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Abstract

With the success of pre-training techniques in representation learning, a number
of continual learning methods based on pre-trained models have been proposed.
Some of these methods design continual learning mechanisms on the pre-trained
representations and only allow minimum updates or even no updates of the back-
bone models during the training of continual learning. In this paper, we question
whether the complexity of these models is needed to achieve good performance
by comparing them to a very simple baseline that we design. We argue that
the pre-trained feature extractor itself can be strong enough to achieve a com-
petitive or even better continual learning performance on Split-CIFAR100 and
CoRe 50 benchmarks. To validate this, we conduct the baseline that 1) uses a
frozen pre-trained model to extract image features for every class and computes
their corresponding mean features during the training time, and 2) makes pre-
dictions based on the nearest neighbor distance between test samples and mean
features of the classes; i.e., Nearest Mean Classifier (NMC). This baseline is
single-headed, exemplar-free, and can be task-free by updating the mean features
continually. This baseline achieved 88.53% on 10-Split-CIFAR-100, surpass-
ing most state-of-the-art continual learning methods, with all initialized by the
same pre-trained transformer model. We hope our baseline may encourage future
progress in designing learning systems that can continually add quality to the learn-
ing representations even if they start from pre-trained weights. Code is available
https://github.com/Pauljanson002/pre-trained-cl.git

1 Introduction

Conventional machine learning models struggle to perform well when the i.i.d. assumption is violated
in the real world, where data arrives sequentially from tasks with shifting distributions over time.
These models suffer from catastrophic forgetting of earlier tasks[15, 10]. Continual learning, in
which the agent is expected to learn new tasks without forgetting the old ones, has been studied
extensively as a potential solution to this issue. Early approaches start training with a model from
scratch, continually adapt the model for future tasks, and prevent forgetting by replaying the data,
designing the penalization of the updates of the model parameters, and/or dynamically increasing
model parameters to incorporate new knowledge.

The use of pre-training [24] on large-scale datasets, such as ImageNet-1k[23] and ImageNet-21k [22]
has led to significant advances. With sufficient and diverse data, the output features of a pre-trained
model generalize well to a vast array of tasks, greatly increasing the performance of challenging
learning scenarios such as continual learning. As a result, some existing works directly deploy the
pre-trained models as feature extractors, and apply continual learning techniques on the feature
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level. These methods imply that pre-trained models provide general and coarse features that need to
be task-specifically fine-tuned. However, [20] stated large-scale pre-trained models have excellent
classification performance to the data outside of the pre-trained distribution even without extra
training. We are questioning whether these pre-trained features are competitive for downstream
tasks and whether sophisticated continual learning techniques are indeed needed to achieve a good
performance on the studied continual learning benchmarks.

To answer these questions, we implement a simple baseline in continual learning. We use a frozen
pre-trained model to extract features for the training set and compute mean features to represent each
class. During the testing time, we make predictions based on the distance between the test samples
and class mean features. Our results are surprisingly outperforming SOTA methods using the same
pre-trained backbone network. We achieve 88.53% Average Accuracy at the end of the learning
sequence of Split CIFAR100 compared to 83.83% of L2P[27], and 83.23% on the evaluation task of
CoRe50 compared to 78.33% of L2P. This implies that the pre-trained models provide quality and
robust learning representations under distribution shifts. We also present the experimental results on
two more diverse benchmarks, 5-dataset and Split-ImageNet-R. The results on these datasets also
show competitive performance outperforming most methods.

Our proposed baseline is single-headed, task-free, and exemplar-free as an additional bonus. We
argue that this is a simple yet powerful baseline that every continual learning method should compare
against. The intentions of these properties are to make less use of task labels (which is unrealistic in
practice) and replay data (which raises privacy concerns) in the techniques. We observe that some
prior works outperform this baseline, but at the sacrifice of one or more of these characteristics. There
are few comparable approaches with ours when all the conditions align. We hope that this work sheds
some light on examining the practicality of pre-training in continual learning and whether the new
methods are improving the learned representation quality continually.

2 Related Work
Continual learning with pre-trained models Continual learning methods generally trained feature
extractors from scratch and constrained the drift in feature representation [10, 16]. Recently, the usage
of pre-trained models has attracted more attention in continual learning. [2] viewed the first task as a
pre-training stage and froze the feature representation after the first task. [7] found that a larger size of
data in the first task and self-supervised pre-training helped to decrease catastrophic forgetting. [12]
empirically analyzed the effect of training the last layer with a fixed feature extractor. [18] studied
foundation models and replay of frozen latent features to overcome catastrophic forgetting. Recently
[27] proposed to use prompt based fine-tuning with a pre-trained transformer [5, 25] and compared
it with other methods in the same initialization. We adopt this strategy and point out that classifier
learning actually reduced the power of representations learned by the pre-trained model.

