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ABSTRACT

Security of deep neural networks based machine learning systems has been an
emerging research topic, especially after the discovery of adversarial attacks. In
general, however, it is very difficult to build a machine learning system that is
resistant to different types of attacks. Instead of directly improving the robust-
ness of neural networks, Cheng et al. (2023) proposed the first framework to trace
the first compromised model under the black-box adversarial attack in a forensic
view. However, the black-box assumption has limited the usage of the framework
since users will require detailed model information to facilitate their own use in the
modern MLaaS system. In this paper, instead of considering the limited black-box
attacks, we investigate more general and harder white-box setting where all users
will have full access to model. Explicit modification on the model architecture
during the inference will be no longer effective because those mechanisms could
be easily bypassed by adversary. To address this challenge, a novel identification
framework is proposed that can achieve high tracking accuracy to trace the source
of white-box adversarial attack. Specifically, to differentiate adversarial exam-
ples generated from different copies, we first design an implicit watermark from
backdooring before the model distribution. Then we design a data-free method
to identify the adversary with only adversarial example available. Extensive ex-
periments on different attacks including both white-box and black-box attacks,
datasets, and model architectures verify the effectiveness of the proposed method.
Our code will be made publicly available.

1 INTRODUCTION

Since neural networks were shown vulnerable to adversarial attacks (Szegedy et al., 2013), the
security problem of deep neural networks has attracted more and more attention as deep learning has
been shown successful in a wide range of applications. To alleviate the threat of adversarial attack,
lots of methods have been proposed to improve the robustness of models (Cheng et al., 2020; Madry
et al., 2017; Zhang et al., 2019; Thulasidasan et al., 2019). However, they suffer from trade-offs with
test accuracy on clean data, making the robust models hard for deploying in real world applications.
Recently, Cheng et al. (2023) proposes a new task to find the source model copy for generating
the adversarial attack where one of model copies in the MLaaS system is compromised by the
adversary to generate transferable adversarial examples that could subsequently affect other devices
in the same system. The goal for the task is to find the first compromised copy by only investigating
the generated adversarial example. Through embedding different mask-based watermark during the
inference procedure, they propose an identification framework to trace the first compromised model
copy with adversarial examples in the black-box setting. While their proposed framework mainly
considers the attacker in the black-box setting where the attacker could only query the model output,
however, in many real-world systems like hugging face and large foundation models, users could
have access detailed information about the model (i.e., model architecture and parameters) so that
they can further improve the model performance with their own local data. Meanwhile, the mask-
based watermark can be bypassed entirely by building surrogate models and adopt transfer attack to
generate adversarial examples.

In this paper, we make the first attempt to address the problem that how to identify the possible
adversary among different users when all users have full information about the models, i.e. under
the white-box setting. Under the white-box setting, the provider couldn’t add any modules to the
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models to facilitate the identification like Cheng et al. (2023). It is because the adversary could
bypass any explicit modifications on the model architectures or inference procedure by designing
adaptive attacks as they have already known the existence of the module. To solve this problem,
we propose to design a robust implicit watermarking scheme to conduct adversarial investigation.
For every model copy, we insert the implicit watermark by building some fingerprint data points
and mix it into the training procedure. That is, the inserted watermark is hidden in the model
weight before providing models to customers. Specifically, our implicit watermarking would lead
the adversarial attack to generate the perturbation on the designated region preferential than other
areas. This makes adversarial examples generated by different model copy unique so that we are
able to design a novel data-free method to identify the adversary given only one adversarial example.
Extensive experiments have been conducted to verify the effectiveness of the proposed framework.
To further test the robustness of the proposed watermarking scheme, we also test several adaptive
attacks to erase the proposed watermarking and our proposed scheme is robust against those attacks.

Our contributions can be summarized as follows:

• We propose a new forensic investigation framework to trace the adversary from a single
adversarial example. Our new framework allows a more general and challenging setting
where the adversary has full access to the model.

• To trace the compromised model copy without original examples, we design two simple
yet effective metrics to achieve successful adversary identification.

• Extensive experiments are conducted to verify the efficiency and effectiveness of the pro-
posed framework on various attacks, datasets, and model architectures. The results show
that the proposed method can achieve high accuracy in different scenarios.

