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ABSTRACT

Drug-target binding affinity prediction is a fundamental task for drug discovery.
It has been extensively explored in literature and promising results are reported.
However, in this paper we demonstrate that the results may be misleading and can-
not be well generalized to real practice. The core observation is that the canonical
randomized split of testset in conventional evaluation leaves the testset dominated
by samples with high similarity to trainset. Performance of models is severely de-
graded on samples with lower similarity to trainset but the drawback is highly
overlooked in current evaluation. As a result, the performance can hardly be
trusted when the model meets low-similarity samples in real practice. To address
this problem, we propose a framework of similarity aware evaluation in which a
novel split methodology is proposed to adapt to any desired distribution. This is
achieved by a formulation of optimization problems which are approximately and
efficiently solved by gradient descent. We perform extensive experiments across
five representative methods in four datasets for two typical target evaluation and
compare with various counterpart methods. Results demonstrate that the proposed
split methodology can significantly better fit desired distributions and guide the
development of models.

1 INTRODUCTION

Drug-target binding affinity (DTA) prediction is a fundamental and crucial task for drug discovery. It
evaluates effectiveness of drug candidates, or samples, and sees its application in large-scale virtual
screening where majority of ineffective candidates are filtered out to save experimental cost and time
(Chatterjee et al., 2023). DTA is quantitatively measured by inhibition constant Ki, half maximal
inhibitory concentration IC50, etc., which are all real-valued (Monteiro et al., 2022). The prediction
performance is commonly evaluated by mean absolute error (MAE) and coefficient of determination
(R2).

The task of DTA prediction has been extensively studied for decades (Chen et al., 2018; Askr et al.,
2023). Related works can be categorized as structure-based, sequence-based and similarity-based
(Wu et al., 2018; Chuang et al., 2020). Structure-based methods rely on 3D structures of samples,
target proteins or their complexes. Although theoretically accessible to most comprehensive infor-
mation following the dogma “structure determines function”, structure-based methods are limited
by available 3D structures, especially experimentally verified structures, and also hindered in prac-
tice by poor time efficiency. On contrast, sequence-based and similarity-based methods are fast
and do not set 3D structures as prerequisite (Xu et al., 2017; Zhang et al., 2022). Instead they take
as input residual sequences, Simplified Molecular-Input Line-Entry System (SMILES) sequences,
fingerprint sequences, atom-bond graphs or the derived pairwise similarities, which are easier to
acquire with lower cost. Moreover, these sequences and similarities are readily processed by di-
versified sophisticated backbones including convolutional neural networks (CNNs) (Öztürk et al.,
2018; Li et al., 2019; Hu et al., 2023), recurrent neural networks (RNNs) (Karimi et al., 2019; Yuan
et al., 2022), graph neural networks (GNNs) (Nguyen et al., 2021; Yang et al., 2022; Tang et al.,
2022; Wang et al., 2022) and transformers (Chithrananda et al., 2020; Zhao et al., 2022; Song et al.,
2023; Jiang et al., 2023), and enjoy the benefits of the development of deep learning techniques. As
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a result, sequence-based and similarity-based methods are shown to reach new high performance
and are drawing increasing attentions.

Although promising results are reported, we find, surprisingly, that these results may be misleading.
Take the task of IC50 prediction for target EGFR as an example, as shown in Figure 1, we evaluate
five state-of-the-art and representative methods and the best-performing one, SAM-DTA (Hu et al.,
2023), achieves a MAE of 0.6012 and R2 of 0.6505 for the whole testset. However, if we dive into
the performance and divide the testset according to the similarity of the sample to the trainset, we
find a clear performance degradation for low-similarity samples: the MAE deteriorates to 1.2970
for samples with similarity less than 1/3 and R2 to -0.6385. The gap is huge. Nevertheless, poor
performance on low-similarity samples does not really affect the whole performance since they
only occupy a negligible proportion: only 16 samples with similarity less than 1/3 out of a total of
873 samples in testset (Figure 1). In other words, testset is dominated by high-similarity samples
and performance for low-similarity samples are overwhelmed in current evaluations. We will show
that the phenomenon exists across different similarity measures, performance metrics, datasets and
methods, and therefore it is general. Consequently, the evaluation will be misleading to practitioners,
especially when the trained model meets low-similarity samples when used in real practice.

We argue that the core of the problem lies in the canonical randomized split of testset. Randomized
split follows the assumption of independent identically distribution (I.I.D.), which is the foundation
of most statistical learning theories. However, in drug discovery samples are not necessarily inde-
pendent to each other: in practice, mutually similar variants are more likely to be tested together in
high-throughput experiments, while at the same time they have to avoid high similarity to approved
drugs for intellectual property issues (Harren et al., 2024). Empirically, drugs developed at different
times show significant distinction in their properties (Sheridan et al., 2022). As a result, practitioners
would not always expect that samples they are going to test follow the same distribution as historical
samples. This in turn raises a request to the model development that testset should satisfy a desired
distribution. For example, one may need a testset that is uniform at different similarity bins; others
may ask the testset samples to be all limited within predefined similarity bounds, and so on (Li &
Yang, 2017; Simm et al., 2021; Luo et al., 2024; Tricarico et al., 2024).

We formulate the problem of testset split with a desired distribution as a combination optimization
problem. The problem is infeasible to solve for optimum due to efficiency issues. In this work,
we address this challenge by relaxing it to a continuous optimization problem where samples are
allowed to coexist in trainset and testset with a “probability” or weight. Further, the objective func-
tion contains non-differentiable operations including taking the maximum and counting in similarity
bins, and are approximated in this work by differentiable counterparts. We will show that the degree
of approximation is adjustable by introduced hyper-parameters. Next, the resulting optimization
problem has no closed-form solution, and hence we have resorted to Lagrangian multipliers with
numerical method implemented by PyTorch and Cooper (Gallego-Posada & Ramirez, 2022). Fi-
nally, we analyze the continuously-valued solution and find the non-negligible approximation error
induced by the relaxation. To this end, we introduce a regularization term that penalizes samples
whose weight is far from bipartition. We refer to our strategy as Similarity Aware Evaluation, ab-
breviated as SAE. By doing all this, we have managed to achieve testset split with various desired
distributions.

Extensive experiments are performed to substantiate the effectiveness of our split strategy. To be-
gin with, our split strategy can achieve a uniformly distributed testset across various similarity bins
(Figure 1). Subsequently, we evaluate the performance of five DTA prediction methods on this test-
set. The results underscore a distinct relationship between the performance and the corresponding
similarity levels, suggesting a more comprehensive assessment of balanced split across varied meth-
ods in comparison to the strategy of randomized split. Moreover, in scenarios where the samples
practitioners intend to test deviate from the distribution of existing samples, our split strategy can
effectively split the trainset and internal testset based on the similarity distribution of the testset
(Figure 4). Here we conduct hyper-parameter searches on the internal testset set across five DTA
prediction methods to assess the efficacy of our split strategy. Compared to previous split strategies,
our split strategy facilitates the selection of optimal hyper-parameters, enhancing performance on
the external testset (Figure 5). In other scenarios where practitioners specify predefined similar-
ity constraints for the testset samples, such as a maximum similarity limit of 0.4 or 0.6, or even a
range bounded by a minimum and maximum similarity of 0.4 and 0.6, our split strategy ensures the
majority of samples in the testset adhering to these requirements (Figure 6).
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Figure 1: Comparison of randomized split and SAE (balanced) split at IC50 for EGFR. The random-
ized split led to 88% of test samples yielding a high similarity (> 2/3) to the trainset. In contrast, our
SAE (balanced) split strategy ensures a more balanced distribution of similarities. The evaluation
of five DTA prediction methods demonstrates that the performance aligns with the similarity levels.
In the randomized split, the overall performance closely resembles that of high-similarity samples,
thus failing to evaluate the performance when encountering low-similarity samples.

2 PROBLEM OF RANDOMIZED SPLIT

In this section we will show that the imbalanced distribution of samples and the consequent over-
whelming of low-similarity samples is general for randomized split of testset across different sim-
ilarity measures, performance metrics, datasets and methods. We will firstly give the details of the
example in Figure 1, and then explore possible variants.

