Beyond Textual Claims: Strategy for Multimodal Fact Checking with Unified
Visual, Textual, and Contextual Representations

Anonymous ACL submission

Abstract

The growing rate of multimodal misinformation,
where claims are supported by both text and im-
ages poses significant challenges to fact-checking
systems that rely primarily on textual evidence.
In this work, we propose a unified framework for
fine-grained multimodal fact verification called
MultiCheck, designed to reason over structured
textual and visual signals. Our architecture com-
bines dedicated encoders for text and images with
a fusion module that captures cross-modal re-
lationships using element-wise interactions. A
classification head then predicts the veracity of
a claim, supported by a contrastive learning ob-
jective that encourages semantic alignment be-
tween claim-evidence pairs in a shared latent
space. We evaluate our approach on the Factify
2 dataset, achieving a weighted F1 score of 0.84,
substantially outperforming the baseline. These
results highlight the effectiveness of explicit mul-
timodal reasoning and demonstrate the potential
of our approach for scalable and interpretable
fact-checking in complex, real-world scenarios.

1 Introduction:

Misinformation has become a serious concern in to-
day’s digital environment, affecting many areas like
politics, public health, and finance (Caceres et al.,
2022). While early instances of false information
were mostly text-based (Murphy et al., 2023; Kim
et al., 2021; Di Domenico et al., 2021), modern mis-
information campaigns increasingly blend text with
images, audio, and video making them more persua-
sive and harder to detect (Abdali et al., 2024; Mura
et al., 2025; Askari, 2023). This rise in multimodal
misinformation reveals the limitations of traditional
fact-checking systems, which primarily focus on tex-
tual content (Tufchi et al., 2023; Braun et al., 2024,
Mura et al., 2025).
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Figure 1: Refuting a viral claim using combined text and
image evidence.

In response, the research community has turned to
multimodal fact-checking, where claims are verified
using both textual and visual contents (Akhtar et al.,
2023; Braun et al., 2024). Recent benchmarks such
as Fakeddit (Nakamura et al., 2019), Mocheg (Yao
et al., 2023b), and Factify 2 (Suryavardan et al.,
2023) have helped advance research in this direc-
tion, see appendix A for futher details.

Multimodal fact-checking remains a difficult and
open challenge. This is because, the task goes be-
yond simple classification. It requires understanding



how modalities interact and whether they support
or contradict each other. For example in Figure 1,
where a claim is paired with a scientific image that
appears credible but is actually unrelated. Identifying
this mismatch requires more than surface-level align-
ment. Thus we need a structured reasoning across
both textual and visual modalities.

Existing methods relied on one of two strategies: (i)
concatenating image-text embeddings (Chen et al.,
2020; Lu et al., 2019), or (ii) joining vision and lan-
guage encoders through late fusion (Du et al., 2023b).
For example, MOCHEG(Yao et al., 2023b) processes
claims and evidence through modality-specific en-
coders and fuses their outputs without deep cross-
modal interaction, whereas PRO-COFACTV2(Du
et al., 2023a) leverages attention-based mechanisms.
While these strategies capture basic correlations,
they often fail to detect fine contradictions or poorly
aligned semantics. we believe they fail to separate
modality-specific support signals and make the rea-
soning process transparent. We, on the other hand,
have proposed a unified fact-checking framework
called "MultiCheck", where we used (i) a novel fu-
sion technique, which captures semantic relation via
element-wise difference and product operations, and
(ii) a contrastive learning objective that aligns se-
mantically similar claim-document pairs in a shared
latent space, improving representation consistency
across modalities. Our approach is inspired by prior
advances in multimodal relational reasoning. The
element-wise difference and product were shown
to be capturing fine-grained interactions between
paired inputs in natural language inference models
(Conneau et al., 2017) and bilinear attention models
(Kim et al., 2018). These operations encode both
alignment and divergence between two modalities,
enabling more expressive cross-modal representa-
tions. To further strengthen semantic alignment, we
integrated a contrastive head that serves the objec-
tive of contrastive learning that operates on projected
claim-document embeddings. This module is trained
with a symmetric InfoNCE loss (Oord et al., 2018),
encouraging the model to align semantically related
pairs while pushing apart unrelated ones. Unlike
prior methods that used frozen embeddings or shal-
low probes (Cekinel et al., 2025a), our model is fully
trainable end-to-end and jointly optimizes for both
classification and contrastive learning, resulting in

a more discriminative and robust representation for
multimodal fact verification.

Our contributions are as follows:

* We have introduced a unified multimodal fact-
checking architecture, ''MultiCheck', that
combines structured text and image features.
It incorporates a contrastive head and a fu-
sion module to align semantically related claim-
evidence pairs while separating unrelated ones.
As aresult, we achieved a new state-of-the-art
on the Factify 2 benchmark with a weighted
F1 score of 0.84, outperforming the baseline by
27% .

* We have conducted thorough ablations to assess
the impact of different backbones, fusion strate-
gies, and training objectives. The results reveal
that relational fusion using difference and prod-
uct consistently outperforms simple concatena-
tion, and that the inclusion of the contrastive
loss significantly boosts performance, particu-
larly in ambiguous or weak evidence scenarios.

* We have performed a comprehensive error anal-
ysis using statistical significance tests, showing
that our model not only outperforms the base-
line but does so in a structurally meaningful
way, correcting more errors than it introduces.
Discordant pair comparisons and contingency
heatmaps analyses reveals consistent improve-
ments across challenging veracity classes.

* We further supported our findings through quali-
tative analysis, highlighting how OCR cues and
visual metadata can decisively shift predictions
in subtle cases often missed by prior systems.

2 Dataset details:

We used the Factify-2 dataset provided by Du et al.
(2024a) in our experiments. It is designed to assess
the claim veracity that requires reasoning over both
textual and visual information. It is different from
other datasets like LIAR (Wang, 2017), LIAR-PLUS
(Alhindi et al., 2018), and Mocheg (Yao et al., 2023a),
which either lack claim-side images or rely solely
on textual evidence. Factify-2, on the other hand,
includes real-world images, OCR-extracted text, and
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Figure 2: Intuitive fusion representation using element-wise difference and product.

paired claim-document examples having both images
and texts. It has 42,500 instances, each labelled with
one of five labels. The distributions of samples across
classes are shown in Table 1. A detailed description
of the dataset, along with some illustrative examples,
is reported in appendix (section B).