2 RELATED WORK

Adversarial attack Since the finding of adversarial examples (Szegedy et al., 2013), adversarial
attacks have attracted much attention due to their potential threats to real-world applications. Ad-
versarial attacks can be generally classified as white-box attacks and black-box attacks based on the
information that the adversary can obtain. For white-box attacks, the attacker has full information
about the model including model architectures and parameters. Hence the adversary can easily com-
pute the gradient to conduct the attack (Carlini & Wagner, 2017; Goodfellow et al., 2014; Madry
et al., 2017). For black-box attacks, the attacker can only query the output given input. Depending
on if the output probability is given, black-box attacks can be divided into soft-label attacks and
hard-label attacks. Without any information about the internal information of models, black-box
attacks aim to estimate gradient information (Chen et al., 2020; Ilyas et al., 2018). From the view
of the adversary, white-box attacks would be easier to be conducted compared to black-box attacks
since the gradient information can be directly computed by model parameters. From the view of de-
fender or forensic investigator, however, adversarial examples generated by white-box attacks would
be more difficult to identify since any explicit modifications to the model would be bypassed.

Forensic investigation of adversary There are few studies on the forensic investigation of adver-
sarial examples. Cheng et al. (2023) first proposed a watermarking method to trace the adversarial
examples generated by black-box attacks, where an mask-based watermarking module is introduced
to assign a unique fingerprint for every model copy. However, the method is constrained to appli-
cations that do not require any model information since they made explicit modifications to model
architectures. In this paper, we consider the white-box attack case in which any explicit modifica-
tions to model copies are forbidden. To address the identification problem in the white-box case, we
propose a novel framework that inserts implicit backdoors into model copies and is able to identify
the adversary with high accuracy given only one adversarial example.

3 METHODOLOGY

3.1 PROBLEM SETTING

Following the forensic investigation setting in Cheng et al. (2023), the machine learning service
provider (i.e., the owner) owns n copies of models g1, g2, · · · , gi, · · · , gn that are trained for the
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same K-way classification task on the same dataset. Because of the need for model customization
and performance concern, these model copies are then distributed to n different users so that users
will have full access to model copies, including model architectures and parameters. For example,
the model provider such as Hugging Face provides pre-trained models or large foundation model
for users to further customize their own model. All model details including model architecture and
weights would be available to the users. Let gi(·) ∈ RK denote the logit output of copy gi given
input, and σ(gi(·)) ∈ RK denote the output probabilities vector of copy gi, where σ is the softmax
function. Unfortunately, a malicious user (adversary) exists who aim to fool the whole system,
including other users’ models, by conducting adversarial attacks. Let the malicious user’s model
copy to be fatt (the compromised model copy). As he does not have access to query other users’
models, he then chooses to perform adversarial attacks on his copy fatt to generate an adversarial
example xadv . Because all model copies are trained with the same dataset for the same classification
task, the generated adversarial example could successfully lead to the misclassification of other
users’ models. Our task is to find the compromised model copy fatt from the pool.
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Figure 1: The proposed framework. The first part shows how we train the baseline model and then
fine-tune the baseline model to n different copies by implicit watermarking. The second part shows
how the adversary is identified given only adversarial example.

3.2 IMPLICIT WATERMARKING

To identify gatt from n model copies given xadv , each copy distributed to different users needs to
be embedded a unique watermark for subsequently being used for forensic investigation. At the
same time, since the adversary has full access to the model, we cannot do any explicit modifications
that can be easily bypassed by the adversary. For example, masked based watermarking scheme
proposed in Cheng et al. (2023) could be removed by adaptively adding noise on the masked region
during the inference. Therefore, it requires us to design a robust implicit watermarking scheme that
can conceal the copies information into model parameters without hurting performance.

