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ABSTRACT

Macro placement is a crucial and complex issue in chip design. In recent stud-
ies, reinforcement learning (RL) has demonstrated outstanding performance in
optimizing chip wirelength, but this leads to thermally inefficient design. Addi-
tionally, due to the specialized expertise necessary for creating chip benchmarks
and the constraints imposed by confidentiality agreements, there exists a scarcity
of publicly available chip thermal placement benchmarks. This work introduces
a reinforcement learning-based thermal placement model that can optimize both
wirelength and max temperatures. We also strictly followed the chip design pro-
cess and established a macro thermal placement benchmark. This significantly
reduces the entry barriers for researchers, facilitating benchmarking and result
replication. Compared to other models, our model notably diminishes the chip’s
max temperature of the chip while slightly extending wirelength on smaller-scale
chips. On large-scale chips, our model can further reduce wirelength while de-
creasing the chip’s max temperature. Our code and benchmarks will be open
sourced soon.

1 INTRODUCTION

With the development of large-scale integrated circuits (IC), placement is a crucial task that directly
affects chip performance, such as speed and energy costGarg & Shukla (2016). In the placement
task, macros (more than 100) and standard cells (more than 10k) are placed in appropriate locations
to meet the design metrics such as wirelength, routability, timing, power, max temperature, and
manufacturabilityQiu et al. (2023). As chip sizes continue to increase, manual design struggles
to meet various design metrics simultaneously. Therefore, finding an automatic and efficient chip
placement method becomes crucial.

Recent chip placement approachesChen et al. (2008); Lu et al. (2014); Lin et al. (2019); Cheng et al.
(2018); Viswanathan et al. (2007) have shown significant advantages in wirelength optimization.
However, As shown in Figure 1(d), shorter wirelength often results in an aggregation of components
that increases max temperatures of chip then impacting chip performance. Max temperatures and
temperature gradients have a definite effect on the reliability and performance of integrated circuits.
For example, large temperature gradients increase clock skew in clock distribution networksXia et al.
(2017), and device overheating due thermal runaway can occur in semiconductor devices due to the
positive feedback between high temperature and increasing leakage currentMolter et al. (2023); Li
et al. (2005).

Recent methods rarely prioritize heat optimization as a primary objective in chip placement. Existing
approaches that simultaneously optimize wirelength and max temperature mainly focus on chiplet
placement, and relatively few research focuses on macro placement. These works primarily suffer
from the following three shortcomings: First, Two-Stage Optimization Leads to Suboptimal. As
showen in Figure1(a) ,almost all thermal placement methods Ma et al. (2021); Chiou et al. (2023)
divide the optimization process into two steps: first optimizing wirelength, and then optimizing max
temperatures. This approach significantly restricts the model’s exploration space during heat opti-
mization, as component placements are nearly fixed, leading to local optima. Second, These heat
optimization methods are less effective for scenarios with high-density components. Thermal
placement methods typically use techniques like translation, rotation, and swapping after placing
all components on the chip canvas to reduce max temperature. However, as shown in Figure 1(b),
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when component density is too high, it greatly limits the space available for translation and rotation,
significantly impacting optimization results. Third, there is a lack of macro thermal placement
benchmarks. Thermal placement benchmarks are primarily focused on chiplet placement, with
relatively fewer benchmarks addressing macro thermal placement. Generating these benchmarks
requires running Electronic Design Automation (EDA) flows, which necessitate expertise in chip
design—making data generation costly Jiang et al. (2024). Additionally, non-disclosure agreements
(NDAs) for manufacturing techniques and EDA tools limit the release of raw data. As a result, most
studies are only able to create small internal datasets or set the power density to a random value
between 105 and 107 W/m2 for technology validation, thus making benchmarks and reproducing
results highly challenging.
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Benchmark Number of 
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Macros Power

