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ABSTRACT

Semi-supervised learning (SSL) has witnessed great progress with various im-
provements in the self-training framework with pseudo labeling. The main chal-
lenge is how to distinguish high-quality pseudo labels against the confirmation
bias. However, existing pseudo-label selection strategies are limited to pre-defined
schemes or complex hand-crafted policies specially designed for classification,
failing to achieve high-quality labels, fast convergence, and task versatility si-
multaneously. To these ends, we propose a Semi-supervised Reward framework
(SemiReward) that predicts reward scores to evaluate and filter out high-quality
pseudo labels, which is pluggable to mainstream SSL methods in wide task types
and scenarios. To mitigate confirmation bias, SemiReward is trained online in
two stages with a generator model and subsampling strategy. With classifica-
tion and regression tasks on 13 standard SSL benchmarks across three modalities,
extensive experiments verify that SemiReward achieves significant performance
gains and faster convergence speeds upon Pseudo Label, FlexMatch, and Free/-
SoftMatch. Code and models are available at https://github.com/Westl
ake-AI/SemiReward.
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(a) SSL classification and regression benchmarks
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(b) SSL classification benchmarks with SOTA methods
Figure 1: SemiReward (abbreviated as SR) enables existing SSL methods to select high-quality
pseudo labels on both classification and regression tasks with fast convergence speeds (Figure 2).
Error rates of SSL algorithms are plotted on CV, NLP, and Audio datasets. Note that previous SOTA
marks the best performance among a set of methods, which denotes 4 general SSL methods used for
classification and regression tasks in (a) and 17 SSL methods in USB (Wang et al., 2022a) in (b).
SemiReward noticeably improves performance when plugged into existing SSL methods.
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(a) CV: Euro-SAT (20)
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(b) NLP: Yahoo! Answer (2000)
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(c) Audio: ESC-50 (250)
Figure 2: Top-1 accuracy v.s. training iterations (×2048) on SSL datasets (the number of used
labels) of three modalities. Employing SemiReward with SOTA SSL methods produces +1.9∼3.7
performance gains with at least 1.7 times fewer training iterations compared to the baseline. We
apply early-stop when the validation performance reaches the peak.

1 INTRODUCTION

In the past decades, deep learning (DL) has made great progress in various applications with differ-
ent modalities (He et al., 2016; Devlin et al., 2018; Dong et al., 2018; Li et al., 2024). However, most
tasks are in a supervised learning (SL) manner that requires manually labeling data, which is lim-
ited in quantity and labor-exhaustive. To extend SL with massive unlabeled data, semi-supervised
learning (SSL) exploits the information of unlabeled data with limited labeled data (Tarvainen &
Valpola, 2017; Sohn et al., 2020) in the self-training paradigm of pseudo-labeling (Lee et al., 2013),
i.e., training models with unlabeled data and pseudo labels assigned by models’ predictions.

As a widely used technique, the main problem of SSL is how to generate accurate pseudo labels
without or with tolerable effects of confirmation bias (Arazo et al., 2020), i.e., overfitting to incorrect
pseudo labels from teacher models. There were three main strands of research, aiming at obtaining
high-quality pseudo labels and a high sampling rate while being capable of various tasks and scenar-
ios. Firstly, mainstream methods utilize threshold-based pseudo labeling (Sohn et al., 2020; Zhang
et al., 2021; Kim et al., 2022; Wang et al., 2022b) with ad-hoc or complex hand-crafted strategies
to select high-quality pseudo labels. However, these algorithms are predefined and task-specific,
i.e., they are designed for classification tasks but cannot handle more challenging regression tasks.
The second strand introduces pre-trained teacher models (Zhou & Li, 2010; Xie et al., 2020b) to
generate high-quality pseudo labels, which require extra computational cost (e.g., double training
times (Pham et al., 2021)) or suffer from confirmation bias (Yalniz et al., 2019). The third line
explores consistency regulaizations (Xie et al., 2020a; Sohn et al., 2020; Li et al., 2021) to prevent
confirmation bias of inaccurate pseudo labels, e.g., optimizing the consistency loss with weak-strong
augmentation, which only work for specific modalities with prior augmentations. Therefore, none
of the previous SSL methods achieved three goals simultaneously.