Factify 2 (Du et al., 2024a)
Classes Train | Validation | Test Total
Support_Multimodal 5,580 1,420 | 1,500 8,500
Support_Text 5,485 1,515 | 1,500 | 8,500
Insufficient_Multimodal 5,472 1,528 | 1,500 8,500
Insufficient_Text 5,494 1,506 | 1,500 8,500
Refute 5,469 1,531 | 1,500 | 8,500
Total 27,500 7,500 | 7,500 | 42,500

Table 1: Dataset statistics for Factify 2 across training,
validation, and test splits.

3 Methodology

In this section, we have reported our proposed frame-
work, schematically depicted in Figure 2. Our frame-
work has four components, i.e. (i) text module, (ii)
image module, (iii) fusion module, and (iv) classifi-
cation module. Each component of our framework
is described as follows,

Text module: This module converts the claims, asso-
ciated evidence documents and OCR texts extracted
from images into an embedding space. We have used
pre-trained language models such as RoBERTa (Liu
etal., 2019), DeBERTa (He et al., 2020), or SBERT
(Reimers and Gurevych, 2019) for this purpose. See
Appendix C.1 for further details.

Image module: Here, we convert images associated
with claims and associated evidence documents into
an embedding space. We used image encoders like
ResNet50 (He et al., 2016) or Vision Transformer
(ViT) (Dosovitskiy et al., 2020) for this purpose.
More details are reported in the Appendix C.2.

We used linear layers after text and image encoders to
keep the text and image embeddings of same shape.

Fusion module: Our key innovation lies in the fu-
sion module. It is designed to capture both direct and
relational interactions between multimodal evidence.
Prior systems rely on simple feature concatenation
(Mishra et al., 2020; Sata et al., 2025; Wang et al.,
2022). In contrast, our framework explicitly cap-
tures alignment and divergence between claim and
document evidence. It uses element-wise difference
and product operations over their multimodal rep-
resentations embeddings. This approach is inspired
by relational reasoning techniques shown effective
in prior research (Kim et al., 2018; Conneau et al.,
2017; Chen et al., 2020; Liu et al., 2023; Gong et al.,
2024).

Specifically, we first concatenate the text and image
embeddings separately for the claim and document,
forming initial multimodal representations. We then
compute (i) element-wise difference: which high-
lights differences between claim and document rep-
resentations, and (ii) element-wise product: which
emphasizes regions of strong alignment. This de-
sign enables the model to capture both conflicts and
alignments across modalities, denoted by:



* Vit = ‘Vclaim repr © Voc repr‘
° Vprod = Vclaim repr X Vdoc repr

where © denotes element-wise difference and ® de-
notes the element-wise product between the claim
and evidence document representation embeddings.
It helps in determining, whether the multimodal input
supports, refutes, or fails to verify a claim. Finally,
these four vector embeddings: the claim representa-
tion, evidence document representation, difference,
and product are concatenated, denoted by:

Vfused = Vdiff S Vprod S Vclaim repr S Vdoc repr

are passed through a fusion network. Where & shows
the operation of concatenation. This network con-
sists of a fully connected layer with GELU activation
(Hendrycks and Gimpel, 2016), and dropout reg-
ularization, producing a final fused feature vector,
denoted by:

° Vﬁnal = FFN(Vfused) S Rth

Where k denotes the dimensionality of the shared
latent space and b shows the batch-size. This final
fused representation encodes refined multimodal re-
lationships crucial for robust fact verification.

In addition to this, our framework integrates a
contrastive feature learning directly within the fusion
module. Specifically, we introduced a contrastive
projection head that maps the multimodal claim and
document representations embeddings into a shared
latent space for contrastive learning. This component
operates in parallel to the fused vector used for
classification shown in Figure 2, ensuring that both
objectives reinforce each other and improve the
model’s ability to distinguish between fine semantic
relationships. During training, we have applied
a symmetric InfoNCE loss (Oord et al., 2018)
to these projected embeddings, pulling together
representations of matching claim-document pairs
while pushing apart those of unrelated pairs. This
contrastive learning complements the supervised
classification objective, enhancing the model’s
ability to capture fine-grained relationships between
claims and evidence. Further architectural details
are provided in Appendix C.3.

Classification module: The final fused representa-
tion is passed through a linear classification layer to
predict one of five fine-grained veracity labels. This
head produces the final logits over the predefined
classes. This component serves as the decision layer,
translating the model’s joint understanding of textual
and visual signals into actionable predictions. To
improve discriminative capacity, we augmented the
classification training with a contrastive learning ob-
jective. Specifically, the claim and document embed-
dings are each projected into a shared latent space via
a contrastive head. A symmetric InfoNCE loss (Oord
et al., 2018) encourages semantically aligned claim-
document pairs to lie close in this space while push-
ing apart unrelated ones. Our final loss combines this
contrastive supervision with standard cross-entropy
loss for classification, denoted by:

Etotal = £CE +A- ﬁcontrastive

where A balances the influence of the contrastive
objective.

This dual-objective setup strengthens the model’s
ability, it not only classify correctly but also learn
a semantically structured embedding space, where
alignment across modalities is meaningful and con-
sistent. Appendix C.4 provides full mathematical
formulations and training details.

4 Experiments:

In this section, we have presented the experiments
conducted to evaluate the effectiveness of our pro-
posed framework. we evaluated the effect of vari-
ous learning strategies on model performance. Our
experiments progressively examined the impact of
model architectures and training choices. Special
focus is given to how fusion strategies and the role
of element-wise operations enhance multimodal rela-
tionships. Details regarding our reproduced baseline
are provided separately in Section 4.1.

4.1 Baselines:

For comparative evaluation, we reproduce the
Pro_cofactv2 model, originally proposed by Du et al.
(2024b), which has demonstrated state-of-the-art per-
formance on the Factify 2 benchmark.