In this section, we proposes a simple yet effective method to insert the implicit watermark. Specif-
ically, we aim to let pixels in a specific region to be preferentially perturbed in the adversarial
examples so that those regions could be regarded as a strong signal for the identification. Therefore,
different adversarial examples generated by different users would have a significant difference that
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could be used later into tracing the compromised model. To build such a preference, we first sample
a range of coordinates wi and a label set from label space yi ⊂ {1, 2, . . . ,K} that acts as the model
i’s fingerprint. To make these fingerprint coordinates to be inserted into the model copy as an im-
plicit watermark, for every model copy gi, we create the fingerprint dataset D̃i = {(x̃j , ỹj)}|D̃|

j=1 by
sub-sampling several pixels ti from the whole input space wi together with a class ỹj sampled from
yi as the label. More formally, let x ∈ RH×W×C denote any normal sample where H,W,C are
height, width, and channels respectively. For copy gi, we create the fingerprint sample x̃ by using
the following blended function:

x̃ = (1−mi)⊙ x+mi ⊙ ti (1)

where ⊙ is element-wise product, and mi ∈ {0, α}H×W denotes the mask corresponding to ti in
which only randomly sampled pixel positions have value α and α is the blended ratio. We also set
the corresponding label x̃ to be a random class ỹj from yi to make the prioritized region active.

After achieving the fingerprint datapoint, as shown in Figure 1, to make the framework efficient and
scalable, we first train a base model and every model copy is then fine-tuned on the its own fin-
gerprint dataset that contains both set of clean samples D = {(xj , yj)}|D|

j=1 and fingerprint samples

D̃ = {(x̃j , ỹj)}|D̃|
j=1. At the same time, we add a regularization term during finetuning to strengthen

model’s memorization on the fingerprint datapoint. Specifically, for a fixed portion of clean data
(30% in all experiments in this paper), we add random noise to the regions that are not being masked
where ma,b,c = 1. Then we use Eqn 1 to inject fingerprint into the noise image without changing
the original true label.

3.3 ADVERSARY IDENTIFICATION

To identify the adversary gatt with only one adversarial example xadv , we propose two simple
metrics. For the given adversarial example xadv , we first apply every copy’s sampled pixels ti and
corresponding mask mi to create a set of fingerprint adversarial examples x̃i

adv = A(xadv,mi, ti).
Specially, let x̃att

adv be the fingerprint image corresponding to gatt.

KL metric We start the case when the model predicts xadv with high confidence on the fingerprint
class ỹj . In other words, if the xadv’s prediction is ỹj with a high confidence, the generated adver-
sarial perturbation would be very similar with the sampled pixels ti. It inspires us to compare the
output distribution between adversarial example with and without applying ti. If the xadv is from
the adversary copy gatt, the output distribution of the adversarial example σ(gatt(xadv)) would be
very similar with the one applied with the sampled pixels. On the other hand, if the xadv is from
other model copies instead of gatt, the output distribution will shift greatly after applying sampled
pixels.

Hence we can compute the similarity between σ(gi(xadv)) and σ(gi(x̃
i
adv)) for all model copies

{gi}ni=1 to identify the adversary through largest similarity. To measure the similarity between two
probability distributions, we choose to compute commonly used KL divergence as the first metric
called KL metric. Formally, for every model copy gi, we compute the KL metric kli between the
output probabilities σ(gi(xadv)) and the output probabilities σ(gi(x̃i

adv)),

kli = KL
(
σ(gi(xadv)) || σ(gi(x̃i

adv))
)

=

K∑
j=1

(σ(gi(xadv)))j log

(
(σ(gi(xadv)))j(
σ(gi(x̃i

adv))
)
j

)
, (2)

where (σ(gi(xadv)))j ,
(
σ(gi(x̃

i
adv))

)
j

are the output probabilities of copy gi on class j given xadv

and x̃i
adv , respectively. Since we sample different pixels corresponding to different random classes

ỹj for each copy gi, the KL metric for each combination is computed by Eqn 2 in the same way.
The smaller one is used as the final KL metric of copy gi, denoted as kl∗i . With the final KL metric,
the model copy corresponding to the smallest KL metric (the largest similarity) is the compromised
model copy gatt.

Ratio metric However, since the adversary is conducting untargeted attack, there is a chance that
the adversarial example would mislead the classifier into other classes than class ỹj , i.e the model
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has low confidence on predicting xadv to class ỹj . Luckily, we observed that there would be a
significant change on the model prediction distribution after applying ti for the model that xadv is
based. Inspired by this observation, for every model copies gi, we measure the change of difference
between maximum output probability and probability corresponding to the true class y of original
image used to generate xadv . Based on this intuition, for each model copy gi, we compute its ratio
metric as

ri =

max
j ̸=y

(
σ(gi(x̃

i
adv))

)
j
−
(
σ(gi(x̃

i
adv))

)
y

max
j ̸=y

(σ(gi(xadv)))j − (σ(gi(xadv)))y
, (3)

where (·)y means the output probability of y.