In the example demonstrated by Figure 1, we take the IC50 dataset of target EGFR with a total of
4,361 samples, which is one of the largest dataset we are able to find. The dataset has originated
from the BindingDB database, and IC50 has been converted to its negative logarithm form, pIC50 =
− log10 IC50 (Molar) following the convention. Then, we randomly split the dataset into trainset
and testset with a ratio of 8:2. Subsequently, we train and validate the DTA prediction models on the
trainset and evaluate their performance on the testset. It should be noted that we follow the original
hyper-parameter tuning procedure as outlined in the source code of each DTA prediction method.

To perform the fine-grained evaluation with respect to the similarity, we firstly define the pairwise
similarity for sample x1 and x2,

PairwiseSimlarity(x1, x2) = SimilarityMeasure (Feature(x1),Feature(x2)) (1)

and then derive the similarity to the union of the trainset by aggregation, for sample x ∈ testset .

SimlarityToTrainset(x) = Aggregation
t∈trainset

PairwiseSimlarity(x, t) (2)

where in the example of Figure 1, we set Feature as the Morgan fingerprint and SimilarityMeasure
as the Tanimoto coefficient, which are both commonly used to measure the similarity of samples,
and we set Aggregation as the maximum function (Bajusz et al., 2015; Ying et al., 2021).
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Table 1: Variations of SimilarityToTrainset related to feature extraction, similarity measure, aggre-
gation functions, and performance metrics. We choose PharmHGT and SAM-DTA as the example
methods for the detailed showcase.

Randomized Split (MAE)

Bin Feature: RDKit fingerprint Feature: Avalon fingerprint

Count (Ratio) PharmHGT SAM-DTA Count (Ratio) PharmHGT SAM-DTA

[0 , 1/3] 8 (0.0092) 1.7551 1.6787 0 (0.0000) - -
(1/3, 2/3] 34 (0.0389) 1.3214 1.0040 28 (0.0321) 1.4646 1.3319
(2/3, 1] 831 (0.9519) 0.6015 0.5743 845 (0.9679) 0.6128 0.5770
overall 873 (1.0000) 0.6401 0.6012 873 (1.0000) 0.6401 0.6012

SimilarityMeasure: Sokal similarity SimilarityMeasure: Dice coefficient

[0 , 1/3] 33 (0.0378) 1.5051 1.2444 0 (0.0000) - -
(1/3, 2/3] 398 (0.4559) 0.7066 0.6619 33 (0.0378) 1.5051 1.2444
(2/3, 1] 442 (0.5063) 0.5157 0.4985 840 (0.9622) 0.6061 0.5759
overall 873 (1.0000) 0.6401 0.6012 873 (1.0000) 0.6401 0.6012

Aggregation: Top-3 Aggregation: Top-5

[0 , 1/3] 17 (0.0195) 1.5188 1.3149 24 (0.0275) 1.5627 1.3469
(1/3, 2/3] 171 (0.1959) 0.8890 0.7748 240 (0.2749) 0.8014 0.7228
(2/3, 1] 685 (0.7847) 0.5562 0.5401 609 (0.6976) 0.5402 0.5239
overall 873 (1.0000) 0.6401 0.6012 873 (1.0000) 0.6401 0.6012

Randomized Split (R2)

Bin Feature: RDKit fingerprint Feature: Avalon fingerprint

Count (Ratio) PharmHGT SAM-DTA Count (Ratio) PharmHGT SAM-DTA

[0 , 1/3] 8 (0.0092) 0.1555 0.2579 0 (0.0000) - -
(1/3, 2/3] 34 (0.0389) -0.0371 0.3529 28 (0.0321) 0.1028 0.2921
(2/3, 1] 831 (0.9519) 0.6327 0.6706 845 (0.9679) 0.6169 0.6672
overall 873 (1.0000) 0.5928 0.6505 873 (1.0000) 0.5928 0.6505

SimilarityMeasure: Sokal similarity SimilarityMeasure: Dice coefficient

[0 , 1/3] 33 (0.0378) -0.1562 0.1866 0 (0.0000) - -
(1/3, 2/3] 398 (0.4559) 0.5412 0.6057 33 (0.0378) -0.1562 0.1866
(2/3, 1] 442 (0.5063) 0.6942 0.7156 840 (0.9622) 0.6290 0.6711
overall 873 (1.0000) 0.5928 0.6505 873 (1.0000) 0.5928 0.6505

Aggregation: Top-3 Aggregation: Top-5

[0 , 1/3] 17 (0.0195) -0.6280 -0.3148 24 (0.0275) -0.2379 0.0891
(1/3, 2/3] 171 (0.1959) 0.4283 0.5743 240 (0.2749) 0.4756 0.5794
(2/3, 1] 685 (0.7847) 0.6483 0.6712 609 (0.6976) 0.6584 0.6804
overall 873 (1.0000) 0.5928 0.6505 873 (1.0000) 0.5928 0.6505

We next compare other variants for these functions. For the feature extractor Feature , we compare
other widely used molecular descriptors including Avalon fingerprint and RDKit fingerprint (a.k.a.
topological fingerprint); for the function SimilarityMeasure we compare Sokal similarity and Dice
coefficient, which are both symmetric for its parameters; and finally for the Aggregation function,
we compare the general top-k averaging where the maximum function can be seen as a special case
of k = 1. Note that averaging or taking the median over the whole trainset is not suitable. This is
because majority of samples in trainset have a low similarity to a specific sample, and averaging or
taking the median over the whole trainset is not able to tell whether there exists any high-similarity
ones. The results are shown in Table 1, here we choose two example methods for detailed showcase
(PharmHGT (Jiang et al., 2023) and SAM-DTA (Hu et al., 2023)), while the results of other methods
can be found in the appendix.
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Table 2: Comparison of Randomized Split and SAE (balanced) Split at IC50 for BACE1, Ki for
Carbonic anhydrase I and Carbonic anhydrase II. We choose PharmHGT and SAM-DTA as the
example methods for the detailed showcase.

IC50 for Target BACE1 (MAE)

Bin Randomized Split SAE (balanced) Split

Count (Ratio) PharmHGT SAM-DTA Count (Ratio) PharmHGT SAM-DTA

[0 , 1/3] 10 (0.0108) 1.3743 1.1204 309 (0.3330) 1.1397 1.0309
(1/3, 2/3] 67 (0.0722) 0.6334 0.6928 311 (0.3351) 0.6410 0.6693
(2/3, 1] 851 (0.9170) 0.4611 0.4594 308 (0.3319) 0.4747 0.4808
overall 928 (1.0000) 0.4834 0.4834 928 (1.0000) 0.7518 0.7272

IC50 for Target BACE1 (R2)

[0 , 1/3] 10 (0.0108) -0.0553 0.3702 309 (0.3330) -0.2983 -0.1261
(1/3, 2/3] 67 (0.0722) 0.6789 0.6439 311 (0.3351) 0.5848 0.5637
(2/3, 1] 851 (0.9170) 0.7113 0.7150 308 (0.3319) 0.7797 0.7803
overall 928 (1.0000) 0.7190 0.7256 928 (1.0000) 0.5329 0.5665

Ki for Target Carbonic anhydrase I (MAE)

Bin Randomized Split SAE (balanced) Split

Count (Ratio) PharmHGT SAM-DTA Count (Ratio) PharmHGT SAM-DTA

[0 , 1/3] 7 (0.0079) 1.1467 0.8798 264 (0.2983) 0.8410 0.8729
(1/3, 2/3] 205 (0.2316) 0.5843 0.6605 311 (0.3514) 0.6706 0.6877
(2/3, 1] 673 (0.7605) 0.4986 0.4896 310 (0.3503) 0.6039 0.5740
overall 885 (1.0000) 0.5236 0.5323 885 (1.0000) 0.6981 0.7031

Ki for Target Carbonic anhydrase I (R2)

[0 , 1/3] 7 (0.0079) -0.3232 0.1308 264 (0.2983) -0.0389 -0.0282
(1/3, 2/3] 205 (0.2316) 0.5733 0.4820 311 (0.3514) 0.3642 0.3478
(2/3, 1] 673 (0.7605) 0.5037 0.5270 310 (0.3503) 0.3917 0.4262
overall 885 (1.0000) 0.5257 0.5174 885 (1.0000) 0.2994 0.3071

Ki for Target Carbonic anhydrase II (MAE)

Bin Randomized Split SAE (balanced) Split

Count (Ratio) PharmHGT SAM-DTA Count (Ratio) PharmHGT SAM-DTA

[0 , 1/3] 8 (0.0087) 0.5879 0.6645 244 (0.2667) 1.0450 1.0564
(1/3, 2/3] 201 (0.2197) 0.6807 0.7009 342 (0.3738) 0.7389 0.7572
(2/3, 1] 706 (0.7716) 0.5615 0.5426 329 (0.3596) 0.6172 0.5813
overall 915 (1.0000) 0.5879 0.5785 915 (1.0000) 0.7768 0.7738

