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Abstract
The growing rate of multimodal misinformation,001
where claims are supported by both text and im-002
ages poses significant challenges to fact-checking003
systems that rely primarily on textual evidence.004
In this work, we propose a unified framework for005
fine-grained multimodal fact verification called006
MultiCheck, designed to reason over structured007
textual and visual signals. Our architecture com-008
bines dedicated encoders for text and images with009
a fusion module that captures cross-modal re-010
lationships using element-wise interactions. A011
classification head then predicts the veracity of012
a claim, supported by a contrastive learning ob-013
jective that encourages semantic alignment be-014
tween claim-evidence pairs in a shared latent015
space. We evaluate our approach on the Factify016
2 dataset, achieving a weighted F1 score of 0.84,017
substantially outperforming the baseline. These018
results highlight the effectiveness of explicit mul-019
timodal reasoning and demonstrate the potential020
of our approach for scalable and interpretable021
fact-checking in complex, real-world scenarios.022

1 Introduction:023

Misinformation has become a serious concern in to-024

day’s digital environment, affecting many areas like025

politics, public health, and finance (Caceres et al.,026

2022). While early instances of false information027

were mostly text-based (Murphy et al., 2023; Kim028

et al., 2021; Di Domenico et al., 2021), modern mis-029

information campaigns increasingly blend text with030

images, audio, and video making them more persua-031

sive and harder to detect (Abdali et al., 2024; Mura032

et al., 2025; Askari, 2023). This rise in multimodal033

misinformation reveals the limitations of traditional034

fact-checking systems, which primarily focus on tex-035

tual content (Tufchi et al., 2023; Braun et al., 2024;036

Mura et al., 2025).037
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Figure 1: Refuting a viral claim using combined text and
image evidence.

In response, the research community has turned to 038

multimodal fact-checking, where claims are verified 039

using both textual and visual contents (Akhtar et al., 040

2023; Braun et al., 2024). Recent benchmarks such 041

as Fakeddit (Nakamura et al., 2019), Mocheg (Yao 042

et al., 2023b), and Factify 2 (Suryavardan et al., 043

2023) have helped advance research in this direc- 044

tion, see appendix A for futher details. 045

Multimodal fact-checking remains a difficult and 046

open challenge. This is because, the task goes be- 047

yond simple classification. It requires understanding 048
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how modalities interact and whether they support049

or contradict each other. For example in Figure 1,050

where a claim is paired with a scientific image that051

appears credible but is actually unrelated. Identifying052

this mismatch requires more than surface-level align-053

ment. Thus we need a structured reasoning across054

both textual and visual modalities.055

Existing methods relied on one of two strategies: (i)056

concatenating image-text embeddings (Chen et al.,057

2020; Lu et al., 2019), or (ii) joining vision and lan-058

guage encoders through late fusion (Du et al., 2023b).059

For example, MOCHEG(Yao et al., 2023b) processes060

claims and evidence through modality-specific en-061

coders and fuses their outputs without deep cross-062

modal interaction, whereas PRO-COFACTV2(Du063

et al., 2023a) leverages attention-based mechanisms.064

While these strategies capture basic correlations,065

they often fail to detect fine contradictions or poorly066

aligned semantics. we believe they fail to separate067

modality-specific support signals and make the rea-068

soning process transparent. We, on the other hand,069

have proposed a unified fact-checking framework070

called "MultiCheck", where we used (i) a novel fu-071

sion technique, which captures semantic relation via072

element-wise difference and product operations, and073

(ii) a contrastive learning objective that aligns se-074

mantically similar claim-document pairs in a shared075

latent space, improving representation consistency076

across modalities. Our approach is inspired by prior077

advances in multimodal relational reasoning. The078

element-wise difference and product were shown079

to be capturing fine-grained interactions between080

paired inputs in natural language inference models081

(Conneau et al., 2017) and bilinear attention models082

(Kim et al., 2018). These operations encode both083

alignment and divergence between two modalities,084

enabling more expressive cross-modal representa-085

tions. To further strengthen semantic alignment, we086

integrated a contrastive head that serves the objec-087

tive of contrastive learning that operates on projected088

claim-document embeddings. This module is trained089

with a symmetric InfoNCE loss (Oord et al., 2018),090

encouraging the model to align semantically related091

pairs while pushing apart unrelated ones. Unlike092

prior methods that used frozen embeddings or shal-093

low probes (Cekinel et al., 2025a), our model is fully094

trainable end-to-end and jointly optimizes for both095

classification and contrastive learning, resulting in096

a more discriminative and robust representation for 097

multimodal fact verification. 098

Our contributions are as follows: 099

• We have introduced a unified multimodal fact- 100

checking architecture, "MultiCheck", that 101

combines structured text and image features. 102

It incorporates a contrastive head and a fu- 103

sion module to align semantically related claim- 104

evidence pairs while separating unrelated ones. 105

As a result, we achieved a new state-of-the-art 106

on the Factify 2 benchmark with a weighted 107

F1 score of 0.84, outperforming the baseline by 108

27%. 109

• We have conducted thorough ablations to assess 110

the impact of different backbones, fusion strate- 111

gies, and training objectives. The results reveal 112

that relational fusion using difference and prod- 113

uct consistently outperforms simple concatena- 114

tion, and that the inclusion of the contrastive 115

loss significantly boosts performance, particu- 116

larly in ambiguous or weak evidence scenarios. 117

• We have performed a comprehensive error anal- 118

ysis using statistical significance tests, showing 119

that our model not only outperforms the base- 120

line but does so in a structurally meaningful 121

way, correcting more errors than it introduces. 122

Discordant pair comparisons and contingency 123

heatmaps analyses reveals consistent improve- 124

ments across challenging veracity classes. 125

• We further supported our findings through quali- 126

tative analysis, highlighting how OCR cues and 127

visual metadata can decisively shift predictions 128

in subtle cases often missed by prior systems. 129

2 Dataset details: 130

We used the Factify-2 dataset provided by Du et al. 131

(2024a) in our experiments. It is designed to assess 132

the claim veracity that requires reasoning over both 133

textual and visual information. It is different from 134

other datasets like LIAR (Wang, 2017), LIAR-PLUS 135

(Alhindi et al., 2018), and Mocheg (Yao et al., 2023a), 136

which either lack claim-side images or rely solely 137

on textual evidence. Factify-2, on the other hand, 138

includes real-world images, OCR-extracted text, and 139
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Figure 2: Intuitive fusion representation using element-wise difference and product.

paired claim-document examples having both images140

and texts. It has 42,500 instances, each labelled with141

one of five labels. The distributions of samples across142

classes are shown in Table 1. A detailed description143

of the dataset, along with some illustrative examples,144

is reported in appendix (section B).145

Factify 2 (Du et al., 2024a)
Classes Train Validation Test Total
Support_Multimodal 5,580 1,420 1,500 8,500
Support_Text 5,485 1,515 1,500 8,500
Insufficient_Multimodal 5,472 1,528 1,500 8,500
Insufficient_Text 5,494 1,506 1,500 8,500
Refute 5,469 1,531 1,500 8,500
Total 27,500 7,500 7,500 42,500

Table 1: Dataset statistics for Factify 2 across training,
validation, and test splits.

