0.6923 ± .0105 0.7208 ± .0119 0.7292 ± .0138 0.7301 ± .0126 0.7298 ± .0124 0.7293 ± .0124

6 7 8 9 10

(z̄L, 0, 100) 0.7299 ± .0150 0.7295 ± .0126 0.7291 ± .0121 0.7298 ± .0092 0.7294 ± .0133
(z̄F , 0, 100) 0.7290 ± .0125 0.7299 ± .0124 0.7293 ± .0106 0.7294 ± .0122 0.7291 ± .0122
(z̄U , 0, 50) 0.7290 ± .0091 0.7294 ± .0093 0.7293 ± .0110 0.7294 ± .0092 0.7294 ± .0091
(z̄U , 0, 500) 0.7298 ± .0124 0.7294 ± .0115 0.7292 ± .0137 0.7298 ± .0119 0.7295 ± .0102
(z̄U , 1, 100) 0.7299 ± .0119 0.7287 ± .0105 0.7297 ± .0111 0.7300 ± .0108 0.7305 ± .0114

A.8 Generalization to categorical classification or regression

Recall that, in MMPQ, we use maxŷ p(ŷ|G) as a metric of model uncertainty. It is easy to see that,
in the binary classification case, selecting those with small maxŷ p(ŷ|G) is equivalent to selecting
those with a large prediction entropy, which is a widely-used uncertainty metric. However, this may
not hold in categorical classification or regression tasks.

We show in this subsection that, by choosing the KL-divergence between the prediction distribution
and the uniform distribution as the uncertainty metric, we can generalize our approach to categorical
classification or regression tasks. For simplicity, we take single-task categorical classification as an
example.

We start with categorical classification. Suppose that the are C classes in total, and denote pc =
p(ŷ = c|G) (c ∈ C ≜ {1, · · · , C}). The KL-divergence between the prediction distribution p(ŷ|G)
and a uniform distribution is

DKL =

C∑
c=1

pc log(
pc
1
C

)

=

C∑
c=1

pc(log(pc) + log(C))

= log(C)− (−
C∑

c=1

pc log(pc))

= log(C)−H(p),

(20)

where H(p) is the entropy of the prediction distribution.

Since log(C) is a constant, selecting those with a small DKL is equivalent to selecting those with a
large H(p). This shows that, DKL is equivalent to H(p) in terms of measuring model uncertainty.
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Then, by replacing maxŷ p(ŷ|G) with H(p) in Eqn. 5, we obtain a new selection score:

H(p)pL(G) = −

(
C∑

c=1

pc log(pc)

)
pL(G)

= −
∑
ŷ∈C

q(G, ŷ) log(p(ŷ|G))

= −
∑
ŷ∈C

q(G, ŷ) log

(
q(G, ŷ′)∑

ŷ′∈C q(G, ŷ′)

)

∝ −
∑
ŷ∈C

exp(−E(G, ŷ)) log

(
exp(−E(G, ŷ′))∑

ŷ′∈C exp(−E(G, ŷ′))

)
.

(21)

The above equation shows that the selection score can also be computed using the EBM.

With the same reasoning, the selection score for regression tasks is:

−
∫
ŷ∈Y

exp(−E(G, ŷ)) log

(
exp(−E(G, ŷ′))∫

ŷ′∈Y
exp(−E(G, ŷ′)) dŷ′

)
dŷ, (22)

where Y is the support set.

Note that, the above formulation requires computing the integration over Y , which is intractable.
This might be approximated by sampling and summation.
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A.9 Main results with unified y-axis scale

For better comparison, the Fig. 8 and Fig. 9 show the results of Fig. 2 and Fig. 3 with the same y-axis
scale for each dataset.

Figure 8: Active learning performance of MMPQ (ours) and baseline hybrid methods. “Round 0”
corresponds to the performance on initial labeled pool.

Figure 9: Active learning performance of MMPQ (ours) and uncertainty-based or diversity-based
methods. “Round 0” corresponds to the performance on initial labeled pool.
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