Ki for Target Carbonic anhydrase II (R2)

[0 , 1/3] 8 (0.0087) 0.6739 0.4277 244 (0.2667) -0.0885 0.0087
(1/3, 2/3] 201 (0.2197) 0.5803 0.5742 342 (0.3738) 0.4657 0.4690
(2/3, 1] 706 (0.7716) 0.5509 0.5932 329 (0.3596) 0.4760 0.5346
overall 915 (1.0000) 0.5684 0.5938 915 (1.0000) 0.3776 0.4192

For the prediction method, as shown in Figure 1, we select five state-of-the-art and representative
DTA prediction methods. Molecular Contrastive Learning of Representations (MolCLR) sees sam-
ples as atom-bond graphs, and employs GCN and GIN to learn the molecular representations by
contrastive pairs (Wang et al., 2022). Sequence-agnostic model for drug-target binding affinity pre-
diction (SAM-DTA), on contrast, takes as input the Simplified Molecular-Input Line-Entry System
(SMILES) of samples, and processes it using 1D-CNN with dilated parallel residual blocks (Hu
et al., 2023). SMILES is also utilized in FusionDTA, but is processed by a unified LSTM model
with linear attention mechanism (Yuan et al., 2022). Finally, we include two transformer-based
methods. One is ChemBERTa which takes as input SMILES of samples and builds a model with
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12 attention heads and 6 layers (Chithrananda et al., 2020). Another is PharmHGT that leverages a
unique pharmacophoric-constrained heterogeneous molecule graph and two various transformers to
extract chemical properties and predict molecular attributes (Jiang et al., 2023).

We also investigate the problem at other tasks and datasets. Specifically, for the task of IC50 pre-
diction we also perform experiments at the dataset of target BACE1 with a total of 4,636 samples,
and we further extend the experiments to the task of Ki prediction for target Carbonic anhydrase I
and Carbonic anhydrase II, with 5,307 and 5,487 samples respectively. For all of these datasets we
apply the same preprocessing as that of target EGFR, except that taking the negative logarithm form
is not applicable to Ki datasets. The results are collectively presented in Table 2, here we choose
PharmHGT and SAM-DTA as the example methods for detailed showcase, while The comprehen-
sive collection of results can be found in the appendix.

In summary, extensive experiments demonstrate the generality of the imbalanced distribution of
samples by randomized split and the consequent overwhelming of low-similarity samples. The
problem will be analyzed and addressed in the following section.

3 SIMILARITY AWARE EVALUATION

In this section we will elaborate the proposed Similarity Aware Evaluation (SAE) which aims at test-
set with desired distribution. We will exemplify the method for testset that is uniform at similarity-
based bins (see Figure 1 for 3 similarity-based bins), and then extend it to other desired distributions.

The split for testset that is uniform at similarity-based bins can be formulated as a combination
optimization problem as follows. Given a dataset X = {xi, i = 1, 2, ..., N}, a pairwise similarity
matrix {sij ∈ [0, 1], sii = 0, i = 1, 2, ..., N ; j = 1, 2, ..., N}, a ratio α, and K bins with boundaries
{bk, k = 0, 1, 2, ...,K}, find a subset (testset) Xts ⊂ X, |Xts | = αN , such that

f(Xts) =

K∑
k=1

(ok − αN/K)2

αN/K
(3)

is minimized, where

ok = |{xi ∈ Xts : bk−1 < ri ≤ bk}| (4)
ri = max

xj∈Xtr

sij (5)

Xtr = X −Xts (6)

Xtr denotes the trainset, ri the similarity of xi to the trainset, and ok the count for each of the K
bins. Note that the objective function f is essentially the χ2 statistics in the Chi-Square (χ2) Test,
where ok is the observed count in each bin and αN/K the expected. Note also that we specially set
sii = 0 in the pairwise similarity matrix. This has no effect to the problem itself, but can avoid that
ri falls trivially to 1 due to the maximum operation for the relaxed problem below.

The combination optimization problem is infeasible to solve for optimum. As a result, we relax it
to a continuous optimization problem where samples are allowed to coexist in trainset and testset by
introduction of the weights {wi ∈ [0, 1], i = 1, 2, ..., N} and by |Xts | = αN we have constraints∑

i wi = αN . Next, we have to deal with non-differentiable operations in the objective function f
including taking the maximum and counting in similarity-based bins. For the maximum function in
calculation of ri, we approximate it by the LogSumExp operation with a hyper-parameter β,

ri = max
xj∈Xtr

sij = max
j

(1− wj)sij ≈
1

β
log

∑
j

exp (β(1− wj)sij) (7)

In terms of counting for similarity-based bins in calculation of ok, we approximate the discrete event
of a sample falling into a specific bin by a continuous score which depends on how far ri of the
sample deviates from the center of the bin. The score function is defined following the bell-shaped
normal distribution with the center of the bin as the expectation and a tunable standard deviation.
For a sample, scores across all bins are the normalized. Specifically, denote ck = (bk−1 + bk)/2 as
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Figure 2: Impact of the hyper-parameter β on the approximation of the maximum function in Eq. 7.
To illustrate this impact, we consider a simplified scenario involving only two random variables: X
and Y . (a) Z = Max(X,Y ); (b-d) Z = 1/β log(exp(βX)+exp(βY )). A larger value of β results
in a more accurate approximation, with β = 100 yielding an excellent result.
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Figure 3: Influence of the hyper-parameter σ in Eq. 12. we analyze a specific case where
K = 3, bk = k/3, ck = (2k − 1)/6. (a) y = I(b1 < r ≤ b2); (b-d) y =

exp
(
(−(r − c2)

2/(2σ2)
)
/
∑3

k=1 exp
(
−(r − ck)

2/(2σ2)
)
. A decrease in the value of σ leads to a

more precise estimation, with σ = 0.01 producing an outstanding result.

the center of each bin, σk as the tunable standard deviation, we have:

ok = |{xi ∈ Xts : bk−1 < ri ≤ bk}| (8)

=
∑
i

wiI(bk−1 < ri ≤ bk) (9)

≈
∑
i

wi

1√
2πσk

exp
(
−(ri − ck)

2/(2σ2
k)
)∑

k′
1√

2πσk′
exp (−(ri − ck′)2/(2σ2

k′))
(10)

(11)

where I is the indicator function. In this paper, we set σk = σ, k = 1, 2, ...,K. Thus, we obtain the
following expression:

ok ≈
∑
i

wi

exp
(
−(ri − ck)

2/(2σ2)
)∑

k′ exp (−(ri − ck′)2/(2σ2))
=

∑
i

wi softmax
k

(
− (ri − ck)

2

2σ2

)
(12)

Figure 2 and Figure 3 illustrates the error induced by these two differentiable approximation, with
respect to hyper-parameter β and σ, respectively. In Figure 2 we compare β between values of 1,
10 and 100 and plot the surface for a special case of maximum over two variables. It can be seen
that a larger β achieves a better approximation, but is also prone to overflow in practice. We use
β = 100 throughout the paper. For Figure 3, on the other hand, we show the comparison of σ values
between 1, 0.1 and 0.01 for an example case of the indicator of the second bin for a 3-bin setting
bk = k/3. The degree of approximation gets better when value of σ decreases, and is pretty well
when σ = 0.01. For the sake of flexibility, we set σk = 0.1(bk − bk−1) in rest of the paper.

At the moment we seem to be ready to arrive at the approximated optimization function. However,
in practice we find that the approximation error induced by relaxing wi from {0, 1} to [0, 1] is not
negligible. In fact, a considerable proportion of wi solved is neither near 0 nor 1. To address this
issue, we are inspired from the concept of entropy, and propose to add a regularization term,

lreg = −λ
∑
i

(wi log(wi) + (1− wi) log(1− wi)) (13)
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where λ is a hyper-parameter that balances between objective function and the regularization term.
Finally, we have the optimization problem,

minimize
wi

K∑
k=1

(ok − αN/K)2

αN/K
+ lreg (14)

subject to
∑
i

wi = αN (15)

0 ≤ wi ≤ 1, i = 1, 2, ..., N (16)

where

ok =
∑
i

wi softmax
k

(
− (ri − ck)

2

2σ2

)
(17)

ri =
1

β
log

∑
j

exp (β(1− wj)sij) (18)

lreg = −λ
∑
i

(wi log(wi) + (1− wi) log(1− wi)) (19)

Note that the optimization problem has no closed-form solution, and hence we have resorted to
Lagrangian multipliers with numerical method implemented by PyTorch and Cooper.