3 Methodology146

In this section, we have reported our proposed frame-147

work, schematically depicted in Figure 2. Our frame-148

work has four components, i.e. (i) text module, (ii)149

image module, (iii) fusion module, and (iv) classifi-150

cation module. Each component of our framework151

is described as follows,152

Text module: This module converts the claims, asso-153

ciated evidence documents and OCR texts extracted154

from images into an embedding space. We have used155

pre-trained language models such as RoBERTa (Liu156

et al., 2019), DeBERTa (He et al., 2020), or SBERT157

(Reimers and Gurevych, 2019) for this purpose. See158

Appendix C.1 for further details.159

Image module: Here, we convert images associated 160

with claims and associated evidence documents into 161

an embedding space. We used image encoders like 162

ResNet50 (He et al., 2016) or Vision Transformer 163

(ViT) (Dosovitskiy et al., 2020) for this purpose. 164

More details are reported in the Appendix C.2. 165

We used linear layers after text and image encoders to 166

keep the text and image embeddings of same shape. 167

Fusion module: Our key innovation lies in the fu- 168

sion module. It is designed to capture both direct and 169

relational interactions between multimodal evidence. 170

Prior systems rely on simple feature concatenation 171

(Mishra et al., 2020; Sata et al., 2025; Wang et al., 172

2022). In contrast, our framework explicitly cap- 173

tures alignment and divergence between claim and 174

document evidence. It uses element-wise difference 175

and product operations over their multimodal rep- 176

resentations embeddings. This approach is inspired 177

by relational reasoning techniques shown effective 178

in prior research (Kim et al., 2018; Conneau et al., 179

2017; Chen et al., 2020; Liu et al., 2023; Gong et al., 180

2024). 181

Specifically, we first concatenate the text and image 182

embeddings separately for the claim and document, 183

forming initial multimodal representations. We then 184

compute (i) element-wise difference: which high- 185

lights differences between claim and document rep- 186

resentations, and (ii) element-wise product: which 187

emphasizes regions of strong alignment. This de- 188

sign enables the model to capture both conflicts and 189

alignments across modalities, denoted by: 190
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• Vdiff =
∣∣Vclaim repr ⊖Vdoc repr

∣∣191

• Vprod = Vclaim repr ⊗Vdoc repr192

where ⊖ denotes element-wise difference and ⊗ de-193

notes the element-wise product between the claim194

and evidence document representation embeddings.195

It helps in determining, whether the multimodal input196

supports, refutes, or fails to verify a claim. Finally,197

these four vector embeddings: the claim representa-198

tion, evidence document representation, difference,199

and product are concatenated, denoted by:200

Vfused = Vdiff ⊕Vprod ⊕Vclaim repr ⊕Vdoc repr201

are passed through a fusion network. Where ⊕ shows202

the operation of concatenation. This network con-203

sists of a fully connected layer with GELU activation204

(Hendrycks and Gimpel, 2016), and dropout reg-205

ularization, producing a final fused feature vector,206

denoted by:207

• Vfinal = FFN(Vfused) ∈ Rb×h208

Where h denotes the dimensionality of the shared209

latent space and b shows the batch-size. This final210

fused representation encodes refined multimodal re-211

lationships crucial for robust fact verification.212

In addition to this, our framework integrates a213

contrastive feature learning directly within the fusion214

module. Specifically, we introduced a contrastive215

projection head that maps the multimodal claim and216

document representations embeddings into a shared217

latent space for contrastive learning. This component218

operates in parallel to the fused vector used for219

classification shown in Figure 2, ensuring that both220

objectives reinforce each other and improve the221

model’s ability to distinguish between fine semantic222

relationships. During training, we have applied223

a symmetric InfoNCE loss (Oord et al., 2018)224

to these projected embeddings, pulling together225

representations of matching claim-document pairs226

while pushing apart those of unrelated pairs. This227

contrastive learning complements the supervised228

classification objective, enhancing the model’s229

ability to capture fine-grained relationships between230

claims and evidence. Further architectural details231

are provided in Appendix C.3.232

233

Classification module: The final fused representa- 234

tion is passed through a linear classification layer to 235

predict one of five fine-grained veracity labels. This 236

head produces the final logits over the predefined 237

classes. This component serves as the decision layer, 238

translating the model’s joint understanding of textual 239

and visual signals into actionable predictions. To 240

improve discriminative capacity, we augmented the 241

classification training with a contrastive learning ob- 242

jective. Specifically, the claim and document embed- 243

dings are each projected into a shared latent space via 244

a contrastive head. A symmetric InfoNCE loss (Oord 245

et al., 2018) encourages semantically aligned claim- 246

document pairs to lie close in this space while push- 247

ing apart unrelated ones. Our final loss combines this 248

contrastive supervision with standard cross-entropy 249

loss for classification, denoted by: 250

Ltotal = LCE + λ · Lcontrastive 251

where λ balances the influence of the contrastive 252

objective. 253

This dual-objective setup strengthens the model’s 254

ability, it not only classify correctly but also learn 255

a semantically structured embedding space, where 256

alignment across modalities is meaningful and con- 257

sistent. Appendix C.4 provides full mathematical 258

formulations and training details. 259

4 Experiments: 260

In this section, we have presented the experiments 261

conducted to evaluate the effectiveness of our pro- 262

posed framework. we evaluated the effect of vari- 263

ous learning strategies on model performance. Our 264

experiments progressively examined the impact of 265

model architectures and training choices. Special 266

focus is given to how fusion strategies and the role 267

of element-wise operations enhance multimodal rela- 268

tionships. Details regarding our reproduced baseline 269

are provided separately in Section 4.1. 270

4.1 Baselines: 271

For comparative evaluation, we reproduce the 272

Pro_cofactv2 model, originally proposed by Du et al. 273

(2024b), which has demonstrated state-of-the-art per- 274

formance on the Factify 2 benchmark. 275

To ensure comparison, we replicate the model using 276

the same configuration settings as the original work, 277

4



including fixed random seed initialization, optimizer278

parameters, pretrained backbones, and architecture-279

specific hyperparameters. The reproduced perfor-280

mance of Pro_cofactv2 on the Factify 2 dataset is281

summarized in Table 2. Additional details on the282

reproduction setup and hyperparameter choices are283

provided in Appendix B.2.284

Class Precision Recall F1 Score

Support Text 0.48 (±0.04) 0.38 (±0.06) 0.42 (±0.03)
Support Multimodal 0.50 (±0.04) 0.61 (±0.02) 0.55 (±0.02)
Insufficient Text 0.50 (±0.01) 0.44 (±0.07) 0.46 (±0.04)
Insufficient Multimodal 0.43 (±0.02) 0.46 (±0.06) 0.44 (±0.02)
Refute 0.98 (±0.00) 0.98 (±0.00) 0.98 (±0.00)

Weighted F1 Score 0.57 (±0.01)

Table 2: Performance of the reproduced baseline model
(Pro-CoFactv2) on the Factify 2 dataset.