ISPD2005 8 543-23084 ×

ISPD2006 8 51-3748 ×

IMB 17 178-786 ×

Ours 15 80-2184 √

(c)Macro placement benchmarks

Figure 1: Figure (a), wirelength and heat optimization process. Previous methods refers to Ma
et al. (2021); Chiou et al. (2023). Our method combines wirelength optimization and heat

optimization into one step, optimizing thermal performance from the beginning of the placement.
Figure (b), heat optimization strategies. Previous methods have a small feasible solution space

when components are densely, and cannot significantly change the placement of components. Our
model can generate a variety of placements during the heat optimization process. Table(c) ,

Commonly used macro placement benchmark. Commonly used macro placement benchmarks lack
power information for each component. We built a macro thermal placement benchmark that
includes detailed power information for each component through logic synthesis. Figure(d),

placement result visualization. Our model significantly reduces the max temperature and HPWL in
large-scale chips.

To address these issues, we first developed a macro thermal placement model and then established
an open-source benchmark for macro thermal placement. We utilize a reinforcement learning-based
approach to simultaneously optimize wirelength and max temperature. By processing the wire-
maskLai et al. (2022) and the max temperature under the current placement through a convolutional
neural network, we select the most optimal placement positions for overall performance, minimiz-
ing both wirelength and max temperature, rather than optimizing them separately. In constructing
the benchmark, we strictly followed the standard chip design process, performing logic synthesis on
15 real open-source chips to obtain detailed component information, rather than assigning random
power values to each macro. Compared to existing benchmarks, our benchmark increases the theo-
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retical power consumption pe macro while preserving the gate-level netlist through logic synthesis.
The main contributions of this paper are as follows:

• We developed a reinforcement learning model that optimizes max temperature and wire-
length simultaneously, taking into account constraints on both wirelength and max tem-
perature to achieve a global optimal solution for wirelength and max temperature. This
approach avoids the local optima caused by separately optimizing wirelength and max tem-
perature.

• Through a comprehensive EDA process, we created the first open-source macro thermal
placement benchmark, which provides a reliable baseline for comparison and replication,
significantly lowering the barrier to entry for chip thermal placement.

• On the 15 benchmarks we have established, our model achieves the lowest placement tem-
perature, demonstrating the effectiveness of our model.

2 RELATED WORK

2.1 CHIP PLACEMENT METHODS

There are two main optimization indicators commonly used in chip placement: using wirelength as
an optimization metricChen et al. (2008); Lu et al. (2014); Lin et al. (2019); Cheng et al. (2018);
Viswanathan et al. (2007); Kim et al. (2012); Kim & Markov (2012); Spindler et al. (2008); Chan
et al. (2006); Lai et al. (2022); Shi et al. (2024); Mirhoseini et al. (2021) and optimizing both max
temperature and wirelength simultaneouslyMa et al. (2021); Chiou et al. (2023).

Using wirelength as an optimization metric. The optimization of wirelength is primarily catego-
rized into classic methods (e.g., analytical methods)Chen et al. (2008); Lu et al. (2014); Lin et al.
(2019); Cheng et al. (2018); Viswanathan et al. (2007); Kim et al. (2012); Kim & Markov (2012);
Spindler et al. (2008); Chan et al. (2006); Shi et al. (2024) and learning-based methods (e.g.,RL)Lai
et al. (2022); Mirhoseini et al. (2021). Those methods typically utilize min Wirelength(s,H)
as the objective function, with some incorporating additional objectives such as congestion and
overlap. For example, DREAMPlaceLin et al. (2019) utilizes analytical methods to optimize wire-
length and density, convert the placement task into min WA(s,H) + λDensity(s,H). WA de-
notes the smoothed weighted average wirelength used to approximate Half Perimeter Wire Length
(HPWL), Density denotes the differentiable density measure used to penalize overlap, and λ is
the trade-off factor. The problem is then solved numerically using classical mathematical optimiza-
tion techniques, such as gradient descent, to rapidly generate a high-quality complete placement.
MaskPlaceLai et al. (2022) utilizes reinforcement learning to optimize wirelength. Reinforcement
learning views the placement process as a Markov Decision Process (MDP). In each step t, a com-
ponent is placed on the chip canvas. Set the reward as rt = HPWLt−1 −HPWLt and train the
model to maximize the reward in order to achieve the min Wirelength. Those methods can achieve
placement results that surpass humans in terms of wirelength optimization, but they overlook the
impact of max temperatures on the chip, leading to a reduction in the chip’s thermal performance.

