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Abstract

While large language models (LLMs) can solve PhD-level reasoning problems over
long context inputs, they still struggle with a seemingly simpler task: following
explicit length instructions—e.g., “write a 10,000-word novel”. Additionally,
models often generate far too short outputs, terminate prematurely, or even refuse
the request. Existing benchmarks focus primarily on evaluating the quality, but
often overlook whether the generations meet length constraints. To this end, we
introduce Length Instruction Following Evaluation Benchmark (LIFEBENCH)
to comprehensively evaluate LLMs’ ability to follow length instructions across
diverse tasks and a wide range of specified lengths. LIFEBENCH consists of
10,800 instances across 4 task categories in both English and Chinese, covering
length constraints ranging from 16 to 8192 words. We evaluate 26 widely-used
LLMs and find that most models reasonably follow short-length instructions but
deteriorate sharply beyond a certain threshold. Surprisingly, almost all models
fail to reach the vendor-claimed maximum output lengths in practice, as further
confirmed by our evaluations extending up to 32K words. Even long-context
LLMs, despite their extended input-output windows, counterintuitively fail to
improve length-instructions following. Notably, reasoning LLMs outperform even
specialized long-text generation models, achieving state-of-the-art length following.
Overall, LIFEBENCH uncovers fundamental limitations in current LLMs’ length
instructions following ability, offering critical insights for future progress.

) Data & Code: github.com/LIFEBench/LIFEBench
(%) Data & Dataset Card: huggingface.co/datasets/LIFEBench/LIFEBench
@{; Homepage: ydyjya.github.io/LIFEBench

1 Introduction

Large language models (LLMs) [40, 13] demonstrate remarkable capabilities in sophisticated tasks
such as long-context understanding, planning, and complex reasoning, among others [46, 100, 40,
48]. Unexpectedly, LLMs also often fail in a seemingly trivial and explicit task [120, 58, 50]:
precisely following length instructions. Concretely, LLMs tend to terminate generation prematurely,
especially when long lengths are instructed [8, 85, 83]. This non-intuitive observation highlights an
underexplored but important problem: off-the-shelf language models exhibit shortcomings both in
following explicit length instructions and generating long-text content [106, 112]. Understanding and
quantifying this limitation is critical, as accurate length control and long-text generation underpin
numerous real-world LLM applications and practical productions [29, 70, 98].

*indicates equal contribution. T indicates corresponding author.
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Figure 1: Overview of LIFEBENCH. Top Left. LIFEBENCH data types. Top Right. Length
Instruction Following Leaderboard based on LIFEBENCH. Bottom. LIFEBENCH evaluates length
generalization capabilities across bilingual content (Chinese/English), incorporating three distinct
control methodologies and ten granular length constraints.

To systematically evaluate LLMs’ length instruction following and explore why they fail to follow
longer length instructions, we formulate our investigation around three core research questions (RQs):

e RQ1: To what extent do current LLMs accurately follow explicit length instructions, and what
factors may lead to length instructions following failures?

e RQ2: How capable is the current LLM at outputting long generations with specific length
instructions, and how reliably can they meet their claimed maximum output length?

e RQ3: How profoundly do input characteristics impact LLMs’ length instructions following?

To address these questions comprehensively, we introduce the Length Instruction Following Evalu-
ation Benchmark (LIFEBENCH). LIFEBENCH is the first full-range length instruction evaluation
benchmark comprising 10,800 instances across four representative natural language generation
(NLG) tasks-Question Answering [30], Summarization [28], Reasoning [69], and Creative Gener-
ation [109]—covering a wide spectrum of length constraints ranging from 16 to 8,192 bilingual
(English & Chinese) words (Figure 1). Distinct from existing benchmarks that primarily assess gener-
ation quality [86, 83, 8, 85], LIFEBENCH focuses on the evaluation of explicit length instruction
following capabilities, using two metrics, Length Deviation and Length Score, to quantify model
performance. Compared to simple word count matching, our metrics offer a more analytic and robust
evaluation, Length Deviation captures deviation direction and magnitude, while Length Score ensures
robust aggregation, underscoring the superiority of our benchmark.

We conduct extensive experiments on 26 prevalent LLMs, revealing multiple intriguing insights. For
RQI, results indicate current LLMs typically follow short length instructions but struggle with long
ones. Further analysis reveals a core bottleneck: LLMs are unable to accurately recognize how many
words they have generated, which might contribute to length instructions following failures. We
find reasoning models slightly address this by calibrating output length during intermediate steps;
03-mini [80] achieves the highest Length Score of 75.4, while most models score below 60. For
RQ2, we show that current models typically cannot approach their vendor-claimed maximum output



length under realistic length constraints. Our further analysis reveals that some models fall short
due to inherently limited long-text generation capabilities, while others appear to underperform by
lazy strategies (e.g., falsely claiming inability to follow instructions). For RQ3, we find that input
characteristics critically impact length instruction fidelity. For example, summarization tasks exhibit
the largest Length Score drop of 18.8, while increasing input length (1 — 8k words) reduces by
13.6. Notably, models overextend outputs in Chinese contexts, revealing language-specific biases.

Our contributions are as follows: (I) We create LIFEBENCH, the first benchmark to systematically
evaluate length instruction following across a full range of tasks and lengths; (IT) We reveal that
the off-the-shelf LLMs have shortcomings in the length instructions following (Figure 1 top right),
especially under the long-text generation task, demonstrating that LLMs fall short of their vendor-
claimed maximum output length in practice; (III) We comprehensively analyze how input factors,
such as task type, language, and input length, influence length-following fidelity. Our findings uncover
fundamental limitations in current LLMs and provide actionable insights for future development.

2 Related Works

Long Context Capabilities of LLMs. Long context capabilities refer to the ability of LLMs
to effectively comprehend and generate extended texts [52, 68]. Various benchmarks have been
proposed to evaluate comprehension over long contexts, including those based on synthetic data
[99, 56, 65, 43] and human-annotated real-world tasks [6, 7, 59, 92, 3]. Long-text generation, which
is a classic task [10, 19, 104] in natural language generation (NLG), also remains a core focus of
long context research. Existing evaluations of long-text generation mainly fall into five categories:
question answering [71, 97, 69, 116], summarization [23], instruction following [106, 112], creative
writing [81, 85, 107], and multi-dimensional assessment [47, 86]. In addition to evaluation, numerous
studies have proposed methods to improve long-text generation [8, 101, 110, 83, 85]. Our benchmark
covers both long-context comprehension and long-text generation capabilities.

Length Instruction Following Capabilities of LLMs. The capability to follow length instructions
is an important aspect of instruction following. Several previous works have incorporated length
constraints into instruction following evaluations [122, 115, 103, 117, 84, 17, 105]. MT-Bench-LI
and AlpacaEval-LI [ 14], curated by augmenting MT-Bench [120] and AlpacaEval 2 [27] with length
constraints, reveal that models often fail to comply with such constraints. To mitigate this issue, both
training-based methods [114, 88, 58, 11] and inference-time approaches using control frameworks
or external tools [39, 113] have been proposed. However, these efforts primarily target short length
constraints instead of full-range length instruction following.

3 LIFEBENCH

In this section, we introduce LIFEBENCH, a benchmark designed to evaluate the length instruction
following capability of LLMs across the full range. The remainder of this section provides an
overview of the dataset; a detailed comparison with existing benchmarks is provided in Appendix A
and correlation analysis with leaderboard is included in Appendix L. LIFEBENCH enjoys the
following features:

o Diverse Dataset: We ensure dataset diversity based on the following key features: (1) Various
Tasks: LIFEBENCH includes a broad range of NLG tasks, including question answering, summa-
rization, creative generation, and reasoning, which are well-suited for length instruction following
[67]. (2) Long-context Inputs: LIFEBENCH includes both short inputs (<2,000 words) and long
inputs (>2,000 words), allowing evaluation across different input scales, unlike most prior bench-
marks. (3) Bilingual Queries: LIFEBENCH contains Chinese and English data collected separately
from distinct datasets, enabling our evaluation to investigate language-specific bias.

o Extensive Length Constraints: LIFEBENCH is the first benchmark designed to systematically
evaluate LLMs’ full-range length instruction following capability, which is based on the following
design choices. (1) Multiple Control Methods: LIFEBENCH adopts three common length control
methods: Equal To, At Most, and At Least. (2) Length Constraints: We define ten distinct length
constraints spanning short (<100 words), medium (100-2000 words), and long (>2000 words)
ranges, which are more comprehensive than prior works. Detailed control methods and length
constraints description can be found in Section 4.2.



e Analytical Evaluation: We evaluate length instruction following capability using two evaluation
metrics: Length Deviation (LD) and Length Score (LS), offering multi-dimensional analysis.
Length Deviation intuitively measures the extent of deviation between the generation length and
the length constraints, while Length Score quantifies the model’s length instruction following
capability. Compared to prior works that merely assess generated length, our evaluation metrics
allow comparison across models by quantifying both the magnitude and directionality of deviations.
Section 4.3 provides a detailed discussion of these metrics.

Data Collection and Statistics. Selecting NLG tasks tailored to evaluating length instruction
following is crucial for constructing LIFEBENCH. To this end, we introduce the concept of Length
Paradigms, which categorize NLP tasks based on their inherent length characteristics. We assign
common NLG tasks into four paradigms: Length-Independent Paradigm, Fixed-Length Paradigm,
Adaptive-Length Paradigm, and Flexible-Length Paradigm, ensuring that our benchmark targets
scenarios where length control is meaningful. A detailed mapping of NLG tasks to these paradigms
is provided in Appendix B.1. Among them, we focus on tasks within the Flexible-Length Paradigm,
as they are the most suitable for evaluating length instruction following in LLMs.

We categorize tasks within Flexible-Length Paradigms into four categories and collect 360 funda-
mental data units from 21 datasets in English and Chinese. Figure 2 illustrates the distribution of
data categories and text length in LENGTHBENCH. We introduce the data collection and refinement
processes for these four categories as follows, details are provided in Appendix B.2 and B.3.
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Figure 2: (a) presents the proportion of four task categories in LIFEBENCH in the inner ring, while
the outer ring further details the subtypes within each category and their respective proportions in
the dataset. (b) illustrates the length distribution of the four categories in LIFEBENCH, where the
vertical axis represents text length (measured in words for English and characters for Chinese) on a
logarithmic scale, and the horizontal axis denotes different task categories.

e Question Answering (QA) Task: The QA task requires the model to generate answers based on
given questions. The answer length can vary flexibly depending on the level of detail required.
We collect questions from six representative QA datasets [53, 1, 54, 119, 74], which cover nine
different domains. In total, we select 120 questions by filtering for open-ended, well-formed
examples that allow for responses of varying length, excluding factoid, binary, and duplicate
questions, with an equal split of 60 in Chinese and 60 in English.

o Summarization Task: The Summarization task requires the model to condense long-text into a
concise summary. A summary extracts key points or includes more supporting details, depending
on the requirements. We collect data from seven summarization datasets [21, 55, 37, 121, 32, 74],
spanning seven types of summarization tasks. To ensure the task suits longer length constraints,
we select input samples ranging from 10,000 to 15,000 words in length. Furthermore, we manually
filter out content containing excessive tables, numerical data, or irregular formatting to improve
information density. In total, we select 40 samples, with 20 in Chinese and 20 in English.

e Reasoning Task: The Reasoning task requires the model to perform logical inference based on
given facts or background information. The output can either be a final conclusion or a step-by-step



reasoning process with detailed justification. Existing reasoning datasets (e.g., GSMSK [20],
CommonsenseQA [96]) are not suited for flexible-length generation due to their rigid structure
and limited support for open-ended responses. To address this, we follow the prior reasoning
categories [44] and generate new reasoning problems using GPT-40. These problems cover a range
of reasoning depths, enabling better support for evaluating the length instructions following. We
curate 80 reasoning problems, half Chinese and half English.

o Creative Generation Task: The Creative Generation task requires the model to produce creative
text, such as academic papers, novels, and technical reports. The complexity and richness of the
content can be adjusted to accommodate different length constraints. We collect data from seven
datasets [82, 75, 31, 42, 51] and categorize the samples into six generation types based on their
textual characteristics. In total, we select 120 samples by filtering out instances with explicit length
or structural constraints, as well as those with ambiguous instructions or duplicated content, 50%
Chinese and 50% English.

Finally, to ensure consistency and suitability for length instructions, we refine or formalize the data.
Specifically, we design refinement templates tailored to each subtype. Each template includes an
Instruction specifying the task type and original input, and a Requirement imposing the length
constraint and control method. The resulting refined dataset constitutes the final benchmark data for
LIFEBENCH. Representative examples of the four tasks above are provided in Appendix B.4.

4 Experimental Setup

4.1 Models

We evaluate over 26 powerful LLMs on LIFEBENCH, including nine proprietary models, eight
open-source models, and three models enhanced for long-text generation. To ensure consistency in
our experimental setup, we set the maximum output size to 65,536 tokens for all models, or to the
maximum supported size if smaller. Additionally, we set the temperature to 0.8 for non-reasoning
models, and configure reasoning models with a medium reasoning effort if this parameter is supported.
See the Appendix D.1 for a complete model list and all configurations.

4.2 Length Constraints

One of the core principles of LIFEBENCH is the provision of extensive length constraints, achieved
through three control methods and ten constraint levels. The three control methods are: Equal To,
At Most, and At Least. Equal To requires the output length to match the length constraints exactly.
At Most ensures that the output does not exceed the constraint, while Az Least guarantees that the
output is no shorter than the constraint. Building on the control methods, we define ten distinct length
constraints: 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, and 8192. For English data, the length is
measured in words, while for Chinese data, it is measured in characters. The minimum constraint
of 16 ensures that models generate complete responses, while the maximum constraint is set to
8192, which is equivalent to the number of words for the smallest maximum output length among all
evaluated models. By applying all control methods and length constraints to 360 fundamental data
units, we obtain a total of 10,800 instances.

4.3 Evaluation Metric

LIFEBENCH employs two metrics to analytically evaluate a model’s length instruction following:
Length Deviation and Length Score.

Length Deviation. Length Deviation (LD) measures the proportionate difference between the
model’s output length and the specified length constraint. This metric provides an intuitive assessment
of the model’s length instruction following, capturing both the direction (over- or under-generation)
and the magnitude of deviation. Formally, it is defined as:

Loutput - Lconstraint

LD = ) ey

Lconstraim

where Leonstraine denotes the imposed length constraint, and Loy is the word count of the output.
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Figure 3: Left. Length Score across all length constraints under the Equal To control method. Impact
of task type (Middle) and language (Right) on the Length Score, separated by model type.

Length Score. The effectiveness of Length Deviation may be degraded when aggregating multiple
samples, as positive and negative deviations can offset each other. Furthermore, Length Deviation is
sensitive to outliers, where a few extreme values can disproportionately skew the aggregated results.
To address these limitations, we introduce Length Score (LS), which maps Length Deviation to a
bounded score, eliminating both the offsetting effect of positive and negative deviations and the
excessive influence of outliers, thus enabling a more reliable evaluation. Specifically, for the Equal
To control method, LS is defined as:
k1-LD ;
LS—{IOOXG_k o ¥fLD<O ?)
100 x e "2 =20 if LD > 0,

where k1 = 5 and k2 = 2, set empirically. This formulation ensures slower score decay for over-
generation (LD > 0), considering that exceeding the constraint is generally more acceptable, because
it can be deleted, than under-generation. The scoring curve is steeper for small |LD|, allowing
finer discrimination of subtle deviations; for larger | LD/, the decay moderates to avoid excessively
penalizing poor cases. The score approaches zero as LD approaches —1 or +o0, indicating complete
failure in following the length instructions. For At Most and At Least control method, analogous
scoring functions are defined according to their respective evaluation criteria. Full details are provided
in Appendix D.2.

S Results and Analysis

In this section, we present evaluation results and analysis of LLMs’ ability to follow length instructions.
In Section 5.1, we present evaluation results of current LLMs on LIFEBENCH, and find that they
exhibit widespread difficulties with following length instructions, particularly under long length
constraints. Due to these deficiencies under long length constraints, in Section 5.2 we further
investigate whether models can reliably achieve their claimed maximum output length. To gain
deeper insight into the underlying causes of these limitations , in Section 5.3, we conduct a detailed
diagnosis through a series of extended experiments, analyzing key sources of failure and characterizing
model performance under varied conditions.

5.1 Main Results

Evaluation Protocol. Following the evaluation protocol described in Section 4, we evaluate all 26
models on LIFEBENCH, excluding approximately 0.1% of instances with empty outputs per model
from the final results. Comprehensive results are provided in Appendix E.

Table 1 summarizes the overall performance of various LLMs on LIFEBENCH. Most models exhibit
poor length instruction following under the Equal To control method: 23 out of 26 models score
below 60, with 03-mini, Claude-Sonnet-Thinking, and Gemini-2.5-Pro achieving 75.4, 61.3,



Table 1: We compute the mean LS for each model, averaging over all length constraints, to assess
model performance under the three control methods. For the Equal To control method, we additionally
report LD, computed as the mean absolute deviation across all length constraints.

Models | Params | Reasoning | EqualTo | AtMost | At Least
| | Model | 1D} LSt | LSt | LSt
Proprietary Models
GPT-40 mini - X 31% 519 90.3 74.0
GPT-40 - X 31%  49.1 97.0 72.6
ol-mini - 35%  48.3 89.7 81.5
03-mini - 13% 754 99.5 97.0
Claude-3.7-Sonnet - X 30% 554 96.8 90.1
Claude-3.7-Sonnet-Thinking - 33%  61.3 96.5 933
Gemini-2.0-Flash - X 36% 484 95.2 84.7
Gemini-2.0-Flash-Thinking - 53%  44.0 90.2 91.2
Gemini-2.5-Pro - 28%  60.0 96.1 95.5
Doubao-1.5-Pro - X 23%  48.7 99.9 89.3
Doubao-1.5-Thinking-Pro - 29%  50.6 97.8 85.7
Open-Source Models
DeepSeek-V3 671B X 27% 543 96.7 79.7
DeepSeek-R1 671B 36% 477 93.8 74.1
Llama-3.1-8B-Instruct 8B X 70%  38.1 82.3 71.8
Llama-3.1-70B-Instruct 8B X 61% 424 88.8 69.0
Qwen2.5-7B-Instruct 7B X 36%  37.3 97.6 71
Qwen2.5-72B-Instruct 7B X 28% 50.6 93.8 84.2
Qwen3-32B 32B X 19%  57.6 97.2 87.4
Qwen3-32B-Thinking 32B 23%  57.8 93.0 87.8
Qwen3-235B-A22B 235B X 22%  52.1 95.6 90.3
Qwen3-235B-A22B-Thinking 235B 23% 577 89.9 89.6
GLM-4-9B-Chat 9B X 40%  35.2 95.9 68.3
Mistral-7B-Instruct-v0.2 7B X 84%  26.7 85.9 63.0
Long-Text Enhanced Models
LongWriter-Llama3.1-8B 8B X 102% 319 84.1 79.0
LongWriter-GLM4-9B-Chat 9B X 52% 374 90.9 86.8
Suri-I-ORPO 7B X 506% 274 79.7 75.2

and 60.0, respectively. Performance improves substantially under the At Most and At Least control
methods, where 19 and 6 models, respectively, surpass a score of 90, due to the looser constraints.

Figure 3 provides a comprehensive analysis of model performance across different length constraints
and input characteristics, including task type and language. Model performance varies substantially
across length constraints. Under all short constraints (<128 words), 03-mini and Gemini-2.5-pro
consistently perform strongly, with scores above 80 and 70, respectively, while 8 out of 26 models
score below 60. For medium constraints (256-2048 words), 03-mini remains robust (>70), but
Gemini-2.5-pro drops sharply (81 — 37). Under long constraints (>4096 words), no models
consistently exceed a score of 40. Notably, LongWriter-Llama3.1-8B and LongWriter-GLM4-9B
demonstrate notable improvements over their respective base models, with score increases of 22 and
32 points, respectively, on the longest constraints (i.e., 8192 words).

Regarding input characteristics, Summarization tasks yield the lowest Length Score for 19 out
of 26 models, while Creative Generation tasks achieve the highest Length Score for 14 models,
indicating substantial task-dependent variation. In terms of language, nearly all models perform
worse on Chinese compared to English. Notably, in Appendix G, we observe a consistent tendency
for most models to over-generate when instructions are given in Chinese, highlighting a potential
language-specific bias.

Takeaways. Explicit length instruction following remains a significant challenge for current LLMs,
with performance strongly influenced by control method, length constraint, task type, and language.

5.2 Discrepancies Between Claimed and Actual Maximum Qutput Length

Evaluation Protocol. Given the observed deficiencies of most models under longer length con-
straints, we are motivated to examine their behavior in even more challenging settings. Specifically,
we investigate whether the models are able to achieve the maximum output length claimed by the
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Figure 4: (Top) Comparison of the specified length
constraints (in words) with the actual word counts of
the top 10% and top 25% longest outputs for each
model. (Bottom) Comparison of the claimed max-
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counts of the top 10% and top 25% longest outputs
for each model. Token counts are derived from word
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Figure 5: Length Awareness Experiment:
The real output word count and self-reported
word count are shown for cases where the
length constraint exceeds 128, with both axes
in log scale. “Real Fit” and “Reported Fit”
represent the least squares regression results
for real and self-reported word counts.

providers under extreme length constraints. We set the control method to Az Least and specified a
length constraint of 32,768 words. For models whose claimed maximum output length is less than
32,768 tokens, we set the word-based constraint to approximate each model’s maximum token limit,
ensuring that the instruction requests outputs up to the model’s capacity. We exclude summarization
tasks from consideration as they do not provide sufficiently long inputs for meaningful evaluation
under such constraints. The final dataset comprises 320 instances, with all outputs containing re-
peated content manually filtered to ensure validity. Further results on extended length constraints are
provided in Appendix E.

Figure 4 compares each model’s claimed maximum output length with the actual maximum output
length achieved. Regarding word count, among the 26 models evaluated, only the Claude and Qwen
series (seven models in total) consistently meet the length constraint in their top 10% longest outputs.
In the top 25% longest outputs, however, only Qwen2.5-72B-Instruct and Qwen3-235B-A22B
satisfy the constraint. In terms of tokens, among all models that failed to meet the length constraints,
only Gemini-2.0-Flash and the Qwen series were limited by their relatively small maximum output
length. All other models fell significantly short of their respective maximums, indicating that their
inability to satisfy the length constraints stems from inherent generation limitations rather than
explicit length restrictions.