To ensure comparison, we replicate the model using
the same configuration settings as the original work,



including fixed random seed initialization, optimizer
parameters, pretrained backbones, and architecture-
specific hyperparameters. The reproduced perfor-
mance of Pro_cofactv2 on the Factify 2 dataset is
summarized in Table 2. Additional details on the
reproduction setup and hyperparameter choices are
provided in Appendix B.2.

Class ‘ Precision ‘ Recall ‘ F1 Score
Support Text 0.48 (+0.04) | 0.38 (0.06) | 0.42 (x0.03)
Support Multimodal 0.50 (£0.04) | 0.61 (20.02) | 0.55 (£0.02)
Insufficient Text 0.50 (£0.01) | 0.44 (20.07) | 0.46 (£0.04)
Insufficient Multimodal | 0.43 (£0.02) | 0.46 (£0.06) | 0.44 (£0.02)
Refute 0.98 (£0.00) | 0.98 (x0.00) | 0.98 (+0.00)
‘Weighted F1 Score | 0.57 (x0.01)

Table 2: Performance of the reproduced baseline model
(Pro-CoFactv2) on the Factify 2 dataset.

4.2 Experimental Variants:

In addition to evaluating the baseline, we conducted
experiments to systematically examine the impact
of our proposed approach. Specifically, we compare
two main variants of our architecture:

With Contrastive Head: This version incorporates a
contrastive projection head applied to the multimodal
representations of claims and evidence documents.
Training includes a contrastive loss in addition to
the standard cross-entropy loss. This encourages the
model to learn modality-consistent and semantically
aligned embeddings.

Without Contrastive Head: In this version, the
contrastive projection head and the associated loss
are omitted. The model relies solely on cross-entropy
loss applied to the fused multimodal representation
for classification.

Both variants use the same text and image encoders,
fusion mechanism, and training hyperparameters.
The only difference is the inclusion of contrastive
supervision. Results for the contrastive variant are
shown in Tables 3 and 7, while results for the non-
contrastive variant are provided in Tables 4 and 8.
We discuss the comparative performance of these
two configurations in Section 5.

5 Results and Discussion:

We evaluated our proposed framework on the Factify
2 dataset using multiple combinations of language

and vision backbones. Performance is measured
using weighted F1 scores across five fine-grained
veracity labels. We have reported both overall and
class-wise results to assess the model’s capabilities.
As shown in Tables 3 and 4, all model variants signifi-
cantly outperform the baseline. Additionally, models
integrated with contrastive head consistently outper-
form their non-contrastive counterparts, see Figure
6. This trend holds across the visual encoders, con-
firming the robustness of our architecture. Notably,
the marginal gains are observed in “Insufficient” and
“Refute” categories that require resolving minor dif-
ferences between text and images. These results
show that our fusion method and contrastive learning
help the model to better connect text and images.

5.1 Insights:

Contrastive learning boosts accuracy: Across all
settings, the inclusion of contrastive supervision
yields statistically significant gains. It consistently
outperforms non-contrastive counterparts, see Ta-
ble 5. The consistent asymmetry in discordant pre-
diction counts, as shown in Figure 7, confirms that
contrastive models correct significantly more base-
line errors than they introduce.

Role of fusion strategy: The fusion module using
element-wise difference and product provides crit-
ical advantages over simple concatenation. These
operations help the model clearly match or contrast
the claim with the evidence, improving its reasoning.
Model robust nature: Whether paired with
ResNet50 or ViT, and regardless of the language
encoder, the contrastive head along with fusion mod-
ule consistently improves performance, highlighting
its modularity and general applicability.

6 Error analysis:

To better understand the behavioral differences be-
tween our models and the baseline, we performed a
detailed error analysis using both statistical signifi-
cance tests and qualitative assessments.

Statistical comparisons: we have applied McNe-
mar’s test for overall accuracy and Bowker’s test
for class-level shifts. Results across all five model
and variants are reported in Tables 5, 6 which shows
McNemar’s x2 scores are consistently high with p-
values well below 0.05, confirming significant gains



Models w/ Contrastive Head | Support Text | Support Multimodal | Insufficient Text | Insufficient Multimodal Refute Weighted F1 Score
Roberta + ResNet50 0.77 (x0.02) 0.83 (x0.01) 0.82 (x0.00) 0.76 (+0.02) 1.00 (+0.00) 0.84 (x0.01)
Roberta + ViT 0.77 (x0.02) 0.84 (+0.01) 0.82 (+0.00) 0.77 (0.01) 1.00 (x0.00) 0.84 (x0.01)
DeBERTa + ViT 0.77 (20.01) 0.84 (20.01) 0.83 (£0.00) 0.78 (£0.01) 1.00 (20.00) 0.84 (£0.01)
DeBERTa + ResNet50 0.76 (£0.02) 0.81 (£0.02) 0.81 (x0.01) 0.75 (£0.02) 1.00 (£0.00) 0.83 (x0.01)
SBERT + ResNet50 0.75 (0.01) 0.83 (x0.01) 0.79 (0.00) 0.76 (x0.01) 1.00 (0.00) 0.82 (0.00)
Baseline 0.42 (+0.03) 0.55 (x0.02) 0.46 (£0.04) 0.44 (£0.02) 0.98 (+0.00) 0.57 (20.01)

Table 3: Class-wise F1 scores and weighted F1 for various model combinations on the Factify 2 dataset with contrastive
head. Each value is the mean F1 *std across seeds. Precision and Recall are reported in Table 7.