Optimizing both thermal and wirelength. Some methods consider the chip’s thermal distri-
bution during placement and optimize wirelength and max temperature simultaneously. How-
ever, these methods primarily concentrate on 2.5D chiplet placement and relatively less on macro
placement. TAP-2.5DMa et al. (2021) employs simulated annealing to discover a placement re-
sult with improved wirelength and max temperature by moving the chiplet through translation
and rotation from the initial layout generated byChen & Chang (2006). SA cost function is
cost = αT+(1−α)W ,where T and W are temperature and wirelength respectively. α is the balance
coefficient. α = 0 when T ≤ 85. Then, α incrementally rises with T until it peaks at a maximum
value of 0.9. This means that heat optimization is withheld during wirelength optimization until the
temperature surpasses 85 degrees Celsius, at which point heat optimization is initiated. Chiou et al.
(2023) utilizes an SP-based tree to achieve wirelength-focused placement. After the placement is
completed, perform post-placement with thermal considerations. However, these approaches prior-
itize wirelength optimization initially and subsequently address heat optimization once wirelength
optimization reaches a certain level. If the interplay between the wirelength and thermal parame-
ters is not considered initially, the system will converge to a locally optimal solution. Furthermore,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

compared to macro placement, chip placement requires fewer components (about 10), yet the larger
number of macros (more than 100) notably expands the solution space.

2.2 CHIP DATASET AND BENCHMARK

Datasets and benchmarks are crucial for the development of research. This facilitates benchmarking
and result reproducibility, while also reducing the barriers to entry for new researchers. Researchers
have developed various datasets tailored for specific tasks to foster advancements in chip design.
In the prediction task, CircuitNet and CircuitNet 2.0Jiang et al. (2024); Chai et al. (2023) collected
over 10,000 data points from CPU, GPU, and AI chips, and conducted multi-model prediction tasks
such as timing, routing feasibility, and IR-drop prediction. In macro placement tasks, generally used
public benchmarks include ISPDNam et al. (2005; 2006), IBM benchmarkAlpert (1998), and the
Ariane RISC-V CPU designZaruba & Benini (2019). These benchmarks mainly include the length
and width and pin position (the components are interconnected through pins.) of each component,
and the topological relationships (Netlist) of components. Due to confidentiality reasons, those
benchmarks do not disclose specific power of individual components. Due to the absence of specific
power for each component, thermal field for macro placement cannot be conducted. While the power
density of each macro can be constrained within the range of 105−107W/m2 based on statistical
principlesCong et al. (2004), the power density of components varies across different manufacturing
processes and component librariesBorkar (1999); Wrzecionko et al. (2009); Ku et al. (2007); Hanson
et al. (2003); Li et al. (2005); Kim et al. (2005). Additionally, the power of each macro is also
influenced by voltage fluctuations and frequencies. In other words, the power of macros is influenced
by various factors and requires precise calculations to obtain more accurate results.

3 PRELIMINARY AND NOTATION

3.1 MACRO PLACEMENT

Macro placement is an integral part of placement. The macro placement task can be viewed as an
optimization problem. The objective function is minimized by adjusting the position of the macro
while satisfying certain constraints. In macro placement, common optimization metrics mainly
include wirelength and max temperature, aiming for the chip to have the shortest possible wire-
length and the lowest temperature. Consider with the challenges associated with directly calculating
wirelengths, recent work primarily relies on Half Perimeter WireLength (HPWL) to approximate
wirelength which is computed by accumulating all the half-perimeters of bounding rectangle of all
the nets from the chip netlist. As the chip power is predominantly generated in macros, we calculate
the power density of each macro based on its power and area. Subsequently, we obtain the chip’s
thermal field through finite element analysis, extracting the max temperature from it.