4.2 Experimental Variants:285

In addition to evaluating the baseline, we conducted286

experiments to systematically examine the impact287

of our proposed approach. Specifically, we compare288

two main variants of our architecture:289

With Contrastive Head: This version incorporates a290

contrastive projection head applied to the multimodal291

representations of claims and evidence documents.292

Training includes a contrastive loss in addition to293

the standard cross-entropy loss. This encourages the294

model to learn modality-consistent and semantically295

aligned embeddings.296

Without Contrastive Head: In this version, the297

contrastive projection head and the associated loss298

are omitted. The model relies solely on cross-entropy299

loss applied to the fused multimodal representation300

for classification.301

Both variants use the same text and image encoders,302

fusion mechanism, and training hyperparameters.303

The only difference is the inclusion of contrastive304

supervision. Results for the contrastive variant are305

shown in Tables 3 and 7, while results for the non-306

contrastive variant are provided in Tables 4 and 8.307

We discuss the comparative performance of these308

two configurations in Section 5.309

5 Results and Discussion:310

We evaluated our proposed framework on the Factify311

2 dataset using multiple combinations of language312

and vision backbones. Performance is measured 313

using weighted F1 scores across five fine-grained 314

veracity labels. We have reported both overall and 315

class-wise results to assess the model’s capabilities. 316

As shown in Tables 3 and 4, all model variants signifi- 317

cantly outperform the baseline. Additionally, models 318

integrated with contrastive head consistently outper- 319

form their non-contrastive counterparts, see Figure 320

6. This trend holds across the visual encoders, con- 321

firming the robustness of our architecture. Notably, 322

the marginal gains are observed in “Insufficient” and 323

“Refute” categories that require resolving minor dif- 324

ferences between text and images. These results 325

show that our fusion method and contrastive learning 326

help the model to better connect text and images. 327

5.1 Insights: 328

Contrastive learning boosts accuracy: Across all 329

settings, the inclusion of contrastive supervision 330

yields statistically significant gains. It consistently 331

outperforms non-contrastive counterparts, see Ta- 332

ble 5. The consistent asymmetry in discordant pre- 333

diction counts, as shown in Figure 7, confirms that 334

contrastive models correct significantly more base- 335

line errors than they introduce. 336

Role of fusion strategy: The fusion module using 337

element-wise difference and product provides crit- 338

ical advantages over simple concatenation. These 339

operations help the model clearly match or contrast 340

the claim with the evidence, improving its reasoning. 341

Model robust nature: Whether paired with 342

ResNet50 or ViT, and regardless of the language 343

encoder, the contrastive head along with fusion mod- 344

ule consistently improves performance, highlighting 345

its modularity and general applicability. 346

6 Error analysis: 347

To better understand the behavioral differences be- 348

tween our models and the baseline, we performed a 349

detailed error analysis using both statistical signifi- 350

cance tests and qualitative assessments. 351

Statistical comparisons: we have applied McNe- 352

mar’s test for overall accuracy and Bowker’s test 353

for class-level shifts. Results across all five model 354

and variants are reported in Tables 5, 6 which shows 355

McNemar’s χ2 scores are consistently high with p- 356

values well below 0.05, confirming significant gains 357
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Models w/ Contrastive Head Support Text Support Multimodal Insufficient Text Insufficient Multimodal Refute Weighted F1 Score

Roberta + ResNet50 0.77 (±0.02) 0.83 (±0.01) 0.82 (±0.00) 0.76 (±0.02) 1.00 (±0.00) 0.84 (±0.01)

Roberta + ViT 0.77 (±0.02) 0.84 (±0.01) 0.82 (±0.00) 0.77 (±0.01) 1.00 (±0.00) 0.84 (±0.01)

DeBERTa + ViT 0.77 (±0.01) 0.84 (±0.01) 0.83 (±0.00) 0.78 (±0.01) 1.00 (±0.00) 0.84 (±0.01)

DeBERTa + ResNet50 0.76 (±0.02) 0.81 (±0.02) 0.81 (±0.01) 0.75 (±0.02) 1.00 (±0.00) 0.83 (±0.01)

SBERT + ResNet50 0.75 (±0.01) 0.83 (±0.01) 0.79 (±0.00) 0.76 (±0.01) 1.00 (±0.00) 0.82 (±0.00)

Baseline 0.42 (±0.03) 0.55 (±0.02) 0.46 (±0.04) 0.44 (±0.02) 0.98 (±0.00) 0.57 (±0.01)

Table 3: Class-wise F1 scores and weighted F1 for various model combinations on the Factify 2 dataset with contrastive
head. Each value is the mean F1 ±std across seeds. Precision and Recall are reported in Table 7.

Models w/o Contrastive Head Support Text Support Multimodal Insufficient Text Insufficient Multimodal Refute Weighted F1 Score

Roberta + ResNet50 0.74 (±0.01) 0.82 (±0.01) 0.78 (±0.01) 0.75 (±0.01) 0.99 (±0.01) 0.82 (±0.01)

Roberta + ViT 0.75 (±0.01) 0.82 (±0.01) 0.79 (±0.01) 0.75 (±0.01) 1.00 (±0.00) 0.82 (±0.00)

DeBERTa + ViT 0.74 (±0.01) 0.82 (±0.00) 0.78 (±0.01) 0.75 (±0.01) 1.00 (±0.00) 0.82 (±0.00)

DeBERTa + ResNet50 0.74 (±0.01) 0.81 (±0.01) 0.78 (±0.01) 0.74 (±0.01) 1.00 (±0.00) 0.81 (±0.00)

SBERT + ResNet50 0.71 (±0.03) 0.81 (±0.02) 0.75 (±0.02) 0.74 (±0.02) 0.99 (±0.00) 0.78 (±0.05)

Baseline 0.42 (±0.03) 0.55 (±0.02) 0.46 (±0.04) 0.44 (±0.02) 0.98 (±0.00) 0.57 (±0.01)

Table 4: Class-wise F1 scores and weighted F1 for various model combinations on the Factify 2 dataset (no contrastive
head). Each value is mean F1 ±std across seeds. Precision and Recall are reported in Table 8.