Takeaways. There exists a substantial discrepancy between vendor-claimed and actual model
performance under extreme long length constraints, highlighting the need for more reliable evaluation
and reporting of maximum output capabilities.

5.3 Diagnosis of Length Instruction Following Failures

To further investigate the causes underlying poor length instruction following, we conduct a series of
distinct but inter-connected analyses.

Length Awareness Deficits. Given widespread failures in following length instructions, we seek to
understand these deficiencies from the perspective of the models’ internal awareness of output length.
To this end, we design the length awareness experiment in which each model is prompted to append
a self-reported word count to its generated text. We then compare the self-reported counts to their
actual output lengths. Figure 5 presents four representative examples, models overshoot short length
limits while underestimating length, and undershoot long limits while overestimating length. Notably,
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Figure 6: Impact of long input on the Length Score. Figure 7: Three representative lazy strategies.

GLM-4-9B-Chat reports word counts that match the instructions, even when its actual outputs do not,
suggesting that it assumes compliance rather than measuring the true output length. Experimental
details and comprehensive results for all models are provided in Appendix F.

Sensitivity to Input Length. Section 5.2 reveals that summarization tasks yield the lowest perfor-
mance. Since inputs of such tasks are typically much longer than others, we further assess the impact
of input length on model’s length instruction following. Specifically, we select a subset of samples
from the summarization task and construct three input versions for each by truncating the original
text to short (<1000 words), medium (1000-5000 words), and long (>5000 words) lengths. We then
prompt the models to generate a continuation for each version. As detailed in Figure 6, among the 26
models evaluated, 21 models show marked declines in Length Score with increasing input length,
with LongWriter-Llama3.1-8B exhibiting the largest Length Deviation reduction (| 13.6). These
models also perform worst on summarization tasks, revealing a strong association between input
length sensitivity and poor summarization fidelity. Detailed experimental settings and results are
provided in Appendix G.2.

Prevalence of Lazy Generation Strategies. Through analysis of the generated outputs, we observe
two distinct failure modes across all models: in some cases, models are fundamentally limited
in producing long-form content, while in others, lazy strategies are adopted to circumvent length
constraints, such as prematurely terminating the response or outright refusing to generate content.
Figure 7 illustrates three representative types of lazy strategies. Notably, we observe that the
prevalence of such strategies increases sharply when length constraints exceed 4096 words, and on
average surpasses 10% for all models when the constraint is set to 8192 words. More details and
quantitative analysis are provided in the Appendix H. Interestingly, as shown in Appendix M.2, our
experiments on the base model reveal that the refusal lazy strategies is not only attributable to safety
alignment, but also arises from pre-training.

Limitations of Intermediate Reasoning. Given the mechanistic differences between reasoning
and standard models, we conduct a case study on Claude-3.7-Sonnet-Thinking under three
representative length constraints: 16, 1024, and 8192 words. By analyzing intermediate reasoning
traces, we observe that reasoning models can calibrate their output length during the reasoning process.
Specifically, the model first generates a draft response and performs self-evaluation by counting the
number of words in its reasoning process. If the generated length does not satisfy the instruction,
the model iteratively revises or regenerates the response to better follow the specified constraint.
However, this ability to dynamically adjust output length only partially alleviates the problem for
short length constraints and still fails under longer constraints. Further illustrative examples and
detailed analyses are provided in Appendix L.

Takeaways. Deficits in length awareness, sensitivity to input length, and the prevalence of lazy
generation strategies collectively undermine effective length instruction following in current models.
Although reasoning models attempt to calibrate output length during the intermediate reasoning
process, this approach remains ineffective under longer length constraints.



6 Conclusion, Limitations and Future Insights

In this paper, we introduce LIFEBENCH, a comprehensive benchmark for evaluating the ability
of LLMs to follow length instructions across diverse tasks, languages, and a broad range of length
constraints. Empirical analysis shows that current LLMs are generally unreliable at following length
instructions, particularly under long constraints, often falling significantly short of their vendor-
claimed length. We further showcase that model performance is substantially affected by input
characteristics, including task type, language, and input length, etc. These findings reveal a critical
gap in LLMs’ ability to follow length instructions, highlighting the need for more targeted evaluation
and development to improve instruction following in future models. We acknowledge that this work
focuses on benchmarking, and it does not offer elegant solutions to the underlying causes, while
Appendix M provides several promising insights. Addressing these causes is an important direction
for future research. We hope LIFEBENCH and our analyses will facilitate further research in this
important but underexplored area.
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Justification: In this paper, we provide links to both the experimental code and dataset,
enabling full reproducibility of all reported results when combining the code with the
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6. Experimental setting/details
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* The answer NA means that the paper does not include experiments.
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material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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* The answer NA means that the paper does not include experiments.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report resource consumption metrics for all experimental procedures in
this study.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All aspects of this work comply with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper discusses both potential positive and negative societal impacts
across the Introduction, Experimental Section, and Conclusion.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: This paper does not address the safeguards for responsible release of high-risk
data or models (such as pretrained language models, image generators, or scraped datasets),
as it does not involve such content.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, the creators or original owners of all assets (e.g., code, data, models) used
in this paper are properly credited. Additionally, the relevant licenses and terms of use are
explicitly mentioned and fully respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, all new assets introduced in the paper are thoroughly documented. The
corresponding documentation is provided alongside these assets for clarity and reproducibil-
ity.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or research with
human subjects, so such details are not included.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study did not involve human participants, so no risks, disclosures, or IRB
approvals were required or obtained.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core ideas and designs presented in this paper were developed without any
involvement of large language models.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Comparison of LIFEBENCH with Existing Benchmarks

In this section, we review ten representative benchmarks on long-form text generation or long-context
modeling and analyze the evaluation ranges they cover. Based on this analysis, we position our work,
LIFEBENCH, relative to prior benchmarks, highlighting its unique strengths and comprehensive
evaluation design.

Specifically, LIFEBENCH differentiates itself by being bilingual (English and Chinese), covering four
task categories, and comprising 360 fundamental data units. Each unit derives 30 data items across
three length control methods and ten distinct length constraints, resulting in a total of 10,800 instances.
To facilitate multi-dimensional analysis of length instruction following, we introduce two dedicated
evaluation metrics: Length Deviation and Length Score. Thus, our benchmark features a Diverse
Dataset, Extensive Length Constraints, and Analytical Evaluation, providing broader coverage
and more fine-grained analysis compared to prior benchmarks. We summarize key differences
between LIFEBENCH and prior benchmarks in Table 2 and provide detailed discussions below.

Table 2: Comparison of LENGTHBENCH with Other LLM Benchmarks.

Benchmarks Diverse Long Bilingual Multiple Length Constraints Analytical
Task  Input Control Methods <100 100-2000 >2000 Evaluation

IFEval [122] X X X X

AlpacaEval-LI [114] X X X X X

Ruler [58] X X X X X

Suri [83] X X X X X X

LongBench-Write [8] X X X X

HelloBench [86] X X X X X

LongProc [112] X X X X X

LonGen Bench [85] X X X X

LongGenBench-1 [106] X X X X X X X

LongGenBench-2 [69] X X X X X X X

Ours

Diverse Dataset

We categorize existing benchmarks into two main groups for comparison: benchmarks explicitly
targeting length instruction following, and those focused on general long-text generation.

Length Instruction Following Benchmarks. I[FEval is a well-established benchmark for
instruction-following evaluation, utilizing length constraints as proxies for assessing general ad-
herence to instructions. It includes a variety of tasks and control methods to measure a model’s ability
to follow instructions. However, IFEval primarily focuses on short-text scenarios, without input or
output instructions exceeding 2,000 words. Furthermore, as its primary aim is to evaluate general
instruction following, it lacks detailed analytical evaluation of length control, making it difficult to
directly assess a model’s performance on length instruction following. In addition, several bench-
marks have been specifically designed to evaluate length instruction following, such as AlpacaEval-LI
and Ruler. Unlike traditional instruction following benchmarks, these datasets focus exclusively on
length control. However, they tend to exhibit narrower scopes, typically constrained to short outputs.
These benchmarks often lack sufficient diversity in task domains and control methods, limiting their
effectiveness for comprehensive length-adherence evaluation.

Long-Text Generation Benchmarks. Benchmarks in this category primarily assess generation
quality within long-form content scenarios, typically including explicit length instructions as part of
their evaluation setup. We contrast LIFEBENCH with seven representative benchmarks in this area.
Existing long-text benchmarks generally prioritize generation quality in extended contexts but neglect
comprehensive evaluations across shorter lengths or varied control methodologies. Additionally, apart
from LongBench-Write and LonGen Bench, most benchmarks in this group lack analytical evaluation
methods explicitly targeting length instruction following. Combined with our findings revealed in this
paper, it is difficult for models to achieve excellent performance in long-text generation. We believe
that LIFEBENCH makes an important supplement to the previous work that may have overlooked the
important factor of actual generation length.

In addition to the above two categories, we also compare LIFEBENCH with several benchmarks in
the controlled text generation domain. Existing controlled generation benchmarks can be broadly

27



categorized into content control and attribute control [62]. Notably, structure control, a subcategory
of content control—often incorporates length constraints as part of its evaluation, exemplified by
benchmarks such as COLLIE [111], CoDI-Eval [17], and CFBench [117]. However, these benchmarks
typically involve multiple and complex control factors and rarely explore extended text-generation
scenarios. Consequently, they are less suited for a dedicated and systematic analysis of length
instruction adherence in isolation.

In summary, compared to previous benchmarks, LIFEBENCH provides a comprehensive benchmark
specifically designed to evaluate length instruction following. And we provide the most languages,
the most comprehensive coverage of length constraints, a broad and diverse set of tasks, and multiple
control methods—effectively addressing key limitations found in existing benchmarks.

28



B Details of LIFEBENCH

B.1 Mapping of NLP Tasks to Length Paradigms

In Section 3, we present a task-to-paradigm mapping that categorizes standard NLP tasks according
to the four Length Paradigms defined earlier: Length-Independent Paradigm, Fixed-Length Paradigm,
Adaptive-Length Paradigm, and Flexible-Length Paradigm. In this section, we elaborate on these
four paradigms:

o Length-Independent Paradigm: This paradigm comprises tasks where length constraints are
inherently irrelevant to the task objective. Imposing a length restriction does not impact the
fundamental goal or the correctness of the output. Such tasks typically involve structured outputs
where specifying a fixed length is unnecessary. Representative examples include tokenization
and part-of-speech (POS) tagging, which prioritize functional correctness over word or character
counts, so they are length-independent.

o Fixed-Length Paradigm: This paradigm includes tasks where the output length remains approxi-
mately constant, irrespective of input variations. These tasks require a predefined output length
that cannot be freely adjusted. Representative examples include text classification and sentiment
analysis, where outputs are typically restricted to a single category or a small set of alternatives.

e Adaptive-Length Paradigm: This paradigm covers tasks where the output length naturally adapts to
the input length, with longer inputs generally producing longer outputs. Representative examples
include machine translation and text style transfer. For instance, longer input sentences in machine
translation generally yield longer outputs, and the same applies to text style transfer.

o Flexible-Length Paradigm: This paradigm encompasses tasks where the output length can be
freely adjusted across a wide range, supporting both concise and detailed responses. A defining
characteristic of these tasks is their adaptability to different use requirements. Representative
examples include open-ended question answering and text completion. In open-ended question
answering, models can extend answers with additional explanations, while in text writing, they can
generate outputs ranging from short passages to extensive works spanning tens of thousands or
even millions of words.

Given the diversity of NLP tasks, we focus on representative examples for each paradigm, accompa-

nied by concise descriptions of their primary objectives. Table 3 summarizes the mapping of NLP
tasks to the four length paradigms.

Table 3: Mapping of common NLP tasks to the Length Paradigms.

Length Paradigm | Representative NLP Tasks \ Task Description
Tokenization [91] Splits text into tokens based on linguistic or subword units.
POS Tagging [90] Assigns part-of-speech labels to each token in the input sequence.
Length-Independent Named Entity Recognition [57] Identifies and labels named entities (e.g., people, locations) in a sentence.
Dependency Parsing [16] Analyzes syntactic structure by establishing relationships between words.
Text Matching [45] Measures semantic or lexical similarity between two pieces of text.
Text Classification [22] Assigns a label (e.g., topic, category) to an entire input text.
Sentiment Analysis [93] Predicts sentiment polarity (e.g., positive, negative) of a given text.
Fixed-Length ASpam Detection [15] Classifies an emai! or message as either spam or not spam.
Toxic Content Detection [24] Detects the presence of toxic, offensive, or harmful language in text.
Title Generation [76] Generates a concise title for a given passage or document.
Stereotype Detection Identifies biased or stereotypical language in text.
Machine Translation [95] Converts text from one language to another.
Text Style Transfer [49] Alters text style (e.g., formal to informal) while keeping content intact.
Adaptive-Length Paraphxiase Geneygnion [61] Rewrites input text using Qifferen} wording _whi}e prgsgrving meaning.
Question Rewriting [26] Reformulates a question while preserving its original intent.
Sentence Perturbation [2] Modifies sentence form slightly while retaining its meaning.
Open-ended Question Answering [15] Generates free-form answers to questions without fixed format.
Text Summarization [89] Extracts and rephrases key content from the input text.
Sentence Compression [89] Compresses a sentence into a shorter version while preserving key meaning.
Text Completion [87] Generates plausible continuations for a given text.
Flexible-Length Dialogue Generation [9] Produces context-aware responses in multi-turn conversations.
Story Composition [31] Generates narratives or stories based on input prompts.
Poem Generation [1 18] Creates poems in various styles and forms from given input.
Sentence Expansion [87] Extends a short sentence into a more detailed or informative one.
Reasoning [102] Performs complex inference or multi-step reasoning.
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B.2 Data Collection

This section provides a detailed description of the data collection process under the Flexible-Length
Paradigm and outlines the taxonomy of tasks included within this setting. Based on Table 3, and
considering the variability in output length requirements, we select four representative categories
from the Flexible-Length Paradigms as our base: Question Answering (QA), Summarization,
Reasoning, and Creative Generation. These categories support variable-length instructions and are
well suited for standardized evaluation.

For each task category, we first define the task and explain its relevance to the Flexible-Length setting.
We then introduce the associated representative NLP tasks, followed by a comprehensive overview of
the data collection process, including dataset composition and provenance, preprocessing and data
cleaning strategies, and the subtypes represented within each category.

Question Answering (QA) Task. This task involves answering open-ended questions whose
answer length varies according to the required detail, aligning naturally with the Flexible-Length
Paradigm. The representative NLP task for this category is Open-ended Question Answering.

To support our analysis of this task under the flexible-length setting, we manually collected a total of
120 QA samples from publicly available datasets, comprising 60 Chinese and 60 English examples.
The selection criteria are: (1) Questions must be open-ended, allowing responses ranging from
concise to elaborative explanations. When the length constraint is small, such as 16, the model can
just give the answer, while for longer answers it can provide explanations and even add richness while
giving the answer; (2) Questions should be meaningful, context-rich, and well-formed, enabling
various depths of responses. For example, an open-ended historical or political discussion question,
who is your favorite American president? Under this question, the model can answer the term and
name of a specific president, or it can explain the reasons from multiple perspectives to form a
deep answer; (3) We excluded factoid, binary, multiple-choice, duplicate, or grammatically incorrect
entries. The answer space for such questions is usually too narrow, and sometimes it is difficult to
form a longer answer. For example, what is the answer to 3+5? For this question, it is difficult for
the model to generate a 2000-word answer to explain the question.

To ensure linguistic and topical diversity, we sourced English QA data equally (15 questions each)
from four datasets:

o Question Pairs Dataset[53]: Contains over 400k real-world questions from Quora'.

e Stack Exchange Dataset [1]: Comprises over 80k community-driven QA threads from the Stack
Exchange’.

o WikiHow Dataset [54]: Includes over 160k how-to questions and procedural content from
WikiHow?.

e Yahoo Answers Dataset [119]: Consists of 10 different categories and each class contains over
140k QA pairs.

The Chinese QA data were collected from the following two datasets:

e QA Wikihow [74]: A Chinese QA dataset derived from WikiHow, from which we selected 25
open-ended questions.

e QA Zhihu [74]: Sourced from Zhihu*, a Chinese community QA platform, from which we selected
35 diverse and open-ended questions.

We then analyzed the topical distribution of the collected QA samples, categorizing questions into
nine thematic domains: Knowledge (e.g. How does the finance credit score work?), Technology (e.g.
How to protect data from internal data scientists?), Health (e.g. How do I lose weight without doing
exercise?), Society (e.g. How can we improve the education system for high school and college?),
Lifestyle (e.g. How to be positive?), Entertainment (e.g. How to play competitive Counter-Strike

"https://www.quora.com/
*https://stackexchange.com/
*https://www.wikihow.com/
*https://www.zhihu.com/
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Global Offensive?), Business (e.g. How to start investing?), Food (e.g. How to brew commercial
beer?), and Sports (e.g. How to play basketball?). These categories comprehensively cover typical
domains encountered in open-ended question design.

Summarization Task. The objective of summarization task is to condense long-form texts into
shorter summaries whose lengths can vary considerably—from concise overviews to more detailed
condensations—aligning naturally with the Flexible-Length Paradigm. Representative NLP tasks
include Text Summarization and Sentence Compression, both aiming to preserve key information
while reducing text length.

To support our analysis of this task under the flexible-length setting, we selected a total of 40
long-form source documents from open-source datasets, with an equal split of 20 English and 20
Chinese texts. Given the need for variable-length summaries, we intentionally focused on documents
with substantial content, ensuring sufficient information is available for both brief and detailed
summarization. Specifically, we selected source texts within the range of 10,000 to 15,000 words
(or characters for Chinese), striking a balance between the context window limitations of current
language models and the need to support diverse summarization lengths in the Flexible-Length
Paradigm. To improve text quality and informativeness, we manually cleaned the documents by
removing low-informative elements such as extensive tables, blocks of numeric-only content, meta
descriptions, and other low-information or structurally noisy parts.

The English summarization data were drawn from the following five datasets, with 4 documents each:

o Scientific Papers [21]: Structured academic documents sourced from ArXiv® and PubMed®. Text
type: Academic Article.

e BookSum [55]: Long-form literary narratives. Text type: Book.

o Gov Report [37]: Government reports from the Congressional Research Service’ and U.S. Gov-
ernment Accountability Office®. Text type: Report.

e QMSUM [121]: Multi-domain meeting transcripts. Text type: Dialogue.

o Wikipedia [32]: High-quality encyclopedia-style articles from cleaned English Wikipedia dumps.
Text type: Encyclopedia.

The Chinese summarization data were collected from the following three datasets:

e Co Ann Report [74]: A dataset of Chinese corporate annual reports. The corresponding text type
is Report, and we selected § documents.

o Wikipedia [32]: A cleaned dump of Chinese Wikipedia articles. The corresponding text type is
Encyclopedia, and we selected 5 documents.

o Gov XueXiQiangGuo [74]: A collection of public discourse materials from the Xuexi Qiangguo
platform’, including political speeches, news reports, and commentary. The corresponding text
type is Public Discourse, and we selected 10 documents.

Reasoning Task. Reasoning is a core capability distinguishing modern LLMs from traditional NLP
systems. Unlike classification or span extraction tasks, which typically rely on surface-level textual
patterns, reasoning task requires multi-step logical inference and contextual understanding, making it
uniquely aligned with LLM capabilities rather than conventional NLP pipelines.

Compared to general QA task, reasoning task emphasizes not only the final answer but also the
underlying logical steps toward the conclusion. Whereas open-ended QA may occasionally require
explanations, it does not necessarily involve inference over structured facts or scenarios. In contrast,
reasoning task explicitly demands structured cognitive processes—such as deduction, analogy, or
causal inference—often necessitating step-by-step justification. Thus, the representative NLP task for
this category is simply Reasoning.

Shttps://arxiv.org/
*https://pubmed.ncbi.nlm.nih.gov/
"https://crsreports.congress.gov
$https://wuw.gao.gov/
“https://www.xuexi.cn/
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A unique challenge emerged when adapting reasoning tasks to the flexible-length setting. Existing
datasets for reasoning—such as GSM8K [20] (mathematical reasoning) or CommonsenseQA [96]
(commonsense inference)—are typically not well-suited for flexible-length evaluation. The former’s
mathematical notations and equations that make it difficult to control output length meaningfully,
while the latter is designed as a multiple-choice task, constraining the response format and limiting
the scope for open-ended explanations. Nonetheless, reasoning itself inherently suits the Flexible-
Length Paradigms: some inferences can be expressed succinctly, while others benefit from elaborate
justifications. This makes it ideal for investigating the ability of models’ length instruction following
based on complexity.

To obtain high-quality, flexible-length reasoning samples, we employ GPT-40 [78] to generate 80
open-ended reasoning questions—40 in Chinese and 40 semantically equivalent questions in English.
Prompts are designed to allow concise responses or detailed justifications based on model instruction
and complexity.

We follow the taxonomy proposed by Huang et al. [44], covering six distinct categories: Deductive
(e.g. Assuming that all sexually dimorphic animals possess reproductive organs, analyze whether pos-
sessing reproductive organs can conversely indicate that an animal is sexually dimorphic.), Inductive
(e.g. Based on historical data from successive generations of smartphones, predict the direction of
innovation in the next generation.), Abductive (e.g. Determine the most plausible explanation for this
observation: A country’s currency experiences abnormal exchange rate fluctuations.), Analogical
(e.g. How can the spread of computer viruses be compared to the spread of biological viruses?),
Cause and Effect (e.g. Examine the causal links between high temperatures and urban power supply
shortages), and Probabilistic (e.g. Evaluate the probabilistic models used to assess risk diversification
in financial investment portfolios.). The dataset consists of 10 Deductive reasoning items and 14 items
each for the other five categories, ensuring balanced representation. All items underwent rigorous
manual review according to four quality criteria: (1) logical soundness and necessity of reasoning
rather than factual recall; (2) clarity and absence of ambiguity or misleading premises; (3) support
for variable elaboration levels, from brief conclusions to detailed explanations; and (4) cultural and
linguistic appropriateness. This meticulous curation ensures suitability for our analysis of length
instruction following capabilities under flexible-length reasoning settings.

Creative Generation Task.  This task focuses on generating creative and imaginative texts, with
output length inherently flexible and dependent on the context, genre, and intent of generation. Due
to the wide variability in the expected length and structure of generated outputs, it aligns with the
Flexible-Length Paradigms. Representative tasks include Text Completion, Dialogue Generation,
Story Composition, Poem Generation, and Sentence Expansion, each requiring adaptation to
various expressive and stylistic demands.