Placement constraints mainly include: overlap, which avoid overlapping between each macro, In
the chip canvas, each position can be occupied by at most one macro. congestion, the congestion of
each position’s routing in the chip canvas should be less than a fixed threshold. Therefore, the entire
placement optimization problem can be formulated as:

min
x,y

HPWL(x, y) + αMaxT (x, y) (1)

s.t.Overlap(x, y, w, h) = 0 (2)
Congestion(x, y, w, h) ≤ C (3)

HPWL(.) means Half Perimeter WireLength, and MaxT (.) represents the highest temperature of
the entire chip, Overlap(.) and Congestion(.) represent the methods for calculating overlap and
congestion, respectively. (x, y) = (x1, y1, x2, y2...xn, yn) represent the placement position of ith
macro.
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Figure 2: The overall structure of our model. Black arrows represent the forward propagation
process, while red arrows represent the backward propagation process.

4 THERMALLY DRIVEN MACRO PLACEMENT MODEL

By placing a macro into the chip canvas each step, we transform chip placement into a Markov
decision process (MDP)Kaelbling et al. (1996). The overall architecture of the model, as shown
in Figure2, consists of a policy network πθ(at|st) and a value network Vϕ(st). The policy net-
work adopts an encoder-decoder structure, using the previous state st as input to select an action
at as output. Black arrows represent the forward propagation process, while red arrows represent
the backward propagation process. The reward calculator computes the reward by weighting the
increments of post-placement HPWL and max temperature.

4.1 HEAT MASK

In this section, we complete thermal simulation of the entire chip through finite element analysis
(FEA) methods. In the FEA process, accurately describing the boundary effects of a heat source on
thermal load variations is crucial. Geometric mapping refers to the formulation of how to construct
mechanical analysis models from level-set-based geometric structuresChen et al. (2023); Guo et al.
(2014); Kang & Wang (2013); Zhang et al. (2015); Kreisselmeier & Steinhauser (1980); Wang et al.
(2018); Torii et al. (2022). We use density-based mapping to maintain a certain level of accuracy
while considering the avoidance of additional costs and extra implementation work associated with
grid re-partitioning. We use the efficeint algorithm based on Green functionLiu et al. (2013) to map
3d thermal field to 2d. The Heat equation can be expressed as:

σ
∂T (r, t)

∂t
= ∇ · (κ∇T (r, t)) + p(r, t)r ∈ D (4)

In our model, we assumes all four sides of the chip are insulated from the ambient environment. The
heat flow towards to x- and y- direction walls is zero. Heat generated from components on chip can
be dissipated toward to heat sinks at the top or PCB at the bottom. The boundary condition of our
system can be expressed as follows:

∂T (r, t)

∂x
|x=0,Lx

=
∂T (r, t)

∂y
|y=0,Ly

= 0 (5)

κ
∂T (r, t)

∂z
|z=−Lz

= hpT (x, y,−Lz, t) (6)

κ
∂T (r, t)

∂z
|z=0 = −hsT (x, y, 0, t) (7)
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hp denotes primary heat flow to the heat sink and hs denotes secondary heat flow to the PCB re-
spectively. In our model, the chip is divided into M by N bins. More bins imply more detailed
temperature distributions. Accord to the Laplace’s equation of heat equation, the general solution
without time with respect to the boundary condition in equation 5, 6, 7 has been derived then imple-
mented in integral function to approximated the temperature distribution of bins in chips. Solution in
z-direction described in is independent to solution in x- and y-directions. Dimensionality reduction
in the z-axis directions significantly faciliates heat analysis on temperature distribution on chip.