For other desired distributions, one can modify the objective function f in a straightforward way
while the approximation tricks and regularization term can be retained, and the resulting optimiza-
tion function can also be solved by Lagrangian multipliers with numerical method. Generally, if the
expected count in each bin is ek, k = 1, 2, ...,K, the objective function can be readily modified as

K∑
k=1

(ok − ek)
2

ek
+ lreg (20)

4 EXPERIMENTS

4.1 BALANCED SPLIT

In Section 2, we demonstrated that within the context of the randomized split, suboptimal perfor-
mance on low-similarity samples does not significantly impact the overall performance, as they only
occupy a negligible proportion. To avoid disregarding samples with low similarity, we implemented
a “balanced split” using similarity aware split strategy to achieve a uniformly distributed testset
across various similarity bins ([1/3, 2/3], (1/3, 2/3], (2/3, 1]). Figure 1 shows a comparison of ran-
domized split and SAE (balanced) split at IC50 for EGFR. The randomized split strategy yielded a
case that 88% of test samples have high similarity (> 2/3) to the trainset, while our split strategy
guarantees a more evenly distributed range of similarities. The evaluation at the SAE (balanced) split
reveals that the performance of each model aligns with the respective similarity levels. Hence, our
SAE (balanced) split provides a more accurate representation of the performance of each method.

Additional results at other tasks and datasets are delineated in Table 2. Given the space constraint,
we provide experimental results of two representative DTA prediction methods. Notably, analo-
gous phenomena are observed across the remaining three datasets. The comprehensive collection of
results can be found in the appendix.

4.2 MIMIC SPLIT

In scenarios when prior knowledge about the external dataset, such as the distribution of similarity to
existing samples, is available for the deployment of the DTA prediction method, we can construct an
internal testset that closely mirrors this distribution. This strategy enables us to select optimal hyper-
parameter configurations for the deployment of the DTA prediction method, thereby enhancing its
performance on the external dataset.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

[0,
 0.

1]

(0.
1, 

0.2
]

(0.
2, 

0.3
]

(0.
3, 

0.4
]

(0.
4, 

0.5
]

(0.
5, 

0.6
]

(0.
6, 

0.7
]

(0.
7, 

0.8
]

(0.
8, 

0.9
]

(0.
9, 

1.0
]

0.0

0.1

0.2

0.3

0.4

Pe
rc

en
ta

ge

(a) External Testset
[0,

 0.
1]

(0.
1, 

0.2
]

(0.
2, 

0.3
]

(0.
3, 

0.4
]

(0.
4, 

0.5
]

(0.
5, 

0.6
]

(0.
6, 

0.7
]

(0.
7, 

0.8
]

(0.
8, 

0.9
]

(0.
9, 

1.0
]

0.0

0.1

0.2

0.3

0.4

(b) Random
[0,

 0.
1]

(0.
1, 

0.2
]

(0.
2, 

0.3
]

(0.
3, 

0.4
]

(0.
4, 

0.5
]

(0.
5, 

0.6
]

(0.
6, 

0.7
]

(0.
7, 

0.8
]

(0.
8, 

0.9
]

(0.
9, 

1.0
]

0.0

0.1

0.2

0.3

0.4

(c) Scaffold
[0,

 0.
1]

(0.
1, 

0.2
]

(0.
2, 

0.3
]

(0.
3, 

0.4
]

(0.
4, 

0.5
]

(0.
5, 

0.6
]

(0.
6, 

0.7
]

(0.
7, 

0.8
]

(0.
8, 

0.9
]

(0.
9, 

1.0
]

0.0

0.1

0.2

0.3

0.4

(d) SIMPD
[0,

 0.
1]

(0.
1, 

0.2
]

(0.
2, 

0.3
]

(0.
3, 

0.4
]

(0.
4, 

0.5
]

(0.
5, 

0.6
]

(0.
6, 

0.7
]

(0.
7, 

0.8
]

(0.
8, 

0.9
]

(0.
9, 

1.0
]

0.0

0.1

0.2

0.3

0.4

(e) SAE (mimic)

Figure 4: The similarity distribution of the internal testset across different split strategies. (b) Ran-
domized split leads to a scenario where most internal test samples are highly similar to the trainset.
(c) Scaffold split produces a more balanced distribution. (d) SIMPD split yields a distribution simi-
lar to the random split. (e) Our SAE (mimic) split brings the internal testset’s distribution closest to
that of the external testset.
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Figure 5: Comparison on the generalization ability of different split strategies at IC50 for EGFR
across five DTA prediction methods. The external testset performance of the mimic split surpasses
that of other split strategies.

We conducted experiments on the task of predicting IC50 values using the EGFR target dataset.
Specifically, 70.2% samples were procured from ChEMBL (Zdrazil et al., 2024), while the remain-
ing samples were obtained from PubChem (Kim et al., 2023), the US Patent and the scientific lit-
erature available in BindingDB (Gilson et al., 2016). For our analysis, we classified the ChEMBL-
derived samples as internal data, while those obtained from the other sources as external testset.
We first computed the similarity distribution between the external testset and the internal data, as
shown in Figure 4 (a). Subsequently, we employed the Randomized split, Scaffold split, and SIMPD
split (Landrum et al., 2023) to split the internal data into a trainset and an internal testset with a ratio
of 70% and 30%. The similarity distributions between the internal testset and the trainset for these
splits are depicted in Figure 4 (b-d), respectively. Finally, we utilized the proposed split strategy to
split the internal data, thereby mimicking the similarity distribution observed in the external testset.
The results are illustrated in Figure 4 (e). We refer to this split strategy as “mimic split”.

For the DTA prediction methods, we searched for hyper-parameters such as optimizer, learning rate,
batch size and other relevant hyper-parameters. Details of the hyper-parameters for each method
are provided in the appendix. Experimental results are shown in Figure 5, our SAE (mimic) split
strategy consistently yields optimal hyper-parameter sets for all the five DTA prediction methods.
Among the various split strategies, the scores of our SAE (mimic) split on the internal testset are the
most closely aligned with those on the external testset.
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Figure 6: Other applications of our split strategy on the IC50 dataset of target EGFR. (a) 86% of the
test samples satisfied the desired distribution with a maximum similarity of 0.4, (b) 88% of the test
samples met the criteria for a maximum similarity of 0.6, and (c) 77.7% of the test samples fulfilled
the requirements for a similarity range between 0.4 and 0.6.

4.3 OTHER APPLICATIONS

Beyond achieving balanced splits, our strategy supports distributions with maximum similarities
of 0.4 or 0.6, or a range between 0.4 and 0.6. In a 7:3 train-test split on the EGFR target’s IC50
dataset (Figure 6), SAE ensured 86%, 88%, and 77.7% of test samples met the criteria, respectively.
This underscores the flexibility of the strategy in accommodating diverse split needs. Moreover,
since SAE can flexibly achieve desired distributions by capturing the similarity between pairs of
data samples, it can also be applied to QSAR scenarios, including ADMET prediction, drug de-
sign (De et al., 2022; Tropsha et al., 2024), as well as the prediction of protein-protein interactions
(PPI) (Sharma & Bhatia, 2021) and drug-drug interactions (DDI) (Dmitriev et al., 2019).

5 RELATED WORKS

When evaluating machine learning methods, it is essential to set aside a testset for benchmark-
ing (Wu et al., 2018). The similarity between the trainset and the testset significantly influences the
performance of these methods (Sheridan et al., 2004; Cherkasov et al., 2014; Pahikkala et al., 2015;
Sieg et al., 2019; Nguyen et al., 2022; Atas Guvenilir & Doğan, 2023; Harren et al., 2024). How-
ever, in the field of chemical data, imbalanced data distributions are an inherent and unavoidable
challenge (Harren et al., 2024; Yang et al., 2020; Tossou et al., 2024). Therefore, it is crucial to
design dataset split strategies that account for these imbalances and ensure meaningful evaluation of
model performance (Li & Yang, 2017; Sheridan et al., 2022). The commonly used random splitting
method may fail to meet the requirements due to inherent data bias. A typical solution is to exclude
all samples in the trainset that are similar to those in the test set (Li et al., 2021; Scantlebury et al.,
2023; Luo et al., 2024; 2017; Wan et al., 2019; Atas Guvenilir & Doğan, 2023). Recently, several
advanced split strategies have been proposed, including scaffold split (Bemis & Murcko, 1996; Fang
et al., 2022; Zhou et al., 2023; Liu et al., 2024), time split (Guan et al., 2023; Stärk et al., 2022),
stratified split (Wu et al., 2018; Chen et al., 2022), physicochemical properties-based split (Kalemati
et al., 2024), cold-drug split (Huang et al., 2021), and SIMPD (Landrum et al., 2023), among others.