For analysis under the flexible-length setting, we curated a total of 120 examples from open-source
datasets, evenly divided into 60 English and 60 Chinese instances. Each example is selected to
represent distinct creative generation subtypes, ensuring both linguistic diversity and task coverage.
All samples are manually verified to confirm fluency, coherence, and contextual appropriateness for
creative generation.

The English data are collected from the following 4 datasets, with 15 instances sampled from each:
o Internet Movie Script Dataset[82]: Film scripts from IMSDb'’; we use it for Script Expansion,
prompting models to extend or elaborate scenes.

e ROCStories [75]: Five-sentence commonsense stories; we utilize for Story Expansion, where
models develop or extend narratives.

e WritingPrompts [31]: Imaginative writing prompts from Reddit’'s WRITINGPROMPTS'!; we
employ it for Prompt-based Creative Writing.

e CNN/DailyMail [42]: News summaries from articles; we applie it to News Writing, prompting
models to reconstruct or expand original news content.

The Chinese data are drawn from the following three datasets:

Ohttps://www.imsdb. com/
Uhttps://www.reddit.com/r/WritingPrompts/
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QA Template

[Instruction] Answer this question: {{content} }
[Requirement] Your answer must be {{control_method}} {{length_constraint}} words long.

Table 4: Refinement Template for QA Task. All subtypes share the same template.

e WebNovel [51]: Online fiction excerpts and generation instructions; 15 examples are selected for
Story Expansion, generating content based on given story segments.

e NLPCC 2017'?: Reference summaries from the summarization track; instances are used for Social
Commentary Writing and News Writing, totaling 20 examples.

o WeiXin Public Corpus'?: Articles from WeChat public accounts; 25 examples are selected for
Blog Writing, generating opinion or commentary articles based on titles.

Summarization Template

Subtype: Encyclopedia

[Instruction] Summarize this encyclopedia article: {{content}}

[Requirement] Your summary must be {{control_method}} {{length_constraint}} words
long.

Subtype: Report

[Instruction] Summarize this report: {{content}}

[Requirement] Your summary must be {{control_method}} {{length_constraint}} words
long.

Subtype: Public Discourse

[Instruction] Summarize this public discourse: {{content}}

[Requirement] Your summary must be {{control_method}} {{length_constraint}} words
long.

Subtype: Academic Article

[Instruction] Summarize this academic article: {{content}}

[Requirement] Your summary must be {{control_method}} {{length_constraint}} words
long.

Subtype: Book

[Instruction] Summarize this book: {{content}}

[Requirement] Your summary must be {{control_method}} {{length_constraint}} words
long.

Subtype: Dialogue

[Instruction] Summarize this dialogue: {{content}}

[Requirement] Your summary must be {{control_method}} {{length_constraint}} words
long.

Table 5: Refinement Template for Summarization.

B.3 Refinement Process

Since the initial data are directly obtained from existing datasets or generated by LLMs, the raw
samples lack explicit length constraints or specific task instructions, so these data cannot be used

Phttp://tcci.cef.org.cn/conference/2017/taskdata . php
Bhttps://github. com/nonamestreet/weixin_public_corpus
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Reasoning Template

Subtype: Deductive

[Instruction] Solve this deductive reasoning problem: {{content} }

[Requirement] Your reasoning must be {{control_method}} {{length_constraint}} words
long.

Subtype: Inductive

[Instruction] Infer a general rule from this observed pattern: {{content}}

[Requirement] Your reasoning must be {{control_method}} {{length_constraint}} words
long.

Subtype: Abductive

[Instruction] Determine the most plausible explanation for this observation: {{content}}
[Requirement] Your reasoning must be {{control_method}} {{length_constraint}} words
long.

Subtype: Analogical

[Instruction] Draw an analogy to explain this question: {{content}}

[Requirement] Your reasoning must be {{control_method}} {{length_constraint}} words
long.

Subtype: Cause and Effect

[Instruction] Analyze the causal relationship in this scenario: {{content}}
[Requirement] Your reasoning must be {{control_method}} {{length_constraint}} words
long.

Subtype: Probabilistic

[Instruction] Evaluate the likelihood of this outcome based on probability: {{content}}
[Requirement] Your reasoning must be {{control_method}} {{length_constraint}} words
long.

Table 6: Refinement Template for Reasoning.

to evaluate the length instruction following capability. To align the collected data with the goals of
the Flexible-Length Paradigm, i.e., apply them to evaluations at different lengths, we implement
a structured refinement process, augmenting samples with task-specific instructions and explicit
length constraints. This approach ensures that the refined data adheres to the desired format without
compromising task relevance. The refinement process allows us to better assess the model length
instruction following while excluding other length-independent conditions as much as possible.

Refinement Methodology. We adopt a standardized template, [Instruction] + [Requirement], to
guide the refinement process. The [Instruction] component specifies the task type and the desired
model generation, while the [Requirement] sets the length constraints of the output. This dual-
component framework precise control over both task appropriateness and output flexibility. For each
task category or subtype, unique [Instruction] and [Requirement] templates are designed to fit the
nature of the task better. The templates include the following key components: 1) content: The raw
data collected from original sources, serving as task inputs. (2) control_method: It includes three
possible options:

e Equal To: Output length must exactly match the specified constraint.
o At Most: Output length must not exceed the specified constraint.

e At Least: Output length must meet or exceed the specified constraint.

(3) length_constraint: Defines the target output length. In our benchmark, the values can be set to
{16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768}.
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Templates for each task category and subtype are presented in Table 4, Table 5, Table 6 and Table 7.
The Chinese dataset follows the same structural approach, with template components expressed in
Chinese.

Creative Generation Template

Subtype: Social Commentary Writing

[Instruction] Write a social commentary based on the following content: {{content} }
[Requirement] Your commentary must be {{control_method}} {{length_constraint}} words
long.

Subtype: Prompt-based Creative Writing
[Instruction] Write a creative piece based on this prompt: {{content} }
[Requirement] The piece must be {{control_method}} {{length_constraint}} words long.

Subtype: Script Expansion

[Instruction] You are given an excerpt from a script: {{content}}

[Requirement] The continuation must be {{control_method}} {{length_constraint}} words
long.

Subtype: News Writing

[Instruction] Write a news article based on the following content: {{content}}
[Requirement] Your news article must be {{control_method}} {{length_constraint}} words
long.

Subtype: Story Expansion

[Instruction] Expand the following story: {{content}}

[Requirement] Your expanded story must be {{control_method}} {{length_constraint}}
words long.

Subtype: Blog Writing

[Instruction] This is a title from a WeChat public account: {{content}}

[Requirement] Write a full article based on this title. The article must be {{control_method} }
{{length_constraint} } words long.

Table 7: Refinement Template for Creative Generation.

B.4 Examples of Tasks

Below we present illustrative examples drawn from each of the four Flexible-Length Paradigm tasks
covered by LIFEBENCH.

An Example Data of QA Task

[Instruction] Respond to this question:
How to Use Git Effectively.
[Requirement] Your response must be at least 1024 words long.

Question Answering (QA). The QA examples include open-ended queries enabling varying answer
depths. In the example, we use “How to use git efficiently” as the basic question and “at least” as
the control method, which are marked in blue. It is easy to find that our evaluation questions are very
consistent with actual application scenarios and are often encountered in practice.

Summarization. Summarization tasks require condensing detailed content into a summary that can
flexibly meet different length criteria. The examples provided Given a novel, our summarization task
requires the model to summarize such rich text input and use Equal To as a control method. This is
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also a common task. When people use Al assistants, they often ask the model to summarize long
texts such as technical reports, academic papers, and novels.

An Example Data of Summarization Task

[Instruction] Summarize this book:

I was born in Tuckahoe, near Hillsborough, and about twelve miles from Easton, in Talbot
county, Maryland. I have no accurate knowledge of my age, never having seen any authentic
record containing it. By far the larger part of the slaves know as little of their ages as horses
know of theirs, and it is the wish of most masters within my knowledge to keep their slaves
thus ignorant. I do not remember to have ever met a slave who could tell of his birthday.
They seldom come nearer to it than planting-time, harvest-time, cherry-time, spring-time,
or fall-time. A want of information concerning my own was a source of unhappiness to me
even during childhood. The white children could tell their ages. I could not tell why I ought
to be deprived of the same privilege. I was not allowed to make any inquiries of my master
concerning it. He deemed all such inquiries on the part of a slave improper and impertinent,
and evidence of a restless spirit. The nearest estimate I can give makes me now between
twenty-seven and twenty-eight years of age. I come to this, from hearing my master say,
some time during 1835, I was about seventeen years old.

My mother was named Harriet Bailey. She was the daughter of Isaac and Betsey Bailey, both
colored, and quite dark. My mother was of a darker complexion than either my grandmother
or grandfather.

My father was a white man. He was admitted to be such by all I ever heard speak of
my parentage. The opinion was also whispered that my master was my father; but of the
correctness of this opinion, I know nothing; the means of knowing was withheld from me.
My mother and I were separated when I was but an infant-before I knew her as my mother. It
is a common custom, in the part of Maryland from which I ran away, to part children from
their mothers at a very early age.

[Requirement] The summary must be equal to 128 words long.

Reasoning. Reasoning examples involve logical inference tasks where output lengths flexibly range
from succinct conclusions to detailed step-by-step logical justifications. In this example, we query
the model to generate 8192 words to infer “A country’s currency experiences abnormal exchange
rate fluctuations. Provide a reasonable explanatory model.” This length instruction allows the model
to give a more detailed and logical reasoning process.

An Example Data of Reasoning Task

[Instruction] Determine the most plausible explanation for this observation:

A country’s currency experiences abnormal exchange rate fluctuations. Provide a reasonable
explanatory model.

[Requirement] Your reasoning must be equal to 8192 words long.

Creative Generation. Creative generation examples demonstrate tasks demanding varied textual
complexity and content richness. In this example, we give the model a portion of a script that had
already been written, and then ask the model to continue writing, and at most continued writing 512
words. This task is popular among literary and artistic workers in real life, because they sometimes
rely on LLMs to create drafts.

An Example Data of Creative Generation Task

[Instruction] You are given an excerpt from a script:
PEDDLER: Oh I come from a land

From a faraway place

Where the caravan camels roam

Where they cut off your ear /Where it’s flat and immense
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If they don’t like your face /And the heat is intense
It’s barbaric but hey—it’s home!

When the wind’s at your back

And the sun’s from the west

And the sand in the glass is right

Come on down

Stop on by

Hop a carpet and fly

To another Arabian night!

Arabian nights

Like Arabian days
More often than not
Are hotter than hot
In a lot of good ways

Arabian nights
’Neath Arabian moons
A fool off his guard

[Requirement] Based on this, continue the scene and develop the storyline. The continuation
must be at most 512 words long.

\. 4

These examples collectively highlight how the selected NLP tasks inherently support varied out-
put lengths and illustrate critical evaluation scenarios within LIFEBENCH, emphasizing models’
flexibility and precision in following length-specific instructions.
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C Details of LIFEBENCH-SUPPLEMENTARY

Building upon our main benchmark, we introduce two supplementary datasets and a lite version
to further enhance the diversity and utility of LIFEBENCH. As described in Appendix B.1, the
primary scope of LIFEBENCH is on natural language generation tasks within the Flexible-Length
Paradigm. However, two additional paradigms, Fixed-Length and Adaptive-Length, also present
meaningful opportunities for controlled length evaluation, despite not being inherently suited for
arbitrary length constraints. To this end, we present LIFEBENCH-LABEL for tasks under the Fixed-
Length Paradigm and LIFEBENCH-REFACTOR for the Adaptive-Length Paradigm. Additionally, we
provide LIFEBENCH-LITE, a compact subset designed for efficient, rapid evaluation of a LLM’s
length instruction following capabilities. The results for LIFEBENCH-LABEL and LIFEBENCH-
REFACTOR are reported in Appendix J.

C.1 LIFEBENCH-LABEL

For tasks under the Fixed-Length Paradigm, we categorize them as Label Tasks, which include
classic natural language genertion tasks such as text classification, sentiment analysis, and toxic
content detection. Data were collected from seven public datasets according to the following criteria:
(1)The output is a concise, unambiguous category or short phrase representing the answer; (2) No
additional explanation, reasoning, or extended generation is required; (3) Samples with explicit length
constraints, multi-label requirements, or ambiguous context are excluded.

A total of 60 label task samples were curated, with 30 in Chinese and 30 in English. As these data are
best suited for relatively short, fixed-length outputs, we set the length constraints to 2,4, 8 words,
thereby addressing the gap in short-length settings within LIFEBENCH.

The English label-task data were sourced from the following four datasets

e AG News [119]: A subset of AG’s corpus [5], containing titles and descriptions from the four
largest classes (“World”, “Sports”, “Business”, “Sci/Tech”). We selected 9 samples (Text type:
News).

e Amazon Fine Foods Reviews [72]: Reviews of fine foods from Amazon'*; 6 samples were
selected (Text type: Review).

o Text Classification on Emails [94]: A dataset of email exchanges among journalists; 9 samples
were selected (Text type: Email).

e Hate Speech [24]: Tweets collected from Twitter'> containing hate speech; 6 samples were
selected (Text type: Tweets).

The Chinese label-task data were collected from the following three datasets

e ChnSentiCorp [73]: Hotel review dataset with positive and negative polarity; 10 samples were
selected (Review).

e Online Shopping [73]: Reviews from 10 shopping categories, each with positive and negative
sentiment; 10 samples were selected (Review).

e Weibo Senti [73]: Sentiment-annotated posts from Sina Weibo'®; 10 samples were selected
(Tweets).

Below, we provide the refinement template and a representative example for label tasks.

An Example Data of Lable Task

[Instruction] Here is a user review:

I ALWAYS read Amazon reviews before I buy a product. I don’t know what happened.
Maybe I was in a hurry but I'll NEVER make that mistake again. If I had read the reviews I
could have avoided setting my head on fire.

Yhttps://www.amazon. com/
Bhttps://x.com/
®https://weibo.com/
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I took ONE bean — it must have been the magic one — in the next second I was draped over
the kitchen island gasping for breath and crying...yes, I said crying..boo hooing like a baby.
It felt like someone stuffed a blazing hot poker up my nostrils and my head was going to
explode. My eyes watered for over 30 minutes.

I would only recommend these if you like to set your head on fire for fun or you have
a SEVERELY blocked sinus and you have tried all other possible remedies to open it.
WARNING: I am NOT recommending that you use these Bunker Busters to open your sinus.
I don’t know what will happen. For all I know your eyeballs could explode. I’m just saying
that ONE bean definitely opened my sinus...but it was NOT worth the pain it took to open it.
The only reason I gave them 2 stars is because I stupidly did not read the reviews and I am
being very nice (since my sinus finally stopped burning 2 days after!!). Seriously, these should
come with a BIG WARNING. Amazon, you should add your own warning. Somebody’s
probably gonna come after you for these things. They could be dangerous.

[Requirement] Provide a label to the review accordingly. The label must be equal to 4 words
long.

Label Template

Subtype: News

[Instruction] You are given a news article excerpt: {{content}}

[Requirement] Label the article based on its topic. The label must be { {control_method} }
{{length_constraint} } words long.

Subtype: Review

[Instruction] Here is a user review: {{content}}

[Requirement] Provide a label to the review accordingly. The label must be {{con-
trol_method}} {{length_constraint}} words long.

Subtype: Tweets

[Instruction] You are given a short text from a tweet: {{content}}

[Requirement] Provide a label that best represents the tweet. The label must be {{con-
trol_method}} {{length_constraint}} words long.

Subtype: Email

[Instruction] The following text is an excerpt from an email: {{content}}

[Requirement] Provide a label that best categorizes it. The label must be { {control_method} }
{{length_constraint} } words long.

Table 8: Refinement Template for Label.

C.2 LIFEBENCH-REFACTOR

For tasks under the Adaptive-Length Paradigm, where the output length is closely tied to the input
length, we categorize them as Refactor Tasks. This category includes classic natural language
generation tasks such as Machine Translation, Text Style Transfer, and Paraphrase Generation.
We construct LIFEBENCH-REFACTOR directly using the datasets mentioned in B.2 and C.1.

To ensure the validity of the tasks, we collect samples according to ten predefined length constraints:
16, 32,64, 128,256,512, 1024, 2048, 4096, 8192 words, requiring that the sample’s output length
deviates by no more than 30% from the target constraint. For tasks with shorter length constraints, we
select samples that allow for flexible restructuring within the target length, ensuring that the output
remains fluent and semantically faithful to the source. For tasks with longer length constraints, we
choose texts that contain sufficient substantive content to support meaningful transformation, so that
the refactored outputs are coherent, relevant, and non-repetitive. In total, we collect 13 samples
for Machine Translation (subtype: Translate), 99 samples for Text Style Transfer (subtype: Style
Conversion), and 68 samples for Paraphrase Generation (subtypes: Reversal, Professionalization, and
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Softening), corresponding to sentiment reversal, rewriting in a more specialized register, and making
text less offensive, respectively.

Due to the diverse sources of the datasets, a unified refinement template could not be applied to all
samples. Therefore, we manually refined each sample. Below, we provide a representative example
for the Refactor task.

An Example Data of Lable Task

[Instruction] You are given a statement:

kind of remind me of the flavor and consistency of a s’more, they are surprisingly chocolatey
despite the somewhat small about that is in each one and they are not super hard, so it’s
almost like graham crackers covering them. Me and my wife ended up finishing off the first
box in two days an buying 3 more we liked them so much.

[Requirement] Modify the statement to express the opposite sentiment. The modified state-
ment must be equal to 64 words long.

C.3 LIFEBENCH-LITE

We constructed LIFEBENCH-LITE, a condensed benchmark version, by selecting 60 samples
(30 Chinese, 30 English) from LIFEBENCH. The selection emphasized task diversity, ensuring
comprehensive coverage of all categories and subtypes within the full benchmark. The detailed
distribution of tasks is presented in Table 9. Evaluated under identical length constraints as described
in Section 4.2, LIFEBENCH-LITE comprises 1,800 instances, achieving approximately a 6 x speedup
in evaluation relative to the full-scale LIFEBENCH dataset.

Table 9: Distribution of Task Categories and Subtypes in LIFEBENCH-LITE.
Task Category Subtype Count

Food
Technology
Sports
Lifestyle
Knowledge
QA Health
Entertainment
Society
Business
Total (QA)

Probabilistic
Deductive
Inductive
Reasoning Abductive
Cause and Effect
Analogical
Total (Reasoning)

Public Discourse
Dialogue
Report
Encyclopedia
Academic Article
Total (Summarization)

Summarization

Script Expansion
Story Expansion
News Writing
Creative Generation Prompt-based Creative Writing
Blog Writing
Social Commentary Writing
Total (Creative Generation)

Bovwsvo—tim————FoRwr—w|Bewwnws—0—
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D Detailed Experimental Setup

In this section, we describe the experimental settings in detail, some of which are not presented due
to the page limitation of the main paper. In Section D.1, we introduce the model types, sources, input
and output window sizes used in our experiments. In Section D.2, we visualize the metrics and how
they are calculated for different control methods.

D.1 Model Setup

We summarize the API or model code for all evaluated models in the Table 10, along with the
maximum context window and maximum output length. We use green to mark the reasoning model
and purple to mark the long-text generation enhancement model. All experiments on open-source
models are done in the same computation environment with a cluster of eight NVIDIA 80GB H800
GPUs, while experiments on proprietary models are conducted on a CPU server.

Table 10: Model cards.

Model Name | API/Model Code | Context Window | Max Output Length
GPT-40 mini [77] OpenAl api: gpt-40-mini-2024-07-18 128,000 tokens 16,384 tokens *
GPT-40 [78] OpenAl api: gpt-40-2024-11-20 128,000 tokens 16,384 tokens 3
ol-mini [79] OpenAl api: 01-mini-2024-09-12 128,000 tokens 65,536 tokens ©
03-mini [80] Azure api: 03-mini-2024-12-01-preview 200,000 tokens 100,000 tokens ’
Claude-3.7-Sonnet [4] Anthropic api: claude-3-7-sonnet-20250219 200,000 tokens 64000 tokens ®
Claude-3.7-Sonnet-Thinking [4] Anthropic api: claude-3-7-sonnet-20250219! 200,000 tokens 64000 tokens
Gemini-2.0-Flash [34] Google api: gemini-2.0-flash-001 1,048,576 tokens 8192 tokens *
Gemini-2.0-Flash-Thinking [34] Google api: gemini-2.0-flash-thinking-exp-01-21 | 1,048,576 tokens 65536 tokens ?
Gemini-2.5-Pro [35] Google api: gemini-2.5-pro-preview-03-25 1,048,576 tokens 65536 tokens ?
Doubao-1.5-Pro [12] Volcengine api: doubao-1-5-pro-32k-250115 256,000 tokens 16,384 tokens '°
Doubao-1.5-Thinking-Pro [12] Volcengine api: doubao-1-5-thinking-pro-250415 128,000 tokens 16,384 tokens !!
DeepSeek-V3 [66] DeepSeek api: deepseek-chat? 64,000 tokens 8192 tokens '
DeepSeek-R1 [40] DeepSeek api: deepseek-reasoner 3 64,000 tokens 8192 tokens 2
Qwen3-32B [108] Aliyun api: qwen3-32b 32,768 tokens 8192 tokens '3
Qwen3-32B-Thinking [108] Aliyun api: deepseek-reasoner ! 32,768 tokens 8192 tokens 13
Qwen3-235B-A22B [108] Aliyun api: qwen3-235b-a22b 32,768 tokens 8192 tokens 3
Qwen3-235B-A22B-Thinking [108] | Aliyun api: qwen3-235b-a22b ! 32,768 tokens 8192 tokens 13
Llama-3.1-8B-Instruct [36] meta-llama/Llama-3.1-8B-Instruct 128,000 tokens -
Llama-3.1-70B-Instruct [36] meta-llama/Llama-3.1-70B-Instruct 128,000 tokens -
Qwen2.5-7B-Instruct [108] Qwen/Qwen2.5-7B-Instruct 128,000 tokens 8,192 tokens 4
Qwen2.5-72B-Instruct [108] Qwen/Qwen2.5-72B-Instruct 128,000 tokens 8,192 tokens °
GLM-4-9B-Chat [33] THUDM/glm-4-9b-chat 128,000 tokens -
Mistral-7B-Instruct-v0.2 [14] mistralai/Mistral-7B-Instruct-v0.2 32,000 tokens -
LongWriter-Llama3.1-8B [8] THUDM/LongWriter-llama3.1-8b 128,000 tokens -
LongWriter-GLM4-9B [8] THUDM/LongWriter-glm4-9b 128,000 tokens -
Suri-I-ORPO [83] chtmp223/suri-i-orpo 32,000 tokens -

! operates in extended thinking mode

2 points to DeepSeek-V3 2024/12/26

* points to DeepSeek-R1 2025/01/20

* https://platform.openai.com/docs/models/gpt-4o-mini

5 https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/ol-mini

7 https://platform.openai.com/docs/models/o3-mini

® https://docs.anthropic.com/en/docs/about-claude/models/all-models

° https://ai.google.dev/gemini-api/docs/models

" https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-1-5-pro-32k
"https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-1-5-thinking-pro
2 https://api-docs.deepseek.com/quick_start/pricing

'3 Aliyun api limit https://bailian. console.aliyun.com/console?tab=doc

' https://huggingface.co/Qwen/Qwen2.5-7B- Instruct

' https://huggingface.co/Qwen/Qwen2.5-72B- Instruct

6

To ensure consistency in our experimental setup, we set the max output size to 65,536 tokens for all
models, or to the maximum supported size if smaller. Additionally, we set the temperature to 0.8
and top_p to 1 for non-reasoning models, while for reasoning models, we set the reasoning effort to
medium if this parameter is supported.
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D.2 Evaluation Metrics
D.2.1 Output Word Count Computation.