Models w/o Contrastive Head | Support Text | Support Multimodal | Insufficient Text | Insufficient Multimodal Refute Weighted F1 Score
Roberta + ResNet50 0.74 (x0.01) 0.82 (x0.01) 0.78 (x0.01) 0.75 (x0.01) 0.99 (z0.01) 0.82 (x0.01)
Roberta + ViT 0.75 (x0.01) 0.82 (x0.01) 0.79 (x0.01) 0.75 (0.01) 1.00 (0.00) 0.82 (+0.00)
DeBERTa + ViT 0.74 z0.01) 0.82 (+0.00) 0.78 (20.01) 0.75 (x0.01) 1.00 (x0.00) 0.82 (x0.00)
DeBERTa + ResNet50 0.74 (x0.01) 0.81 (x0.01) 0.78 (x0.01) 0.74 (z0.01) 1.00 (0.00) 0.81 (x0.00)
SBERT + ResNet50 0.71 (£0.03) 0.81 (x0.02) 0.75 (x0.02) 0.74 (£0.02) 0.99 (+0.00) 0.78 (0.05)
Baseline 0.42 (£0.03) 0.55 (x0.02) 0.46 (0.04) 0.44 (£0.02) 0.98 (+0.00) 0.57 (0.01)

Table 4: Class-wise F1 scores and weighted F1 for various model combinations on the Factify 2 dataset (no contrastive
head). Each value is mean F1 =£std across seeds. Precision and Recall are reported in Table 8.

Models w/ Contrastive Head MCN;IQHar’S M;l-\i::ir’s iltg;niczfloc; )](320(\’:11;:;:)5) BI:)_ v::l(:r;s Syl:ne;f:ttry
Roberta + ResNet50 1238.56 < 0.05 v 91.85 2.33 x 10715 v
Roberta + ViT 1333.14 < 0.05 v 132.10 0.00 v
DeBERTa + ViT 1480.57 < 0.05 v 118.33 0.00 v
DeBERTa + ResNet50 1217.24 < 0.05 v 166.16 0.00 v
SBERT + ResNet50 1070.45 < 0.05 v 82.030 | 2.00 x 10713 v

Table 5: Significance-test results comparing the multimodal model against the baseline on Factify 2.

Models w/o Contrastive Head McN;IZnar’s M]c?l-\l‘:::laer’s iltg:licgfloc; )](320(‘:1];:11"05) BI;)_ v‘t':l(::s syl;zle:ttry
Roberta + ResNet50 1129.91 < 0.05 v 75.64 3.56 x 10712 v
Roberta + ViT 1243.45 < 0.05 v 140.44 0.00 v
DeBERTa + ViT 965.16 < 0.05 v 122.93 0.00 v
DeBERTa + ResNet50 1195.33 < 0.05 v 153.76 0.00 v
SBERT + ResNet50 891.88 < 0.05 v 100.06 0.00 v

Table 6: Significance-test results comparing the multimodal model against the baseline on Factify 2.



over the baseline. Whereas Bowker’s results shows
that our models make structured, non-random im-
provements in class predictions.

Discordant pair analysis: we examined our model
improvements over the baseline by comparing pre-
dictions from each variant of the models, using 2x2
McNemar’s contingency setup. Specifically, we con-
sidered two key cases: In first we denoted (b) as the
number of instances, where the baseline is correct
and our model errors, and, second where (c¢) as the
opposite our model is correct and the baseline errors.
These corresponds to the off-diagonal cells in McNe-
mar’s 2x2 contingency table. Across all five configu-
rations, (c) consistently and substantially outnumbers
(b) as illustrated in Figures 7. This suggests that our
models make meaningful improvements rather than
random changes, consistently correcting the base-
line’s mistakes. These findings are consistent with
the significance tests further supporting the effective-
ness of our approach.

Qualitative Analysis: To better understand model
behavior, we examined the mismatches between our
approach and the baseline. As shown in Figure 3,
the baseline overlooked the visual modality entirely
and based its decision on text alone, predicting In-
sufficient Text. In contrast, our model incorporated
the OCR-detected credit “Helen Sloan/HBO” from
the image, identifying it as a licensed promotional
photograph a detail suggesting the image does not
contribute new factual content. By recognizing the
lack of substantive support in both text and image,
our model rightly predicted Insufficient Multimodal.
This highlights how image provenance, even in OCR
form, enhances factual reasoning. Additional exam-
ples are discussed below:

Additional examples of qualitative analysis:

We have presented detailed examples mentioned by
the original ID of the samples as per the dataset,
comparing predictions from our approach against the
baseline. These examples illustrate how OCR-based
information like photographer credits, agency marks,
or image overlays can either resolve or confuse mul-
timodal evidence verification.

Example A: When MultiCheck outperforms the
baseline

* ID 4681: The baseline model, using only tex-
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Figure 3: Example of qualitative analysis, Sample from
the dataset.

Insufficient
Multimodal

tual signals, interpreted the phrase ‘“Made in
India vaccines” as concrete evidence support-
ing the claim thus predicting Support_Text.
However, the OCR-extracted string “COLO
STORAE” (interpreted as “cold storage”)
hinted at logistical or infrastructure gaps in
the vaccine delivery, casting doubt on the suf-
ficiency of the claim’s evidence. Our model’s
multimodal fusion recognized this ambiguity
and opted for Insufficient_Text, aligning with
the ground truth. This example shows how
even noisy OCR text can surface hidden context
missed by text-only models.

* ID 6968: The baseline inferred support based
on name and context matches in the text (e.g.,
“Governor Jagdeep Dhankar”), resulting in a
Support_Text prediction. However, the image’s
OCR output “ANI” indicated it was a generic
press photo from a news agency, lacking eviden-
tiary value. Our model correctly interpreted this,
combining the weak textual alignment with the
non-informative image tag to determine that nei-
ther modality offered enough proof thus choos-
ing Insufficient_Multimodal. This highlights the



model’s ability to ignore superficial visual cues.

Example B: When baseline outperforms Multi-
Check

» ID 7171: Here, our model was overly cautious.
The OCR tag “ANI” led it to interpret the im-
age as a generic stock photo, causing it to dis-
count visual evidence. It then judged the claim
as lacking visual proof and labeled it Insuffi-
cient_Multimodal. However, the textual por-
tion “will lay foundation stone” is a direct and
verifiable event announcement, and the image
(even if generic) serves as a credible contex-
tual anchor. The baseline, focusing on the as-
sertive language in the text, correctly predicted
Support_Multimodal. This example shows that
OCR can occasionally mislead, especially when
image content is generic but still contextually
supportive.

e ID 6707: Our model was likely confused by
noisy OCR clutter: multiple “ANI” tags and ir-
relevant text like “WINE SHOP” and exam ref-
erences (UPSC/MPSC). These spurious signals
may have interfered with alignment, prompt-
ing it to under-call the claim’s evidential value.
The baseline, unencumbered by these distrac-
tions, focused on the strong textual indicator
“deployed” and correctly chose Support_Text.
This example underlines the need for OCR gat-
ing or filtering in future iterations.