Models w/ Contrastive Head McNemar’s
χ2

McNemar’s
p-value

Significance
at α = 0.05

Bowker’s
χ2 (df=10)

Bowker’s
p-value

Reject
symmetry

Roberta + ResNet50 1238.56 ≪ 0.05 ✓ 91.85 2.33× 10−15 ✓

Roberta + ViT 1333.14 ≪ 0.05 ✓ 132.10 0.00 ✓

DeBERTa + ViT 1480.57 ≪ 0.05 ✓ 118.33 0.00 ✓

DeBERTa + ResNet50 1217.24 ≪ 0.05 ✓ 166.16 0.00 ✓

SBERT + ResNet50 1070.45 ≪ 0.05 ✓ 82.030 2.00× 10−13 ✓

Table 5: Significance-test results comparing the multimodal model against the baseline on Factify 2.

Models w/o Contrastive Head McNemar’s
χ2

McNemar’s
p-value

Significance
at α = 0.05

Bowker’s
χ2 (df=10)

Bowker’s
p-value

Reject
symmetry

Roberta + ResNet50 1129.91 ≪ 0.05 ✓ 75.64 3.56× 10−12 ✓

Roberta + ViT 1243.45 ≪ 0.05 ✓ 140.44 0.00 ✓

DeBERTa + ViT 965.16 ≪ 0.05 ✓ 122.93 0.00 ✓

DeBERTa + ResNet50 1195.33 ≪ 0.05 ✓ 153.76 0.00 ✓

SBERT + ResNet50 891.88 ≪ 0.05 ✓ 100.06 0.00 ✓

Table 6: Significance-test results comparing the multimodal model against the baseline on Factify 2.
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over the baseline. Whereas Bowker’s results shows358

that our models make structured, non-random im-359

provements in class predictions.360

Discordant pair analysis: we examined our model361

improvements over the baseline by comparing pre-362

dictions from each variant of the models, using 2×2363

McNemar’s contingency setup. Specifically, we con-364

sidered two key cases: In first we denoted (b) as the365

number of instances, where the baseline is correct366

and our model errors, and, second where (c) as the367

opposite our model is correct and the baseline errors.368

These corresponds to the off-diagonal cells in McNe-369

mar’s 2×2 contingency table. Across all five configu-370

rations, (c) consistently and substantially outnumbers371

(b) as illustrated in Figures 7. This suggests that our372

models make meaningful improvements rather than373

random changes, consistently correcting the base-374

line’s mistakes. These findings are consistent with375

the significance tests further supporting the effective-376

ness of our approach.377

Qualitative Analysis: To better understand model378

behavior, we examined the mismatches between our379

approach and the baseline. As shown in Figure 3,380

the baseline overlooked the visual modality entirely381

and based its decision on text alone, predicting In-382

sufficient Text. In contrast, our model incorporated383

the OCR-detected credit “Helen Sloan/HBO” from384

the image, identifying it as a licensed promotional385

photograph a detail suggesting the image does not386

contribute new factual content. By recognizing the387

lack of substantive support in both text and image,388

our model rightly predicted Insufficient Multimodal.389

This highlights how image provenance, even in OCR390

form, enhances factual reasoning. Additional exam-391

ples are discussed below:392

Additional examples of qualitative analysis:393

We have presented detailed examples mentioned by394

the original ID of the samples as per the dataset,395

comparing predictions from our approach against the396

baseline. These examples illustrate how OCR-based397

information like photographer credits, agency marks,398

or image overlays can either resolve or confuse mul-399

timodal evidence verification.400

Example A: When MultiCheck outperforms the401

baseline402

• ID 4681: The baseline model, using only tex-403

How will the "Game of Thrones"
conclusion stack up to other major

shows' finales?

Claim

Helen Sloan/HBO

Claim OCR

Two major hits, Game of Thrones and
The Big Bang Theory, are signing off

within days of each other.....  
HBO's mythical drama soared to an

all-time high with its penultimate
episode with 18. 4 million 

viewers in the US.........

Document

None

Document OCR

Claim image

Document Image

Baseline MultiCheck

Insufficient
Multimodal

Insufficient
Multimodal

Insufficient
Text 

True Label

Figure 3: Example of qualitative analysis, Sample from
the dataset.

tual signals, interpreted the phrase “Made in 404

India vaccines” as concrete evidence support- 405

ing the claim thus predicting Support_Text. 406

However, the OCR-extracted string “COLO 407

STORAE” (interpreted as “cold storage”) 408

hinted at logistical or infrastructure gaps in 409

the vaccine delivery, casting doubt on the suf- 410

ficiency of the claim’s evidence. Our model’s 411

multimodal fusion recognized this ambiguity 412

and opted for Insufficient_Text, aligning with 413

the ground truth. This example shows how 414

even noisy OCR text can surface hidden context 415

missed by text-only models. 416

• ID 6968: The baseline inferred support based 417

on name and context matches in the text (e.g., 418

“Governor Jagdeep Dhankar”), resulting in a 419

Support_Text prediction. However, the image’s 420

OCR output “ANI” indicated it was a generic 421

press photo from a news agency, lacking eviden- 422

tiary value. Our model correctly interpreted this, 423

combining the weak textual alignment with the 424

non-informative image tag to determine that nei- 425

ther modality offered enough proof thus choos- 426

ing Insufficient_Multimodal. This highlights the 427
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model’s ability to ignore superficial visual cues.428