We introduce 3d finite element analysis (FEA) method to analysize the thermal distribution on chips.
A level set function (LSF) ϕ(x) is introduced to describe the shape of components. In our chip
designs, each macro is approximated as rectangle. Which LSF can be constructed in unified form
as:

ϕ(x, y;x0, y0) = 1− (
x− x0

a
)m − (

y − y0
b

)m (8)

Where m is integer number which controls the components shape; a and b are semi-major length
and semi-minor length of component respectively; (x0, y0) corresponds to the geometric center
coordinate of component. To account for a unified FEA process without remeshing grids after each
movement of macros, the geometric description function of our macros is projected onto a density
field with the Heaviside function:

H(x) =

{
1, x > 0

0, x ≤ 0
(9)

The region that Heaviside function equal 1 represents the occupancy of components, where the heat
source load is distributed. The heat source intensity function (HSIF)Φ(x) in whole design can be
expressed as:

Φ(x) =

Nc∑
c=1

Qc(x) ·H(ϕc(x)) (10)

Where Qc(x) is the intensity distribution function of the ith heat source. The structured quadrilateral
finite elements are introduced in our FEA design. The element equilibrium equation is

KeTe = Pe (11)

Where Ke is the element heat transfer matrix, is the elemental nodal Te temperature vector, Pe is
the equivalent elemental nodal thermal load vector, respectively. The entire chip’s thermal field is
obtained through finite element analysis, and this thermal field is used as a heat mask input for the
model.

4.2 REINFORCEMENT LEARNING

We drew inspiration from the network structure of MaskPlaceLai et al. (2022) and used the Heat
Mask along with the Position Mask, Wire Mask, and View Mask as inputs to the network. We
utilized the commonly used PPOSchulman et al. (2017) framework to train the policy πθ(at|st). We
combine the HPWL and the weighted max temperature of the entire chip as the reward. Specifically,
we use the increase in wirelength and temperature after placing each component as negative rewards
to minimize wirelength and highest temperature. The reward calculation method is as follows:

rt = (HPWLt−1 −HPWLt) + α(Tmaxt−1 − Tmaxt) (12)

HPWLt−1, HPWLt, Tmaxt−1, Tmaxt represent the wirelength and highest temperature at time
t-1 and time t, respectively. α is a hyperparameter used to balance the magnitudes of the two param-
eters.
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5 THERMALLY DRIVEN MACRO PLACEMENT BENCHMARK

Chip design is a complicated process, primarily divided into two stages: front-end design and back-
end design. In front-end chip design, the main focus is on describing the functionality of the chip
by using hardware description codes like Verilog to illustrate its logical functions. Recently, some
work has used large language models (LLM) to generate Verilog codeLai et al. (2024); Alsaqer
et al. (2024); Chang et al. (2023), significantly accelerating the front-end design process of chip
design. Following that, the Verilog codes link to top module hierarchically in design are analyzed
then mapped to gate-level descriptions through logic synthesis with respective to specified design
constraints. After logic synthesis, the connection relationships between macros and standard cells
are established. There are differences in the area and timing parameters of standard cells and macros
under different technology library. After logic synthesis, the chip design progresses into the back-
end design stage, where the focus is primarily on completing the physical design of the chip. This
includes tasks such as floorplanning, placement and routing. Placement and routing are key steps in
chip back-end design. During this stage, optimizing the performance, power, and area (PPA) of the
chip through placement and routing optimizations is crucial, much of the research has been focused
on fundamental trade-offs made in semiconductor design for PPA. In this section, we construct

Configuration 
& 

Generator 

seq std) RTL Files

Figure 3: Generation process of the thermally driven macro placement benchmark.

benchmarks for chip thermal placement as shown in Figure 3. We use RISC-V SoC RTL design
tools in chipyardAmid et al. (2020), an opensource framework for SoC agile development. All the
designs are the variants of RISC-V SoC with the core (s) being RocketAsanovic et al. (2016) or (and)
BoomCelio et al. (2015) as well as Shuttle. The benchmark designs are generated from chipyard
implemented with Verilog HDL. We apply SRAM compiler to map the cache modules consist with
sequential cells in Verilog files to vendor SRAMs. The Verilog files with SRAM modules are logical
synthesized using Synopsys Design Compiler to get the gate-level netlists as well as the power and
area of components. The SMIC 55-nm technology node is adopted to memory compiler and standard
cells during the logical synthesis progress of our research. We obtain 15 benchmarks in total and the
detailed information of each benchmark is listed in Table 1.