Task-aware/free continual learning Task incremental method requires the task identifiers of the
samples during the inference, which reduces the practical application of these methods, whereas
class-incremental methods do not require those. However, task-aware/free methods suffer from class
recency bias. To overcome such recency bias, BiC[29] proposed to add a final layer that reduces
the final bias. LUCIR [9] proposed to use a balanced fine-tuning to train the classifier after freezing
feature representation. Our method also focuses on this problem and uses the simple nearest mean
classifier on top of pre-trained transformer.

Exemplar-free continual learning Earlier methods were proposed to store raw data, learned features,
or generated features from previous tasks. Since the replay mechanism such as ER [4] is orthogonal
to architecture-based and regularization-based methods, they are widely adopted in other methods
to improve performance. Recently there has been an increased interest in exemplar-free continual
learning to account for privacy concerns in storing raw samples and storage concerns. iCaRL [21]
introduced the method of using exemplars for continual learning and selected exemplars close to the
class means. Our baseline follows a similar strategy but only stores the class-mean in feature space
which save the storage by reducing the number of latent variables to keep per class.

3 Methodology

Problem Setup We adopt the standard continual learning scenario where a model learns from a
non-i.i.d. data stream, represented as D1, ...,DT , where Dt = {(xti, yti)}

Nt
i=1 is the task-specific
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subset, xti ∈ Rw×h×c is an image input and yti ∈ Z is its corresponding label. The goal of continual
learning is to learn a function fθ which maps the input x to the label y from an arbitrary task seen so
far. We focus on two scenarios. In the class-incremental setting, each subset Dt contains a disjoint
class label set. In the domain-incremental setting, the subsets D1, . . . ,DT share the class labels, but
the input distributions varies over time.

Nearest Mean Classifier (NMC) We decouple the goal of continual learning fθ into two steps. The
first step is to learn the representation h and the next is to learn the classifier g. We directly adopt
a pre-trained vision transformer as our feature representation without training. For the classifier,
inspired by [21, 17] we use the nearest mean classification strategy. During the training stage of task
t, we calculate the mean features of a class in Dt

µk =
1

|Ck|
∑
x∈Ck

h(x) , (1)

where Ck denotes the set of training samples belonging to class k. Only class mean features are
saved in the memory and will be used during evaluation. At the test time of task t, the feature of a
test sample is extracted by the pre-trained model, and the predicted class label is taken as the class
whose mean features is the closest (over all the seen classes so far) to the feature of a test sample.

ŷ = argmin
k
||h(x)− µk|| (2)

4 Experiments
We follow the experimental setup used in [27] to evaluate our method for a fair comparison. We test
our method in class incremental learning, where new sets of classes are introduced to the model, and
in domain incremental learning, where classes remain the same and the domain changes; see Sec 3.

Datasets: We evaluate our baseline on four common continual learning benchmarks, Split- CI-
FAR100 [11] , 5-datasets [6] and Split-ImageNet-R [8] in the class incremental learning setting.
As proposed by [27] and [26]. Split-CIFAR-100 contains 10 tasks with 10 classes for each task.
The 5-dataset benchmark concatenates 5 datasets, MNIST, SVHN, notMNIST , FashionMNIST and
CIFAR10, with each dataset forming one task. Split ImageNet-R is a newly proposed dataset for
continual learning by [26]. It consists of 200 classes which are randomly divided into 10 tasks. It
contains the same object types however presented in different styles such as cartoon , graffiti and
origami. These variations make the continual learning more challenging. For the domain incremental
learning setting, we use CoRe50 proposed by [14]. It contains 50 objects collected in 11 distinct
domains(tasks). 8 domains were faced and learned incrementally while the test is performed on
the remaining three domains. Since a single test task is used, we do not report forgetting and joint
training results in that scenario.

Evaluation Methods: For our approach (Ours), we employ the widely used ViT-B/16[5] model
pre-trained on ImageNet-21k [24] provided by timm library [28]. We mainly compare our baseline
with the recent L2P [27] which adopts the pretrained model as ours and learns a prompt pool with
a prompt selection mechanism to modify the pretrained representations. We also consider popular
continual learning methods including regularization-based methods (LwF[13] , EWC [10] ) and
rehearsal-based methods (ER[4], GDumb[19], BiC [29], DER++ [1] and Co2L [3]). We present joint
training results where the training data is, i.i.d. distributed among the whole benchmark with no task
split. FT-frozen adds a fully-connected layer on top of the frozen feature extractor as the classification
head, and FT allows end-to-end training on the feature extractor. Note that FT-frozen is different
from our baseline, as we use NMC classifier and build it incrementally.