Example B: When baseline outperforms Multi-429

Check430

• ID 7171: Here, our model was overly cautious.431

The OCR tag “ANI” led it to interpret the im-432

age as a generic stock photo, causing it to dis-433

count visual evidence. It then judged the claim434

as lacking visual proof and labeled it Insuffi-435

cient_Multimodal. However, the textual por-436

tion “will lay foundation stone” is a direct and437

verifiable event announcement, and the image438

(even if generic) serves as a credible contex-439

tual anchor. The baseline, focusing on the as-440

sertive language in the text, correctly predicted441

Support_Multimodal. This example shows that442

OCR can occasionally mislead, especially when443

image content is generic but still contextually444

supportive.445

• ID 6707: Our model was likely confused by446

noisy OCR clutter: multiple “ANI” tags and ir-447

relevant text like “WINE SHOP” and exam ref-448

erences (UPSC/MPSC). These spurious signals449

may have interfered with alignment, prompt-450

ing it to under-call the claim’s evidential value.451

The baseline, unencumbered by these distrac-452

tions, focused on the strong textual indicator453

“deployed” and correctly chose Support_Text.454

This example underlines the need for OCR gat-455

ing or filtering in future iterations.456

Key Observations:457

• OCR text can be highly informative espe-458

cially when images include meta-tags, banners,459

or visual overlays not present in article text.460

• Failure cases arise when OCR includes irrele-461

vant or misleading tokens, causing the model to462

over- or under-attend to visuals.463

• Future directions: We plan to incorporate an464

OCR quality gating mechanism and synthetic465

noisy-OCR augmentation to improve model ro-466

bustness.467

7 Conclusion: 468

This paper introduces a unified framework for fine- 469

grained multimodal fact-checking that jointly rea- 470

sons over textual and visual evidence. Our archi- 471

tecture integrates structured representations from 472

pre-trained language and vision models using a rela- 473

tional fusion module. It further employs a contrastive 474

learning objective to enhance cross-modal alignment. 475

This design allows the model to better capture fine 476

agreements and contradictions between claims and 477

evidence across modalities. As our approach outper- 478

forms the baseline, across multiple configurations. 479

It achieves particularly notable gains in complex 480

classes such as "Insufficient" and "Refute", where 481

multimodal reasoning is critical. Statistical tests and 482

qualitative analyses confirm that the improvements 483

are consistent and meaningful. These gains are sys- 484

tematic, rather than incidental. Overall, our results 485

emphasize the importance of explicit cross-modal 486

alignment and representation learning in advancing 487

automated fact verification. 488

8 Limitation: 489

While our approach shows strong empirical perfor- 490

mance, several limitations remain: 491

• Dependence on OCR quality: The model incor- 492

porates OCR-extracted text from images, which 493

can vary widely in accuracy and relevance. In 494

cases of noisy or misleading OCR outputs, the 495

model may misclassify due to spurious visual- 496

textual alignment. 497

• No evidence retrieval component: Our frame- 498

work assumes that relevant evidence both tex- 499

tual and visual is already provided. It does not 500

includes any retrieval pipeline to source addi- 501

tional or more reliable evidences from external 502

knowledge bases or web sources. 503

• Limited visual understanding: Although image 504

features are included via pre-trained encoders, 505

the model lacks deeper visual reasoning capa- 506

bilities such as object detection, scene under- 507

standing, or temporal cues that could improve 508

evidence grounding. 509

• Restricted modalities: The current system han- 510

dles only text and image modalities. It does not 511

8



address audio, video, or temporal multimodal512

misinformation, which are common in modern513

social media content.514
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Appendix759

A Related Work760

Recent research in automated fact-checking has high-761

lighted the growing importance of incorporating mul-762

tiple modalities, to tackle the diverse and evolving763

forms of misinformation (Abdelnabi et al., 2022). 764

Early works, such as FEVER (Thorne et al., 2018) 765

and CLEF2018 (Nakov et al., 2021) are primarily 766

focused on verifying textual claims, laying founda- 767

tional methods for claim verification based solely 768

on textual evidence. However, later studies found 769

that misinformation exploits images, videos, and 770

audio alongside text to build convincing narratives 771

(Hameleers et al., 2020; Alam et al., 2022). These 772

studies have revealed the limitations of purely text- 773

based fact-checking methods and sparked a shift to- 774

ward multimodal fact-checking. To tackle the limita- 775

tion of text-based methods, systems were designed 776

to jointly process and reason over diverse types of 777

content. For example, several studies, such as (Du 778

et al., 2023b) and (Zlatkova et al., 2019; Khaliq et al., 779

2024), have explored architectures that integrated tex- 780

tual and visual features. These models employ mech- 781

anisms like attention or contrastive learning to en- 782

hance detection accuracy. Recent work by (Cekinel 783

et al., 2025b) shows that a probing classifier combin- 784

ing separate text and image embeddings can outper- 785

form intrinsic VLM features on datasets like Factify 786

2. In addition to these developments, comprehen- 787

sive surveys, such as (Akhtar et al., 2023), offers 788

detailed overview regarding the emerging field of 789

multimodal fact-checking. They highlighted both 790

the technical challenges and the promising research 791

directions ahead. Key challenges include aligning in- 792

formation across modalities, managing incomplete or 793

noisy evidence, and ensuring scalability for practical 794

deployment. 795

Despite significant progress, effectively integrating 796

multimodal information remains an open research 797

problem. This challenge continues to motivate the 798

development of new architectures and learning meth- 799

ods. Robust fact verification in multimodal contexts 800

still requires innovative solutions. 801

B Additional details on datasets: 802

In this section, we provide a comprehensive overview 803

of the Factify 2 dataset, including representative 804

examples and insights into its distributional charac- 805

teristics. 806

11

https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/D19-1216
https://doi.org/10.18653/v1/D19-1216
https://doi.org/10.18653/v1/D19-1216


B.1 Factify 2 (Du et al., 2024a):807

Factify 2 is a large-scale multimodal fact verification808

dataset comprising 42,500 human-annotated claims809

drawn from diverse domains such as politics, health,810

environment, and global affairs. Claims were curated811

from credible news media sources across India and812

the United States. Specifically, true claims were813

collected from official Twitter accounts of verified814

news organizations, while false claims were sourced815

from authoritative fact-checking platforms, including816

PolitiFact1, Alt News2, and BoomLive3.817

A distinctive strength of Factify 2 lies in its rich818

multimodal evidence composition. For each claim,819

the dataset includes (i) textual evidence retrieved820

from external news articles, (ii) claim-associated im-821

ages (typically extracted from the header sections of822

original posts), and (iii) image evidence from sup-823

porting or refuting documents. Each sample is anno-824

tated with one of five fine-grained labels that describe825

the relationship between the claim and the retrieved826

evidence. The labels they considered are: “Sup-827

port_Text” (the textual evidence supports the claim),828

“Support_Multimodal” (both textual and visual evi-829

dence jointly support the claim), “Insufficient_Text”830

(textual evidence is present but insufficient to verify831

the claim), “Insufficient_Multimodal” (both textual832

and image evidence are insufficient), and “Refute”833

(the evidence directly contradicts the claim).834

The dataset supports training and evaluation of mul-835

timodal models in realistic settings, where claims836

are to be verified using diverse evidence types. A837

representative sample from the dataset is presented838

in Figure 4 for illustration.839

Due to the unavailability of ground truth labels for840

the test split, we follow the protocol adopted by841

Cekinel et al. (2025a) and repurpose the original842

validation set for testing. To maintain a development843

split, 7,500 samples were randomly selected from844

the original training set to form a new validation set,845

preserving the original class distribution across all846

partitions.847

1https://www.politifact.com
2https://www.altnews.in
3https://www.boomlive.in

"CNN PROJECTION: 
Joe Biden wins Colorado"...

"CNN PROJECTION 
JOE BIDEN WINSO 

COLORADO E 2020 CAN"

"ABC News characterized Joe
Biden as the apparent winner, Joe

Biden is set to become the 46th
president of the United States"...

"NEWS YOUR VOICE
YOUR VOTE 2020 OREGON 

PROJECTED WINNER 
JOE BIDEN"

Claim
Document

Claim OCR Document OCR

Claim Image Document Image

Figure 4: Example of a Sample from the dataset.