Key Observations:

* OCR text can be highly informative espe-
cially when images include meta-tags, banners,
or visual overlays not present in article text.

¢ Failure cases arise when OCR includes irrele-
vant or misleading tokens, causing the model to
over- or under-attend to visuals.

* Future directions: We plan to incorporate an
OCR quality gating mechanism and synthetic
noisy-OCR augmentation to improve model ro-
bustness.

7 Conclusion:

This paper introduces a unified framework for fine-
grained multimodal fact-checking that jointly rea-
sons over textual and visual evidence. Our archi-
tecture integrates structured representations from
pre-trained language and vision models using a rela-
tional fusion module. It further employs a contrastive
learning objective to enhance cross-modal alignment.
This design allows the model to better capture fine
agreements and contradictions between claims and
evidence across modalities. As our approach outper-
forms the baseline, across multiple configurations.
It achieves particularly notable gains in complex
classes such as "Insufficient" and "Refute", where
multimodal reasoning is critical. Statistical tests and
qualitative analyses confirm that the improvements
are consistent and meaningful. These gains are sys-
tematic, rather than incidental. Overall, our results
emphasize the importance of explicit cross-modal
alignment and representation learning in advancing
automated fact verification.

8 Limitation:

While our approach shows strong empirical perfor-
mance, several limitations remain:

* Dependence on OCR quality: The model incor-
porates OCR-extracted text from images, which
can vary widely in accuracy and relevance. In
cases of noisy or misleading OCR outputs, the
model may misclassify due to spurious visual-
textual alignment.

* No evidence retrieval component: Our frame-
work assumes that relevant evidence both tex-
tual and visual is already provided. It does not
includes any retrieval pipeline to source addi-
tional or more reliable evidences from external
knowledge bases or web sources.

* Limited visual understanding: Although image
features are included via pre-trained encoders,
the model lacks deeper visual reasoning capa-
bilities such as object detection, scene under-
standing, or temporal cues that could improve
evidence grounding.

* Restricted modalities: The current system han-
dles only text and image modalities. It does not



address audio, video, or temporal multimodal
misinformation, which are common in modern
social media content.
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Appendix
A Related Work

Recent research in automated fact-checking has high-
lighted the growing importance of incorporating mul-
tiple modalities, to tackle the diverse and evolving
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forms of misinformation (Abdelnabi et al., 2022).
Early works, such as FEVER (Thorne et al., 2018)
and CLEF2018 (Nakov et al., 2021) are primarily
focused on verifying textual claims, laying founda-
tional methods for claim verification based solely
on textual evidence. However, later studies found
that misinformation exploits images, videos, and
audio alongside text to build convincing narratives
(Hameleers et al., 2020; Alam et al., 2022). These
studies have revealed the limitations of purely text-
based fact-checking methods and sparked a shift to-
ward multimodal fact-checking. To tackle the limita-
tion of text-based methods, systems were designed
to jointly process and reason over diverse types of
content. For example, several studies, such as (Du
et al., 2023b) and (Zlatkova et al., 2019; Khaliq et al.,
2024), have explored architectures that integrated tex-
tual and visual features. These models employ mech-
anisms like attention or contrastive learning to en-
hance detection accuracy. Recent work by (Cekinel
et al., 2025b) shows that a probing classifier combin-
ing separate text and image embeddings can outper-
form intrinsic VLM features on datasets like Factify
2. In addition to these developments, comprehen-
sive surveys, such as (Akhtar et al., 2023), offers
detailed overview regarding the emerging field of
multimodal fact-checking. They highlighted both
the technical challenges and the promising research
directions ahead. Key challenges include aligning in-
formation across modalities, managing incomplete or
noisy evidence, and ensuring scalability for practical
deployment.

Despite significant progress, effectively integrating
multimodal information remains an open research
problem. This challenge continues to motivate the
development of new architectures and learning meth-
ods. Robust fact verification in multimodal contexts
still requires innovative solutions.

B Additional details on datasets:

In this section, we provide a comprehensive overview
of the Factify 2 dataset, including representative
examples and insights into its distributional charac-
teristics.
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B.1 Factify 2 (Du et al., 2024a):

Factify 2 is a large-scale multimodal fact verification
dataset comprising 42,500 human-annotated claims
drawn from diverse domains such as politics, health,
environment, and global affairs. Claims were curated
from credible news media sources across India and
the United States. Specifically, true claims were
collected from official Twitter accounts of verified
news organizations, while false claims were sourced
from authoritative fact-checking platforms, including
PolitiFact', Alt News?, and BoomLive?.

A distinctive strength of Factify 2 lies in its rich
multimodal evidence composition. For each claim,
the dataset includes (i) textual evidence retrieved
from external news articles, (ii) claim-associated im-
ages (typically extracted from the header sections of
original posts), and (iii) image evidence from sup-
porting or refuting documents. Each sample is anno-
tated with one of five fine-grained labels that describe
the relationship between the claim and the retrieved
evidence. The labels they considered are: “Sup-
port_Text” (the textual evidence supports the claim),
“Support_Multimodal” (both textual and visual evi-
dence jointly support the claim), “Insufficient_Text”
(textual evidence is present but insufficient to verify
the claim), “Insufficient_Multimodal” (both textual
and image evidence are insufficient), and “‘Refute”
(the evidence directly contradicts the claim).

The dataset supports training and evaluation of mul-
timodal models in realistic settings, where claims
are to be verified using diverse evidence types. A
representative sample from the dataset is presented
in Figure 4 for illustration.