6 CONCLUSION

In this paper, we show the generality of the imbalanced distribution of samples by randomized split
and the consequent overwhelming of low-similarity samples. To address the issue, we proposed
a novel and flexible similarity aware split strategy for testset to achieve a desired distribution like
uniform discrete distribution, which can deliver a comprehensive evaluation for various drug-target
binding affinity prediction algorithms. Furthermore, we utilized the similarity aware split to create
a “mimic split”, splitting the trainset and internal testset by replicating the distribution found in an
external testset. Our mimic split consistently aids in selecting the optimal hyper-parameter across
various deep learning methods. In the end, our split strategy allows for the generation of distributions
with minimum or maximum similarity constraints as needed.
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A APPENDIX

A.1 RELATED WORKS ON DATA SPLITTING

In molecular machine learning, including general QSAR tasks, the challenge of fair predictive eval-
uation has been a longstanding issue (Cherkasov et al., 2014). While randomized split remains the
most commonly used strategy for data splitting, it is not always the optimal choice for evaluating
machine learning methods. Consequently, various alternative split strategies have been developed to
better evaluating the machine learning methods:

• Time split (Sheridan, 2013; Stärk et al., 2022; Guan et al., 2023) is employed for datasets
containing temporal information, where the model is trained on historical data and tested
on more recent data. It may effectively replicate the real-world scenarios, however, a sig-
nificant number of datasets are devoid of time-specific information. In some situations,
when the time span is too large or the data distribution changes significantly over time, the
model may struggle to perform well on the testset.

• Scaffold split (Bemis & Murcko, 1996) is a technique that splits the dataset based on the
structural framework of each sample. It is often leveraged in situations involving out-of-
distribution data to provide a measure of generalization capabilities (Stanley et al., 2021;
Fang et al., 2022; Zhou et al., 2023; Liu et al., 2024). Because scaffold split does not
enforce stratification during the partitioning process, it may result in class imbalance (Yang
et al., 2019).

• Stratified split - also called stratified random sampling - is a sampling method designed to
ensure that each fold of a dataset maintains the same distribution of classes as the entire
dataset. It achieves this by first dividing the data into different output strata based on class
labels and then executes a random partition with the guaranteeing that the entire label range
is encompassed within each set (Krstajic et al., 2014; Wu et al., 2018; Mathai et al., 2020;
Chen et al., 2022).

• Cold-drug split (Huang et al., 2021) is a method for dividing datasets in multi-protein
prediction tasks, where the dataset is split based on entity types, such as proteins, drugs, or
DNAs. The process begins by randomly splitting the dataset into training, validation, and
test sets based on one chosen entity type. Subsequently, all data samples associated with a
specific entity are assigned to the same set to ensure no overlap across splits, ensuring that
there is no overlap of the chosen entity type across the splits.

• SIMPD split (Landrum et al., 2023) mimics temporal splits in scenarios where temporal
information is not accessible. This approach was developed by observing and analyzing
disparities observed between earlier and subsequent samples within the scope of medicinal
chemistry projects.

This challenge is closely intertwined with the broader problem of out-of-distribution (OOD) gen-
eralization (Tossou et al., 2024), demonstrating its relevance far beyond the confines of individual
tasks such as DTA prediction. In fact, machine learning model tends to perform well when the
training set shares a similar distribution with the test set (Leonard & Roy, 2006; Puzyn et al., 2011;
Cherkasov et al., 2014). However, the previous split stratigies often yield test sets with distributions
that closely mimic the training set (as shown in Figure A.2). Such alignment between the training
and test set distributions can lead to overly optimistic assessments of a model’s generalization abil-
ity, as it fails to account for scenarios where the model is applied to data with significantly different
characteristics. SAE provides an effective solution to this issue by enabling more precise control
over data distributions through its ability to capture the similarities between data samples. This
approach ensures greater adaptability to a wider range of scenarios.

A.2 DISCUSSION ABOUT APPLICATION ON QSAR SCENARIOS

Quantitative Structure-Activity Relationship (QSAR) modeling is a widely used in silico approach
for predicting the biological or chemical properties of molecules (De et al., 2022). Previous studies
on QSAR (Sheridan et al., 2004) have shown that prediction accuracy is highly correlated with the
similarity between the molecule being predicted and its closest neighbor in the training set. This
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observation is similar to patterns found in the DTA prediction task. Therefore, our SAE method can
also be extended to QSAR tasks.

For instance, Krishnan et al. (2021) introduced a de novo drug design method that incorporates a
pre-trained model alongside transfer learning to generate novel inhibitors targeting the human JAK2
protein. In this approach, transfer learning was utilized to capture the features of the target-related
chemical space. If the characteristics of the target-related chemical space—particularly the distribu-
tion of the external dataset—are already well understood, our SAE can be applied to replicate this
distribution during the splitting of training and test sets, thereby enhancing the overall performance.

Similarly, in the task of protein-protein interaction prediction, improper construction of the data
split among training, validation, and test sets can lead to severe data leakage and overly optimistic
results (Li et al., 2022). To address this issue, one proposed solution is to divide the test set into
three distinct classes (Park & Marcotte, 2012): C1, where test pairs consist of proteins that are both
present in the training set; C2, where test pairs involve one protein present in the training set; and
C3, where neither protein in the test pair is found in the training set. Notably, the three classes
can be viewed as specific cases of our SAE split strategy. Furthermore, the SAE approach can be
flexibly applied to constructing testsets with varying levels of difficulty to more effectively evaluate
the model’s generalization.

A.3 TIME COMPLEXITY AND SPACE COMPLEXITY ANALYSIS

Given the number of iterations M , the number of samples N , and the number of bins K, we analyze
the time complexity of a single iteration in Eq. 14, which involves both forward and backward
propagation. During forward propagation, computing ok involves O(N ·K) operations, as it requires
iterating over N samples and K bins, with softmax and exponential computations. The computation
of ri is more expensive, requiring O(N2) operations due to the nested summation over N samples.
The regularization term lreg involves a simple summation over N , contributing O(N) operations.
Combining these, the time complexity of one forward propagation is dominated by the O(N2)
and O(N · K) terms, resulting in O(N2 + N · K), which simplifies to O(N2) because K ≪
N . For backward propagation, the computation of gradients with respect to wi involves similar
operations, which results in the same complexity of O(N2). Additionally, the process of checking
constraints involves N + 1 Lagrangian multipliers. The forward and backward propagation for this
constraint-checking step each have a complexity of O(N). Combining all of these components,
the time complexity of one iteration is O(N2), and the total time complexity of SAE across all
iterations is O(M · N2). The overall space complexity of SAE is primarily determined by the
storage requirements for sij and the intermediate values needed for computing gradients from ri to
wj . As a result, the space complexity is O(N2).

Empirically, for the IC50 dataset of target EGFR which contains N = 4, 361 samples, the desired
distribution is a uniform over bins [1/3, 2/3], (1/3, 2/3], (2/3, 1]. We set the number of iterations
to M = 20, 000. On a single 3090 GPU, SAE completes the process in approximately 270 seconds,
utilizing 2,410 MiB of GPU memory.

We would also like to emphasize that SAE is used in the model development stage and as a result,
when the model is developed, it will no longer affect the efficiency for high-throughput inference.
Note also that SAE needs only to be performed once for a fixed dataset, meaning that it can be
reused by different models as long as they are developed on the same dataset. As a result, the time
it takes may be overwhelmed by the time used by the heavy model development. When scaling to
large datasets, it should be noted that almost all operations within one iteration is parallelable, and
thus it will benefit significantly from more powerful GPU devices and distributed computation.