B.2 Additional details on baselines: 848

In this section, we reported the details of the individ- 849

ual baseline method considered in our study. 850

• Pro-CoFactv2: It is proposed by Du et al. 851

(2023a). The authors developed a parameter- 852

efficient multi-modal fact verification model 853

that leverages pretrained language and vi- 854

sion encoders with minimal task-specific tun- 855

ing. Their system is designed with two key 856

components: (i) a feature extraction module 857

built upon large foundation models, and (ii) 858

a lightweight classifier module that integrates 859

contrastive and classification objectives. In 860

the feature extraction stage, the text encoder 861

is initialized from microsoft/deberta-large, 862

while the image encoder is derived from 863

microsoft/swinv2-base-patch4-window8- 864

256. Both encoders are kept unfrozen, allow- 865

ing full gradient updates during training. Text 866

and image embeddings are projected into a joint 867

space using adapter modules with a bottleneck 868

dimension of 64. The model applies a linear 869

fusion technique to integrate both modalities 870

effectively. 871

For the training objective, they employed a 872

multi-loss setup that combines cross-entropy 873

loss for veracity classification and supervised 874

contrastive loss to better align intra-class ex- 875

amples in the embedding space. Specifically, 876
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the contrastive loss is scaled by a factor of 0.3,877

while the classification loss retains a full weight878

of 1. The model is trained using a batch size879

of 32 and a learning rate of 5 × 10−5, for 20880

epochs. Evaluation is performed after every881

epoch to track performance.882

Our reproduction strictly follows the original883

configuration settings to preserve accuracy with884

reduced token length due to GPU constraint.885

We have used a NVIDIA A100 GPU of 80 GB886

capacity to perform our experiments. This in-887

clude fixing the seed value to 42, 57, 196, 906888

for reproducibility, setting the maximum se-889

quence length to 128 tokens, using 12 attention890

heads, and a dropout rate of 0.1. The hidden di-891

mensionality in intermediate layers is set to 256,892

aligned with the FakeNet backbone mentioned893

in the architecture.894

C Additional details on modules:895

This appendix provides detailed architectural and im-896

plementation specifications for our proposed frame-897

work. The following sections correspond to the mod-898

ules introduced in section 3899

C.1 Details on text module:900

The text module processes both the claim text and the901

OCR-extracted text from associated images. These902

are concatenated for each instance to create a richer903

and more context-aware representation. Figure 5904

demonstrates, how OCR text can provide crucial905

information absent from the original claim text, help-906

ing the model detect contradictions necessary for907

accurate veracity classification.908

Given the batch of claims and document, the result-909

ing textual inputs are tokenized using the pre-trained910

language models such as RoBERTa (Liu et al., 2019),911

DeBERTa (He et al., 2020), or SBERT (Reimers and912

Gurevych, 2019). Yielding token input ID’s and at-913

tention mask tensors of shape Rb×L, where b is the914

batch size, L is the maximum sequence length and915

dtext is the input dimension of the projection layer916

for text (e.g., for Roberta and DeBERTa, it is 1024917

and for SBERT it is 768). These inputs are passed918

through a shared encoder of language models. Pro-919

ducing contextualized embeddings of shape:920

Htext ∈ Rb×L×dtext921

 Resulting_text: "Nepal shot down an Indian HAL Rudra helicopter
that was carrying an airstrike in Belahiya and
captured an Indian pilot Today, Indian airforces had
crossed the border to conduct airstrikes on the Nepal
territories, In the resulting, we've shot down one
Indian HAL Rudra and captured one Indian pilot.
Now We'll not return pilot to india".

 Claim: "Nepal shot down an Indian HAL Rudra helicopter that was
carrying an airstrike in Belahiya and captured an Indian
pilot".

 Claim_OCR: "Today, Indian airforces had crossed the border to
conduct airstrikes on the Nepal territories, In the
resulting, we've shot down one Indian HAL Rudra
and captured one Indian pilot. Now We'll not return
pilot to india".

Figure 5: The claim accuses Nepal of shooting down an
Indian military helicopter. However, the OCR text from the
image contradicts this, suggesting Indian forces crossed
the border instead implying aggression from India, not
Nepal. Without this OCR text, the model may misinter-
pret or miss this contradiction. This Example illustrates
how OCR text contributes critical contextual information,
enabling the model to detect contradictions and correctly
assign a “Refute” label.

We extract the [CLS] token embeddings from each 922

sequence, resulting in a fixed-size representations of: 923

h[CLS] ∈ Rb×dtext . These embeddings are projected 924

into a common latent space via a fully connected 925

layer denoted by: 926

Vtext = Wtext · h[CLS] +B, Vtext ∈ Rb×h 927

where h denotes the dimensionality of the shared 928

latent space, B denotes the bias term and Wtext is 929

the weight matrix of a linear layer that maps the text 930

encoder’s output into a shared latent space. 931

C.2 Details on image module: 932

In this section, we reported the detailed architec- 933

tural description of our image module. Each claim 934

and document image is preprocessed and passed 935

through a shared vision encoders such as ResNet50 936

(He et al., 2016) or Vision Transformer (ViT) (Doso- 937

vitskiy et al., 2020). 938

This produces high-dimensional visual features of 939

shape: fimg ∈ Rb×dimg , where dimg is the dimension- 940

ality of the raw output from the image encoder before 941

projection into a shared latent space, and have val- 942

ues 2048 (ResNet) or 768 (ViT) respectively. These 943
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feature embeddings are independently projected into944