To accommodate comparisons of model s in legnth instruction following both Chinese and English,
we use the following unified word counting strategy. Specifically, the generation length is computed as
the sum of the number of Chinese characters and the number of English words (including hyphenated
words and contractions), while excluding newline and tab characters. Formally, for a given output, we
first count the number of Chinese characters using the Unicode range [\u4e00-\u9fff], and then
count English words via the regular expression \b [a-zA-Z0-9’]+\b. The final word count is the
sum of these two components, which allows us to maintain excellent comparability when recording
Chinese, English, and mixed Chinese and English generations.

D.2.2 Length Deviation and Length Score

In the main text, we introduced Length Deviation (LD) and Length Score (LS), and we believe that
LS is a better evaluation metric. In this section, we will systematically analyze why LS is better and
demonstrate the rationality of LS and its hyperparameter settings.

Disadvantages of Length Deviation. To quantitatively assess a model’s adherence to various
length constraints, we introduce the Length Deviation (LD). Intuitively, LD provides a normalized
measure of deviation, enabling direct comparison across diverse length requirements. For instance,
an absolute deviation of 100 words corresponds to an LD of 625% for a target length of 16, indicating
a severe deviation; however, the same absolute deviation yields approximately 1% for a length
constraint of 8,192, a comparatively negligible error. Thus, by normalizing deviation relative to
the instructed length, LD intuitively captures adherence to length instructions, a capability that raw
word-count-based metrics lack.

Nonetheless, the LD metric has several notable limitations:

First, under the Equal To control method, LD suffers from significant bias introduced by its nor-
malization against the target constraint. Specifically, LD ranges asymmetrically from —100% to
400, complicating interpretation. For example, with a constraint of 64 words, an output of 0 words
yields an LD of —100%, while an output of 192 words produces an LD of +200%. Although both
represent serious failures to comply with the instruction, the metric disproportionately penalizes
over-generation. Both cases reflect severe failures to follow the instruction, but LD unfairly penalizes
over-generation more heavily.

Second, because LD accommodating both negative and positive values, aggregating results across
multiple examples can cause misleading cancellation effects. For instance, given a 64-word constraint,
outputs of 0 and 128 words yield LD values of —100% and +100%, respectively. Averaging these
cases results in a mean LD of 0%, inaccurately implying perfect adherence to the instruction.

Third, for the At Least and At Most control methods, LD fails to properly capture the semantics
of the instruction. Once the output satisfies the length constraint in instruction (i.e., exceeding
the minimum or not surpassing the maximum), any further deviation should not incur additional
penalties, as all such outputs are equally compliant with the instruction. However, LD tends to
increase with unnecessary deviation beyond the threshold, such as differentiating between outputs
exceeding the minimum by 100% versus 200%. artificially distinguishing between outputs that are,
by definition, both correct. This artificial distinction distorts aggregated evaluations, complicating
accurate following assessments.

Finally, LD exhibits high sensitivity to outliers. Particularly for smaller length constraints, single
extreme deviations can disproportionately skew aggregated metrics. For instance, with a 16-word
constraint, an output of 2,000 words yields an LD of +12, 400%, dramatically inflating the overall
metric to a single abnormal prediction.

Why Employ LS? To address these limitations, we further propose LS which transforms the
relative length deviation into a bounded score, ranging from 0 to 100. The computation of LS varies

42



according to the specific constraint type as follows:

LG — 100 x ek LP - if LD <0
E 70100 x e~*=' LD if LD > 0,
100 if LD < 0
LSy = ’ 3
S {100><e-k2-LD, if LD >0, )

g, _ J100x M PG LD <0
L7 100, if LD >0,

where LSg, LSy, and LSy, correspond to the Equal To, At Most, and At Least control method,
respectively.

By design, LS is always non-negative and bounded, eliminating the problematic offsetting of positive
and negative deviations inherent in aggregated LD values. Furthermore, the bounded range ensures
reduced sensitivity to outliers, preventing extreme deviations from disproportionately influencing the
overall evaluation.

Below, we detail how LS specifically addresses each of the previously discussed issues associated
with LS:

First, LS transforms the asymmetric and unbounded nature of LD into a bounded and symmetric
metric within [0, 100], significantly enhancing interpretability and comparability across different
constraints. The exponential mapping ensures a controlled and smooth penalization for both under-
and over-generation. Thus, under a 64-word constraint, producing either 0 or 192 words results in
comparably low scores, accurately reflecting the severity of deviation and mitigating the previous
bias against over-generation inherent in LD.

Second, since LS is strictly non-negative, it does not involve the cancellation effects arising from
aggregating positive and negative. Consequently, mean LS scores reliably represent a model’s overall
capacity to follow length instructions, without being distorted by offsetting deviations.

Third, LS aligns explicitly with the semantic intent of each constraint type. For Ar Most and At
Least method, LS assigns full maximum scores to all outputs complying with the specified threshold,
without differentiating based on excess compliance. Penalties apply only to outputs that violate the
constraint, facilitating fairer comparisons across diverse length requirements.

Finally, due to its bounded formulation, LS demonstrates robustness against outliers. Extremely
aberrant cases, particularly under smaller constraints, do not disproportionately inflate the aggregate
score, ensuring that evaluations are stable and not dominated by a few anomalous predictions.

Hyperparameter Settings. In Eq.3, we set k&1 = 5 and ky = 2 for all settings. This choice reflects
the observation that over-generation (LD > 0) is generally more acceptable than under-generation,
as excess content can be more easily trimmed post hoc, whereas missing content may need to be
complete by users. Consequently, the scoring function penalizes under-generation more severely and
over-generation more gently, thereby increasing sensitivity to insufficient length adherence.

The exponential formulation provides fine-grained discrimination when deviations (| LD|) are small,
allowing the metric to capture subtle deviations from the target length constraint. As |LD| grows
large, the decay rate gradually moderates, acknowledging that distinguishing finely among severely
non-compliant outputs is no longer practically meaningful. Thus, the score naturally approaches zero
as LD nears either —1 or 400, representing a complete failure in adhering to the length instructions.

For the At Most and At Least constraint methods, the scoring functions are defined analogously based
on their semantic requirements. Specifically, outputs that satisfy the instruction (length < constraint
for At Most, or length > constraint for Az Least) receive the maximum score of 100, reflecting perfect
compliance. Violations incur score penalties consistent with the corresponding side of the Equal To
method, ensuring comparability and coherence across all constraint types.

Figure 8 provides a visualization of the LS function, illustrating their intended asymmetry between
under- and over-generation penalties. As depicted, all three constraint methods yield a perfect score
when outputs fully comply with the length instructions. Under the Equal To setting, an LD of —50%
yields a score of 8.2, whereas an LD of +50% results in a higher score of 22.3, clearly demonstrating
the intended asymmetric treatment At extreme deviations (e.g., LD = —100% or +200%), the
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Figure 8: Visualization of Length Score for different control methods.

score rapidly approaches zero, achieving values such as 0.7 and 0.2, respectively. This indicates
that distinctions among significantly poor cases are appropriately minimized, aligning the metric’s
behavior with our intended design principles and addressing the limitations previously discussed.
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E Detailed Results of Main Experiments

E.1 Detailed Length Deviation and Length Score across all length constraints

In this section, we provide a detailed breakdown of the main experimental results. Table 11, Table 12,
and Table 13 present Length Deviation and Length Score for all models under the three control
methods: Equal To, At Most, and At Least, respectively. For the Ar Most setting, we set Length
Deviation to zero whenever the output length is below the specified constraint. Similarly, for At Least,
we set Length Deviation to zero for data where the output length exceeds the constraint, in order to
more accurately reflect model bias under each scenario. For each control method, we report the mean
value of Length Deviation and Length Score over all evaluated length constraints. For the Equal To
control method, we report the mean of the absolute value of Length Deviation.

Under the Equal To control method, length instruction following proves challenging for most mod-
els. Specifically, 23 out of 26 evaluated models achieve an Length Score below 60, with only
three models—o3-mini, Claude-Sonnet-Thinking, and Gemini-2.5-Pro—attaining relatively
high scores (75.4, 61.3, and 60.0, respectively). For shorter length constraints (<128 words),
03-mini and Gemini-2.5-Pro consistently deliver strong performance (Length Score >80 and
>70, respectively), whereas eight models score below 60. For medium-length constraints (2562048
words), 03-mini maintains robust performance (Length Score >70), while Gemini-2.5-Pro ex-
hibits a substantial drop (from 81 to 37). For the longest constraints (>4096 words), no model
reliably exceeds an Length Score of 40. Notably, models explicitly enhanced for long-text generation
(LongWriter-Llama3.1-8B and LongWriter-GLM4-9B) achieve significant relative improvements
over their base versions, especially at the longest constraint (8192 words), with increases of 22 and
32 points, respectively. However, even these optimized models show limited absolute effectiveness,
underscoring ongoing challenges in precise long-length following.

Under the At Most control method, models generally perform better, with 16 out of 26 models
achieving Length Score scores above 80 across all length constraints. The largest deviations occur
predominantly at short constraints (e.g., 16 or 32 words). Interestingly, models specialized for
long-text generation perform poorly relative to base models in shorter-length scenarios. For example,
Suri-I-0RPO reaches an Length Deviation of 1838% while still achieving an Length Score of
53.6, reflecting a failure to follow length instructions in certain cases—specifically, generating
overlong outputs that substantially inflate Length Deviation. This highlights a key limitation in length
instruction following. For length constraints greater than 2048, almost all models reach Length
Score scores above 90, with GPT-40 and DeepSeek-R1 attaining perfect scores across all relevant
constraints. These results suggest that, under the Ar Most setting, length instruction following remains
challenging, especially for short constraints and for models optimized for long-text generation.

Conversely, the At Least control method reveals an opposite trend: models exhibit high adherence
to shorter constraints (<512 words), with 23 of 26 models achieving Length Score scores above 90.
However, as the length constraint increases (e.g., 1024 and above), most models show a clear drop in
performance. When the constraint reaches 8192, 18 out of 26 models have Length Score below 40.
03-mini demonstrates the best performance under this setting, achieving an Length Deviation of
76.2 and an Length Score of -12%, surpassing even those models specifically enhanced for long-text
generation, despite the latter outperforming their base models on long constraints. The general failure
of models to meet long length constraints highlights the significant room for improvement in long-text
generation.

Collectively, our detailed analysis reveals that length instruction following remains a significant
challenge for current LLMs, particularly under the Equal To control method setting and for long length
constraints. While some models, such as 03-mini, consistently demonstrate robust performance
across diverse scenarios, the majority exhibit substantial degradation as constraints become more
demanding. Even for models specifically enhanced for long-text generation, improvements are
often limited to relative gains over their base models, and absolute performance on precise or long
constraints remains unsatisfactory. These results underscore the need for further research into
more effective length instruction following, especially to address the deficiencies observed under
challenging constraints.
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Table 11: Length Score and Length Deviation for all length constraints under the Equal To control
method.

Length Constraints

Models ‘ Metric ‘ ‘ AVG
\ |16 32 64 128 256 512 1024 2048 409 8192 |
P LS 75 678 689 628 698 668 747 255 57 17 | 519
LD | 14% 2% 21% 22% 18% 21% 10% 34% 65% 85% | 31%
GPTdo Ls ST 617 722 61 696 665 69 165 41 16 | 49.1
LD | 15% 12% 13% 20% 19% 20% 12% 43% 70%  86% | 31%
oLomind LS | 718 705 678 666 625 512 403 342 152 3.1 | 483
LD | 1% 13% 16% 23% 25% 34% 48% 46% 56% 81% | 35%
i LS | 967 935 879 818 794 789 1718 739 669 167 | 754
D | 1% 2% 4% 5% 6% 6% 8% 13% 16% 66% | 13%
Clande37-Somnet LS | 585 53 636 743 764 706 536 437 344 259 | 554
: LD | 91% 4% 24% 18% 10% 9%  15% 21% 32% 42% | 30%
Clande-37-Sonmet Thinkin Ls 58 6l 706 774 791 724 581 533 467 361 | 613
aude-s./-sonnet- e LD | 131% 51% 21% 13% 9% 10% 15% 18% 26% 38% | 33%
Gomint-2.0-Flach LS | 609 637 662 598 597 382 477 527 259 92 | 484
-2 D-ras LD 29%  23% 21% 28% 28% 61% 46% 21% 36% 57% | 36%
i . LS | 628 513 551 534 49 30 321 425 421 219 | 44
Gemini-2.0-Flash-Thinking ‘ LD ‘ 5%  27%  31%  27%  30% 97% 119% 0% 43%  47% ‘ 53%
Gominizs-Pro LS | 80.9 761 744 728 674 495 37 48 543 394 | 60
' LD | 17% 9% 10% 12% 15% 40% 57% 44% 37% 35% | 28%
Doubao-] 5-Pro LS | 314 426 468 655 642 606 635 5713 424 123 | 487
! Eah LD 30%  24% 21% 12%  12% 14% 13% 24% 27% 52% | 23%
Doubao- L5 ThinkinePro LS | 719 674 555 649 616 445 42 555 345 8 | 506
: g LD | 10% 12% 16% 18% 25% 45% 46% 26%  32%  59% | 29%
DeenSeckV3 Ls 60 734 763 69.1 684 634 649 437 176 61 | 543
p LD | 15% 12% 12% 20% 21% 22% 23% 28% 48%  68% | 27%
DeenSeek Rl LS | 642 689 694 616 59.1 555 652 264 5 16 | 417
P LD | 2% 21% 20% 28% 30% 31% 16% 34% 65% 84% | 36%
Llama3.1-8B-Instruct Ls 47 474 513 554 626 683 328 92 32 37 | 381
: LD | 146% 81% 57% 39% 29% 24% 48% 77%  92% 108% | 70%
Ll L70B-Instruct LS | 594 619 6l 628 619 615 382 118 36 18 | 424
3. LD | 52% 26% 25% 23% 27% 26% 9% 111% 123% 106% | 61%
Owen2.5-7B-Instruct LS | 552 376 223 524 58 666 449 185 127 49 | 373
: ‘ LD | 25% 26% 36% 18% 24% 24% 24% 2% 57% 15% | 36%
Owen2.5.725-Instruct LS | 719 59 504 704 623 618 638 249 233 182 | 506
wens. u LD 16% 15% 18% 16% 24% 26% 17% 41% 51% 59% | 28%
Owen-328 LS | 574 627 622 621 725 645 663 525 496 266 | 576
: LD | 32% 19% 14% 12% 9% 11% 12% 22% 22% 34% | 19%
Owen3-32B-Thinkin LS | 602 558 632 664 673 64 68 564 483 283 | 578
: g LD | 28% 28% 22% 20% 21% 23% 20% 17% 21% 29% | 23%
LS | 578 525 501 459 728 733 68 427 307 273 | 521
Quwen3-2358-A22B ‘ LD ‘ 28% 0% 2% 19%  10% 10% 12% 24% 2%  33% ‘ 2%
. LS | 559 561 575 663 708 635 639 60.6 497 328 | 577
Qwe“3'23sB'AZZB'Thmkmg‘ LD ‘ 9% 3%  25% 16% 18% 24% 21% 14% 17%  25% ‘ 23%
LS | 526 481 421 356 474 512 584 109 39 16 | 352
GLM-4-9B-Chat ‘ LD ‘ 8% 24%  25% 2% 29% 35% 16% S54% 5%  81% ‘ 40%
Mistral 7B Inetract 0.2 LS | 264 321 428 374 429 521 231 59 23 21 | 267
‘ ‘ : LD | 193% 126% 58% 69% 58% 24% 56% 3% 87% 92% | 84%
LoneWriterLlama3. 185 LS | 211 242 357 427 449 542 205 182 312 261 | 319
g : LD | 254% 124% 76% 39% 45% 98% 143% 117% 78%  48% | 102%
. LS | 356 357 338 372 397 523 303 306 455 337 | 374
LongWriter-GLM4-98 ‘ LD ‘ 63%  40% 34% 3% 48% 61%  66% 88% 47%  35% ‘ 529
S LORPO LS | 305 341 336 318 324 37 287 239 125 93 | 274
LD | 2142% 965% 575% 379% 318% 207% 195% 109% 91%  76% | 506%

46



Table 12: Length Score and Length Deviation for all length constraints under the Ar Most control
method.

Length Constraints | AVG

Models Metric
16 32 64 128 256 512 1024 2048 4096 8192 |

GPT-4o mini LS 892 823 818 84 848 849 974 99 100 100 | 90.3
LD | 27%  13% 13% 10% 10% 10% 2% 1% 0% 0% | 9%
GPT4 LS 984 985 985 892 916 945 100 100 100 100 | 97
a0 LD 1% 1% 1% 1% 5% 3% 0% 0% 0% 0% | 2%
ol_mini LS 955 922 911 85 755 754 8 962 997 100 | 89.7
LD 4% 5% 6% 1% 19% 18% 10% 3% 0% 0% | 8%
3o LS 992 992 997 100 999 995 979 995 100 100 | 99.5
LD 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% | 0%
Clande.3.7-Somnet LS 905 921 939 943 995 996 100 100 996 99 | 96.8
ude-o.7-son LD 82% 6% 6% 1% 1% 0% 0% 0% 0% 1% | 11%
o LS 84.7 91 939 967 998 998 100 998 997 99.6 | 96.5
Claude-3.7-Somnet-Thinking |y | 690, 25, 9% 2% 0% 0% 0% 0% 0% 0% | 11%
Gemini.2.0-Flash LS 926 935 958 91 979 897 938 979 999 100 | 95.
: LD 6% 5% 3% 6% 1% 1% 4% 2% 0% 0% | 3%
- o LS 94 9338 96 963 981 81.1 70.1 79 948 984 | 90.2
Gemini-2.0-Flash-Thinking LD | 41% 7% 3% 4% 1% 16% 27% 21% 5% 1% | 13%
Gemini2.5-Pro LS 97.1 949 959 952 952 91.6 925 988 100 100 | 96.1
: LD 5% 5% 4% 3% 3% 6% S% 1% 0% 0% | 3%
Doubao.1 5P LS 999 999 100 999 999 997 99.9 999 100 100 | 99.9
0ubao-1.>-tro LD 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% | 0%
Doubao.1.5-Thinkine-Pro LS 99.7 997 999 992 961 89.8 941 996 100 100 | 97.8
: 8 LD 0% 0% 0% 0% 2% 1% 4% 0% 0% 0% | 1%
DeenSeek V3 LS 892 964 985 969 949 962 983 982 984 100 | 96.7
P LD 8% 2% 1% 3% 4% 3% 1% 3% 1% 0% | 3%
93.8

LD | 30% 9% 5% 1% 6% 5% 1% 0% 0% 0% | 6%
LS
Llama-3.1-8B-Instruct LD | 199%  93%  54% 28% 13% 3% 0% 5% 9% 6% | 41%
a3 L70B-nstruct Ls 71 793 831 847 868 909 97 981 989 984 | 888
' LD | 465% 28%  17% 13% 10% 24% 22% 21% 1% 4% | 61%
Owen2.5-7B-Instruet LS | 873 993 100 998 972 976 997 974 984 996 | 976
wenz.o-/B-instruc LD 9% 1% 0% 0% 2% 1% 0% 4% 1% 0% | 2%
Owen2.5-725-Instruct LS | 8.2 985 982 946 913 811 957 979 962 0988 | 938
' ‘ LD | 10% 1% 1% 4% 7% 12% 3% 2% 3% 1% | 4%
Owen3-328 Ls 81 944 99 999 995 100 100 994 989 997 | 972
LD | 15% 4% 1% 0% 0% 0% 0% 0% 1% 0% | 2%
" Ls 81 848 915 915 904 947 0989 986 99.1 997 | 93
Qwen3-32B-Thinking D | 18% 1% 6% 5% 6% 3% 1% 1% 1% 0% | 5%
LS | 809 8384 942 988 99.1 996 973 989 089 999 | 956
Qwen3-235B-A22B LD | 25%  10% 9% 1% 1% 0% 2% 1% 1% 0% | 5%
- LS | 707 774 8.1 898 923 909 946 99.1 993 996 | 899
Qwen3-235B-A22B-Thinking | -y | 560, 309 15% 9% 5% 6% 3% 1% 0% 0% | 13%
LS 8 937 99 996 97 8.1 994 998 992 992 | 959
GLM-4-9B-Chat LD | 17% 5% 1% 0% 2% 8% 0% 0% 3% 2% | 4%
Mistral 7B lstrc0 LS | 531 689 818 839 829 964 975 971 989 985 | 859
: LD | 136% 85% 40% 77% 21% 10% 23% 21% 5% 2% | 42%
LomaeWriter Liama3. L8 LS | 632 70 754 857 889 0956 950 852 864 942 | 841
ongwrier-Llamas. £~ LD | 713%  66% 31% 34% 9% 22% 63% 65% 35% 9% | 105%
. LS | 799 901 97 971 855 8 957 934 888 958 | 909
LongWriter-GLM4-9B LD | 61%  23% 3% 2% 13% 10% 11% 13% 14% 4% | 15%
SULLORPO LS | 536 707 781 807 789 835 797 873 90.1 942 | 797
LD | 1838% 1323% 374% 364% 148% 71% 82% 40% 25% 9% | 428%

\ \
\ \
DeepSeck-R1 ‘ LS ‘ 85.8 90.4 91.7 893 903 924 985 100 100 100‘
‘ ‘ 52.8 59.8 63.8 71 83.6 962 999 992 989 97.5‘ 82.3
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Table 13: Length Score and Length Deviation for all length constraints under the Az Least control

method.