A.4 DISCUSSION ON THE APPLICATION OF SAE TO LARGE-SCALE DATASETS

In pharmacompany (private) drug libraries for early drug discovery, there might be 200,000 to 106

samples (Hughes et al., 2011). When scaling to these large datasets, a solution based on sparse
matrix is applicable. Specifically, Figure A.1 shows that the majority of pairwise similarities are
low. Suppose the desired distribution is uniform over bins [1/3, 2/3], (1/3, 2/3], (2/3, 1] just as in
the previous section, over 95% entries in the similarity matrix are less than 1/3 and can be safely
set to zero without interference of the results. The time and space complexity can be significantly
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Figure A.1: The similarity distribution of all sample pairs in the IC50 prediction task for the target
EGFR. The dataset consists of 4,361 samples, resulting in a total of 9,506,980 pairwise similarity
calculations. Among these, 95.89% of the pairs exhibit similarities of no greater than 1/3, while
only 4.11% have similarities exceeding 1/3.
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Figure A.2: The similarity distribution of the internal testset across different split strategies. (b)
Randomized split leads to a scenario where most internal test samples are highly similar to the train-
set. (c) Scaffold split produces a more balanced distribution. (d) SIMPD split yields a distribution
similar to the random split. (e) Our SAE (mimic) split brings the internal testset’s distribution clos-
est to that of the external testset. (f) Stratified split based on the maximum similarity of each ligand
to all others in the dataset. (g) Stratified split based on the average similarity of each ligand to all
others in the dataset. (h) Dissimilar split guarantees that the similarity will remain below 0.5.

reduced in this way. Given N = 106, the number of pairs with a similarity greater than 1/3 would
be approximately 0.05 · N(N − 1)/2, which is about 2.5 × 1010. We can store these similarities
in a sparse format, represented as tuples (Index of sample A, Index of sample B, Similarity value).
Each index can be encoded using 20 bits (sufficient to represent 220 = 1,048,576 positions), the
similarity value can be quantized into 4 bits (Dettmers et al., 2024). Consequently, the total storage
requirement can be calculated as:

(20bits+ 20bits+ 4bits)× 2.5× 1010 = 5.5Bytes× 2.5× 1010 ≈ 128GB

This size is manageable and can even be stored in memory.
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Table A.1: Comparison on the generalization ability of different split strategies at IC50 for EGFR
across five DTA prediction methods.

Split Method Internal Test Internal Test External Test External Test
MAE R2 MAE R2

Random

FusionDTA 0.6445 0.5399 1.1198 0.0957
ChemBERTa 0.6389 0.5574 1.0600 0.1517

MolCLR 0.5830 0.6318 1.0976 0.1546
PharmHGT 0.6166 0.5739 1.1107 0.1323
SAM-DTA 0.5805 0.6301 0.9863 0.3206

Scaffold

FusionDTA 0.9626 0.1544 1.0863 0.1243
ChemBERTa 0.9314 0.1997 1.1972 -0.0491

MolCLR 0.8627 0.3145 1.1585 0.0405
PharmHGT 0.8537 0.3427 1.0930 0.1594
SAM-DTA 0.8725 0.3311 1.0187 0.3034

SIMPD

FusionDTA 0.7215 0.3292 1.1417 0.0528
ChemBERTa 0.6954 0.3642 1.1010 0.0878

MolCLR 0.6334 0.4775 1.2131 -0.0016
PharmHGT 0.6742 0.3958 1.1588 0.0133
SAM-DTA 0.6271 0.4867 1.0058 0.3083

Stratified (max)

FusionDTA 0.6753 0.5346 1.0886 0.1517
ChemBERTa 0.6752 0.5384 1.1504 0.0223

MolCLR 0.5968 0.6504 1.0917 0.1207
PharmHGT 0.6092 0.6302 1.0694 0.1811
SAM-DTA 0.6019 0.6404 1.0345 0.2722

Stratified (avg)

FusionDTA 0.6490 0.5713 1.0957 0.1206
ChemBERTa 0.6724 0.5191 1.1258 0.0896

MolCLR 0.5939 0.6368 1.1556 0.1019
PharmHGT 0.6103 0.5895 1.0938 0.1667
SAM-DTA 0.6099 0.6159 0.9946 0.3345

Dissimilar

FusionDTA 0.9425 -0.1256 1.2788 -0.1063
ChemBERTa 0.8927 -0.0139 1.6402 -0.5971

MolCLR 0.8462 0.0592 1.3355 -0.1366
PharmHGT 0.9011 -0.0029 1.6006 -0.5237
SAM-DTA 0.9239 -0.0845 1.2140 -0.0039

SAE (mimic)

FusionDTA 0.9130 0.2919 1.0605 0.2122
ChemBERTa 0.8976 0.2736 1.0452 0.2477

MolCLR 0.8536 0.3653 1.0002 0.2981
PharmHGT 0.8826 0.3200 1.0609 0.1861
SAM-DTA 0.8545 0.3770 0.9773 0.3367

A.5 SUPPLEMENTARY EXPERIMENTAL RESULTS OF MIMIC SPLIT

For thorough comparison with other split strategies, we implemented stratified split (Wu et al., 2018;
Chen et al., 2022) and dissimilar split (Atas Guvenilir & Doğan, 2023) at IC50 for EGFR. For the
stratified split, we first compute the pairwise similarities for the full dataset, resulting in a similarity
matrix of size N × N (where N is the number of samples in the dataset, with the diagonal values
set to zero). Next, we calculate the maximum/average similarity for each row, yielding a similarity
vector of size N , which represents the maximum/average similarity of each ligand to all others in
the dataset. Finally, we divide the dataset into K bins based on the maximal/average similarity and
perform random sampling within each bin to create the testset. We refer to the two variations of
this stratified split strategy as ”Stratified (max),” which uses the maximum similarity for binning,
and ”Stratified (avg)”, which uses the average similarity. The similarity distributions of the stratified
split are shown in Figure A.2 (f) and Figure A.2 (g). The distribution result of dissimilar split is
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Table A.2: Detailed comparison on the generalization ability of different split strategies at IC50 for
EGFR across five DTA prediction methods.

Extrenal Test MAE

Bin Count Split FusionDTA ChemBERTa MolCLR PharmHGT SAM-DTA

[0, 1/3] 120

Random 1.2442 1.1167 1.2385 1.3261 1.1343
Scaffold 1.2293 1.2242 1.1630 1.1840 1.1363
SIMPD 1.4297 1.3223 1.7376 1.3382 1.1179

Stratified (max) 1.2311 1.1663 1.2414 1.2179 1.1747
Stratified (avg) 1.5371 1.4478 1.6005 1.3962 1.3666

Dissimilar 1.4134 1.2363 1.1912 1.2424 1.4161
SAE (mimic) 1.0626 1.0315 1.1848 1.1082 1.0435

(1/3, 2/3] 1026

Random 1.1416 1.0874 1.0983 1.0989 0.9879
Scaffold 1.0729 1.2273 1.2021 1.0891 1.0209
SIMPD 1.1545 1.1272 1.2134 1.1614 1.0158

Stratified (max) 1.0756 1.1611 1.0927 1.0677 1.0317
Stratified (avg) 1.0815 1.1450 1.1384 1.0835 0.9808

Dissimilar 1.3106 1.6954 1.3676 1.6504 1.2513
SAE (mimic) 1.0531 1.0594 0.9979 1.0606 0.9743

(2/3, 1] 186

Random 0.9559 0.9060 1.0208 1.0516 0.9015
Scaffold 1.0604 1.0346 0.9449 1.0543 0.9335
SIMPD 0.9741 0.9022 1.0066 1.0775 0.9191

Stratified (max) 1.0718 1.0883 1.0017 0.9933 0.9683
Stratified (avg) 0.9694 0.9047 1.0415 1.0102 0.8967

Dissimilar 1.0201 1.6720 1.2858 1.6248 0.8773
SAE (mimic) 1.1003 0.9762 0.8938 1.0322 0.9511

External Test R2

Bin Count Split FusionDTA ChemBERTa MolCLR PharmHGT SAM-DTA

[0, 1/3] 120

Random -0.5461 -0.5827 -0.5009 -0.6605 -0.2855
Scaffold -0.1335 -0.3903 -0.1887 -0.1096 -0.0121
SIMPD -0.8717 -0.7917 -1.3400 -0.6245 -0.1181

Stratified (max) -0.4278 -0.4195 -0.7345 -0.3873 -0.3106
Stratified (avg) -0.8887 -1.0024 -1.1185 -0.5790 -0.3962