This work answers a core question in SSL training: how to efficiently evaluate a pseudo label com-
prehensively? We introduce a reward score based on cosine similarity between pseudo and ground-
truth labels as the quality standard, which is a smooth and well-calibrated metric for classification
and regression tasks. Then, we propose a Semi-supervised Reward framework (SemiReward) that
predicts reward scores based on pseudo labels and corresponding unlabeled data for pseudo-label
selection and can be used as an add-on module for mainstream SSL methods. Specifically, a re-
warder network predicts credible reward scores to filter pseudo labels for the student training and is
learned to fit ground-truth reward scores online. To disentangle its training from the student, a two-
stage training pipeline is designed with the assistance of a generator network, which generates “fake
labels” that only train the rewarder. The rewarder and generator are first pre-trained alternatively on
the labeled dataset in stage 1 to alleviate confirmation bias, then trained on a randomly subsampled
set of labeled data and selected unlabeled data in stage 2. Empirical studies show that SemiReward
predicts calibrated reward scores to select high-quality pseudo labels with a high sampling rate to
boost SSL training. We conduct comparison experiments on SSL benchmarks with three modalities
and two task types, verifying that SemiReward improves both general and modern SSL algorithms
in performance and convergence speeds. Our main contributions are three folds:

• From a fresh perspective, we introduce the reward score to evaluate pseudo-label qualities
and design the rewarder to predict it by modeling unlabeled data and pseudo-labels together.

• We propose a general and pluggable SemiReward framework that selects high-quality
pseudo labels with reward scores. A two-stage training pipeline and a generator network
are designed to train the rewarder online with negligible extra cost.
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Figure 3: Illustration of SSL training paradigm, where blue lines denote pseudo-labeling pipeline
and red lines denote gradient propagation. (a) Confidenced-based label selection strategy and strong-
weak augmentations for consistency are task-specific and modality-specific (requiring ad-hoc aug-
mentations). (b) RewarderR is a plug-and-play label selection module for general SSL scenarios.

• Extensive experiments on 13 datasets validate that SemiReward markedly increases per-
formance and convergence speeds of popular SSL methods in classification and regression
tasks. We also empirically verify the reliability of reward scores and designed modules.

2 PRELIMINARY

Semi-supervised training pipeline. SSL is an extended scenario of SL, where given a labeled
dataset DL =

{
xli, y

l
i

}NL

i=1
and an unlabeled dataset DU = {xui }

NU

i=1, with the sample numbers
NL � NU . Considering any classification or regression task, yli ∈ RC denotes the encoded ground-
truth label, where C is the label dimension, and the model fS(·) learns to predict fS(x) = y ∈ RC .
As for C-class classification, one-hot encoding is adopted for yl while converting the model output
to arg maxp(y). To utilize all training data, the general SSL training pipeline with pseudo-labeling
contains three steps: (a) Pseudo-label generation. Given a teacher model fT (·) that is well-trained
on DL, it can generate pseudo-labels yu = fT (xu) for DU . (b) Pseudo-label selection. High-
quality pseudo labels D̂U = {ŷu}N̂U = {I(pui , τ)yui }

NU
i=1 are filtered by a label selection mechanism

I(·, ·), where τ ∈ [0, 1] is the threshold. (c) Supervised and unsupervised losses computation,
denoted as L = LS + LU . Given a mini-batch of BL data, LS is written as:

LS =
1

BL

BL∑
i=1

H
(
yli, fS

(
ω(xi)

))
, (1)

where ω(·) denotes stochastic data augmentations and H(·, ·) is the loss function used for the SL
task, such as cross-entropy and `1 loss for classification and regression tasks. Similarly, given a
mini-batch ofBU unlabeled data, taking popular consistency regularization frameworks (Sohn et al.,
2020) as an example, the unsupervised loss is

LU =
1

BU

BU∑
i=1

I(pui , τ)H
(
ŷui , fS

(
Ω(xui )

))
, (2)

where Ω(xui ) represents the strong augmented unlabeled data. As shown in Figure 3(a), the con-
sistency regularization framework usually has three design aspects: (i) fT and fS share the same
network architecture and parameters of fS are updated to fT by copying or exponential moving av-
erage (EMA). (ii) For most consistency-based SSL methods, a hand-crafted I(·, ·) requires predicted
classification confidence to distinguish reliable labels. (iii) Since the teacher fT is more reliable
than the student fS , the consistency that between fT and fS is introduced by constructing sample
pairs (ω(xui ),Ω(xui )) with strong-weak augmentations proposed by UDA (Xie et al., 2020a) and
optimizing consistency through LU .

Breaking Through Limitations of Confidence-based Label Selection. Existing label selection
strategies in step (ii) only use yu or the confidence pu to evaluate pseudo labels in hand-crafted
policies, which cannot guarantee the quality and stability of D̂U . Meanwhile, the designed steps
(ii) and (iii) limit the task and modality generalities of the pseudo-labeling pipeline. To tackle
these problems, we parameterize I(·, ·) as a lightweight rewarder model R(xu, yu) = r, where a
reward score r ∈ [0, 1] represents the label quality and is defined in Sec. 3.1. In Figure 3(b), the
pre-trained R can evaluate the label quality comprehensively based on both xu and yu, rather than
solely depended on yu. And we define L in a simple and general form:

L =
1

BL

BL∑
i=1

H
(
yli, fS

(
ω(xi)

))
︸ ︷︷ ︸

LL

+
1

BU

BU∑
j=1

I(R(xuj , y
u
j ) > τ)H

(
ŷuj , fS

(
ω(xuj )

))
︸ ︷︷ ︸

LU

+Laux, (3)

where Laux denote training losses of the rewarderR with generator G discussed in Sec. 3.2.