the same latent space via linear layers denoted by:945

Vimg = Wimg · fimg +B, Vimg ∈ Rb×h946

Wimg is the weight matrix for the projection layer947

that maps raw image features into the same shared948

latent space.949

At the end of this step, we obtain four core represen-950

tative vectors of shape b × h :951

• Vclaim text : text embedding for claim952

• Vdoc text : text embedding for document953

• Vclaim img : image embedding for claim954

• Vdoc img : image embedding for document955

C.3 Details on fusion module:956

After obtaining both text and image embeddings for957

claim and document pairs, we concatenate the corre-958

sponding text and image features for both the claim959

and the document, yielding two integrated represen-960

tations: claim representation (Vclaim repr) and docu-961

ment representation (Vdoc repr), represented by:962

• Vclaim repr = Vclaim text ⊕Vclaim img963

• Vdoc repr = Vdoc text ⊕Vdoc img964

where ⊕ shows the operation of concatenation and965

•
[
Vclaim repr;Vdoc repr

]
∈ Rb×2h966

To capture fine-grained representation, we perform967

two element-wise operations between claim repre-968

sentation and document representation: the differ-969

ence (Vdiff) to emphasize contrasts and the product970

(Vprod) to capture alignment, represented by:971

• Vdiff =
∣∣Vclaim repr ⊖Vdoc repr

∣∣972

• Vprod = Vclaim repr ⊗Vdoc repr973

where ⊖ shows element-wise difference between974

claim representation and document representation,975

and ⊗ shows the element-wise product between976

claim and document representation.977

These four vectors: claim representation, docu-978

ment representation, difference, and product are then979

concatenated to form a single fused vector of shape 980

b × 8h, denoted by: 981

Vfused = Vdiff ⊕Vprod ⊕Vclaim repr ⊕Vdoc repr 982

This fused vector (Vfused) is passed through a fully 983

connected network, which consists of a linear trans- 984

formation layer and a non-linear activation (for e.g, 985

GELU) to output a unified representation repre- 986

seneted by: 987

• Vfinal = FFN(Vfused) ∈ Rb×h 988

As part of our fusion module, we incorporate a con- 989

trastive projection head to learn discriminative rep- 990

resentations that align semantically related claim- 991

document pairs. After computing the multimodal 992

representations of the claim and document, denoted 993

as: Vclaim repr and Vdoc repr, each vector is passed 994

through a dedicated projection network defined as: 995

Zclaim = fproj
(
Vclaim repr

)
996

Zdoc = fproj
(
Vdoc repr

)
997

where fproj consists of: 998

• A linear transformation to reduce dimensional- 999

ity from 2h to h 1000

• A ReLU non-linearity 1001

• A second linear layer projecting the vector back 1002

to dimension h 1003

So, Formally: 1004

• fproj(v) = W2 · ReLU (W1 · v +B1) +B2 1005

where W1 ∈ Rh×2h,W2 ∈ Rh×h, B1 & B2 de- 1006

notes the bias term of the respective layers and v 1007

is the concatenated multimodal representation of ei- 1008

ther the claim or the document i.e. Vclaim repr and 1009

Vdoc repr. We have used two distinct linear layers 1010

with a ReLU bottleneck in between, first squeez- 1011

ing 2h→h then re-expanding h→h. The depth and 1012

non-linearity that we used here is crucial to give the 1013

projection head enough capacity to learn richer and 1014

contrastingly useful embeddings. 1015

The resulting embeddings, Zclaim and Zdoc, serve as 1016

inputs to the contrastive learning objective described 1017

in Appendix C.4 1018
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C.4 Details on classification module:1019

The final fused representation (Vfinal) is passed1020

into a classification head, a linear layer fol-1021

lowed by a softmax activation to produce log-1022

its for five veracity classes. i.e C = 5: Sup-1023

port_Text, Support_Multimodal, Insufficient_Text, In-1024

sufficient_Multimodal, and Refute denoted by:1025

• P = Wcls ·Vfinal +B, P ∈ Rb×51026

Model training uses standard cross-entropy loss com-1027

puted over these logits denoted by:1028

LCE = −1

b

b∑
i=1

log

(
exp (Zi,yi)∑5
j=1 exp (Zi,j)

)
1029

To encourage the model to learn modality-1030

consistent and discriminative representations, we in-1031

clude a symmetric InfoNCE loss computed on the1032

projected embeddings (Zclaim and Zdoc) from the con-1033

trastive head. First we do the normalization, each row1034

of the projected claim and document embeddings is1035

normalized to unit length:1036

ẑ =
z

∥z∥2
1037

We compute the similarity matrix S as:1038

S = Ẑclaim · Ẑ⊤
doc1039

which yields a matrix of shape (b× b).1040

1041

The element Sij represents the similarity between1042

the i-th claim and the j-th document in the batch.1043

Then we compute the InfoNCE loss:1044

1045

1046

Row-wise InfoNCE (claim → doc):1047

Lossclaim→doc = −1

b

b∑
i=1

log
exp (Sii/τ)∑b
j=1 exp (Sij/τ)

1048

1049

Column-wise InfoNCE (doc → claim):1050

Lossdoc→claim = −1

b

b∑
j=1

log
exp (Sjj/τ)∑b
i=1 exp (Sij/τ)

1051

The final contrastive loss is computed as the average 1052

of the two directions: 1053

Lcontrastive =
1

2
(Lossclaim→doc + Lossdoc→claim) 1054

where τ is a temperature hyperparameter controlling 1055

the sharpness of the softmax distribution. So, The 1056

total training objective combines the supervised clas- 1057

sification loss with the contrastive learning signal: 1058

Ltotal = LCE + λ · Lcontrastive 1059

where λ balances the influence of the contrastive ob- 1060

jective. In our experiments, we set λ = 0.1. This 1061

composite loss encourages the model not only to 1062

correctly classify claim-evidence pairs but also to 1063

learn a representation space where semantically re- 1064

lated claims and documents are closely aligned while 1065

unrelated pairs are well-separated. 1066

C.5 Hyperparameter details: 1067

We performed a thorough hyperparameter search 1068

over all key modeling and training parameters to 1069

identify the settings that yielded the best valida- 1070

tion performance. Table 9 summarizes every hy- 1071

perparameter and their final values used for both the 1072

contrastive-head and non-contrastive variants. All 1073

experiments were carried out on one NVIDIA A100 1074

80 GB GPU. 1075

C.6 Evaluation metrics: 1076

We evaluate our model performance primarily via the 1077

F1 score, which is the harmonic mean of precision 1078

and recall for each class. In our multi-class setting, 1079

class frequencies vary substantially. Unweighted F1 1080

scores per label may not reflect true performance, 1081

as models might perform well only on the dominant 1082

class and still appear effective. 1083

To summarize performance across all classes while 1084

accounting for class imbalance, we use the weighted 1085

F1 score. This metric assigns each class’s F1 score 1086

a weight based on its support that is, the number of 1087

true instances for that class. Formally, if Fi is the F1 1088

for class i and ni its support, then 1089

Weighted-F1 =

∑
i ni Fi∑
i ni

. 1090
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Performance of the various models with contrastive head

(a) Performance of the various models with contrastive head.

Performance of the various models without contrastive head

(b) Performance of the various models without contrastive head.

Figure 6: Comparison of model performance on the Factify 2 dataset, with vs. without the contrastive-learning head.
Each point on the line plot is the weighted F1 score (mean across seeds).

Models Models w/ Contrastive Head Metric Support Text Support Multimodal Insufficient Text Insufficient Multimodal Refute

Roberta + ResNet50 Precision 0.77 (±0.03) 0.82 (±0.01) 0.82 (±0.02) 0.76 (±0.01) 1.00 (±0.00)
Recall 0.77 (±0.01) 0.84 (±0.02) 0.81 (±0.01) 0.76 (±0.02) 0.99 (±0.00)

Roberta + ViT Precision 0.78 (±0.01) 0.82 (±0.01) 0.86 (±0.01) 0.75 (±0.02) 1.00 (±0.00)
Recall 0.77 (±0.02) 0.85 (±0.02) 0.79 (±0.01) 0.79 (±0.01) 1.00 (±0.00)

DeBERTa + ViT Precision 0.75 (±0.03) 0.81 (±0.01) 0.83 (±0.02) 0.72 (±0.01) 1.00 (±0.01)
Recall 0.74 (±0.03) 0.83 (±0.08) 0.73 (±0.03) 0.78 (±0.02) 1.00 (±0.01)