Due to the unavailability of ground truth labels for
the test split, we follow the protocol adopted by
Cekinel et al. (2025a) and repurpose the original
validation set for testing. To maintain a development
split, 7,500 samples were randomly selected from
the original training set to form a new validation set,
preserving the original class distribution across all
partitions.

"https://www.politifact.com
2https://www.altnews. in
3https://www. boomlive.in
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Figure 4: Example of a Sample from the dataset.

B.2 Additional details on baselines:

In this section, we reported the details of the individ-
ual baseline method considered in our study.

* Pro-CoFactv2: It is proposed by Du et al.
(2023a). The authors developed a parameter-
efficient multi-modal fact verification model
that leverages pretrained language and vi-
sion encoders with minimal task-specific tun-
ing. Their system is designed with two key
components: (i) a feature extraction module
built upon large foundation models, and (ii)
a lightweight classifier module that integrates
contrastive and classification objectives. In
the feature extraction stage, the text encoder
is initialized from microsoft/deberta-large,
while the image encoder is derived from
microsoft/swinv2-base-patch4-window8-
256. Both encoders are kept unfrozen, allow-
ing full gradient updates during training. Text
and image embeddings are projected into a joint
space using adapter modules with a bottleneck
dimension of 64. The model applies a linear
fusion technique to integrate both modalities
effectively.

For the training objective, they employed a
multi-loss setup that combines cross-entropy
loss for veracity classification and supervised
contrastive loss to better align intra-class ex-
amples in the embedding space. Specifically,


https://www.politifact.com
https://www.altnews.in
https://www.boomlive.in

the contrastive loss is scaled by a factor of 0.3,
while the classification loss retains a full weight
of 1. The model is trained using a batch size
of 32 and a learning rate of 5 x 10~°, for 20
epochs. Evaluation is performed after every
epoch to track performance.

Our reproduction strictly follows the original
configuration settings to preserve accuracy with
reduced token length due to GPU constraint.
We have used a NVIDIA A100 GPU of 80 GB
capacity to perform our experiments. This in-
clude fixing the seed value to 42, 57, 196, 906
for reproducibility, setting the maximum se-
quence length to 128 tokens, using 12 attention
heads, and a dropout rate of 0.1. The hidden di-
mensionality in intermediate layers is set to 256,
aligned with the FakeNet backbone mentioned
in the architecture.

C

This appendix provides detailed architectural and im-
plementation specifications for our proposed frame-
work. The following sections correspond to the mod-
ules introduced in section 3

Additional details on modules:

C.1 Details on text module:

The text module processes both the claim text and the
OCR-extracted text from associated images. These
are concatenated for each instance to create a richer
and more context-aware representation. Figure 5
demonstrates, how OCR text can provide crucial
information absent from the original claim text, help-
ing the model detect contradictions necessary for
accurate veracity classification.

Given the batch of claims and document, the result-
ing textual inputs are tokenized using the pre-trained
language models such as RoBERTa (Liu et al., 2019),
DeBERTa (He et al., 2020), or SBERT (Reimers and
Gurevych, 2019). Yielding token input ID’s and at-
tention mask tensors of shape R®* %, where b is the
batch size, L is the maximum sequence length and
diext 18 the input dimension of the projection layer
for text (e.g., for Roberta and DeBERTa4, it is 1024
and for SBERT it is 768). These inputs are passed
through a shared encoder of language models. Pro-
ducing contextualized embeddings of shape:

Htext E Rb X L x dlexl
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Claim: ""Nepal shot down an Indian HAL Rudra helicopter that was
carrying an airstrike in Belahiya and captured an Indian
pilot".

Claim_OCR: "Today, Indian airforces had crossed the border to
conduct airstrikes on the Nepal territories, In the
resulting, we've shot down one Indian HAL Rudra
and captured one Indian pilot. Now We'll not return
pilot to india".

Resulting_text: "Nepal shot down an Indian HAL Rudra helicopter
that was carrying an airstrike in Belahiya and
captured an Indian pilot Today, Indian airforces had
crossed the border to conduct airstrikes on the Nepal
territories, In the resulting, we've shot down one
Indian HAL Rudra and captured one Indian pilot.
Now We'll not return pilot to india" .

Figure 5: The claim accuses Nepal of shooting down an
Indian military helicopter. However, the OCR text from the
image contradicts this, suggesting Indian forces crossed
the border instead implying aggression from India, not
Nepal. Without this OCR text, the model may misinter-
pret or miss this contradiction. This Example illustrates
how OCR text contributes critical contextual information,
enabling the model to detect contradictions and correctly
assign a “Refute” label.

We extract the [CLS] token embeddings from each
sequence, resulting in a fixed-size representations of:
hicrs) € R*dex . These embeddings are projected
into a common latent space via a fully connected
layer denoted by:

Viext = Wiext - hjers) + B, Viext € RO*P

where h denotes the dimensionality of the shared
latent space, B denotes the bias term and Wy is
the weight matrix of a linear layer that maps the text
encoder’s output into a shared latent space.

C.2 Details on image module:

In this section, we reported the detailed architec-
tural description of our image module. Each claim
and document image is preprocessed and passed
through a shared vision encoders such as ResNet50
(He et al., 2016) or Vision Transformer (ViT) (Doso-
vitskiy et al., 2020).

This produces high-dimensional visual features of
shape: fi,g € Rb*dimsz where dimg 1s the dimension-
ality of the raw output from the image encoder before
projection into a shared latent space, and have val-
ues 2048 (ResNet) or 768 (ViT) respectively. These



feature embeddings are independently projected into
the same latent space via linear layers denoted by:

Vimg = Wimg : fimg + B, Vimg S Rth

Wi is the weight matrix for the projection layer
that maps raw image features into the same shared
latent space.