3



Published as a conference paper at ICLR 2024

3 SEMIREWARD

Here, we introduce SemiReward for high-quality pseudo-label selection in general SSL tasks. In
Sec. 3.1, we first define reward score as a pseudo-label evaluation metric and approximate it by a
rewarder model. Then, Sec. 3.2 describes how to learn the rewarder through a two-stage pipeline.

3.1 MEASUREMENT OF LABEL QUALITY

Unlike popular ranking loss (Ouyang et al., 2022) in reinforcement learning (RL) (Schulman et al.,
2017), we define a continuous metric of pseudo-label quality based on label similarity.

Definition 3.1 (Reward Score). The reliability of a pseudo label yu of data x is measured by label
similarity S(·, ·) with its ground truth label yl, which can also be approximated by a rewarderR(·, ·):

r(yu, yl) = S(yu, yl) ' R(x, yu) ∈ [0, 1]. (4)
The ideal reward score should satisfy monotonicity and smoothness (not increasing dramatically)
and strive to meet the trend of calibration curve (Clark, 1975), where a lower reward confidence
indicates poorer label quality. Therefore, we define the label similarity based on cosine similarity.

Definition 3.2 (Label Similarity). Given vectorized label y ∈ RC , the label similarity between yi
and yj is defined as scaled cosine similarity:

S(yi, yj) =
yi · yj

2 ‖yi‖ ‖yj‖
+ 0.5 ∈ [0, 1]. (5)

Figure 4(a) verifies the properties of r(yu, yl) by changing the label similarity metrics to negative
L2 distance and JS-divergence, and it shows that Eq. (5) can be the better choice.
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Figure 4: How rewarder works illustrated by reward scores v.s. top-1 accuracy on CIFAR-100
(400 labels). (a) Analysis of alternative reward similarities; (b) Ablation of cross-attention module
inR, which is the vital component to learn calibrated reward scores; (c) Ablation of MLP layers.
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Figure 5: Credible reward scores ensure the stable op-
timization of the student model, while raw pseudo la-
bels in general SSL methods gravely misled the student
for regression task on RCF-MNIST (1% labels).

To support both classification and regres-
sion tasks, we determine the encoding
strategies to ensure that used labels are
in vector format. This paper mainly dis-
cusses the cases of one-hot classification
or single attribute regression. Given a raw
scalar label, it can be encoded in “one-hot”
format for classification. As for a raw re-
gression label y ∈ [0, C], we propose a
soft one-hot encoding that equally divides
the scalar into C bins and sets the k-th po-
sition in the vector to 1 + (y − k), where
k ≤ y < k+ 1, while other positions are set to 0. Afterward, we verify Eq. (4) with regression tasks
in Figure 5 and find that it can serve as a reliable metric and reduce the confirmation bias of raw
pseudo labels. As for multi-label scenarios (Lin et al., 2017), we first encode raw labels for each
task separately and then concatenate them as the final labels.

Rewarder. As defined in Eq. (4), R(·, ·) tries to solve a regression problem: the model should
extract semantic information of yl from xu and tell the similarity between xu and yu according to
their semantic correlation. As shown in Figure 6,R is designed as:

R(xu, yu) = Sigmoid
(

MLP
(

CA
(
Emb(f(xu)),Emb(yu)

)))
, (6)
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Figure 6: Network structures of effi-
cientR and G analyzed in Table 5.

where the input data and label are first linear embedded
to the same dimension by Emb(·), and their correlations
are modeled by a cross-attention module CA(·, ·) and a
MLP(·) module, then predict the reward score through
Sigmoid function. Notice that xu is converted to last-
layer features by a pre-trained backbone model f(·), e.g.,
an image in H ×W resolutions will be encoded as a D-
dim feature zu ∈ RD, which is easy for the network to
capture high-level information directly related to yl. As
shown in Figure 4(b), we ablate modules in R and find
that CA(·, ·) is the most essential component to learn
credible reward scores. Meanwhile, the backbone f(·)
is also important to provide highly embedded features,
or it will be hard and costly to learn such information by
the lightweightR. On the contrary, the number of layers
in MLP(·) has less impact on performance, as verified
in Figure 4(c). As for implementation, R uses a 2-layer
MLP(·) withD = 128 and we simply apply the inherent
teacher fT as f(·) in Eq. (6).