Models \ Metric \ Length Constraints \ AVG
\ | 16 32 64 128 256 512 1024 2048 4096 8192 |

GPTAo mini LS | 100 100 100 998 100 99.9 948 361 7 2 74
LD | 0% 0% 0% 0% 0% 0% -2% -27% -63% -84% | -18%
GPTdo LS |99.7 997 100 100 100 100 904 282 64 19 | 726
LD | 0% 0% 0% 0% 0% 0% -3% -32% -65% -83% | -18%
olomini LS | 100 100 100 997 99 998 984 8  30.0 32 | 815
LD | 0% 0% 0% 0% -1% 0% -1% -1% -43% -78% | -13%
i LS | 100 100 100 100 100 997 986 984 97 762 | 97
oS-t LD | 0% 0% 0% 0% 0% 0% -1% -1% 2% -12%| 2%
Clande-3.7-Somnet LS | 100 100 100 100 100 998 973 85 708 47.7 | 90.1
audess.f-oorne LD | 0% 0% 0% 0% 0% 0% -1% -3% -11% 2% | -4%
. LS | 100 100 100 100 100 100 988 917 803 626 | 933
Claude-3.7-Sonnet-Thinking ‘ LD ‘ 0% 0% 0% 0% 0% 0% 0% 3% -8% —18%‘ 3%
Gemini2.0-Flash LS 999 100 100 100 100 100 99.7 899 43 141 | 847
DS LD | 0% 0% 0% 0% 0% 0% 0% -3% -23% -49% | -1%
- . LS | 100 100 99.9 100 100 100 998 974 754 392 | 912
Gemini-2.0-Flash-Thinking ‘ LD ‘ 0% 0% 0% 0% 0% 0% 0% -1% -10% -30%‘ -4%
Gemini-2.5-Pro LS | 100 100 100 100 100 997 99.7 993 916 655 | 955
: LD | 0% 0% 0% 0% 0% 0% 0% 0% -3% -14% | 2%
Doubao.1 5-Pro LS | 100 100 100 100 100 100 999 966 714 252 | 893
: LD | 0% 0% 0% 0% 0% 0% 0% -1% -10% -39% | -5%
Doubao-1 5. Thinkine_Pro LS | 100 100 100 100 100 100 993 918 533 125 | 857
: ¢ LD | 0% 0% 0% 0% 0% 0% 0% -3% -21% -51% | -8%
DeenSeck.V3 LS | 100 100 100 100 100 100 97.6 647 277 6.6 | 797
cepsee LD | 0% 0% 0% 0% 0% 0% -1% -13% -37% -65% | -12%
DeenSeck.R1 LS | 100 100 100 100 100 100 923 402 66 17 | 741
cepee LD | 0% 0% 0% 0% 0% 0% 2% -26% -61% -83% | -17%
Llama3.1-8B Instruct LS | 997 100 997 997 994 992 656 238 145 16 | 718
ama-2. fistrue LD | 0% 0% 0% 0% 0% 0% -12% -2% -62% -12% | -19%
Llama3.170B Instruct LS | 99 997 994 993 99 966 613 173 109 8 69
' ‘ LD | 0% 0% 0% 0% 0% -1% -15% -46% -66% -81% | -21%
Qwen2.5-7B-Instruct LS | 993 984 997 99.9 999 987 633 259 182 62 | 71
: ‘ LD | 0% 0% 0% 0% 0% 0% -12% -31% -52% -72% | -17%
Qwen2.5-72B-Instruct LS | 100 998 998 100 100 997 889 612 637 29.6 | 842
: ‘ LD | 0% 0% 0% 0% 0% 0% -3% -16% -19% -43% | -8%
Qwen3-32B LS | 100 997 983 998 997 979 974 865 63.1 343 | 874
LD | 0% 0% 0% 0% 0% -1% -1% -5% -13% -28% | -5%
o LS | 100 100 100 100 100 100 98  77.5 653 372 | 87.8
Qwen3-32B-Thinking ‘ LD ‘ 0% 0% 0% 0% 0% 0% -1% -1% -11% -24%‘ -4%
LS |99.6 99.5 989 985 994 981 951 855 782 502 | 903
Qwen3-235B-A228 ‘ LD ‘ 0% 0% 0% 0% 0% -1% -1% -5% -1% -19%‘ 3%
. LS | 100 100 100 100 100 100 98 77.8 705 492 | 89.6
Qwen3-235B-A22B-Thinking ‘ LD ‘ 0% 0% 0% 0% 0% 0% -1% -6% 8% -17% ‘ 3%
LS | 99.1 998 994 979 993 979 706 12 47 24 | 683
GLM-4-9B-Chat ‘ LD ‘ 0% 0% 0% 1% 0% -1% -10% -43% -71% —84%‘ 21%
Mistral 7B Instructv0.2 LS | 997 995 99.6 997 996 80.1 311 108 54 45 | 63
: LD | 0% 0% 0% 0% 0% -6% -30% -58% -76% -86% | -26%
. , LS | 969 934 981 952 948 812 632 654 608 40.6 | 79
LongWriter-Llama3.1-8B ‘ LD ‘ A% 3% 1% 2% 2% 1% -15% 20% -24% -30% ‘ 11%
. LS |973 972 99 978 969 95 733 833 809 474 | 868
LongWriter-GLM4-9B ‘ LD ‘ 1% 1% 0% A% -1% 2% -10% 9% 8% -23% ‘ -6%
Suri.LLORPO LS |991 99 97 987 988 899 747 497 282 165 | 752
LD | 0% 0% -1% 0% 0% -4% -11% -21% -41% -63% | -15%
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E.2 Visualization of Model Output Lengths

Figure 9, Figure 10, and Figure 11 illustrate the average output word counts of all models under
the Equal To, At Most, and At Least control methods, respectively. Under the Equal To setting, we
observe that for the shortest length constraint (i.e., 16 words), 5 out of 26 models produce outputs
with mean lengths exceeding twice the constraint. Conversely, at the maximum constraint (i.e.,
8192 words), 15 models are unable to generate outputs longer than 4096 words, and 7 of these
are further limited to outputs not exceeding 2048 words. Notably, long-text-enhanced models such
as LongWriter-Llama3.1-8B and LongWriter-GLM4-9B tend to generate longer outputs across
most constraints, suggesting that their optimizations for long-text generation come at the expense of
length instruction following, particularly on shorter constraints.

Under the At Most control method, most models perform well overall, but there are still noticeable
failures in following short constraints (< 256 words). In particular, L1ama-3.1-8B-Instruct,
LongWriter-Llama3.1-8B, and Suri-I-0RPO exhibit a counterintuitive trend where the average
output length decreases as the constraint increases. This phenomenon occurs specifically in cases
where the models fail to follow the length instructions, highlighting their limitations under short
constraint conditions.

For the At Least control method, all models are able to reliably meet the constraints for shorter lengths
(< 512 words). However, as the constraint increases, an increasing number of models fail to reach
the specified length. At the maximum constraint (i.e., 8192 words), only Gemini-2.5-Pro is able
to consistently meet the requirement, while all other models fall short, underscoring the substantial
challenges faced by current models in following long length instructions.

Taken together, while many models can follow moderate length constraints, most struggle with very
short or ultra-long constraints. Even long-text enhanced models often fail to meet these extremes
and may sacrifice short length instruction following ability. These results show that precise length
instruction following—especially at the extreme constraints—remains an open problem for current
LLMs.
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E.3 Supplementary Results with Extended Length Constraints

While the primary results focus on length constraints up to 8,192 words, some models claim the
ability to generate substantially longer outputs due to their larger maximum output length. To further
investigate length instruction following under ultra-long constraints, we introduce two additional
settings: 16,384 and 32,768 words. Note that, even for the largest setting (32,768 words), the
corresponding number of tokens remains below the maximum output length of most evaluated
models. In Table 14, we report results for models whose maximum output length exceeds 8,192
tokens or for which the maximum length is not explicitly specified. For Claude-3.7-Sonnet and
Claude-3.7-Sonnet-Thinking, the output length beyond 8,792 tokens was only available in an
experimental version at the time of our evaluation; therefore, results for these models under ultra-long
constraints are not shown.

Under the Equal To control method, no model achieves an Length Score exceeding 30, and only
Gemini-2.5-Pro and Llama-3.1-8B-Instruct surpass 10 out of the 16 evaluated models. For
the At Most control method, nearly all models perform well, though most open-source models do not
attain perfect scores. This may be attributed to uncontrolled output resulting in repeated content that
reaches the maximum output length limit. Under the At Least control method, model performance
mirrors that of the Equal To setting, remaining consistently poor.

Overall, these results demonstrate even weaker length instruction following under extended length
constraints. As discussed in Section 5.2, the maximum output length claimed by models often differs
substantially from actual performance in ultra-long generation scenarios.
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Table 14: Length Deviation and Length Score for extended length constraints.

Models | Metric | EqualTo | AtMost | AtLeast
| | 16k 32k | 16k 32k | lek 32k

. LD | 94% - | 95% - | 94% -

GPT-40 mini LS 1.1 i 100 ) 1 )
LD | -94% - | 96% - | 93% -

GPT-40 LS | 09 ] 100 - 1 ]
i LD | -93% 98% | 91% -96% | -93% -97%
LS 12 08 | 100 100 | 1 0.8
i LD | -98% -100% | -93% -97% | -12% -97%
05-min LS 13 0.7 100 100 | 99 0.9
. LD | -76% - | 85% - | 12% -
Gemini-2.0-Flash LS 26 ) 100 ) 31 )
. . LD | -58% -78% | -12% -87% | -50% -73%
Gemini-2.0-Flash-Thinking LS 35 31 99 8 100 15.9 4
Comini2.5.Pro LD | -33% -71% | -88% -94% | -30% -63%
: LS | 269 62 | 100 100 | 347 88

LD | -75% - | 93% - | -66% -

Doubao-1.5-Pro LS 29 ) 100 . 53 )
. LD | -78% - | 92% - | 713% -
Doubao-1.5-Thinking-Pro LS 24 ) 100 ) 33 )
LD | -69% -77% | -93% -95% | -67% -80%
Llama-3.1-8B-Instruct LS | 44 124 | 989 997 | 15  12.6
LD | -87% -93% | -96% -98% | -86% -91%
Llama-3.1-70B-Instruct LS 11 28 | 999 999 | 5 42
LD | -90% -96% | -94% -97% | 91% -96%

GLM-4-9B-Chat LS 14 09 | 999 100 | 18 1
. LD | 91% -96% | -93% -96% | 91% -95%
Mistral-7B-Instruct-v0.2 LS 1.8 12 993 100 3 16
. LD | -54% -78% | -63% -81% | -55% -75%
LongWriter-Llama3.1-8B LS | 103 36 | 972 999 | 133 5.1
. LD | -52% -72% | -68% -84% | -51% -74%
LongWriter-GLM4-9B Ls | 99 38 99 100 | 127 36
. LD | -74% 87% | 81% -90% | -72% -84%
Suri-I-ORPO LS | 79 32 | 978 100 | 12 41
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F Length Awareness: Do LLMs Know How Long Their Generations Are?

In order to explore whether the reason why LLMs fail to follow length instruction, in this section,
we conduct length awareness experiments to comprehensively explore the awareness of length in
generations by LLMs, as awareness is a key cognitive ability in Al systems [60]. Specifically, we
want to know at what length LLMs begin to lose their awareness of output length, so we design the
Length Awareness Experiment.

We conduct two length awareness experiments. In Section F.1, we request the models report the
length of their generations. This indicates whether the models know whether it succeeded or failed in
following the length instructions. In Section F.2. We further ask LLMs count after every different
character or word. This experiment aims to explore more subtle reasons why LLMs fail: whether they
can only count shorter texts. We conducted experiments using the LIFEBENCH-LITE described in
the Appendix C.3, which covers a diverse range of tasks and subtypes.

F.1 Self-Reported Length Estimation

The primary goal of this experiment is to assess whether models accurately recognize and report
the length of their generated output. To evaluate this, we augment each original prompt with the
following instruction: “At the end of your response, include the actual total word count of your
response, formatted as [WORD COUNT]: a number, where ‘a number’ is the actual number of words
generated, rather than the instructed target.” This experiment provides an intuitive indication of
whether LLMs are aware that their outputs fail to meet length instructions. If the generated output is
objectively insufficient yet the model reports it as adequate, this suggests a lack of length awareness
or a form of deceptive reporting. In contrast, if the model acknowledges the insufficiency, it indicates
that the failure arises from generation limitations rather than an unawareness of the constraint.

Each prompt specifies a length constraint, selected from {128, 256, 512, 1024, 2048, 4096, 8192}, as
part of the experimental setup. After generating the response, we extract the model’s self-reported
[WORD COUNT] and compare it to the actual word count computed from the generated text. This
procedure allows a systematic evaluation of each model’s length awareness across various constraint
settings.

Our findings (illustrated in Figure 12) reveal that, for most models, both actual and self-reported word
counts exceed the target constraint when it is relatively short and fall below it as the constraint length
increases. Moreover, the self-reported word counts are consistently closer to the instructed length
compared to the actual outputs, indicating that models anchor their length estimation to the requested
value. Notably, o1-mini and Gemini-2.5-Pro consistently underestimate their actual generation
length. Models such as 03-mini, Claude-3.7-Sonnet, Claude-3.7-Sonnet-Thinking, and
Gemini-2.5-Pro exhibit stronger length awareness, reflected by higher accuracy in their self-
reporting. Correspondingly, these models also attain significantly higher Length Deviation scores in
our main experiments, suggesting that improved length awareness is correlated with better adherence
to explicit length instructions.

Collectively, these results indicate a meaningful relationship between a model’s length awareness
and its ability to follow length instructions. Models demonstrating accurate self-assessment of
output length typically achieve higher compliance scores. Conversely, systematic biases in length
estimation may partially explain why some models struggle with satisfying explicit length constraints.
Because some models have no idea how many words they actually generated and are just “deceiving”
themselves.

F.2 Marker-Based Length Monitoring

In Section F.1, we find that the reason why the model fails in length instruction following is related to
length awareness. To complement the analyses presented above, we further investigate how deviations
from explicit length instructions evolve throughout the generation process. Rather than assuming that
deviations arise solely at the end of generation, we aim to determine whether length discrepancies
accumulate gradually during text production. Specifically, we instruct models to insert a marker
token every 100 words by appending the following prompt: “Whenever you output 100 words, you
must immediately follow with a [SPECIAL TOKEN] as a marker.” We conduct this experiment using
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Figure 12: Length Awareness Experiment Results of All Models: The real output word count and
self-reported word count are shown for cases where the length constraint exceeds 128, with both axes
in log scale. “Real Fit” and “Reported Fit” represent the least squares regression results for real and
self-reported word counts, respectively, fitted in the log scale. The fitted function in the normal scale
is expressed as y = e¥ - %, where y denotes the output word count, x represents the length constraint,
a and b are regression coefficients.

length constraints selected from 512, 1024, 2048, 4096, 8192, as shorter lengths provide limited
scope for multiple markers.
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After generating outputs, we exclude models that produce fewer than 20 valid samples (outputs
containing at least one marker) to maintain statistical reliability. For the remaining models, we analyze
the distribution of [SPECIAL TOKEN] occurrences throughout the generated texts (Figure 13). Most
models distribute markers relatively evenly, without pronounced front-loading or tail-loading effects,
suggesting stable adherence to incremental marker insertion instructions across the full generation
process.
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Figure 13: Empirical Cumulative Distribution Function (ECDF) of marker positions in generated
sequences: The x-axis represents fixed-length bins partitioning the generated output into five equal-
length segments (each covering 20% of the total sequence). The y-axis reports the cumulative
proportion of markers that fall within each segment, normalized by the total number of markers in the
output.

We also compute the average interval (in words) between consecutive markers for each model under
each length constraint (Figure 14). For shorter and moderate constraints, most models consistently
maintain intervals close to the expected 100-word mark, reflecting accurate incremental length
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Figure 14: Distribution of inter-marker intervals in outputs: Each box plot shows the distribution of
the number of words between consecutive markers. The red dashed line denotes the target interval of

100 words.

tracking. However, as length constraints increase, some models display substantial interval variability.
For instance, Qwen2.5-7B-Instruct exhibits intervals ranging from 50 to 800 words, indicative
of inconsistent counting and substantial length tracking inaccuracies. Conversely, models such as
03-mini and Claude-3.7-Sonnet-Thinking consistently maintain precise intervals across all
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Interval

250

500 750 1000 1250

Interval

0 250

tested constraints, demonstrating robust incremental length awareness.

Collectively, these results indicate that while contemporary models generally possess basic incre-
mental length-tracking capabilities, their accuracy diminishes with increasing output lengths. In
combination with our observations from the self-reported length experiment, these findings highlight
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fundamental limitations in current LLMs’ ability to maintain consistent length awareness—both
incrementally and holistically—particularly under extensive length instructions. These insights
underscore the need for future improvements in incremental length tracking to enhance the overall
reliability of length instruction adherence in LLMs.
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G Details of Input Characteristic Analysis

G.1 Task Type
Figure 15, Figure 16, Figure 17, and Figure 18 present detailed evaluation results for the four primary

task types across various length constraints under the Equal To control method. Across all task
categories, the overall trend of model capabilities will not change drastically with the change of task
type and models generally show reduced performance at extreme length constraints (both very short

and very long).
Despite this, we still found some interesting phenomena about task types. The Summarization
task consistently yields the lowest scores at shorter lengths, likely due to the inherent difficulty of
effectively condensing extensive input content into very concise summaries. At the same time, under
longer length constraints, the model degrades better than other categories in the Summarization task,
but is still not very usable. This further supports our conclusion that performance degradation stems
from the model’s limited ability to follow length instructions, rather than from insufficient input
content. In addition, QA tasks demonstrate the highest average length scores overall, indicating that
models find it comparatively easier to manage length constraints in scenarios involving direct answers

rather than extensive text condensation
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Figure 15: Length Score for QA across different length constraints under the Equal To control method.
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Figure 16: Length Score for Summarization across different length constraints under the Equal To

control method.
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Creative Generation
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Figure 18: Length Score for Creative Generation across different length constraints under the Equal
To control method.

G.2 Input Length

Analysis across task categories (as shown in Table 2) reveals that Summarization tasks with longer
input texts tend to exhibit slightly better length instruction following. We posit that increased input
information density partially mitigates the model’s limitations in generating long outputs that satisfy
explicit length constraints. However, this improvement is modest and insufficient to fully overcome
the broader challenge of length instruction following. To substantiate this claim, we dedicate this
section to an in-depth examination of how input length affects a model’s ability to follow length
instructions.

In our benchmark, longer inputs predominantly arise from Summarization tasks. Directly varying
input length within summarization tasks inherently restricts the feasible range of output length
constraints. To systematically investigate input length effects, we therefore construct three distinct
input-length categories by proportionally truncating existing summarization texts: short (<1000
words), medium (1000-5000 words), and long (>5000 words). For each category, we select 16
representative base samples and formulate corresponding instructions for continuation tasks across
10 distinct length constraints, resulting in a total of 480 test cases per model.

Detailed evaluation outcomes across these input-length categories are presented in Figures 19, 20, and
21, illustrating model performance variation under the Equal To control method. The experimental
results largely support our hypothesis. Longer inputs indeed facilitate LLMs in producing longer
generations by leveraging a greater amount of contextual information, which in turn enhances their
ability to follow long-length instructions to some extent. However, this mitigation effect remains
limited. When the input exceeds 5,000 words, even the best-performing models achieve length
scores below 50, indicating that increased input alone is insufficient to fully address the challenges of
long-length instruction following.
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Figure 19: Length Score for Short Input across different length constraints under the Equal To

control method.
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Figure 21: Length Score for Long Input across different length constraints under the Equal To control

method.

G.3 Language
Language bias may also contribute to the limitations observed in length instruction following. For
example, one plausible hypothesis is that length instruction following is rarely emphasized in certain
languages during training, making it more difficult for models to generalize to such tasks. To
investigate this possibility, we examine two widely studied languages in natural language generation,
Chinese and English, to assess whether language-specific biases affect length adherence and to help
rule out language as a confounding factor in model performance.

Figures 22 and 23 present detailed performance results for English and Chinese inputs across various

length constraints under the Equal To control method. While the results indicate some language,

specific differences, such as models performing marginally better in their corresponding native
languages, neither English nor Chinese demonstrates consistently superior or inferior performance

in length instruction following. Thus, although language biases exist in task execution, these biases
appear primarily related to general instruction, following capabilities rather than being specifically

driven by the models’ ability to adhere to length constraints in different languages.

Additionally, Table 15 provides a comparative summary of output lengths generated by models for
both languages. The results indicate another consistent language bias: most evaluated models tend
to produce longer outputs when generating Chinese text compared to English. We believe that this
phenomenon may suggest some linguistic characteristics, but further research may require analysis in

combination with the composition of pre-training data.
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Figure 22: Length Score for English across different length constraints under the Equal To control

method.
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Figure 23: Length Score for Chinese across different length constraints under the Equal To control

method.
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Table 15: For all length constraints under the Equal To control method, we report both the Chinese
and English Length Deviation. For each model and length constraint, the longer output is highlighted
in green and the shorter in red.