DeBERTa + ResNet50 Precision 0.75 (±0.02) 0.83 (±0.01) 0.84 (±0.00) 0.73 (±0.03) 1.00 (±0.00)
Recall 0.78 (±0.01) 0.80 (±0.04) 0.78 (±0.01) 0.78 (±0.02) 1.00 (±0.00)

SBERT + ResNet50 Precision 0.74 (±0.01) 0.80 (±0.01) 0.83 (±0.01) 0.77 (±0.01) 1.00 (±0.00)
Recall 0.76 (±0.02) 0.86 (±0.01) 0.76 (±0.01) 0.74 (±0.01) 0.99 (±0.00)

Baseline Precision 0.48 (±0.04) 0.50 (±0.04) 0.50 (±0.01) 0.43 (±0.02) 0.98 (±0.00)
Recall 0.38 (±0.06) 0.61 (±0.02) 0.44 (±0.07) 0.46 (±0.06) 0.98 (±0.00)

Table 7: Performance of various model combinations on the Factify 2 dataset with contrastive head. Precision and
Recall are reported per class (±std in ).

Models Models w/o Contrastive Head Metric Support Text Support Multimodal Insufficient Text Insufficient Multimodal Refute

Roberta + ResNet50
Precision 0.75 (±0.01) 0.81 (±0.04) 0.81 (±0.00) 0.73 (±0.02) 1.00 (±0.00)
Recall 0.73 (±0.02) 0.83 (±0.03) 0.76 (±0.02) 0.77 (±0.05) 0.99 (±0.00)

Roberta + ViT
Precision 0.76 (±0.02) 0.82 (±0.01) 0.83 (±0.02) 0.71 (±0.02) 1.00 (±0.00)
Recall 0.74 (±0.02) 0.82 (±0.02) 0.75 (±0.03) 0.79 (±0.03) 1.00 (±0.00)

DeBERTa + ViT
Precision 0.75 (±0.03) 0.81 (±0.01) 0.83 (±0.02) 0.72 (±0.01) 1.00 (±0.00)
Recall 0.74 (±0.03) 0.83 (±0.02) 0.73 (±0.03) 0.78 (±0.02) 1.00 (±0.00)

DeBERTa + ResNet50
Precision 0.73 (±0.01) 0.80 (±0.01) 0.82 (±0.02) 0.73 (±0.02) 1.00 (±0.00)
Recall 0.75 (±0.00) 0.82 (±0.02) 0.74 (±0.02) 0.75 (±0.01) 1.00 (±0.00)

SBERT + ResNet50
Precision 0.71 (±0.02) 0.80 (±0.01) 0.78 (±0.01) 0.72 (±0.02) 1.00 (±0.00)
Recall 0.72 (±0.01) 0.82 (±0.02) 0.72 (±0.04) 0.75 (±0.01) 0.99 (±0.00)

Baseline
Precision 0.48 (±0.04) 0.50 (±0.04) 0.50 (±0.01) 0.43 (±0.02) 0.98 (±0.00)
Recall 0.38 (±0.06) 0.61 (±0.02) 0.44 (±0.07) 0.46 (±0.06) 0.98 (±0.00)

Table 8: Performance of various model combinations on the Factify 2 dataset. Precision and Recall are reported per
class (±std in ).
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Component Hyperparameter Contrastive Non-Contrastive

Reproducibility Seeds 42/ 57 / 196 / 906 42/ 57 / 196 / 906
Tokenization max_length 128 128
Model Common embedding dim 256 256

Fusion MLP dropout 0.1 0.1
Contrastive Loss Temperature 0.1 –

Loss weight (λ) 0.1 –
Optimization Optimizer Adam Adam

Learning rate 1× 10−5 1× 10−5

Batch size 32 32
Num workers 4 4
Pin memory True True
Epochs 20 20

LR Scheduling Scheduler ReduceLROnPlateau ReduceLROnPlateau
factor 0.5 0.5
patience 2 2

Early Stopping patience 5 5
min_delta 1× 10−4 1× 10−4

Mixed Precision AMP autocast + autocast +
GradScaler GradScaler

Table 9: Hyperparameter settings for both the contrastive and non-contrastive variants.

This approach balances contributions from rare and1091

frequent classes, making weighted F1 a fairer and1092

more realistic summary of multi-class performance.1093

D Experimental Setup:1094

We conducted all experiments on a single NVIDIA1095

A100 GPU using PyTorch and Hugging Face Trans-1096

formers. Random seeds are choosen at 42, 57, 1961097

and 906 for reproducibility. For textual encoding, we1098

experimented with a range of pre-trained language1099

models. To extract visual features, we leveraged1100

widely used vision backbones. Details of these com-1101

ponents are provided in Section 3. Both modalities1102

are projected into a shared latent space. The fusion1103

module processes the claim and document embed-1104

dings, along with their element-wise difference and1105

product. A contrastive projection head further trans-1106

forms these representations for InfoNCE loss com-1107

putation. Training uses the Adam optimizer with a1108

learning rate of 1 × 10−5 batch size 32, and early1109

stopping based on validation weighted F1. The con-1110

trastive loss weight λ is set to 0.1, and temperature1111

τ to 0.1. A dropout of 0.1 is applied after the fusion1112

layer. Experiments are conducted on the Factify 21113

dataset, following the split protocol of Cekinel et al.1114

(2025b). Evaluation metrics include weighted F11115

score. Code and trained models will be released 1116

publicly for reproducibility. 1117
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(a) Roberta+ResNet50
(with contrastive head)

(b) Roberta+ResNet50
(with contrastive head)

(c) Roberta+ResNet50
(without contrastive head)

(d) Roberta+ResNet50
(without contrastive head)

(e) Roberta + ViT
(with contrastive head)

(f) Roberta + ViT
(with contrastive head)

(g) Roberta + ViT
(without contrastive head)

(h) Roberta + ViT
(without contrastive head)

(i) DeBERTa + ViT
(with contrastive head)

(j) DeBERTa + ViT
(with contrastive head)

(k) DeBERTa + ViT
(without contrastive head)

(l) DeBERTa + ViT
(without contrastive head)

(m) DeBERTa + ResNet50
(with contrastive head)

(n) DeBERTa + ResNet50
(with contrastive head)

(o) DeBERTa + ResNet50
(without contrastive head)

(p) DeBERTa + ResNet50
(without contrastive head)

(q) SBERT + ResNet50
(with contrastive head)

(r) SBERT + ResNet50
(with contrastive head)

(s) SBERT + ResNet50
(without contrastive head)

(t) SBERT + ResNet50
(without contrastive head)

Figure 7: Comparison of discordant-pair barplots (first column per model) and McNemar 2×2 contingency heatmaps
(second column per model), both with and without the contrastive head. Models (top to bottom): Roberta + ResNet50,
Roberta + ViT, DeBERTa + ViT, DeBERTa + ResNet50, SBERT + ResNet50.
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