Results: Table 1, 4, and 2 report the performance of continual learning in incremental setting in
Average Accuracy at the end of the learning sequence of Split-CIFAR100, Split-ImageNet-R, and
the 5-dataset respectively. Table 4 shows the results of the continual learning in domain incremental
setting on CoRe50[14]. The results are grouped based on the use of replay sample. Our simple
baseline achieves the best performance on Split CIFAR-100 and CoRe50 while being the second
best on Split-ImageNet-R and 5-dataset benchmarks. Our results on Split-CIFAR-100 are even
better than methods that use replay samples. Concretely, our baseline achieves 88.53% with zero
buffer size, which is 4.7% and 2.22% better than the runner-up and significantly more complicated
L2P with no exemplars and L2P with 50 exemplars/class buffer, respectively. This suggests that
pre-trained transformer offers a strong representation that achieves competitive performance. We
think that the main reason for a possible inferior performance could be the ineffective design of the
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Table 1: Continual learning performance ex-
pressed in Average Accuracy and Forgetting
at the end of the learning sequence of CIFAR-
100[11]. All methods are initialized with pre-
trained weights for a fair comparison. Our base-
line outperforms all the methods in this bench-
mark.

Method Buffer size Average Acc Forgetting

FT - frozen 0 17.72 59.09
FT 0 33.61 86.87

EWC[10] 0 47.01 33.27
LwF [13] 0 60.69 27.77
L2P [27] 0 83.83 7.63

Ours 0 88.53 -

ER [4] 50/class 82.53 16.46
GDumb [19] 50/class 81.67 -

BiC [29] 50/class 81.42 17.31
DER++ [1] 50/class 83.94 14.55
Co2L [3] 50/class 82.49 17.48
L2P [27] 50/class 86.31 5.83

Joint - 90.85 -

Table 2: Continual learning performance ex-
pressed in Average Accuracy and Forgetting at
the end of the learning sequence of the 5-dataset
benchmark [6]. All methods are initialized with
pretrained weights of the transformer for a fair
comparison. Our baseline performs competi-
tively with the exemplar-free methods in this
benchmark

Method Buffer size Average Acc Forgetting

FT - frozen 0 39.49 42.62
FT 0 20.12 94.63

EWC[10] 0 50.93 34.94
LwF [13] 0 47.91 38.01
L2P [27] 0 81.14 4.64

Ours 0 79.84 -

ER [4] 50/class 84.26 12.85
GDumb [19] 50/class 70.76 -

BiC [29] 50/class 85.53 10.27
DER++ [1] 50/class 84.88 10.46
Co2L [3] 50/class 86.05 12.28
L2P[27] 50/class 88.95 4.92

Joint 93.93

Table 3: Continual learning performance in Av-
erage Accuracy at the evaluation task of CoRe50
[14]. All methods are initialized with pretrained
weight for fair comparison

Method Buffer size Test Acc

EWC[10] 0 74.82
LwF[13] 0 75.45
L2P[27] 0 78.33

Ours 0 83.23
ER[4] 50/class 80.1

GDumb[19] 50/class 74.92
BiC[29] 50/class 79.28

DER++[1] 50/class 79.7
Co2L[3] 50/class 79.75
L2P[27] 50/class 81.07

Table 4: Continual learning performance in Aver-
age Accuracy and Forgetting at the end of the learn-
ing sequence of the Split-ImageNet-R[8] bench-
mark. All methods are initialized with pretrained
weights for fair comparison.

Method Buffer size Average Acc. Forgetting

FT - frozen 0 39.49 42.62
FT 0 28.87 63.80

EWC [10] 0 35.00 56.16
LwF [13] 0 38.54 52.37
L2P [27] 0 61.57 9.73

Ours 0 65.99 -

ER [4] 5000 65.18 23.31
GDumb [19] 5000 65.90 -

BiC [29] 5000 64.63 22.25
DER++ [1] 5000 66.73 20.67
Co2L [3] 5000 65.90 23.36

Joint - 79.13 -

continual learning mechanisms compared to the robust features provided by the pretrained model.
Such a model, pretrained on a large and diverse dataset, may have already captured most of the
distribution properties in the evaluation benchmarks. Then a desired continual learning mechanism
needs to further encourage the model to produce the task-invariant features specific to the deployed
benchmark. Our nearest neighbor baseline is also competent among exemplar-free methods on
Split-ImageNet-R and 5-datasets benchmarks, which is more diverse than CIFAR-100 and CoRe50.
However, methods with higher buffer sizes and finely designed continual learning mechanisms do
improve the representations extracted from pretrained models.

5 Conclusion

In this work, we explore the representational capacity of large-scale pre-trained models in continual
learning settings. We provide simple nearest neighbor baseline experiments on four benchmarks,
showing competitive performance to more sophisticated state-of-the-art continual learning methods
which also leverage the same pretrained models. We agree that using pretrained weights can be a
reasonable practice even in continual learning. However, to show real progress in continual learning
systems, we need to focus more on building methods that can continually add quality to the learning
representations. A desired continual learning algorithm shall go significantly beyond the knowledge
embedded in the pretrained model. Another important aspect is the considered benchmarks for
evaluating continual learning methods. Such benchmarks need to be sufficiently challenging and
different from the data distributions employed for pretrained models.
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