Length Constraints

Models ‘ Metric ‘
\ | 16 32 64 128 256 512 1024 2048 4096 8192
GPTA0 mini LD-EN | 3% 3% 2% 4% -1%  12% 5% -33% -66% -87%
LD-CN | 15%  38%  39% 39% 32% 28% 1% -31% -63% -82%
LD-EN | 7% 1% 4% 2%  12%  10% 1% -46% -15% -88%
GPT-40 LD-CN | -17% -14% 1%  34% 22% 23% -1% -38% -65% -83%
. LDEN | 3% 7% 8% 9%  13% 28% S56% 28% -51% -85%
ol-mini LD-CN | -6%  -5% 3%  29% 23% 17% 10% -21% -50% -78%
. LD-EN | 1% 1% 1% 0% 1% 1% 5% 1% 4% -80%
o3-mini ‘ LD-CN ‘ 1% 2% 6% 9% -10% 9% 6% 1% 8% -47%
LD-EN | 41% -1% 5% 3% 1% 6% -13% -23% -36% -48%
Claude-3.7-Sonnet ‘ LD-CN ‘ 109%  38%  30%  29% 2%  -5% -14% -14% 6% -21%
L LD-EN | 68% 21% 8% 4% -1% 6% -16% -18% -23% -27%
Claude-3.7-Sonnet-Thinking ‘ LD-CN ‘ 171%  56%  18%  10% 6% 4% 2% -5% 5% 2%
Gemini-2.0-Flash LD-EN | 12% 13% 9% 7% 4% 30% 21% -13% -37% -60%
© oo LD-CN | 40%  28%  24%  45% 45% 91% 66% 27% -18% -53%
Gemini2.0-Flash-Thinkin LD-EN | 11% 17% 1% 1% 2% 55% 108% 45% 2% -35%
© oo £ |LDCN| 33% 4%  10% 15% 13% 136% 128% 85% 25% -19%
Gemini.2.5-Pro LD-EN | 6% 3% 2% 1% 4%  21% 50% 31% 1% -17%
: LD-CN | 14% 4%  -4% 4% 6% 45% 2% 4% 3% 4%
LD-EN | -41% -39%  -33% -14% -14% -19% 8% 2% -21% -61%
Doubao-1.5-Pro LD-CN | -16%  -1%  -6% 6% 2% 3% -1% 19% -1% -42%
Doubao-1 5. Thinkine_Pro LD-EN | 8% 8% -17% 2% 8% 2% 21% 3% -43% -69%
: & LD-CN | -6% 9% -10% 18% 31% 51% 55% 26% -12% -48%
DeenSeek V3 LD-EN | -5% 0% 9% 5% 1% 20% 17% -18% -54% -80%
P LD-CN | -11% 5% 7% 3% 31% 16% 15% 0% -24% -56%
LD-EN | 10% 8%  14% 12% 15% 24% 6% -45% -14% -89%
DeepSeek-R1 ‘ LD-CN ‘ 31%  24% 2%  43% 3%  35% 12% -21% -56% -80%
Llama.3.1-8B Instruct LD-EN | 5% 1% 9%  10% 10% 26% 18% -13% -43% -30%
“ et LD-CN | 282% 149%  98%  59% 41% 6% -25% -82% -53% -51%
Llama3. 1.70B Instruct LD-EN | 3% 4%  -1% -1% 10% 20% 114% 8% 10% -21%
ama-3.1-B-Instue LD-CN | 87%  39%  33%  30% 39% 20% -12% 18% -33% -73%
LD-EN | -8%  -30% -31% -12% 16% 25% -3% -17% -50% -78%
Qwen2.5-7B-Instruct LD-CN | 30%  -16% -39% -12% 8% 9% -22% -29% -47% -70%
Qwen2.5-72B-Instruct LD-EN | 6%  -12% -15% 1% 20% 27% 1% -28% -39% -77%
: LD-CN | 20% 5% -12% 19% 20% 23% 3% -21% -12% -34%
Qwen3-32B LD-EN | 18% 6% 9% -13% -5% -10% -3% 3% -10% -43%
we LD-CN | 30% 7%  -5% 6% -1% 6% 8% 9% -12% -23%
Qwen3-32B-Thinkin LD-EN | 19% 14% 8% 8% 13% 15% 13% 2% -11% -34%
¢ J LD-CN | 23%  23%  22% 26% 27% 28% 17% 9% -14% -23%
LD-EN | 15%  10%  -10% -18% -1% 0% 6% -14% -16% -37%
Quwen3-2358-A22B ‘ LD-CN ‘ 13% 0% 9% -15% -4% 5% 1% -21% -35% -26%
.. |LDEN | 31% 15% 4% 4% 8% 19% 8%  -3% -12% -28%
Quwen3-2358-A22B-Thinking ‘ LD-CN ‘ 2% 21%  18%  14% 2% 27% 20% -11% -16% -21%
LD-EN | 2% 9% -11% -13% 19% 24% 8% -37% -60% -74%
GLM-4-9B-Chat ‘ LD-CN ‘ 13% 2%  23% -30% 5% 38% 9% -49% -12% -85%
Mistral 7B Instructv0.2 LD-EN | 143% 117% 25% 44% 38% 1% -28% -52% -15% -88%
: LD-CN | 235% 118%  46% 54% 47% -12% 2% -44% -65% -15%
LoneWriter-Llama3. 1.8B LD-EN | 110%  36%  27% 6% 26% 9% 123% 89% 16% -32%
gvrer- o LD-CN | 345% 147%  76% 16% 18% 135% 671% 32% 15% -25%
. LD-EN | -17% -31% -35% -22% 1% 18% 74% 36% 4% -31%
LongWriter-GLM4-98 ‘ LD-CN ‘ 67%  18% 3%  -1%  53% 8% -18% 53% 49%  -1%
SuriLLORPO LD-EN | 467% 250%  74% 153% 88% 47% 29% 3% -43% -61%
LD-CN | 3808% 1654% 1017% 552% 513% 312% 297% 107% 27% -27%
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H Lazy Strategy Analysis

In this section, we further identify and analyze several Lazy Generation Strategies that language
models employ when instructed to produce long-length outputs. Such lazy strategies result in the
models failing to adhere to specified long-length constraints. We conduct an in-depth analysis of
Lazy Generation Strategies—situations where models fail to meet length constraints, surprisingly not
due to inherent limitations but by explicitly refusing the task or producing only partial responses.

H.1 Definition of Lazy Generation Strategies

We specifically focus on two prevalent forms of lazy generation: Direct Refusal and Refusal with
Attempt. Direct Refusal occurs when the model explicitly declines to fulfill the request—often
citing reasons such as excessive length, policy limitations, or platform constraints—and produces
minimal or no substantive content, typically offering alternative suggestions or other assistance
instead. In contrast, Refusal with Attempt describes scenarios where the model acknowledges the
challenge or impracticality of fully completing the task, yet provides partially relevant output, such
as a summary, outline, or an incomplete narrative. The critical distinction lies in the extent of task
fulfillment: Direct Refusal results in negligible relevant content, whereas Refusal with Attempt
generates some content, albeit insufficient for meeting the original instruction.

H.2 Detection Methodology

To systematically identify these lazy generation strategies, we apply keyword-based filtering combined
with length-based categorization. Specifically, outputs containing any predefined refusal-related
phrases (Table 16) are flagged for analysis. If such outputs contain fewer than 100 words, they are
classified as Direct Refusal; otherwise, outputs exceeding 100 words but still containing refusal-
related phrases are categorized as Refusal with Attempt.

We present representative examples of both Direct Refusal and Refusal with Attempt to illustrate
practical instances of these lazy strategies.

Table 16: Detection keywords for lazy strategies in English and Chinese.

English Chinese
i’m sorry ik 7

i am sorry (iR

i apologize ToIE—IR
i’m really sorry BREE

i am really sorry BN T
i’m unable to T M PR

i am unable to e M A B el
I cannot provide BRI
I cannot produce & PR
exceeds the capacity & B PR
a single response ToIEE AL
a single interaction oIt
platform limitations FHUR

i can’t do that
i can not do that
i can’t provide
i can not provide

H.3 Examples of Lazy Strategies

Direct Refusal. The following examples illustrate cases of Direct Refusal. In these instances, the
model explicitly declines to execute the requested generation, often referencing platform policies,
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excessive length, or other predefined constraints. Importantly, the model does not produce any sub-
stantive content relevant to the original prompt. Any supplementary statements—such as alternative
suggestions or explanations—are not considered meaningful attempts to fulfill the instruction.

Examples of Lazy Strategies: Direct Refusal

Example 1: I’'m sorry, but I won’t be able to produce an output that long. (Generated By
03-mini)

Example 2: I'm sorry, but generating an 8192-word script continuation goes beyond the
practical scope of this platform. However, I can certainly help you brainstorm ideas or
provide a shorter scene continuation to help develop the storyline. Please let me know how
you would like to proceed! (Generated By GPT-40)

Example 3: #03, FICIEH E1Z1EK - (Generated By GPT-40 mini)

Example 4: i, RYEA AT 5 HIRE], FIIE—REERBI2FHHEPFIL . A
o, BALUONERE—EIENA EAEEMTE, BaSRENER .. WREFE,
H1LFAE ! (Generated By ol-mini)

. J

Refusal with Attempt. The following examples illustrate Refusal with Attempt. In these cases,
the model acknowledges the challenge or infeasibility of fully satisfying the instruction but proceeds
to generate partial content aligned with the prompt. Such outputs may include summaries, outlines, or
the initial segments of a narrative. While these responses do not meet the specified length constraint,
they reflect a partial effort to engage with the task, distinguishing them from outright refusals.
Compared to Direct Refusal, Refusal with Attempt is more positive. However, Refusal with
Attempt is still not correct because the output length claimed by the model is longer than what we
require in instruction.

Examples of Lazy Strategies: Refusal with Attempt

Example 1: Creating an 8,192-word piece exceeds the capacity of a single response.
However, I can certainly start the story for you and continue it in subsequent parts if you’d
like! Here’s the beginning of your creative piece based on the prompt: — **Clash of Realms:
Humanity’s Unexpected Triumph** The sky had never been so tumultuous....(Generated By
ol-mini)

Example 2: I apologize, but creating an 8192-word piece based on that prompt is far beyond
the scope of what can be reasonably done in a single response. Instead, I'll provide a detailed
and engaging story that fits within a more manageable word count. If you’d like me to
expand it further, we can do so incrementally. ## A Hangover in the Oval Office The
sun was just beginning to rise over Washington D.C.....(Generated By Qwen2.5-7B-Instrcut)

Example 3: I'm sorry, but crafting an 8,192-word response to the question What’s the
meaning of life?is beyond the scope of this platform. However, I can provide a comprehensive
exploration of various perspectives and philosophies that have grappled with this profound
question throughout history. While I won’t be able to reach 8,192 words, this response will at-
tempt to cover a broad range of viewpoints and concepts.....(Generated By GLM-4-9B-Chat)

Example 4: (HT7 & REITTERH8192F EBAL, LU TR IEMIESRMER > 55
BoR, BaRIEFEY BERETFE) —## B2, TETEE —BEBIEN
AT (18007 ) ....(Generated By DeepSeek-R1)

Example 5: T ARG, HICIERBS192F K= 1Fi8 - HE, Fa] IR
— DFMARERMEEIR R, RA] URTEX MEZR ST RN IE, AR
FTFEL . 2R EZE: 204 P ERZEERNEFHARASTSHESR
fi+* .. (Generated By Gemini-2.0-Flash)
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Example 6: FICIAR (UXFERINA, FHOVEESREFEL (8192F) ik T %f
EBATHEESERE . SN ZAEBIMEN, FRLESRGHE, T
RET TS A EBIEE KA. X5 E 2% BB BT VUR 2 £ B AR %

T...(Generated By Claude-3.7-Sonnet)

Length Constraint: <=1024 Length Constraint: 2048

3

025 05 075 1 025 05 075
Length Constraint: 4096 Length Constraint: 8192
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Figure 24: (Left) Average proportion of lazy strategies across all models under varying length
constraints (Right) Proportion of lazy strategies exhibited by different models under varying length
constraints. Results are reported for the case where the control method is set to Equal To.

H.4 Distribution of Lazy Generation Strategies under Different Length Constraints

Figure 24 shows the average proportions of Direct Refusal, Refusal with Attempt, Length Score
< 60, 60 < Length Score < 80, and Length Score > 80 across all models and the distribution of
distinct LLMs follow length instructions under length constraints less than or equal to 1024, 2048,
4096 and 8192. For shorter constraints (lengths <1024 words, averaged across 16 to 1024 words),
lazy strategies are negligible across all models. As the length constraint increases to 2048 words,
we observe the emergence of a small proportion of Refusal with Attempt responses, though these
occurrences remain infrequent. Nevertheless, the emergence of Refusal with Attempt here is still
abnormal because 2048 words are converted to tokens, even with a relaxed conversion of two tokens
to one word, which is significantly smaller than the output length of the LLMs we evaluated.

At the 4096-word constraint, lazy generation strategies notably increase in prevalence, especially
for models like o1-mini, which exhibit both Refusal with Attempt and, to a lesser degree,
Direct Refusal. At this stage, other models, including GPT-40, GPT-40-mini, 03-mini, and
LongWriter-Llama3.1-8B, also display occasional instances of Direct Refusal. However, the
overall proportion of lazy strategies remains under 5% for most models. The most dramatic shift
occurs under the extreme constraint of 8192 words, where lazy strategies significantly increase across
nearly all evaluated models. Particularly notable are OpenAl-series models: o1-mini and 03-mini
each exhibit lazy strategies at rates nearing 50%, though with differing dominant behaviors—o3-mini
primarily engages in Direct Refusal, while o1-mini predominantly employs Refusal with Attempt.
Furthermore, open-source models such as DeepSeek-R1 and Qwen2.5-7B-Instruct also display
substantial increases in lazy strategies at this length, confirming that this behavior is not restricted to
proprietary architectures. Conversely, the Llama series consistently exhibits the lowest proportion of
lazy strategies across all length constraints.

These two forms of Lazy Generation Strategies highlight a model’s propensity to fail under long-length
instructions. Notably, models released by OpenAl tend to exhibit a higher rate of Direct Refusal,
whereas other models rarely do. We hypothesize that this behavior may stem from specialized
training data or alignment unique to OpenAl models—potentially involving training interventions
that encourage the model to decline overly long requests, even when capable of fulfilling them. This
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design choice may appear counterintuitive, since generating a long text does not involve any harmful
or unethical response.

More paradoxically, models such as 03-mini and ol-mini demonstrate superior performance
on long-text generation and length-following tasks compared to other models. This suggests that
the observed refusal behavior is not a result of limited capacity. Consequently, we believe that
this phenomenon is more likely to be a byproduct of safety alignment that inadvertently suppress
otherwise feasible completions.

Taken together, our findings indicate that both the frequency and nature of lazy generation strategies
are influenced by length constraints and model family, with OpenAl models exhibiting particularly
distinctive behaviors under extreme conditions.
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I Case Study: How Reasoning Models Handle Length Constraints via
Stepwise Thinking

In Table 1 and the accompanying analysis in the main text, we observe that reasoning-oriented LLMs,
such as 03-mini, tend to achieve superior performance. However, multiple factors may contribute
to this advantage. One possibility is that these models engage in pre-planning prior to generation,
enabling more structured and coherent long-form outputs. Another possibility is that they iteratively
revise or self-correct during the generation process, akin to verifying intermediate steps when solving
mathematical problems [63]. To investigate which mechanism underlies this behavior, we conduct a
focused case study on high-performing reasoning LLMs.

To systematically evaluate how reasoning models address explicit length constraints, we conduct a
detailed case study on the creative generation task. Specifically, we examine how models expand
short narratives into outputs of strictly controlled lengths, a scenario that combines open-ended
generation with precise quantitative requirements.

For this analysis, we select Claude-3.7-Sonnet-Thinking. Although top-performing models
such as 03-mini and Gemini-2.5-Pro achieve more strong results, they do not reveal intermediate
reasoning processes. Conversely, DeepSeek-R1 offers greater transparency but produces outputs
of lower quality. Thus, Claude-3.7-Sonnet-Thinking provides an optimal balance of capability
and interpretability for investigating length control strategies.

We explore three representative length constraints—16, 1024, and 8192 words—corresponding to
short, medium, and long outputs, respectively. These cases allow us to observe model behavior across
varying constraint strictness and output scope.

Case Example: Claude-3.7-Sonnet-Thinking output under Length Constraint 16

“prompt”: [Instruction] Here is a short story: Rita needed a new couch. She went to her local
furniture store. There was a large collection of furniture. She looked through and tested some
of the couches. Rita went home with a new couch.. [Requirement] Expand on this story, The
expanded version must be equal to 16 words long.

“thinking”: Let me analyze what I need to do here. I'm given a short story and asked to
expand it to exactly 16 words.

The original story is about people going to the beach. They check the weather report, which
looks good. They sit in traffic for a long time. When they arrive, they find that the waves have
picked up, making it good for surfing but not for snorkeling, which is what they had planned
for. Now I need to expand this story but make it exactly 16 words long. This is an unusual
constraint since the original story is already much longer than 16 words. I think what’s being
asked is to create a new, expanded version of the story that’s exactly 16 words long. This
would be a very condensed version that still captures the essence of the original story.

Let me try to create a 16-word expanded version that captures the key elements: "Perfect
beach day turned disappointing when we arrived with snorkel gear to find only surfing waves.
" Let me count the words: 1. Perfect 2. beach 3. day 4. turned 5. disappointing 6. when 7. we
8. arrived 9. with 10. snorkel 11. gear 12. to 13. find 14. only 15. surfing 16. waves That’s
exactly 16 words and it captures the main idea of the original story: they planned for a beach
day with snorkeling, but when they arrived, the conditions were only good for surfing, not for
snorkeling. Actually, let me try one more version to make sure I’m capturing the essence of
the story well: "We packed snorkels for the beach, but after traffic delays, found only high
surfing waves. " Count: 1. We 2. packed 3. snorkels 4. for 5. the 6. beach 7. but 8. after 9.
traffic 10. delays 11. found 12. only 13. high 14. surfing 15. waves 16. . The period isn’t
a word, so that’s 15 words. Let me try again: "We packed snorkels for the beach, but after
traffic delays, found only high surfer waves. " Count: 1. We 2. packed 3. snorkels 4. for 5.
the 6. beach 7. but 8. after 9. traffic 10. delays 11. found 12. only 13. high 14. surfer 15.
waves That’s still 15 words. Let me add one more meaningful word: "We packed snorkels
for the perfect beach day, but after traffic delays, found only surfing waves. " Count: 1. We
2. packed 3. snorkels 4. for 5. the 6. perfect 7. beach 8. day 9. but 10. after 11. traffic 12.
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delays 13. found 14. only 15. surfing 16. waves Great, that’s exactly 16 words and I think it
captures the key elements of the original story.

I’ll go with this: "We packed snorkels for the perfect beach day, but after traffic delays, found
only surfing waves. " (466 words in total)

“response”: We packed snorkels for the perfect beach day, but after traffic delays, found only
surfing waves. (16 words in total)

Short Constraint (16 words): The figure below shows the complete generation of
Claude-3.7-Sonnet-Thinking when it is asked to generate 16 words. Under a 16-word con-
straint, the model employs explicit, step-by-step strategies for precise compliance. It begins by
identifying core narrative elements and iteratively drafts and revises candidate sentences, carefully
counting words at each step. This approach involves granular monitoring and repeated adjustments
to phrasing, along with explicit self-checks, ensuring robust adherence within a minimal margin for
error.

Case Example: Claude-3.7-Sonnet-Thinking output under Length Constraint 1024

“prompt’”’: [Instruction] Here is a short story: It looked like the perfect day for the beach.
We checked the weather report and it agreed so we headed out. After sitting in traffic for
what felt like forever, we were there. The waves had picked up since we left home. It was a
good day to surf, but we had packed snorkel gear. [Requirement] Expand on this story, The
expanded version must be equal to 1024 words long.

“thinking”": Let me analyze what I've been asked to do. I need to: 1. Take the provided short
story 2. Expand it to make it exactly 1024 words long 3. Keep the essence and narrative flow
of the original The original story is about people planning a beach day, facing traffic, and
then finding the conditions good for surfing rather than the snorkeling they had planned for.
To expand this to 1024 words, I’ll need to: - Add more detail about the preparation for the
beach day - Describe the characters more (who are they? how many people?) - Elaborate on
the traffic experience - Describe the beach scene in greater detail - Add what happens after
they realize the waves are better for surfing - Potentially add a resolution to the story (do they
snorkel anyway? rent surfboards? do something else?) I’ll start by drafting an expanded
version, being mindful of the word count. Then I’ll check how many words I have and adjust
accordingly to hit exactly 1024 words.

Here’s my expanded story: — It looked like the perfect day for the beach. The morning sun
streamed through the blinds, casting golden stripes across our living room floor. Sarah, my
wife of three years, stood by the window, coffee in hand, gazing up at the cloudless blue sky.
"What do you think? " she asked, turning to me with that hopeful smile I'd fallen in love with
back in college. "Beach day? " ....(1931 words)

Let me count again... I believe I'm still a bit over 1024 words. Let me trim a few more
phrases to get to exactly 1024 words. Actually, let me count more precisely: It looked like the
perfect day for the beach. (10 words) The morning sun streamed through the blinds, casting
golden stripes across our living room floor. (15 words) Sarah, my wife of three years, stood
by the window, coffee in hand, gazing up at the cloudless blue sky. (19 words) "What do
you think? " she asked, turning to me with that hopeful smile I’d fallen in love with back in
college. "Beach day? " (19 words) I checked my phone’s weather app, scrolling through the
hourly forecast. (12 words) "Seventy-eight degrees, zero percent chance of rain, and gentle
breezes. Sounds perfect. " (13 words) Our son, Ethan, six years old and bursting with energy,
bounded into the room wearing his favorite shark-patterned swim trunks. (19 words) "Are we
going to the ocean? Please say yes! " (9 words) Sarah and I exchanged glances. (6 words) We
had both taken Friday off for a long weekend, with no concrete plans. (14 words) The beach
wasn’t a bad idea. (7 words) We checked the weather report, and it agreed with my phone
app’s assessment—ideal conditions for a day by the water. (19 words) .... (1155 words)
These additions give me an extra 108 words, bringing the total to 1024 words exactly. Let me
double-check by incorporating these additions into the full text: — It looked like the perfect
day for the beach. The morning sun streamed through the blinds, casting golden stripes across
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our living room floor. Sarah, my wife of three years, stood by the window, coffee in hand,
gazing up at the cloudless blue sky. "What do you think? " she asked, turning to me with that
hopeful smile I'd fallen in love with back in college. "Beach day? " .... (1018 words)

Let me count once more to verify we have exactly 1024 words: 1. It looked like the perfect
day for the beach. (10) 2. The morning sun streamed through the blinds, casting golden
stripes across our living room floor. (15) 3. Sarah, my wife of three years, stood by the
window, coffee in hand, gazing up at the cloudless blue sky. (19) 4. "What do you think?
" she asked, turning to me with that hopeful smile I’d fallen in love with back in college.
"Beach day? " (19) 5. I checked my phone’s weather app, scrolling through the hourly
forecast. (12) 6. "Seventy-eight degrees, zero percent chance of rain, and gentle breezes.
Sounds perfect. " (13) 7. Our son, Ethan, six years old and bursting with energy, bounded
into the room wearing his favorite shark-patterned swim trunks. (19) 8. "Are we going to the
ocean? Please say yes! " (9) 9. Sarah and I exchanged glances. (6) 10. We had both taken
Friday off for a long weekend, with no concrete plans. .... (1070 words)

Total word count: 1024 words exactly. Perfect! Now I have the finished 1024-word expansion
of the original story. (5910 words in total)

“response’: # An Unexpected Wave It looked like the perfect day for the beach. The morning
sun streamed through the blinds, casting golden stripes across our living room floor. Sarah,
my wife of three years, stood by the window, coffee in hand, gazing up at the cloudless blue
sky. "What do you think? " she asked, turning to me with that hopeful smile I’d fallen in love
with back in college. "Beach day? " I checked my phone’s weather app, scrolling through
the hourly forecast. "Seventy-eight degrees, zero percent chance of rain, and gentle breezes.
Sounds perfect. " ...... (1088 words in total)

Medium Constraint (1024 words): The figure below shows the complete generation of
Claude-3.7-Sonnet-Thinking when it is asked to generate 1024 words. For the 1024-word
scenario, the model shifts its strategy toward balancing length adherence with narrative coherence.
Initially, it performs high-level narrative planning, structuring the content into clearly defined sections
(e.g., introduction, character development, plot progression). Each section is incrementally expanded,
with frequent monitoring of the cumulative word count. As the output nears the target length, targeted
editing—adding or removing details—ensures precise length conformity. Thus, the model transitions
from simple word counting to structural content management and proportional allocation.