With the two metrics, we can then combine them together to take both cases from low confidence to
high confidence into consideration. In the following, we provide a method to linearly combine those
two metrics together for the final identification. To better control the weight on two metrics, since
the scales of the two metrics are different, we first normalize all kl∗i and r∗i of n copies into [0, 1].

After the normalization, we further use every model’s confidence to linearly combine the two metric
values since the metrics are designed based on confidence level. Given xadv , for model copy gi, we
use the difference between the top two output logits of gi as the confidence level of gi on xadv , i.e.,
the confidence level is

li = [gi(xadv)]yi −max
j ̸=yi

[gi(xadv)]j ,

where [gi(xadv)]j is the output logit of copy gi on class j given xadv , and yi is the predicted label
of copy gi given xadv . Then the combined metric value of copy gi is computed as

vi = w · kl∗i + (1− w) · r∗i , (4)

where w = sigmoid(max
i

li − T ) is the weight for the metrics and T is a pre-defined threshold to

control the confidence level. For every model copy, we will calculate the final score vi and take the
copy with the smallest score as the compromised copy. That is,

att← argmin
i

vi. (5)

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Following the settings in Cheng et al. (2023), we conduct experiments on two widely used datasets,
CIFAR10 (Krizhevsky et al., 2009) and GTSRB (Stallkamp et al., 2012). Two model architectures,
ResNet18 (He et al., 2016) and VGG16 (Simonyan & Zisserman, 2014), are utilized to verify the
effectiveness of the proposed method. Firstly, we pre-train models with cross-entropy loss using
Adam optimizer (Kingma & Ba, 2014) for 50 epochs with learning rate 0.001 and batch size 128.
After finishing pre-training models, for each copy, the constructed fingerprint dataset (described in
Section 3.2) with ratio p of fingerprint samples is used to finetune the baseline model for 20 epochs.
Both the ratio p of fingerprint samples and the blended ratio α are 0.3 for all our experiments. We
sample a label set of length 2 (i.e., |yi| = 2) for each copy. In this paper, we consider the cases that
the number of distributed model copies is 50 and 100, where we finetune 50 or 100 model copies
and identify one adversary from the 50 or 100 copies. We use 0.9% of total image size to apply ti.
Hence for both CIFAR10 and GTSRB (32 × 32 × 3 images), we randomly sample 9 positions for
each combination of ti and ỹj of each model copy.

For adversarial attacks, we firstly show the effectiveness of the proposed framework on several state-
of-the-art white-box attacks. Then we also test the identification accuracy on different black-box
attacks and show that the method can still achieve high accuracy on black-box attacks. Specifically,
we use the following commonly used white-box and black-box attacks:

• PGD-ℓ2 (White-box): Projected Gradient Descent attack with ℓ2 norm (Madry et al., 2017).
The adversarial perturbations are constrained with ϵ = 0.3.
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• C&W(White-box): one of the most popular methods in the white-box setting with ℓ2 norm
proposed in Carlini & Wagner (Carlini & Wagner, 2017) and we set the κ = 30.

• PGD-ℓ∞ (White-box): Projected Gradient Descent attack with ℓ∞ norm. The adversarial
perturbations are constrained with ϵ = 8/255.

• APGD-CE (White-box): Auto-Projected Gradient Descent attack with ℓ∞ norm in Au-
toAttack (Croce & Hein, 2020) using adaptive stepsize adjustment. Cross-entropy loss is
used and the adversarial perturbations are constrained with ϵ = 8/255.

• NES (Black-box): Black-box soft-label attack that uses derivative-free optimization to es-
timate the gradient (Ilyas et al., 2018).

• HSJA (Black-box): Black-box hard-label attack that utilizes the zeroth order oracle to find
a better random walk direction in generating adversarial examples (Chen et al., 2020).