Dissimilar -0.4209 -0.0067 0.0122 -0.0173 -0.4122
SAE (mimic) -0.0736 -0.1140 -0.3105 -0.2592 -0.0783

(1/3, 2/3] 1026

Random 0.0351 0.1066 0.1433 0.1005 0.2950
Scaffold 0.0987 -0.1211 -0.0502 0.1355 0.2824
SIMPD 0.0078 0.0332 -0.0169 -0.0337 0.2780

Stratified (max) 0.1305 -0.0321 0.1016 0.1530 0.2633
Stratified (avg) 0.1017 0.0476 0.1156 0.1430 0.3188

Dissimilar -0.2307 -0.8279 -0.2834 -0.7374 -0.1244
SAE (mimic) 0.1791 0.1848 0.2632 0.1237 0.3020

(2/3, 1] 186

Random 0.0869 0.1390 -0.0844 0.0577 0.2594
Scaffold -0.0967 -0.0351 0.1475 -0.0412 0.2110
SIMPD 0.1642 0.2476 0.0842 0.0139 0.2880

Stratified (max) 0.0272 -0.0595 0.1063 0.1111 0.1550
Stratified (avg) 0.1114 0.2234 0.0081 0.0860 0.3187

Dissimilar 0.0288 -1.0679 -0.3223 -0.9576 0.2743
SAE (mimic) -0.2135 0.1123 0.1807 0.0350 0.1359

shown in Figure A.2 (h). Comparison on the generalization ability of different split strategies is
shown in Table A.1. SAE performs better than stratified sampling and dissimilar split with a clear
margin.
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We also analyse the performance on the different brackets in the external dataset. As is shown in
Table A.2, SAE improves performance in the low- and mid-similarity brackets, but not in the high-
similarity one. We believe this is because internal testset by SAE has more samples in the low- and
mid-similarity brackets and thus performance in these brackets receives more attention compared
with other split strategies.

A.6 COMPARISON ACROSS DIFFERENT SIMILARITY MEASURES AND FINGERPRINTS

As for comparison across different similarity measures and fingerprints, we conducted experiments
on similarity measure choices including Tanimoto, Cosine, Sokal and Dice, and fingerprint choices
including Morgan (ECFP), RDKFP (RDKit) and Avalon. As shown by Table A.3, split results are
less affected by similarity measure choices but more influenced by fingerprint choices. In all setting
of similarity measures and fingerprints, SAE outperforms other approaches by achieving a split that
is closer to the desired distribution (uniform distribution in this case).
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Table A.4: Hyper-parameters used in the mimic split experiment for each method, the following
search options are derived from the default parameter settings of each method.

Method Hyper-parameter Options

SAM-DTA
Optimizer [Adam, SGD]

Learning rate [1e-3, 1e-4, 1e-5]
Batch size [10, 32, 64]

MolCLR

Optimizer [Adam, SGD]
Learning rate [(1e-3, 5e-3), (1e-4, 5e-4), (1e-5, 5e-5)](prediction head, GNN encoder)
Dropout ratio [0.3, 0.5]

Readout pooling [Mean, Max, Add]

FusionDTA

Optimizer [Adam, SGD]
Learning rate [1e-2, 1e-3, 1e-4]

Batch size [128, 256]
Loss function [L1, MSE]

PharmHGT

Optimizer [Adam, SGD]
Learning rate [1e-2, 1e-3, 1e-4]

Activation function [Sigmoid, ReLU]
Loss function [RMSE, MAE]

ChemBERTa
Optimizer [AdamW, Adafactor]

Learning rate [4e-3, 4e-4, 4e-5, 4e-6]
Batch size [4, 8, 16]
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Table A.5: Variations of SimilarityToTrainset related to feature extraction, similarity measure,
aggregation functions, and performance metrics. The methods for detailed showcase are FusionDTA
and ChemBERTa.

Randomized Split (MAE)

Bin Feature: RDKit fingerprint Feature: Avalon fingerprint

Count (Ratio) FusionDTA ChemBERTa Count (Ratio) FusionDTA ChemBERTa

[0 , 1/3] 8 (0.0092) 1.4442 1.4679 0 (0.0000) - -
(1/3, 2/3] 34 (0.0389) 1.1294 1.1306 28 (0.0321) 1.3299 1.2340
(2/3, 1] 831 (0.9519) 0.6407 0.6546 845 (0.9679) 0.6451 0.6623
overall 873 (1.0000) 0.6671 0.6806 873 (1.0000) 0.6671 0.6806

SimilarityMeasure: Sokal similarity SimilarityMeasure: Dice coefficient

[0 , 1/3] 33 (0.0378) 1.2751 1.2711 0 (0.0000) - -
(1/3, 2/3] 398 (0.4559) 0.7366 0.7234 33 (0.0378) 1.2751 1.2711
(2/3, 1] 442 (0.5063) 0.5591 0.5980 840 (0.9622) 0.6432 0.6574
overall 873 (1.0000) 0.6671 0.6806 873 (1.0000) 0.6671 0.6806

Aggregation: Top-3 Aggregation: Top-5

[0 , 1/3] 17 (0.0195) 1.1567 1.3484 24 (0.0275) 1.3682 1.3330
(1/3, 2/3] 171 (0.1959) 0.8839 0.8722 240 (0.2749) 0.7861 0.8094
(2/3, 1] 685 (0.7847) 0.6008 0.6162 609 (0.6976) 0.5926 0.6041
overall 873 (1.0000) 0.6671 0.6806 873 (1.0000) 0.6671 0.6806

Randomized Split (R2)

Bin Feature: RDKit fingerprint Feature: Avalon fingerprint

Count (Ratio) FusionDTA ChemBERTa Count (Ratio) FusionDTA ChemBERTa

[0 , 1/3] 8 (0.0092) 0.2319 0.2536 0 (0.0000) - -
(1/3, 2/3] 34 (0.0389) 0.2253 0.1829 28 (0.0321) 0.2166 0.2573
(2/3, 1] 831 (0.9519) 0.5899 0.5796 845 (0.9679) 0.5845 0.5698
overall 873 (1.0000) 0.5697 0.5585 873 (1.0000) 0.5697 0.5585

SimilarityMeasure: Sokal similarity SimilarityMeasure: Dice coefficient

[0 , 1/3] 33 (0.0378) 0.0871 0.0615 0 (0.0000) - -
(1/3, 2/3] 398 (0.4559) 0.5068 0.5186 33 (0.0378) 0.0871 0.0615
(2/3, 1] 442 (0.5063) 0.6469 0.6117 840 (0.9622) 0.5898 0.5793
overall 873 (1.0000) 0.5697 0.5585 873 (1.0000) 0.5697 0.5585

Aggregation: Top-3 Aggregation: Top-5

[0 , 1/3] 17 (0.0195) -0.0685 -0.3530 24 (0.0275) -0.0237 -0.0345
(1/3, 2/3] 171 (0.1959) 0.4390 0.4408 240 (0.2749) 0.4881 0.4647
(2/3, 1] 685 (0.7847) 0.5930 0.5837 609 (0.6976) 0.5965 0.5903
overall 873 (1.0000) 0.5697 0.5585 873 (1.0000) 0.5697 0.5585
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Table A.6: Variations of SimilarityToTrainset related to feature extraction, similarity measure,
aggregation functions, and performance metrics. The method for detailed showcase is MolCLR.