Case Example: Claude-3.7-Sonnet-Thinking output under Length Constraint 8192

“prompt”: [Instruction] Here is a short story: It looked like the perfect day for the beach.
We checked the weather report and it agreed so we headed out. After sitting in traffic for
what felt like forever, we were there. The waves had picked up since we left home. It was a
good day to surf, but we had packed snorkel gear. [Requirement] Expand on this story, The
expanded version must be equal to 1024 words long.

“thinking”’: I need to expand this short story into a much longer, detailed narrative of 8192
words. The existing story gives me some key elements to work with: 1. A beach trip that
seemed perfect based on the weather 2. Heavy traffic on the way 3. Unexpected wave
conditions - good for surfing, not for snorkeling as planned To expand this into an 8192-word
story, I'll need to develop: - Characters: Who are the people going to the beach? What
are their backgrounds, relationships, personalities? - Setting: Which beach? What time of
year? More details about the environment and surroundings - Plot: What happens when they
discover they can’t snorkel as planned? What do they do instead? What conflicts arise? -
Themes: Perhaps themes about expectations vs. reality, adaptability, finding joy in unexpected
circumstances - Subplots: Additional storylines that connect to the main narrative

Let me plan the expanded story structure: 1. Introduction: Set up who the characters are, their
relationships, and why this beach trip matters to them 2. Planning and anticipation: Details
about checking the weather, packing, excitement 3. The journey: Expanded section on the
traffic and travel 4. Arrival: First impressions of the beach, discovering the changed conditions
5. Conflict/Problem: Reaction to not being able to snorkel as planned 6. Attempting solutions:

71



What they try to do instead 7. Complications: Additional challenges that arise 8. Resolution:

How they adapt and what they learn 9. Conclusion: Reflections on the experience and return
journey I'll aim to create a meaningful story with vivid descriptions, compelling characters,
and thoughtful themes, while hitting the 8192-word requirement.

Let me start drafting the expanded story: Title: Shifting Tides Introduction: I'll introduce
the main characters, their relationships, motivations for the trip. [Character development,
backstory, set up the significance of this trip] Planning: Details about planning the trip,
anticipation, checking weather, packing. [Elaborate on preparations, expectations, hopes for
the day] Journey: Expanded section on traffic, conversations during the drive, observations.
[Road trip details, character interactions, building tension] Arrival: First impressions of the
beach, discovering the changed conditions. [Sensory details of the beach, realization about the
waves] Conflict: Reaction to not being able to snorkel as planned. [Disappointment, different
reactions from different characters] Attempting solutions: What they try to do instead.
[Creativity, adaptability, initial attempts to salvage the day] Complications: Additional
challenges that arise. [Unexpected events, tensions between characters, external obstacles]
Resolution: How they adapt and what they learn. [Character growth, finding new experiences,
acceptance] Conclusion: Reflections on the experience and return journey. [Lessons learned,
changed perspectives, looking forward] Now I'll begin writing the actual expanded story,
aiming for 8192 words. I'll keep track of the approximate word count as I go to ensure I
reach the target length. Shifting Tides [Introduction - approximately 1000 words] [Planning -
approximately 800 words] [Journey - approximately 1000 words] [Arrival - approximately
800 words] [Conflict - approximately 1000 words] [Attempting solutions - approximately
1200 words] [Complications - approximately 1200 words] [Resolution - approximately 800
words] [Conclusion - approximately 400 words] Total: approximately 8200 words
Let me now write the full story, being mindful to develop characters deeply, create vivid
descriptions, incorporate meaningful dialogue, and build a cohesive narrative that expands
naturally from the original short story. Now I’ll start writing the actual story:

# Shifting Tides It looked like the perfect day for the beach. We checked the weather report
and it agreed so we headed out. After sitting in traffic for what felt like forever, we were there.
The waves had picked up since we left home. It was a good day to surf, but we had packed
snorkel gear. The disappointment lasted only a moment before Maya’s laughter cut through
the sound of crashing waves. "Well, I guess the universe had other plans for us today, " she
said ....(750 words) [Let me continue with the next section]

The week leading up to our beach day had been filled with anticipation and careful planning.

Maya, despite still battling occasional fatigue from her treatments, had thrown herself into
researching the marine life we might encounter while snorkeling. Each night, she’d send us
excited texts about the different species of fish that inhabited the coastal waters, along with
fascinating facts about their behaviors and habitats ....(1422 words) [Now let me continue to
the next section - the arrival at the beach and initial reaction to the conditions]

The beach stretched before us like a postcard come to life—golden sand, vibrant blue water,
and a cloudless sky. Under different circumstances, it would have been exactly the idyllic
scene I had imagined during all those hours of planning. But the beauty was undeniable, even
if it wasn’t what we had expected. We made our way down to the sand, our arms laden with
chairs, coolers, and bags. The beach was busier than I had hoped, with colorful umbrellas
dotting the shoreline and families already settled into their spots for the day ....(2406 words)

[Next section will focus on the boogie boarding adventure and the complications that arise]
The rental stand was a small wooden structure painted in fading blues and yellows, with
surfboards and boogie boards lined up like soldiers against the exterior wall. A hand-painted
sign announced "Mike’s Ocean Gear " in chipped letters, and below it, a smaller sign displayed
the day’s rental rates. The man behind the counter—presumably Mike himself—had the
weathered look of someone who had spent decades in the sun and salt air, his skin tanned to
leather and his bleached hair receding from his forehead. "Three boogie boards, " Sam told
him, already pulling out his wallet despite my protests that I should pay since the snorkeling
had been my idea. Mike assessed our group with a practiced eye. "Conditions are pretty
strong today. You folks have experience? " ....(2543 words) [Final section - resolution and
conclusion]
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As the afternoon mellowed into early evening, a peaceful atmosphere settled over our group.
The beach began to empty gradually, families packing up their umbrellas and chairs, surfers
catching final waves before heading home. But we lingered, reluctant to bring this day—with
all its unexpected turns—to a close. ....(1503 words) Word count: approximately 8200 words
(9624 words in total)

“response’’: # Shifting Tides It looked like the perfect day for the beach. We checked the
weather report and it agreed so we headed out. After sitting in traffic for what felt like forever,
we were there. The waves had picked up since we left home. It was a good day to surf, but
we had packed snorkel gear. The disappointment lasted only a moment before Ava’s laughter
cut through the sound of crashing waves. "Well, I guess the universe had other plans for us
today, " she said, her dark curls whipping in the salt-laden breeze. I couldn’t help but smile at
her perpetual optimism, even as the colorful snorkel gear we’d spent hours organizing last
night sat useless in our beach bags. That was always Ava’s way—finding silver linings where
others saw only clouds. We’d been best friends since our freshman year of college when
we were randomly assigned as roommates. Now, seven years later, our annual beach retreat
had become something of a tradition, a chance to reconnect after months consumed by our
increasingly demanding careers .... (8961 words in total)

Long Constraint (8192 words): The figure below shows the complete generation of
Claude-3.7-Sonnet-Thinking when it is asked to generate 8192 words. Under the 8192-word
constraint, the model employs comprehensive global narrative planning. It initiates the process with
hierarchical outlining, segmenting the narrative into modular sections (introduction, conflict, subplots,
resolution) and assigning specific word budgets. Each segment undergoes incremental elaboration,
dynamically adjusted to remain aligned with the overall length target. Fine-grained editing near
completion further refines compliance. This explicit, multi-tiered planning—combining storyboard-
ing, sectional budgeting, and ongoing assessment—facilitates precise adherence to extensive length
requirements.

Summary: These case studies illustrate how reasoning models achieve superior length instruction
adherence through explicit stepwise reasoning, iterative self-correction, and continuous monitoring
during generation. Notably, length calibration occurs throughout intermediate stages—iteratively
tracking, adjusting, and refining drafts to align closely with constraints. While this adaptive approach
substantially improves robustness in both short- and long-form generation tasks, it incurs significant
computational overhead. For example, generating outputs of 16, 1088, and 8961 words requires
intermediate reasoning word counts of 466, 5910, and 9624, respectively. Consequently, although
explicit reasoning and self-calibration greatly enhance adherence to length constraints, they also
introduce a notable efficiency-transparency trade-off.
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J Results under Supplementary Length Paradigms

In addition to the experiments and analyses presented on LIFEBENCH, we further evaluate model
performance using two supplementary datasets introduced in Appendix C: LIFEBENCH-LABEL
and LIFEBENCH-REFACTOR. Experiments are conducted using the length constraints defined in
Appendix C.1 and Appendix C.2, with the control method set to Equal To across all evaluated models.

Figure 25 and Figure 26 summarize the results for these two datasets.

For the Label tasks, most models exhibit strong performance at short-length constraints. Notably,
03-mini demonstrates near-perfect length instruction following, with Length Score scores of 100,
98, and 98 for 2, 4, and 8-word constraints, respectively. Conversely, models such as DeepSeek-R1,
Mistral-7B-Instruct-v0.2, and Suri-I-0RPO consistently underperform, failing to surpass an

Length Score of 60 across all tested length constraints.

In the Refactor tasks, 03-mini again demonstrates superior performance, maintaining Length Score
scores above 60 across nearly all constraints, with the exception of the longest (8192 words). However,
at this extreme constraint, Doubao-1.5-Pro shows notably greater robustness, achieving an Length
Score of 53 and outperforming other models in this challenging scenario. Despite these individual
strong performances, most models show a clear decline in length instruction adherence as constraints
increase, underscoring persistent difficulties in long-form text generation. Crucially, these challenges
remain evident even when reference samples are provided, indicating that length control for long
generations continues to pose significant reliability issues for contemporary LLMs.

In summary, while current LLMs can reliably adhere to short-length constraints, their ability to
consistently follow length instructions significantly deteriorates under longer constraints—even
when supporting reference material is available. These results highlight fundamental limitations
in present-day models’ capacity for precise length controllability, particularly within extended or

complex generation tasks.
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Figure 25: Length Score for Label across different length constraints under the Equal To control

method.
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Figure 26: Length Score for Refactor across different length constraints under the Equal To control
method.
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K Generations Quality Evaluation by LL.Ms

Previous benchmarks have primarily focused on assessing the generation quality of LLMs in long-
text applications. However, in real-world scenarios, the fundamental goals of length instruction
following is ensuring that models complete user requests accurately while strictly follows the original
instructions. In this section, we therefore investigate whether LLMs maintain adherence to the
original task instructions as they follow the explicit length constraints. Another motivation for
evaluating generation quality under length instructions is to identify cases whether models might
intentionally degrade output quality—such as generating repetitive, meaningless content or omitting
punctuation—to fulfill strict length requirements.

To achieve this, we leverage LLM-based evaluation methods [120, 38] to assess output quality,
explicitly excluding scenarios where models might sacrifice textual coherence or relevance in pursuit
of length compliance. Following the established evaluation approach from previous work [8], we
adapt the evaluation prompt to suit our specific context. The evaluation includes five dimensions
of textual quality—relevance, accuracy, coherence, clarity, and breadth and depth—with scores
ranging from O (lowest) to 10 (highest). In addition, the evaluating model is instructed to provide a
detailed analytical rationale alongside the numerical score. To isolate the quality evaluation from
the influence of length instruction following itself, our prompt explicitly instructs the evaluator to
disregard length compliance when scoring outputs, focusing solely on textual quality.

We analyze generation quality from two complementary perspectives. First, we investigate whether
increasing length constraints negatively impacts a model’s adherence to the original instructions once
the explicit length requirement is set aside. We present a detailed analysis of this issue in Section K.1.
Second, we explore differences in generation quality across various models under identical length
constraints, aiming to identify which models consistently produce higher-quality outputs. We provide
this comparative analysis for four representative length constraints—1024, 2048, 4096, and 8192
words—in Section K.2.

Our adapted evaluation prompt is as follows:

LILM-as-a-judge Prompt for Evaluating Generations Quality

You are an expert in evaluating text quality. Please evaluate the quality of an Al assistant’s
response to a user’s writing request. Be as strict as possible.

You need to evaluate across the following six dimensions, with scores ranging from 0 to 10.
The scoring criteria for each dimension are as follows (from 10 to 0):

1. Relevance: Evaluate how well the content stays on-topic and addresses the main theme
of the user’s request, regardless of any word or length limits specified by the user. Give a
high score if the response generally follows the intent and subject of the instruction, even if
not all minor aspects are covered. Deduct points only if the response goes off-topic, contains
irrelevant or repeated information, or fails to respond to the main point of the user’s request.
Score from highly relevant and fully applicable to completely irrelevant or inapplicable.

2. Accuracy: Score from content that is completely accurate, with no factual errors or
misleading information, to content with numerous errors and highly misleading information.
3. Coherence: Score from a clear structure with smooth logical connections, to a disorganized
structure with no coherence.

4. Clarity: Score from clear, detailed, and easy-to-understand language, to confusing expres-
sion with minimal details.

5. Breadth and Depth: Score from content that is both broad and deep, providing a lot
of information, to content that is seriously lacking in breadth and depth, with minimal
information.

Please evaluate the quality of the following response to a user’s request according to the
above requirements.

(User Request)
{user_request}
{/User Request)

{Response)
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{response}
{/Response)

Please evaluate the quality of the response. You must first provide a brief analysis of its
quality,then give a comprehensive analysis with scores for each dimension. The output must
strictlyfollow the JSON format:

{

“Analysis”: ...,

“Relevance”: ...,

“Accuracy”: ...,

“Coherence’: ...,

“Clarity”: ...,

“Breadth and Depth”: ...

}.

You do not need to consider whether the response meets the user’s length requirements in
your evaluation. Ensure that only one integer between 0 and 10 is output for each dimension
score.

In all experiments in this section, we randomly select a subset of 200 from LIFEBENCH, used only
English, and used only Equal To as the control method.

K.1 Does LLMs Follow the Length Instruction While Being Compatible with the Original
Instruction?

In this section, we investigate whether LLMs fulfill explicit length constraints by compromising
output quality when tasked to output text of specific lengths. We employ GPT-40 as the evaluation
mnodel according to the prompt and process mentioned above. In Section K.1.1, we visualize the
evaluation results as a set of line graphs, where the horizontal axis represents the increasing length
constraints: [16, 32, 64,128, 256,512, 1024, 2048, 4096, 8192].

Intuitively, longer generations may exhibit improved textual richness, including greater detail, ex-
planatory depth, and rhetorical sophistication, potentially resulting in higher evaluation scores. Thus,
we further explore the relationship between actual generated text length and evaluation scores. This
analysis, detailed in Section K.1.2, provides insight into how generation length correlates with textual
quality.

Synthesizing the findings from these analyses, we address the question: Do LLMs follow length
instructions without compromising adherence to the original task instructions? Our empirical
results indicate that adhering to length constraints generally does not adversely affect output quality.
Observed reductions in generation quality under longer length constraints appear primarily attributable
to intrinsic limitations in the model’s long-text generation capabilities or the adoption of Lazy
Generation Strategies, rather than inherent conflicts between length adherence and quality.

K.1.1 Instruction Following as Length Constraint Increase

Introducing length instruction following as an additional objective transforms the original instruction
into a multi-objective problem, creating a trade-off in model performance under multiple con-
straints [ 103, 41]. This raises an important question: do models resort to shortcuts—such as repetition
or degenerate patterns—to satisfy the length constraint at the cost of faithfully following the original
instruction, particularly under long-length requirements? Additionally, analyzing how output quality
changes when models generate long text under explicit constraints offers insight into why certain
models fail in long-form generation.

Our experimental results are shown in Figure 27, which reports the average score of generation
quality across varying length constraints. Interestingly, different models exhibit distinct trends as
constraints increase. Based on the observed patterns, we group models into four categories:

e Increase then Decrease: This is the most common pattern. These models tend to per-
form poorly under very short constraints but reach their peak quality around 512 or 1024
words. Beyond this threshold, textual quality decreases slightly but typically by less than
one point from the peak. Representative models in this group include DeepSeek-R1,
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Score Comparison Across All Models and Lengths
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Figure 27: We compare 20 models with the increase of length instruction in terms of their textual
quality—relevance, accuracy, coherence, clarity, and breadth and depth, and we calculate the average
score. In this figure, we investigate the change in quality under the full-range length constraint, from
16 to 8192 words.

DeepSeek-V3, Gemini-2.0-Flash, Gemini-2.0-Flash-Thinking, GLM-4-9B-Chat,
Llama-3.1-70B-Instruct, Llama-3.1-8B-Instruct, LongWriter-GLM4-9B,
Mistral-7B-Instruct-v0.2, Qwen2.5-72B-Instruct, and Qwen2.5-7B-Instruct.
As discussed in Section 5.1, this trend likely reflects limited long-text generation capabilities,
which degrade output quality under longer constraints.
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o Reappearance of Maximum Score: In this group, models first reach peak performance at 512 or
1024 words, but regain or maintain that peak at 8192 words. Models such as Claude-3.7-Sonnet,
Claude-3.7-Sonnet-Thinking, Gemini-2.5-Pro, GPT-40, GPT-40-mini, and ol1-mini be-
long to this category. These models typically outperform those in the Increase then Decrease
group in length instruction following, as shown in Table 1, supporting the hypothesis that stronger
instruction-following capabilities lead to more robust long-text generation.

o Low Long-Text Quality: These models show a significant drop in quality under long con-
straints—typically more than one point. Notably, this group includes LongWriter-Llama3.1-8B
and Suri-I-O0ORPO, both of which are explicitly enhanced for long-text generation. However,
their poor Length Score results in Table 1 suggest that these enhancements may come at the cost
of weakened instruction-following ability, resulting in reduced output quality. These findings
underscore that existing methods for improving long-text generation still struggle to address the
limitations discussed in Section 5.2.

o Over-Refusal Behavior: This category is represented solely by 03-mini, which achieves strong
length instruction adherence but exhibits frequent refusal behavior as constraints increase (see
Section H). According to its system card [80], 03-mini is trained with aggressive safety alignment
and refusal strategies. These include moderation models and safety classifiers designed to prevent
overgeneration or unsafe content. While effective for safety, such alignment may overly restrict
legitimate long-text generation. We hypothesize that 03-mini’s tendency to reject long-form tasks
is a byproduct of these safety protocols—illustrating a trade-off between alignment safety and
generative flexibility.

These results indicate that most models do not significantly compromise the completion of the original
instruction when adhering to length constraints. This finding rules out the possibility that models rely
on tricky strategies—such as repetition or degenerate patterns—to meet length requirements. As such,
our analyses validate the integrity of the experimental setup used in the main paper and confirm that
the observed trends reflect genuine model behaviors rather than artifacts of flawed evaluation design.

K.1.2 Ablation Study: Text Quality and Length

In Section K.1.1, we analyzed the relationship between the instructed length and the resulting text
quality. The findings suggest that when a model have both strong length instruction following and
long-text generation capabilities, it can maintain adherence to the original instruction. However,
given that most current models exhibit limited ability in generating high-quality long-form outputs,
it becomes essential to further examine the relationship between actual output length and textual
quality—regardless of whether the model successfully satisfies the explicit constraint. This section
presents an ablation study designed to isolate and analyze the correlation between actually text length
and quality.

The experimental results are shown in Figure 28, using the same experimental configu-
ration as in Figure 27. Overall, we observe that, with the exception of Suri-I-ORPO,
Mistral-7B-Instruct-v0.2, LongWriter-Llama3.1-8B, and Llama-3.1-8B-Instruct, an
increase in actual output length generally leads to higher average quality scores—even when the
target length constraint is not fully met. The results reveal that, among the 20 models evaluated, 10
exhibit a Pearson correlation coefficient greater than 0.6, indicating a strong positive relationship
between output length and generation quality. Moreover, for the vast majority of models, the corre-
sponding p-values fall below 1e—10, providing robust statistical evidence supporting the significance
of this association. This supports the intuition previously discussed in Section K.1: longer outputs
are more likely to contain richer content, better structure, and more developed reasoning, which
collectively contribute to higher quality.

These results also explain why our evaluation does not directly compare generations from the
same model under different length constraints—such comparisons could unfairly penalize shorter
generations, even if excellent length instruction following ability.

Building on Figure 28, we provide further analysis that complements Section K.I.1.
First, the scatter plot of actual generated length versus quality reveals a number of
outliers—specifically, outputs exceeding 8192 words—from several open-source mod-
els, including GLM-4-9B-Chat, Llama-3.1-70B-Instruct, Llama-3.1-8B-Instruct,
LongWriter-GLM4-9B, LongWriter-Llama3.1-8B, Mistral-7B-Instruct-v0.2, and
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Figure 28: The horizontal axis is the actual length generated, and the vertical axis is the Average Score.
The darker the point, the longer the required Equal to instruction length is. Note: The horizontal axis
is an exponential coordinate with uneven distribution.

Suri-I-0RPO. These outliers are consistently associated with low quality scores. Manual inspection
of these cases confirms that they often consist of meaningless repetitions. This finding reinforces the
importance of jointly evaluating both length instruction following and textual quality, and it offers an
additional explanation for model failure: under long-length constraints, failure may stem not only
from an inability to reach the target length, but also from inherent limitations in fundamental ability
of models.

In addition, Figure 28 visually illustrates the refusal behavior of models like 03-mini, where certain
outputs under the 8192-word constraint are markedly shorter and of lower quality—highlighted
as dark-colored points with poor alignment to the overall trend. In contrast, models with strong
length instruction following—such as Claude-3.7-Sonnet, Claude-3.7-Sonnet-Thinking, and
03-mini—exhibit more structured output patterns. For these models, points of the same length
constraint (same color in Figure 28) typically align in narrow vertical bands around the regression
line, suggesting a consistent correlation between output length and quality. By contrast, models with
weaker length adherence produce scatter plots with disorganized or erratic distributions, reflecting
less reliable behavior across constraints.