The netlist generated by logical synthesis is used to represent the logical relationship among compo-
nents in integrated circuits. The number of pins for each cell is determined by the finout and finin of
cells or macros. We distribute the pins location on macro boundary randomly. A netlist in a design
can be defined as H(V,E), in which V represents to the vertices of components in hypergraph H .
The nets correspondes to the hyperedges E. The power data generated by logical synthesis is used
to represent the heat power of cells and macros. The heat power for each component consists with
static and dynamic power. We introduce the dynamical power in macro placement tasks since the
dynamic power is orders of magnitude larger than the static power of macros.

7
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Table 1: The detailed information about the benchmark.

Benchmark Macros Std cells Nets
Rocket 80 203034 302279

HwachaRocket 162 809553 1090468
Sha3Rocket 80 230981 353109

LargeBoomAndRocket 138 1191052 1581156
SmallBoomAndRocket 90 571904 800541

DualBoomAndDualRocket 260 2287113 3006245
DualBoomAndRocket 180 2169563 2836397

GemminiRocket 392 1145387 1700468
MempressRocket 824 697697 1133408

FPGemminiRocket 280 1262227 1752083
GemminiShuttle 289 1204401 1756288

LeanGemminiRocket 392 852394 1277971
QuadRocketSbusRingNoC 552 888764 1327155

SbusMeshNoC 2184 1978414 3229628
SbusRingNoC 936 1322864 1998056

6 EXPERIMENTS

We test our method on benchmark in Table 1 and compared it with MaskplaceLai et al. (2022).
We set trade-off coefficient of wirelength and max temperature as α=1 and 0 respectively. The
other hyperparameters set same with previous work. We notice that the number of macros in our
benchmarks vary from 80 to 2184. For the SbusMeshNoC benchmark which has over 2000 macros
and over 3000000 nets, a single RL epoch by step-by-step placement costs more than an hour. Thus,
for large benchmarks (contains over 300 macros) we select 256 macros in train process then generate
all macros finally.

Main results. Table 2 gives the detailed results of each method with same benckmark. The max
temperature is lowest in our method with α=1 for most of benchmark. The exception in SbusRing-
NoC and MempressRocket might be associated with the train process in which we only select 256
macros for large scale chips. Among these benchmarks, HwachaRocket performs best heat opti-
mization which reduce the max temperature 25.76K. Other benchmark also perform well in heat
optimization task compared with maskplace. The optimization of max temperature of chip is at-
tributed to the heat reward in equation 12.

MempressRocketa b

SbusMeshNoC ba

QuadRocketSbusRingNoCa b

SbusRingNoCa b

Figure 4: Results of the placement for the first 256 macro. a represents the results without heat
optimization, while b represents the results with heat optimization. The red box represents the

space not utilized by the model without heat optimization, while the green box indicates that our
model has reserved more ample space for the placement of subsequent macros.
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Table 2: Comparison of HPWL (105) and max temperature.

Benchmark Methods HPWL (105) Max temperature (K)

Sha3Rocket
maskplace 5.90 393.57
ours (α=0) 4.97 397.32
ours (α=1) 5.95 388.93

Rocket
maskplace 5.73 399.84
ours (α=0) 5.09 395.79
ours (α=1) 5.58 392.06

SmallBoomAndRocket
maskplace 5.56 422.55
ours (α=0) 5.28 423.54
ours (α=1) 6.97 413.91

LargeBoomAndRocket
maskplace 1.17 446.23
ours (α=0) 1.06 443.60
ours (α=1) 1.50 435.83

HwachaRocket
maskplace 1.55 452.64
ours (α=0) 1.40 454.96
ours (α=1) 2.05 429.20

DualBoomAndRocket
maskplace 1.70 479.73
ours (α=0) 1.49 472.55
ours (α=1) 1.87 466.87