At the end of this step, we obtain four core represen-
tative vectors of shape b x h :

* 'V aim text : text embedding for claim

* Voc text : text embedding for document

* Viiaim img - image embedding for claim

* Vioc img : image embedding for document

C.3 Details on fusion module:

After obtaining both text and image embeddings for
claim and document pairs, we concatenate the corre-
sponding text and image features for both the claim
and the document, yielding two integrated represen-
tations: claim representation (V cjaim repr) and docu-
ment representation (V goc repr), represented by:

* Vilaim repr — V ctaim text © V claim img
* Vioc repr — Vaoc text ® Vdoe img

where @ shows the operation of concatenation and
* [Vclaim reprs Vioe repr] € Rox2h

To capture fine-grained representation, we perform
two element-wise operations between claim repre-
sentation and document representation: the differ-
ence (Vgifr) to emphasize contrasts and the product
(Vprod) to capture alignment, represented by:

* Vdiff = ‘Vclaim repr © Vdoc repr‘
* Vprod = Vclaim repr ® Vdoc repr

where © shows element-wise difference between
claim representation and document representation,
and ® shows the element-wise product between
claim and document representation.

These four vectors: claim representation, docu-
ment representation, difference, and product are then
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concatenated to form a single fused vector of shape
b x 8h, denoted by:

Vfused = Vdiff b Vprod b Vclaim repr @ Vdoc repr

This fused vector (Viyeeq) is passed through a fully
connected network, which consists of a linear trans-
formation layer and a non-linear activation (for e.g,
GELU) to output a unified representation repre-
seneted by:

* Viina = FFN(Vfused) S ROxP

As part of our fusion module, we incorporate a con-
trastive projection head to learn discriminative rep-
resentations that align semantically related claim-
document pairs. After computing the multimodal
representations of the claim and document, denoted
as: Velaimrepr and Vgoc repr» €ach vector is passed
through a dedicated projection network defined as:

chaim = f proj (Vclaim repr)
Lyoc = f proj (Vdoc repr)

where fyro) consists of:

¢ A linear transformation to reduce dimensional-
ity from 2h to h

* A ReLU non-linearity

» A second linear layer projecting the vector back
to dimension h

So, Formally:
L fproj (V) = Wy -ReLLU (Wl -V + Bl) + By

where W, € R"2h W, ¢ R"*" B; & By de-
notes the bias term of the respective layers and v
is the concatenated multimodal representation of ei-
ther the claim or the document i.e. 'V cjaim repr and
Vdoc repr- We have used two distinct linear layers
with a ReLU bottleneck in between, first squeez-
ing 2h—h then re-expanding h—h. The depth and
non-linearity that we used here is crucial to give the
projection head enough capacity to learn richer and
contrastingly useful embeddings.

The resulting embeddings, Zjaim and Zgqc, serve as
inputs to the contrastive learning objective described
in Appendix C.4



C.4 Details on classification module:

The final fused representation (Vigy,,) is passed
into a classification head, a linear layer fol-
lowed by a softmax activation to produce log-
its for five veracity classes. ie C 5: Sup-
port_Text, Support_Multimodal, Insufficient_Text, In-
sufficient_Multimodal, and Refute denoted by:

*P=Wy Vina+B, Pe RO%5

Model training uses standard cross-entropy loss com-
puted over these logits denoted by:

( 1eXP(Z /)

To encourage the model to learn modality-
consistent and discriminative representations, we in-
clude a symmetric InfoNCE loss computed on the
projected embeddings (Z¢jaim and Zgoc) from the con-
trastive head. First we do the normalization, each row
of the projected claim and document embeddings is
normalized to unit length:

b

Z

Lcg =

. zZ
7z =
2|2
We compute the similarity matrix S as:
5 5T
S = chaim . Zd()c

which yields a matrix of shape (b x b).
The element S;; represents the similarity between

the ¢-th claim and the j-th document in the batch.
Then we compute the InfoNCE loss:

Row-wise InfoNCE (claim — doc):

exp (Sii/T)
b exp (Sij/T)

Lossclaim—>doc =

-3 Z
Column-wise InfoNCE (doc — claim):

Sii/T)

i exp (Sij/7)

exp

LOSSdoc—>claim -

bZ
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The final contrastive loss is computed as the average
of the two directions:

£contrastive - (Lossclaimﬁdoc + Lossdocaclaim)

N |

where 7 is a temperature hyperparameter controlling
the sharpness of the softmax distribution. So, The
total training objective combines the supervised clas-
sification loss with the contrastive learning signal:

£total = £CE +A- Econtrastive

where )\ balances the influence of the contrastive ob-
jective. In our experiments, we set A = 0.1. This
composite loss encourages the model not only to
correctly classify claim-evidence pairs but also to
learn a representation space where semantically re-
lated claims and documents are closely aligned while
unrelated pairs are well-separated.

C.5 Hyperparameter details:

We performed a thorough hyperparameter search
over all key modeling and training parameters to
identify the settings that yielded the best valida-
tion performance. Table 9 summarizes every hy-
perparameter and their final values used for both the
contrastive-head and non-contrastive variants. All
experiments were carried out on one NVIDIA A100
80 GB GPU.

C.6 Evaluation metrics:

We evaluate our model performance primarily via the
F1 score, which is the harmonic mean of precision
and recall for each class. In our multi-class setting,
class frequencies vary substantially. Unweighted F1
scores per label may not reflect true performance,
as models might perform well only on the dominant
class and still appear effective.

To summarize performance across all classes while
accounting for class imbalance, we use the weighted
F1 score. This metric assigns each class’s F1 score
a weight based on its support that is, the number of
true instances for that class. Formally, if F; is the F;
for class ¢ and n; its support, then

>ini b
D i

Weighted-F,
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Figure 6: Comparison of model performance on the Factify 2 dataset, with vs. without the contrastive-learning head.
Each point on the line plot is the weighted F; score (mean across seeds).