All adversarial attacks are conducted in untargeted manner. For adversarial examples generated
by the above adversarial attacks, only valid adversarial examples that can transfer to other models
are considered. For each model copy, 30 valid adversarial examples are generated. Hence there
are about 1500 adversarial examples for 50 copies case, 3000 adversarial examples for 100 copies
case. The identification accuracy is computed as the ratio between the number of correctly identified
adversarial examples Nc and the total number of adversarial examples Nt, i.e. TraceAcc = Nc

Nt
·

100%.

4.2 IDENTIFICATION RESULTS

We first show that the proposed watermarking framework has limited effect on all model copies’
performance. For the two datasets and two model architectures, we can have four combinations,
i.e., VGG16-CIFAR10, VGG16-GTSRB, ResNet18-CIFAR10, and ResNet18-GTSRB. We show
the maximum, minimum, mean, and median of classification performance for each 50 or 100 case
and compare them with the pre-trained model performance (baseline performance). From Table 1,
the mean and median accuracy is similar to the baseline performance within around 1% difference.
It shows the proposed framework would have limited degradation on the model’s clean performance.

The identification accuracy with only one adversarial example is shown in Table 2. The threshold
T described in Section 3.3 is set as to be 7. We also conduct different choices of T in the ablation
study. For white-box attacks, the results show that the proposed method is very effective on different
attacks, datasets, and model architectures, which achieves average accuracy of 74.11% and 71.22%
for 50 copies case and 100 copies case, respectively. Specifically, on CIFAR10 dataset, the method
can achieve the highest accuracy of 88.80% and 88.37% with only one adversarial example available
for 50 copies case and 100 copies case, Although the focus of this paper is the white-box setting, we
also evaluate the method on two popularly used black-box attacks, NES attack (Ilyas et al., 2018)
and HSJA attack (Chen et al., 2020) which are also used in Cheng et al. (2023), as shown in Table 2.
It can be observed that the method can still achieve effective identification, especially on NES attack.
However, our identification result on the black-box attack is not as good as white-box attack tested
because of the noise gradient estimation used in the black-box attack. Note that we don’t include
the comparison on the masked-based watermarking method in Cheng et al. (2023). The reason is
that the watermarking method (Cheng et al., 2023) is specifically designed for black-box attack
identification which makes explicit modifications on the architectures and the white-box attacker
could create strong adaptive attack to make the identification totally fail, which would easily make
the identification rate to close to 0.

Results with more adversarial examples Previously, we show the identification accuracy with
only one adversarial example, which is the most difficult case. Our proposed framework could
naturally be extended if there are more adversarial examples available. To combine more adversarial
examples scores together, for each model copy, we firstly compute the final metric in Equation 4 for
each adversarial example. Then we take the minimum metric value as the final metric of the copy on
the set of adversarial examples. The model with the minimum final metric value among all copies
is treated as the compromised one. We present the identification accuracy on CIFAR10 (Krizhevsky
et al., 2009) dataset with architectures VGG16 (Simonyan & Zisserman, 2014) and ResNet18 (He
et al., 2016) in the 50 copies case, as shown in Figure 2. From the results, it can be observed that
more adversarial examples can largely facilitate the identification performance. For most cases, the
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Table 1: Clean classification accuracy(%) of watermarked model copies, compared to pre-trained
baseline model performance.

Num Model-Data Baseline Max Min Mean Median

50

VGG-CIFAR10 90.21 90.22 87.45 89.30 89.34
V16-G 96.79 97.36 92.79 96.16 96.32
R18-C 92.03 92.04 90.29 91.19 91.21
R18-G 98.40 98.56 96.37 97.72 97.77

100

VGG-CIFAR10 90.21 90.1 85.31 89.16 89.28
V16-G 96.79 97.55 93.92 96.08 96.13
R18-C 92.03 91.95 89.62 91.22 91.22
R18-G 98.40 98.56 96.37 97.71 97.75

Table 2: Identification accuracy(%) of the proposed framework in different cases with only one
adversarial example.