DualBoomAndDualRocket
maskplace 2.22 487.77
ours (α=0) 2.19 495.62
ours (α=1) 2.89 484.05

FPGemminiRocket
maskplace 3.92 348.68
ours (α=0) 4.04 349.00
ours (α=1) 4.40 347.37

GemminiShuttle
maskplace 8.21 354.01
ours (α=0) 7.81 356.69
ours (α=1) 8.19 345.93

QuadRocketSbusRingNoC
maskplace 24.68 342.45
ours (α=0) 23.02 342.17
ours (α=1) 22.62 341.28

SbusMeshNoC
maskplace 15.51 401.98
ours (α=0) 17.15 386.39
ours (α=1)) 15.97 383.26

SbusRingNoC
maskplace 27.04 364.77
ours (α=0) 26.53 359.68
ours (α=1) 25.91 360.75

MempressRocket
maskplace 132.53 324.24
ours (α=0) 142.83 328.94
ours (α=1) 128.93 328.42

For wirelength results, the most of our results shows longer wirelength indicates the balance between
wirelength and thermal properties of chip. However, we notice as chip scale increases, the differ-
ence of wirelength between our method and other method decreases. For QuadRocketSbusRing-
NoC, SbusRingNoC and MempressRocket. the wirelength for our method is lower than previous
methods. Figure 1(d) shows the temperature distribution as well as placement result in SbusMesh-
NoC benchmark, We observe that, due to the heat optimization in the reward function, macros are
distributed more evenly across the canvas.

The results of placing the first 256 macros in our model are shown in Figure 4. We notice that
compared to models without heat optimization, our model has a larger internal space and higher
space utilization rate, which is more conducive to the placement of subsequent modules. Due to
entropic order for macros introduced by ”repulsive force” equivalent to heat optimization reward
function in our methods, the space between large macros has large and uniform size, small macros
within different modules can be placed in these free space effectively. This indicates that performing

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

384

386

388

390

392

394

396

398

18.5 19 19.5 20 20.5 21

te
m

pe
ra

tu
re

 (K
)

log(wirelength)

better ∞️

0
0.3

0.5

1

3

2

Figure 5: trade-off between wirelength and max temperature.

heat optimization at the initial stages in large-scale chip placement tasks has a positive impact on
reducing max temperature and wirelength.

Trade-off results. In fact, the macro placement in benchmark is associated with trade-off coefficient
α between wirelength and max temperature. Accord to scatter plot in Figure 5 As α increases, the
temperature decreases significantly with wirelength increases slightly which can be attributed to the
heat optimization for placement. However, as trade-off coefficient tends to 1, the result of wirelength
and max temperature shows chaotic. The chaotic of trend might be associated with the expansion
of configuration for macro in phase space. We should notice that lower wirelength indicates the
aggregation between macros. Heat optimization tends to separate the macros in whole canvas to
deminish hot spot. The configuration of macro placement increases massively indicates we need
more epoch in train process to explore the phase space of macros. To avoid the chaotic introduced
by expansion of configuration of macro, we select α=1 as trade-off coefficient.

7 CONCLUSION

In this paper, we developed a reinforcement learning-based macro placement model that optimizes
both wirelength and thermal field, thus achieving a balance between wirelength and max temper-
ature. Furthermore, we established 15 open-source macro thermal placement benchmarks through
a comprehensive EDA process. We obtained gate-level netlists and detailed power information for
each macro through logic synthesis. From the experiments, it is evident that our model can re-
duce the chip’s max temperature while slightly increasing the wirelength on smaller-scale chips.
On larger-scale chips, our model disperses the initial component placement through heat rewards,
providing ample space for subsequent macros and reducing wirelength to a certain extent. This also
demonstrates the importance of early heat optimization in large-scale chip placement. We aim for
our benchmark to promote research in chip thermal placement, thereby enabling chips to achieve
optimal performance.
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