Models Models w/ Contrastive Head | Metric Support Text Support Multimodal Insufficient Text Insufficient Multimodal Refute
, Precision  0.77 (20.03) 0.82 (£0.01) 0.82 (£0.02) 0.76 (£0.01) 1.00 (£0.00)
Roberta + ResNet50 Recall 077 (20.01) 0.84 (£0.02) 0.81 (20.01) 0.76 (£0.02) 0.99 (+0.00)
Roberta + ViT Precision  0.78 (20.01) 0.82 (£0.01) 0.86 (£0.01) 0.75 (£0.02) 1.00 (£0.00)
Recall  0.77 (£0.02) 0.85 (£0.02) 0.79 (£0.01) 0.79 (£0.01) 1.00 (£0.00)
] Precision  0.75 (20.03) 0.81 (£0.01) 0.83 (£0.02) 0.72 (£0.01) 1.00 (£0.01)
DeBERTa + VIT Recall 074 (20.03) 0.83 (£0.08) 0.73 (£0.03) 0.78 (£0.02) 1.00 (£0.01)
Precision  0.75 (20.02) 0.83 (£0.01) 0.84 (£0.00) 0.73 (£0.03) 1.00 (0.00)
DeBERTa + ResNet50 Recall  0.78 (20.01) 0.80 (£0.04) 0.78 (£0.01) 0.78 (£0.02) 1.00 (£0.00)
Precision  0.74 (20.01) 0.80 (£0.01) 0.83 (£0.01) 0.77 (£0.01) 1.00 (£0.00)
SBERT + ResNet30 Recall  0.76 (£0.02) 0.86 (£0.01) 0.76 (x0.01) 0.74 (£0.01) 0.99 (+0.00)
Baseline Precision  0.48 (20.04) 0.50 (£0.04) 0.50 (£0.01) 0.43 (£0.02) 0.98 (£0.00)
‘ Recall  0.38 (20.06) 0.61 (£0.02) 0.44 (£0.07) 0.46 (£0.06) 0.98 (£0.00)

Table 7: Performance of various model combinations on the Factify 2 dataset with contrastive head. Precision and
Recall are reported per class (std in ).

Models Models w/o Contrastive Head ‘ Metric  Support Text Support Multimodal Insufficient Text Insufficient Multimodal Refute
Roberta + ResNet50 Precision  0.75 (+0.01) 0.81 (x0.04) 0.81 (+0.00) 0.73 (x0.02) 1.00 (+0.00)
Recall 0.73 (x0.02) 0.83 (x0.03) 0.76 (x0.02) 0.77 (+0.05) 0.99 (+0.00)
Roberta + ViT Precision  0.76 (+0.02) 0.82 (x0.01) 0.83 (+0.02) 0.71 (x0.02) 1.00 (x0.00)
Recall 0.74 (+0.02) 0.82 (+0.02) 0.75 (+0.03) 0.79 (x0.03) 1.00 (+0.00)
DeBERTa + ViT Precision  0.75 (+0.03) 0.81 (+0.01) 0.83 (x0.02) 0.72 (x0.01) 1.00 (+0.00)
Recall 0.74 (+0.03) 0.83 (x0.02) 0.73 (x0.03) 0.78 (+0.02) 1.00 (+0.00)
DeBERTa + ResNet50 Precision  0.73 (0.01) 0.80 (x0.01) 0.82 (+0.02) 0.73 (x0.02) 1.00 (+0.00)
Recall 0.75 (+0.00) 0.82 (+0.02) 0.74 (£0.02) 0.75 (x0.01) 1.00 (x0.00)
SBERT + ResNet50 Precision  0.71 (x0.02) 0.80 (+0.01) 0.78 (£0.01) 0.72 (x0.02) 1.00 (x0.00)
Recall 0.72 (x0.01) 0.82 (x0.02) 0.72 (£0.04) 0.75 (x0.01) 0.99 (x0.00)
Baseline Precision  0.48 (+0.04) 0.50 (x0.04) 0.50 (+0.01) 0.43 (x0.02) 0.98 (+0.00)
Recall 0.38 (+0.06) 0.61 (x0.02) 0.44 (+0.07) 0.46 (+0.06) 0.98 (+0.00)

Table 8: Performance of various model combinations on the Factify 2 dataset. Precision and Recall are reported per

class (£std in ).
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Component Hyperparameter Contrastive Non-Contrastive
Reproducibility Seeds 42/ 571196 /906 42/ 5771196 / 906
Tokenization max_length 128 128
Model Common embedding dim 256 256
Fusion MLP dropout 0.1 0.1
Contrastive Loss Temperature 0.1 -
Loss weight () 0.1 -
Optimization Optimizer Adam Adam
Learning rate 1x107° 1x107°
Batch size 32 32
Num workers 4 4
Pin memory True True
Epochs 20 20
LR Scheduling Scheduler ReduceLROnPlateau ReduceLLROnPlateau
factor 0.5 0.5
patience 2 2
Early Stopping patience 5 5
min_delta 1x107* 1x107*
Mixed Precision AMP autocast + autocast +
GradScaler GradScaler

Table 9: Hyperparameter settings for both the contrastive and non-contrastive variants.

This approach balances contributions from rare and
frequent classes, making weighted F1 a fairer and
more realistic summary of multi-class performance.

D Experimental Setup:

We conducted all experiments on a single NVIDIA
A100 GPU using PyTorch and Hugging Face Trans-
formers. Random seeds are choosen at 42, 57, 196
and 906 for reproducibility. For textual encoding, we
experimented with a range of pre-trained language
models. To extract visual features, we leveraged
widely used vision backbones. Details of these com-
ponents are provided in Section 3. Both modalities
are projected into a shared latent space. The fusion
module processes the claim and document embed-
dings, along with their element-wise difference and
product. A contrastive projection head further trans-
forms these representations for InfoNCE loss com-
putation. Training uses the Adam optimizer with a
learning rate of 1 x 107° batch size 32, and early
stopping based on validation weighted F1. The con-
trastive loss weight A is set to 0.1, and temperature
7 to 0.1. A dropout of 0.1 is applied after the fusion
layer. Experiments are conducted on the Factify 2
dataset, following the split protocol of Cekinel et al.
(2025b). Evaluation metrics include weighted F1
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score. Code and trained models will be released
publicly for reproducibility.
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Figure 7: Comparison of discordant-pair barplots (first column per model) and McNemar 2x2 contingency heatmaps
(second column per model), both with and without the contrastive head. Models (top to bottom): Roberta + ResNet50,
Roberta + ViT, DeBERTa + ViT, DeBERTa + ResNet50, SBERT + ResNet50.
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