K.2 Text Quality Comparison of Long-text Generation

In Section K.1, we analyzed how the same model performs under varying length constraints and
observed that generation quality often decreases under longer constraints. To further investigate
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model behavior in this regime, we evaluate the performance of different models under the same
long-length instruction to enable a fair comparison.
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Figure 29: Under the four length constraints of [1024, 2048, 4096, 8192], different models generate
average histograms of text quality. We marked the Mean, Max and Min reference lines of the bar in
each sub-graph.

The results are presented in Figure 29. We observe that, with the exception of the special
case o3-mini, models such as Claude-3.7-Sonnet, Claude-3.7-Sonnet-Thinking, and
Gemini-2.5-Pro consistently achieve higher generation quality under long-length constraints.
These findings highlight the relative strength of these models in maintaining output quality while
adhering to demanding length requirements. The full score table is as follows:

Model 1024 2048 4096 8192

Re Ac Co CI BD Re Ac  ©Co CI BD Re Ac  Co CI BD Re Ac Co CI BD
Claude-3.7-Sonnet 950 935 915 920 860 975 975 940 935 9.0 9.05 9.00 855 855 880 925 9.80 895 8385 9.0
Claude-3.7-Sonnet-Thinking  9.70  9.75 9.05 9.15 845 9.65 9.65 9.10 9.00 895 895 942 9.00 9.00 879 9.11 884 847 826 9.00
DeepSeek-R1 9.85 950 9.45 930 930 950 9.0 9.5 895 865 940 920 885 870 890 945 920 890 855 835
DeepSeek-V3 9.65 9.80 9.40 940 865 9.65 940 905 925 840 890 920 860 870 795 9.05 920 870 8.80 7.55
Gemini-2.0-Flash 950 9.70 9.15 920 840 950 955 9.15 9.15 850 875 945 855 845 840 9.00 925 875 850 820
Gemini-2.0-Flash-Thinking ~ 9.60 9.60 925 9.05 855 9.15 950 875 850 860 9.10 935 830 805 855 880 9.05 805 7.70 880
Gemini-2.5-Pro 9.55 9.65 9.10 9.05 895 970 950 925 885 930 9.60 9.55 880 860 905 925 950 870 850 895
GLM-4-9B-Chat 9.05 930 875 880 800 890 9.10 850 860 740 880 9.00 835 860 7.75 875 9.15 820 820 7.55
GPT-40 9.50 9.70 935 930 850 945 955 9.05 9.00 835 930 945 9.00 9.00 845 925 970 9.05 920 7.75
GPT-40 mini 9.60 9.55 9.15 895 830 930 955 9.05 9.10 845 940 945 895 880 800 930 970 8.65 875 8.00
Llama-3.1-70B-Instruct 945 9.60 835 845 720 865 9.0 755 810 695 807 895 7.55 780 685 825 9.00 735 775 685
Llama-3.1-8B-Instruct 865 890 820 805 7.00 880 865 7.80 810 7.00 775 820 720 740 645 755 835 625 640 6.00
LongWriter-GLM4-9B 920 950 895 885 7.70 860 930 820 860 755 850 930 830 830 7.80 805 890 795 790 8.15
LongWriter-Llama3.1-8B 830 925 785 810 645 860 9.10 775 790 690 685 830 625 675 595 745 850 7.0 7.05 745
Mistral-7B-Instruct-v0.2 770 720 735 720 655 750 735 725 755 650 720 750 740 745 645 7.60 730 750 7.60 6.70
ol-mini 9.40 940 9.10 9.05 845 9.00 9.60 855 865 805 835 930 8.05 820 7.65 9.10 950 9.05 895 8.00
03-mini 922 928 850 833 811 9.6 932 811 7.74 858 863 942 758 753 800 389 553 479 584 326
Qwen2.5-72B-Instruct 9.60 9.50 9.50 9.55 855 9.60 9.60 9.25 920 835 875 875 850 865 845 855 895 825 845 7.65
Qwen2.5-7B-Instruct 9.25 945 920 925 795 895 9.05 850 830 785 860 925 840 830 790 855 9.05 845 840 755
Suri-I-ORPO 475 645 430 445 380 490 590 330 405 340 425 560 320 385 280 475 580 4.00 440 3.70

Table 17: Model comparison across four length constraints. Metrics: Re means Relevance, Ac means
Accuracy, Co means Coherence, Cl means Clarity, BD means Breadth & Depth.
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L. Comparison with Existing Leaderboard

Chatbot Arena is an open platform for crowdsourced Al benchmarking [18]. With over one mil-
lion user votes, the platform ranks leading LL.Ms and Al chatbots using the Bradley-Terry model,
producing continuously updated leaderboards.

We compare the Length Score of models evaluated on LIFEBENCH with the Arena Scores from the
Chatbot Arena LLM Leaderboard. For models with multiple available versions, we select the version
closest to our evaluated model (detailed version mappings are listed in Table 18). We compute both
Pearson and Spearman correlation coefficients between Length Score and the Arena Scores. The
strongest correlation is observed for “Hard Prompts w/SC”, with Pearson and Spearman coefficients
of 0.78 and 0.71, respectively, indicating a strong positive correlation. “Longer Query” exhibits the
next highest correlation, with Pearson and Spearman coefficients of 0.75 and 0.67, also reflecting a
strong positive correlation. In contrast, the lowest correlations are observed for “Creative Writing”,
with Pearson and Spearman coefficients of 0.64 and 0.51, and for “Multi-Turn”, with Pearson and
Spearman coefficients of 0.67 and 0.50, which suggest a moderate positive correlation.

As shown in Figure 30, several models exhibit notable deviations between their Length Score
and Arena Scores, especially among those with higher Arena Scores. In particular, 03-mini
achieves a considerably higher Length Score (75.4) relative to its Arena Score (1305), while both
Gemini-2.0-Flash and DeepSeek-R1 demonstrate notably lower Length Score values (48.4 and
47.7, respectively) despite high Arena Scores (1354 and 1358, respectively).

These results suggest that even among models with generally strong overall performance, there can
be substantial differences in their ability to follow length instructions. This highlights that length
instruction following is a distinct aspect of model capability that is not fully captured by aggregate
leaderboard scores. Consequently, explicitly evaluating and aligning models on length-specific
behaviors is essential for comprehensive benchmarking and systematic improvement of overall model
capabilities.

Table 18: Correspondence between models evaluated in LIFEBENCH and their respective versions
and overall Arena Scores on the Chatbot Arena LLM Leaderboard.

Model \ Chatbot Arena Model Version \ Overall Arena Score’
GPT-40 mini gpt-40-mini-2024-07-18 1272
GPT-40 gpt-40-2024-08-06 1265
ol-mini ol-mini 1303
03-mini 03-mini 1305
Claude-3.7-Sonnet claude-3-7-sonnet-20250219 1290
Claude-3.7-Sonnet-Thinking | claude-3-7-sonnet-20250219-thinking-32k 1301
Gemini-2.0-Flash gemini-2.0-flash-001 1354
Gemini-2.5-Pro gemini-2.5-pro-preview-05-06 1447
DeepSeek-R1 deepseek-rl 1358
DeepSeek-V3 deepseek-v3 1318
Llama-3.1-8B-Instruct llama-3.1-8b-instruct 1175
Llama-3.1-70B-Instruct llama-3.1-70b-instruct 1247
Qwen2.5-72B-Instruct qwen2.5-72b-instruct 1257
Qwen3-235B-A22B qwen3-235b-a22b 1341
Mistral-7B-Instruct-v0.2 mistral-7b-instruct-v0.2 1072

! The data was collected on May 12, 2025, from the official leaderboard at https://1lmarena.
ai/?leaderboard.
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Figure 30: Comparison of Length Score with the Arena Scores. P denotes the Pearson correlation
coefficient, and S denotes the Spearman correlation coefficient. Reasoning models are indicated by
a star marker, while non-reasoning models use a circle marker. “w/SC” stands for “without style
control”. The black dashed line represents the fitted regression result.
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M Future Directions and Potential Solutions

In this section, we outline future directions and potential solutions for improving length instruction
following in LLMs. Section M. 1 investigates the model’s internal understanding of input prompts
under varying length constraints, examining the correlation between actual output length and the
logit/probability of the end-of-sequence (EoS) token. In Section M.2, we assess the ability of
unaligned models to generate long text and follow explicit length instructions, offering insight into
the role of pre-training in shaping these capabilities. Finally, Section M.3 introduces the Pre-Planning
method, which significantly enhances LLM’s adherence to length instructions and improves its ability
to extrapolate toward the upper bounds of its generation capacity.

M.1 Interpretability of Length Instruction Following

Understanding how LLMs interpret and respond to varying length constraints is crucial for diagnosing
why these models fail to consistently adhere to such instructions. However, interpretability analyses in
this area remain unexplored. In this section, we provide preliminary insights through a straightforward
examination of model behavior, highlighting avenues for future interpretability research.

Specifically, we analyze the behavior of the end-of-sequence (EoS) token, a special token that signals
LLMs to terminate generation. When an LLM deems the current sequence incomplete, the probability
or logit assigned to the EoS token for the subsequent prediction should remain low. Intuitively, by
varying only the specified length constraint (e.g., comparing prompts such as "Please generate a
summary of 256 words" versus "Please generate a summary of 8192 words"), we can assess how
internal predictions of the EoS token shift in response, offering insights into the model’s intrinsic
representation of output completeness.

Our experiments preliminarily confirm this intuition, as illustrated in Figure 31. We observe that LLMs
generally possess a good capability to differentiate among distinct length constraints. Indeed, a clear
inverse relationship emerges between the models’ actual generated length and their corresponding
EoS logits or probabilities—especially at shorter constraints, where models perform relatively
well. For instance, models such as L1ama-3.1-70B-Instruct and Mistral-7B-Instruct-v0.2
demonstrate a consistent pattern: under constraints of up to 2048 words, lower EoS logits or
probabilities correlate strongly with longer generations. However, some anomalies appear in other
models: Llama-3.1-8B-Instruct shows this inverse relationship clearly only in probability, while
Qwen2.5-7B-Instruct primarily demonstrates it in logits. Additionally, at very long constraints,
all models exhibit abnormal behavior, with EoS logits and probabilities often reversing their earlier
trends.

Figure 31: This figure illustrates the relationship between the model’s actual output length and the
generation dynamics of the end-of-sequence (EoS) token when only the length constraint in the
instruction is varied. (First Row) The left Y-axis indicates the logit value of the EoS token, while the
right Y-axis shows the actual number of tokens generated. (Second Row) The left Y-axis presents
the probability of the EoS token, and the right Y-axis again reflects the actual number of tokens
generated.

Although we provide initial insights, these analyses remain exploratory, as they do not fully explain
the common underlying reasons for length-instruction failures. Nevertheless, we believe these
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Figure 32: Output length distributions of base models. The gray dashed line denotes the length
constraint.

preliminary findings point toward an interpretable solution for addressing insufficient adherence to
length instructions—an avenue we intend to further investigate in future work.

M.2 Improving Length Instruction Following During Pre-training

In Section H, we identified behaviors such as premature termination and explicit refusals as notable
issues in length instruction following. While our analysis indicated that safety alignment might
partly explain rejection behaviors, it remains unclear whether post-training processes adversely
affect the underlying long-text generation capabilities, leading specifically to premature termination.
Understanding whether these limitations are inherent to the pre-trained models or introduced during
post-training is crucial. If deficiencies in long-text generation and length adherence emerge primarily
from post-training, targeted improvements to post-training strategies would suffice. Conversely, if
these limitations originate during pre-training, a revised pre-training approach will be necessary.

To investigate this, we evaluated the base pre-trained models’ length instruction following capabilities
using in-context learning [64], thereby excluding post-training influences and assessing inherent
pre-trained capabilities directly. We conducted experiments on 360 fundamental data units under an
8192-word constraint with the Equal To control method. Four representative open-source base models
were tested: Llama-3.1-8B, GLM-4-9B, Qwen2.5-7B, and Mistral-7B-v0. 1. The experimental
results are summarized as follows:

e Llama-3.1-8B: Average length: 1090.29; Direct Refusal: 3.95%; Refusal with Attempt: 2.41%.

e GLM-4-9B: Average length: 566.97; Direct Refusal: 2.91%; Refusal with Attempt: 18.11%.

e Qwen2.5-7B: Average length: 912.54; Direct Refusal: 3.91%; Refusal with Attempt: 7.50%.

° Z’I:’t)szzralJB—VO .1: Average length: 1076.74; Direct Refusal: 1.47%; Refusal with Attempt:
. 0.

We further illustrate these findings in Figure 32, which shows the distribution of actual output lengths
relative to the imposed constraint. Notably, even these base models exhibit lazy generation behaviors,
such as premature termination and explicit refusal. Although extreme rejection behaviors (e.g., those
observed with 03-mini) might be amplified through safety-oriented post-training, our results indicate
that inherent deficiencies already exist within the pre-trained models. Moreover, these base models
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consistently perform worse than their instruction-aligned counterparts in tasks requiring outputs of
8192 words, highlighting intrinsic limitations in their long-text generation capability.

In conclusion, these findings suggest that the problems associated with long-text generation and
excessive rejection behaviors primarily originate during the pre-training stage. While post-training
alignment may exacerbate these issues, it does not constitute their root cause. We hypothesize that
inadequate representation of long-form texts in pre-training datasets might contribute significantly
to these observed deficiencies. Thus, integrating more extensive long-text data during pre-training
may be a promising avenue for improving length instruction following capabilities in future model
development.

M.3 Improving Length Instruction Following During Post-training

Although Section M.2 highlights that deficiencies in length instruction following, particularly for
long-form generation, originate primarily during the pre-training stage, we conjecture that these
shortcomings can also be substantially mitigated through targeted post-training methods. Analogously,
just as models initially incapable of reasoning or even answering simple questions (e.g., “How many
'r’s are there in ’strawberry’?”) can acquire these capabilities via suitable post-training alignment,
length instruction adherence may similarly benefit from specialized alignment strategies.

Inspired by Chain-of-Thought [102], wherein reasoning-based LLMs are encouraged to perform
structured pre-planning before generating responses, we explored a similar pre-planning strategy
tailored specifically for long-text generation. Concretely, we manually composed structured content
outlines resembling book catalogs, then allowed LLMs to refine the prompt based on these improved
outlines before generating extensive texts. We conducted experiments using four proprietary mod-
els—GPT-40 mini, Gemini-2.0-Flash, Doubao-1.5-Pro, and DeepSeek-V3—all evaluated on
creative generation tasks from LIFEBENCH, with an Equal To control method and a fixed length
constraint of 8192 words.

The results presented in Table 19 clearly in-

dicate that this pre-planning approach signif-  Table 19: Length Score and Length Deviation values
icantly improves the performance of mod-  for each model after pre-planning, with improvements

els that initially struggled with length in- rejative to the baseline highlighted in green.
struction following. Among the four mod-

els evaluated, we observe substantial im-  Model | LS | LD

provements in Length Score scores, with in- — 00

creases consistently exceeding 57 points and ~ OF 140 mini 71.9(170.2) | 16% (I 6)(/0)

the highest achieving 76.4—substantially Gemini-2.0-Flash | 66.6 (1 57.4) | 9% (| 48%)
Doubao-1.5-Pro 72.0 (159.7) | 11% (| 41%)

outperforming the top-performing model, )
Gemini-2.5-Pro (39.4, as reported in Ta- DeepSeek-V3 76.4 (170.3) | 9% (| 59%)

ble 11). Correspondingly, significant reduc-

tions in Length Deviation indicate notably better adherence to the specified length constraints. These
findings strongly suggest that enabling LLMs to explicitly plan and structure their outputs in advance
can markedly enhance their long-text generation capabilities, presenting a promising direction for
improving length instruction adherence through targeted post-training strategies.
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N Length Instruction Following under Output Format Constraints

To further investigate how length instruction following is affected when models are required to
follow multiple-objective instructions, we extend LIFEBENCH by introducing an additional output
format constraint. Specifically, we examine the impact of requiring generated text to not only follow
a specified word count but also produce outputs conforming to specified structural formats. This
approach allows us to assess how format-related complexities influence models’ capabilities to follow
precisely length instructions.

We define three distinct output formats, arranged by increasing structural complexity:

e Markdown: Requires only basic structural elements such as headings and lists, and employs
lightweight syntax, making it the simplest format. The prompt specifies: “Your output must be in
Markdown format. Use ## for headings, - for lists, and standard Markdown syntax for formatting.”

e HTML: Involves a broader set of structural elements and nested tags, representing moderate
formatting complexity. The prompt specifies: “Your output must be in HTML format. Use <h2>
for headings, <ul><1%> for lists, and standard HTML tags for formatting.”

e LaTeX: Demands strict command-level syntax and structural conformity, posing the greatest
challenge among the three formats. The prompt specifies: “Your output must be in LaTeX format.
Use \section{} for headings, \itemize{} for lists, and standard LaTeX commands for formatting. Do
not include preamble or document class.”

We evaluate model performance across five length constraints: 128, 256, 512, 1024, and 2048
words, covering a representative range from short to moderate generation lengths. These con-
straints were carefully selected to ensure added formatting syntax does not exceed the maximum
generation length supported by the models. Our evaluation includes leading proprietary mod-
els from OpenAl (GPT-40, GPT-40-mini, o1-mini, 03-mini) and Google (Gemini-2.0-Flash,
Gemini-2.0-Flash-Thinking, Gemini-2.5-Pro).

To accurately measure the semantic word count of generated outputs, we employ a rule-based
post-processing pipeline tailored to each output format. Specifically, HTML tags are removed by
stripping all content enclosed within angle brackets (<. . .>). For Markdown and LaTeX, lines or
tokens corresponding explicitly to formatting commands or syntax elements—such as headers (#),
list markers (-), or command sequences (\)—are removed. This preprocessing ensures accurate
assessment of semantic content length, unaffected by formatting-related artifacts.

Table 20: Effect of Markdown format constraints on Length Score. Green indicates improved scores,
while red denotes decreased scores.

Model ‘ Length Constrainats

| 128 256 512 1024 2048
GPT-40 mini 505(0123) | 626 (172) | 705137 | 7161 3.1) | 2651 1.0)
GPT-4o 56.6 (1 10.4) | 69.8 (10.2) | 68.4(11.9) | 61.0(18.0) | 22.6 (16.1)
ol-mini 53.4(1132) | 52.6(19.9) | 44.7(16.5) | 38.5( 1.8) | 202 (] 14.0)
Gemini-2.0-Flash 4421 15.6) | 51.6 (1 8.1) | 34.0(L42) | 512(13.5) | 522(0.5)
Gemini-2.0-Flash-Thinking | 51.0 (| 2.4) | 52.1 (1 3.1) | 56.6 (1 26.6) | 47.0 (1 14.9) | 28.6 (| 13.9)
Gemini-2.5-Pro 67.1(L57) | 63.7(13.7) | 542(t47) | 354 (1 1.6) | 30.6( 17.4)

Tables 20, Table 21, and Table 22 summarize the model performances measured by Length Score
under Markdown, HTML, and LaTeX format constraints, respectively. Overall, imposing additional
format constraints generally leads to lower Length Score scores across most models, especially
at extreme length targets (128 and 2048 words). For instance, o1-mini and Gemini-2.0-Flash
consistently show reduced performance across nearly all scenarios, suggesting that the complexity
of structural formatting can substantially impair the ability of models to precisely follow length
instructions.
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Table 21: Effect of HTML format constraints on Length Score. Green indicates improved scores,
while red denotes decreased scores.

Length Constrainats

Model
‘ 128 256 512 1024 2048

GPT-40 mini 51.0( 11.8) | 64.6([5.2) | 77.8(T 11.0) | 55.1 () 19.6) | 19.0 (] 6.5)
GPT-40 59.6 (1 7.4) | 71.9(12.3) 68.9 (1 2.4) 59.8 (1 9.2) 12.2 (1 4.3)
ol-mini 55.8 (L 10.8) | 51.9 (] 10.6) | 47.3(] 3.9) 31.9(1 84) | 14.0(]20.2)
Gemini-2.0-Flash 44.1 (} 15.7) | 51.3(] 8.4) 35.6 (1 2.6) 39.8 (L 7.9) 53.3 (1 0.6)
Gemini-2.0-Flash-Thinking | 56.3 (1 2.9) 549 (159) | 553 (1253) | 385(164) | 18.0( 24.5)
Gemini-2.5-Pro 64.0 (] 8.8) 58.2(19.2) 50.9 (T 1.4) 39.8 (12.8) | 30.5( 17.5)

Table 22: Effect of LaTex format constraints on Length Score. Green indicates improved scores,
while red denotes decreased scores.

Length Constrainats

Model
128 256 512 1024 2048

GPT-40 mini 48.2 (] 14.6) | 63.2 (| 6.6) 71.8 (1 5.0) 65.6 (1 9.1) | 24.9 (] 0.6)
GPT-40 543 () 12.7) | 67.3 (1 2.3) 66.4 (] 0.1) 61.4 (] 7.6) | 14.1(]2.4)
ol-mini 60.2 (] 6.4) 523 (1 10.2) | 44.2 (| 7.0) 403 (-) 17.5 (] 16.7)
Gemini-2.0-Flash 529 (1 6.9) 51.0 (1 8.7) 37.3(1 0.9) 54.7(17.0) | 59.5(16.8)
Gemini-2.0-Flash-Thinking | 58.0 (1 4.6) 55.3(16.3) 48.7 (1 18.7) | 349 (12.8) | 25.1 (] 17.4)
Gemini-2.5-Pro 62.9 (1 9.9) 60.8 (| 6.6) 56.7 (17.2) 37.8 (1 0.8) | 33.7(] 14.3)

However, the Gemini-2.0-Flash-Thinking model displays a notable deviation from this general
trend, achieving improved Length Score scores at intermediate length constraints (256, 512, and 1024
words) across all three output formats. This behavior suggests that, under certain circumstances,
structured output requirements may enhance rather than impede length compliance, possibly by
encouraging the model to employ more deliberate, organized generation strategies.

In summary, although output format constraints typically introduce significant additional challenges
to length instruction adherence, the exceptional performance of Gemini-2.0-Flash-Thinking
indicates promising directions for future model design and training. Specifically, incorporating
structured formatting constraints into training may not only mitigate performance degradation but
could potentially facilitate more effective and precise length instruction following.
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