Num Model-Data PGD-ℓ2 C&W PGD-ℓ∞ APGD-CE NES HSJA

50

V16-C 68.98 80.89 85.56 88.48 83.00 47.91
V16-G 71.78 66.02 84.17 88.80 77.68 47.92
R18-C 63.10 63.97 66.74 72.84 73.45 49.51
R18-G 64.16 57.71 75.33 87.17 80.69 50.04

100

V16-C 69.89 77.55 82.70 77.70 76.44 42.77
V16-G 71.90 66.19 81.75 88.37 71.59 39.26
R18-C 60.05 56.58 58.92 67.26 64.89 39.90
R18-G 62.52 57.23 75.74 85.22 77.88 40.58

accuracy can be improved up to about 90% with two adversarial examples, even up to near 100%
with three or more adversarial examples.
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Figure 2: Identification accuracy on more adversarial examples. PGD-L2 denotes PGD-ℓ2 attack;
PGD-Linf denotes PGD-ℓ∞ attack.

4.3 ROBUSTNESS AGAINST ADAPTIVE ATTACK

Since a unique watermark is inserted into each model copy in the proposed framework, a natural
question arises: will the method be effective and robust if the adversary tries to conduct adaptive at-
tack to remove the watermark? To answer the question, in this section, we show the effectiveness and
robustness of the framework against adaptive watermark-removing attacks. Specifically, because our
implicit watermark tries to build a direct mapping from several pixels and labels, the backdoor de-
fense methods could be used to erase our proposed watermark. We then test the robustness of the
proposed framework against different types of adaptive attacks inculding finetuning-based removal
methods (Liu et al., 2021), and reverse–engineering based removal methods (Wang et al., 2019;
Aiken et al., 2021).
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For finetuning-based removal methods, we re-implement the called ‘WILD’ framework in Liu et al.
(2021) according to the paper since we didn’t find any open-source code in that paper. We follow
the same settings using 20% of training data for finetuning the watermarked model. The Jensen
Shannon divergence is used for the distribution metric and the loss weight for this term is 10, as
used in the paper. We use the 50 VGG16 models trained on CIFAR10 to test the effectiveness of
watermark removal. Initially, we find the backdoor removal method could remove our watermark
in 90% cases. However, we empirically found that if we use data augmentation methods such as
Random Erasing (Zhong et al., 2020) during watermarking, the watermarked model would be much
more robust against removal. Note that we did not use any distribution loss which is very important
for backdoor removal in Liu et al. (2021) to insert a watermark specifically against the removal
method in Liu et al. (2021). We just use the commonly used data augmentation methods during
watermarking. With data augmentations during watermarking, we could make our implicit water
intact with only about 10% cases would be removed.

Then we also test the robustness against reverse-engineering based backdoor methods (Wang et al.,
2019; Aiken et al., 2021). For these Neural Cleanse based methods, the removal performance highly
relies on the detection of the watermark. If Neural Cleanse cannot detect any watermark, no further
steps would be proceed. Hence we mainly test if the Neural Cleanse can effectively detect our
implicit watermark. However, we found Neural Cleanse can no longer detect any watermarks if we
simply increase the number of finger print class |yi| = 4. At the same time, the number of finger
print class |yi| has limited effect on the identification accuracy and it can even further improve
identification accuracy, as we show in the following. The clean accuracy with |yi| = 4 s is shown
in Table 3, which shows a larger size of |yi| won’t affect clean accuracy due to the high capacity of
neural networks.

Table 3: Clean accuracy with |yi| = 4.

Baseline Max Min Mean Median
90.21% 90.09% 86.54% 89.10% 89.19%

Then for each attack, we generate around 1500 adversarial examples using the 50 models. The
identification accuracy given only one adversarial example on different adversarial attacks is shown
in Table 4.

Table 4: Identification accuracy with |yi| = 4.

PGD-ℓ2 PGD-ℓ∞ APGD-CE C&W NES
75.75% 60.42% 77.50% 69.37% 72.26%

To summarize, we show that with only small and reasonable modifications, watermarked models are
robust against different types of adaptive attacks, verifying the effectiveness and robustness of our
proposed framework.

4.4 ABLATION STUDY

Effect of different choices on T . To show the effects of different choices of the threshold T , we
present the identification results under different T in this section, as shown in Table 5.