Randomized Split (MAE)

Bin Feature: RDKit fingerprint Feature: Avalon fingerprint

Count (Ratio) MolCLR Count (Ratio) MolCLR

[0 , 1/3] 8 (0.0092) 1.4442 0 (0.0000) -
(1/3, 2/3] 34 (0.0389) 1.1294 28 (0.0321) 1.3299
(2/3, 1] 831 (0.9519) 0.6407 845 (0.9679) 0.6451
overall 873 (1.0000) 0.6671 873 (1.0000) 0.6671

SimilarityMeasure: Sokal similarity SimilarityMeasure: Dice coefficient

[0 , 1/3] 33 (0.0378) 1.2751 0 (0.0000) -
(1/3, 2/3] 398 (0.4559) 0.7366 33 (0.0378) 1.2751
(2/3, 1] 442 (0.5063) 0.5591 840 (0.9622) 0.6432
overall 873 (1.0000) 0.6671 873 (1.0000) 0.6671

Aggregation: Top-3 Aggregation: Top-5

[0 , 1/3] 17 (0.0195) 1.1567 24 (0.0275) 1.3682
(1/3, 2/3] 171 (0.1959) 0.8839 240 (0.2749) 0.7861
(2/3, 1] 685 (0.7847) 0.6008 609 (0.6976) 0.5926
overall 873 (1.0000) 0.6671 873 (1.0000) 0.6671

Randomized Split (R2)

Bin Feature: RDKit fingerprint Feature: Avalon fingerprint

Count (Ratio) MolCLR Count (Ratio) MolCLR

[0 , 1/3] 8 (0.0092) 0.2319 0 (0.0000) -
(1/3, 2/3] 34 (0.0389) 0.2253 28 (0.0321) 0.2166
(2/3, 1] 831 (0.9519) 0.5899 845 (0.9679) 0.5845
overall 873 (1.0000) 0.5697 873 (1.0000) 0.5697

SimilarityMeasure: Sokal similarity SimilarityMeasure: Dice coefficient

[0 , 1/3] 33 (0.0378) 0.0871 0 (0.0000) -
(1/3, 2/3] 398 (0.4559) 0.5068 33 (0.0378) 0.0871
(2/3, 1] 442 (0.5063) 0.6469 840 (0.9622) 0.5898
overall 873 (1.0000) 0.5697 873 (1.0000) 0.5697

Aggregation: Top-3 Aggregation: Top-5

[0 , 1/3] 17 (0.0195) -0.0685 24 (0.0275) -0.0237
(1/3, 2/3] 171 (0.1959) 0.4390 240 (0.2749) 0.4881
(2/3, 1] 685 (0.7847) 0.5930 609 (0.6976) 0.5965
overall 873 (1.0000) 0.5697 873 (1.0000) 0.5697
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Table A.7: Comparison of Randomized Split and SAE (balanced) Split at IC50 for BACE1, Ki for
Carbonic anhydrase I and Carbonic anhydrase II. The methods for detailed showcase are FusionDTA
and ChemBERTa.

IC50 for Target BACE1 (MAE)

Bin Randomized Split SAE (balanced) Split

Count (Ratio) FusionDTA ChemBERTa Count (Ratio) FusionDTA ChemBERTa

[0 , 1/3] 10 (0.0108) 1.3020 1.1440 309 (0.3330) 1.2117 1.2503
(1/3, 2/3] 67 (0.0722) 0.7270 0.6719 311 (0.3351) 0.7444 0.6599
(2/3, 1] 851 (0.9170) 0.5105 0.5267 308 (0.3319) 0.5310 0.5352
overall 928 (1.0000) 0.5347 0.5439 928 (1.0000) 0.8292 0.8151

IC50 for Target BACE1 (R2)

[0 , 1/3] 10 (0.0108) 0.0422 0.3204 309 (0.3330) -0.5113 -0.5641
(1/3, 2/3] 67 (0.0722) 0.5980 0.6325 311 (0.3351) 0.4238 0.5787
(2/3, 1] 851 (0.9170) 0.6651 0.6446 308 (0.3319) 0.7076 0.7235
overall 928 (1.0000) 0.6755 0.6673 928 (1.0000) 0.4213 0.4548

Ki for Target Carbonic anhydrase I (MAE)

Bin Randomized Split SAE (balanced) Split

Count (Ratio) FusionDTA ChemBERTa Count (Ratio) FusionDTA ChemBERTa

[0 , 1/3] 7 (0.0079) 0.9363 0.9564 264 (0.2983) 1.0252 0.9245
(1/3, 2/3] 205 (0.2316) 0.7086 0.7085 311 (0.3514) 0.7362 0.7228
(2/3, 1] 673 (0.7605) 0.5203 0.5440 310 (0.3503) 0.6181 0.6060
overall 885 (1.0000) 0.5673 0.5854 885 (1.0000) 0.7810 0.7421

Ki for Target Carbonic anhydrase I (R2)

[0 , 1/3] 7 (0.0079) 0.0634 0.1421 264 (0.2983) -0.4131 -0.1076
(1/3, 2/3] 205 (0.2316) 0.3536 0.3761 311 (0.3514) 0.2106 0.2829
(2/3, 1] 673 (0.7605) 0.4500 0.4231 310 (0.3503) 0.3532 0.3299
overall 885 (1.0000) 0.4259 0.4161 885 (1.0000) 0.1253 0.2334

Ki for Target Carbonic anhydrase II (MAE)

Bin Randomized Split SAE (balanced) Split

Count (Ratio) FusionDTA ChemBERTa Count (Ratio) FusionDTA ChemBERTa

[0 , 1/3] 8 (0.0087) 0.8465 0.5778 244 (0.2667) 0.9849 0.9314
(1/3, 2/3] 201 (0.2197) 0.6817 0.7419 342 (0.3738) 0.8265 0.7390
(2/3, 1] 706 (0.7716) 0.5605 0.5997 329 (0.3596) 0.6040 0.6072
overall 915 (1.0000) 0.5896 0.6307 915 (1.0000) 0.7888 0.7429

Ki for Target Carbonic anhydrase II (R2)

[0 , 1/3] 8 (0.0087) 0.0349 0.3581 244 (0.2667) 0.0488 0.2523
(1/3, 2/3] 201 (0.2197) 0.5603 0.4667 342 (0.3738) 0.3416 0.4686
(2/3, 1] 706 (0.7716) 0.5513 0.5146 329 (0.3596) 0.4499 0.4744
overall 915 (1.0000) 0.5570 0.5087 915 (1.0000) 0.3583 0.4659
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Table A.8: Comparison of Randomized Split and SAE (balanced) Split at IC50 for BACE1, Ki for
Carbonic anhydrase I and Carbonic anhydrase II. The method for detailed showcase is MolCLR.

IC50 for Target BACE1 (MAE)

Bin Randomized Split SAE (balanced) Split

Count (Ratio) MolCLR Count (Ratio) MolCLR

[0 , 1/3] 10 (0.0108) 1.2452 309 (0.3330) 1.4141
(1/3, 2/3] 67 (0.0722) 0.6952 311 (0.3351) 0.6940
(2/3, 1] 851 (0.9170) 0.4878 308 (0.3319) 0.4784
overall 928 (1.0000) 0.5109 928 (1.0000) 0.8622

IC50 for Target BACE1 (R2)

[0 , 1/3] 10 (0.0108) -0.0492 309 (0.3330) -0.9211
(1/3, 2/3] 67 (0.0722) 0.6184 311 (0.3351) 0.5107
(2/3, 1] 851 (0.9170) 0.6919 308 (0.3319) 0.7746
overall 928 (1.0000) 0.6974 928 (1.0000) 0.3713

Ki for Target Carbonic anhydrase I (MAE)

Bin Randomized Split SAE (balanced) Split

Count (Ratio) MolCLR Count (Ratio) MolCLR

[0 , 1/3] 7 (0.0079) 0.8510 264 (0.2983) 1.0059
(1/3, 2/3] 205 (0.2316) 0.6141 311 (0.3514) 0.7549
(2/3, 1] 673 (0.7605) 0.4762 310 (0.3503) 0.5755
overall 885 (1.0000) 0.5111 885 (1.0000) 0.7669

Ki for Target Carbonic anhydrase I (R2)

[0 , 1/3] 7 (0.0079) 0.3127 264 (0.2983) -0.3331
(1/3, 2/3] 205 (0.2316) 0.5338 311 (0.3514) 0.1585
(2/3, 1] 673 (0.7605) 0.5598 310 (0.3503) 0.4342
overall 885 (1.0000) 0.5572 885 (1.0000) 0.1552

Ki for Target Carbonic anhydrase II (MAE)

Bin Randomized Split SAE (balanced) Split

Count (Ratio) MolCLR Count (Ratio) MolCLR

[0 , 1/3] 8 (0.0087) 1.0278 244 (0.2667) 0.8873
(1/3, 2/3] 201 (0.2197) 0.6882 342 (0.3738) 0.6907
(2/3, 1] 706 (0.7716) 0.5497 329 (0.3596) 0.6232
overall 915 (1.0000) 0.5843 915 (1.0000) 0.7189

Ki for Target Carbonic anhydrase II (R2)

[0 , 1/3] 8 (0.0087) -0.3461 244 (0.2667) 0.2192
(1/3, 2/3] 201 (0.2197) 0.5635 342 (0.3738) 0.5347
(2/3, 1] 706 (0.7716) 0.5964 329 (0.3596) 0.4409
overall 915 (1.0000) 0.5856 915 (1.0000) 0.4740
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