We use VGG16-CIFAR10 with 50 copies to test the effect of different T . We select T = 5, 10, 15.
It can be observed that with larger T , the identification accuracy of PGD-ℓ2 (Madry et al., 2017),
PGD-ℓ∞ (Madry et al., 2017), C&W (Carlini & Wagner, 2017), and APGD-CE (Croce & Hein,
2020) attacks decreases, while the accuracy of HSJA (Chen et al., 2020), and NES (Ilyas et al.,
2018) attacks increases. According to the analysis in Section 3.3, this indicates that the adversarial
examples generated by PGD-ℓ2, PGD-ℓ∞, C&W, and APGD-CE attacks have larger confidence
compared to the adversarial examples generated by the HSJA and NES attacks.

Another observation from the results is that compared to other attacks, APGD-CE and HSJA are
more stable to the change of threshold T . The difference between T = 5 and T = 15 is about
4% for APGD-CE and HSJA, while the difference for other attacks is up to 10%. The reason
may be that for APGD-CE it uses adaptive stepsize adjustment instead of fixed stepsize to generate

8



Under review as a conference paper at ICLR 2024

perturbations which may be more stable. And for HSJA the computed confidence may be very small
since it searchs adversarial examples near boundary (Chen et al., 2020). Hence various values of T
don’t have much effect on the combined final metric value. In practice, to obtain better identification
results, the investigator can firstly compute the confidence level as described in Section 3.3. Based
on the confidence level, the investigator can determine whether the confidence value is large or small
to choose the threshold T .

Table 5: Identification accuracy(%) with different choices of the threshold T .

T PGD-ℓ2 C&W PGD-ℓ∞ APGD-CE NES HSJA
T = 5 71.32 83.30 87.14 88.77 75.93 45.82
T = 10 65.39 76.60 81.65 87.29 84.39 48.63
T = 15 60.80 67.43 73.46 84.83 84.63 48.71

Effect of watermark design. As mentioned in Section 3.2, the watermark are inserted in a dis-
crete manner. In this section, we show that the discrete watermarks can indeed largely improve
the identification accuracy. Specifically, we finetune 50 VGG16 model copies on CIFAR10 with
square watermarks. All the finetuning process and generation of adversarial examples are the same
as the discrete watermark except that the watermarks are inserted as 3 × 3 × 3 square in continu-
ous regions. We set the threshold T = 7 for the fair comparison. Firstly, we compare the clean
classification accuracy under different watermark insertions. The results shown in Table 6a indicate
the effects of different watermark insertion manners on clean classification accuracy are subtle. We
show the results for identification accuracy of adversarial examples with only one adversarial exam-
ple in Table 6b. From the results, we can see the discrete watermark performs much better compared
to the square one, especially for PGD-ℓ2, PGD-ℓ∞, APGD-CE, and C&W attacks. We defer more
ablation studies in the Appendix.

Table 6: Clean classification accuracy(%) and identification accuracy(%) of for different types of
watermark wi selection. ‘Discrete’ means the watermark pixels are selected in discrete positions;
‘Square’ means the watermark pixels are selected as a square in continuous regions.

(a) Clean classification accuracy(%).

Watermark type Baseline Max Min Mean Median
Discrete 90.21 90.22 87.45 89.30 89.34
Square 90.21 90.45 88.06 89.44 89.55

(b) Identification accuracy(%) with only one adversarial example.

Watermark type PGD-ℓ2 C&W PGD-ℓ∞ APGD-CE NES HSJA
Discrete 68.98 80.89 85.56 88.48 83.00 47.91
Square 26.65 59.78 36.49 40.95 80.86 44.47

5 CONCLUSION AND LIMITATIONS

In this paper, we propose a novel framework for the identification of adversary with only one adver-
sarial example under white-box attacks. We design a implicit watermarking method by designing a
fingerprint datasets to make each model copy unique and propose two different metrics to identify
the adversary with high accuracy in data-free case. Extensive experiments on various attacks includ-
ing both white-box and black-box attacks, datasets, and model architectures verify the effectiveness
of the proposed method. With two more adversarial examples available, the tracing accuracy can
be further improved up to near 100%. However, although the proposed framework shows promis-
ing high adversary identification accuracy, it couldn’t handle the cases where there exists several
adversary to jointly conduct adversarial attack. Also, the proposed framework couldn’t be directly
applied into other machine learning tasks except for image classification, which will leave in our
future work.
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