3.2 EFFICIENT TWO-STAGE TRAINING OF SEMIREWARD

Synchronizing with self-training paradigms, we train the rewarderR in a supervised manner with a
reward training setDR = {ω(xri ), y

r
i }
NR

i=1, where yr is considered as the ground-truth label here. As
discussed in Sec. 2, we expect a reliableR to filter pseudo labels to ensure high label quality to train
fS . Hence, we design a two-stage training paradigm forR in Figure 7, and DR will be dynamically
constructed by DL and D̂U . View Appendix B for a detailed analysis of training processes.

Generator. To trainR, we first design a generator G(xu) = yf ∈ RC to generate pseudo labels but
not participate in the training process of fS . Thus, we denote them as “fake labels”. Similar to Chen
et al. (2022a), G decouples the training of fS andR to avoid confirmation bias. Meanwhile, the fake
labels generated by G gradually change from random to accurate, which helps R steadily fit reward
scores on high-quality pseudo-label distributions. Its network is also as lightweight asR, containing
the pre-trained f followed by a sample embedding Emb(·) and a MLP(·) module in Figure 6.

Pre-training Rewarder. R and G will be trained with fixed DR = DL before T training iterations.
In the first stage, our main optimization goal is to approximate the ground truth reward scores with a
wide range of fake labels without affecting the training of fS . Thus,R does not select pseudo labels
for the student fS , and we introduce G(xr) = yf to generate fake labels that gradually get better.
We compute losses forR and G alternatively as the auxiliary loss Laux = LR + LG :

LR =
1

BR

BR∑
i=1

`2

(
R
(
xri ,G(xri )

)
,S
(
yri ,G(xri )

))
, (7)

LG =
1

BR

BR∑
i=1

`2

(
R
(
xri ,G(xri )

)
, 1
)
, (8)

where R and G denote forward without requiring gradients, which prevents two losses from inter-
fering with each other. In implementations, we adopt two independent optimizers for R and G for
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(a) Stage 1: Pre-training with labeled data
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(b) Stage 2: Semi-supervised training with DR

Figure 7: Two-stage training paradigm of SemiReward. (a) To preventR from distorting fS , we
pre-trainR and G to convergence at the early stage of SSL training with DL. (b) After T iterations,
R further learns from the DR sub-sampled from DL ∪ D̂U with ignorable training cost.
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Figure 8: Evaluation of pseudo-label quality and quantity. (a) After stage 1 in SemiReward
training, it improves pseudo-label qualities by 1.7∼2.1% over FlexMatch on CIFAR-100, Ag News,
and UrbanSound-8k datasets. (b) SemiReward improves pseudo-label qualities of final models by
3.1∼3.5% over FlexMatch. (c) Class-average sampling rate on STL-10 (40). Despite earning a high
sampling rate at the very beginning of training in Flex/FreeMatch, it sustains below 90% during
training. With SemiReward (SR), the sampling rate rapidly increases and remains 90∼95%.

convenience, e.g., Adam (Kingma & Ba, 2014). Therefore,R and G only run forward and backward
once for rewarder training in each iteration, which costs ignorable extra overheads in SSL training.

Semi-supervised training Rewarder. In the second stage, the core objective is to optimize fS
usingR to filter high-quality labels as in Figure 3(b). As fS is continuously optimized onDL∪D̂U ,
R should also be efficiently optimized to suppress the confirmation bias in Pseudo Labeling. i.e., fS
is easily to overfit to incorrect pseudo-labels. We tackle this dilemma with a simple sub-sampling
strategy: we further trainR and G by Eq. (7) and Eq. (8) with randomly sub-sampled dataset DR ⊂
DL ∪ D̂U , where NR = λ(NL + N̂U ) and D̂U is the reliable pseudo-label set selected by DR.
We adopt λ = 0.1 by default. This strategy combines two merits: (i) training R can be as fast as
the first stage; (ii) similar to 10-fold cross-validation, exploring different subsets to train R avoids
overfitting by introducing more randomness. As shown in Figure 8(c), SemiRewarder achieves high
sampling rates compared to two confidence-based baselines, which select high-quality pseudo labels
after stage 1 in Figure 8(a) and will maintain the high quantity in stage 2 as shown in Figure 8(b).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Comparison Methods for Classification. In the context of classification tasks, we conducted ex-
periments on 10 diverse datasets spanning three distinct modalities to assess the impact of integrating
our SemiReward approach. All experiments are based on SSL benchmark USB (Wang et al., 2022a),
which implement 14 SSL algorithms, including Π model Rasmus et al. (2015), Pseudo Label Lee
et al. (2013), Mean Teacher Tarvainen & Valpola (2017), VAT Miyato et al. (2018), MixMatch Berth-
elot et al. (2019b), ReMixMatch Berthelot et al. (2019a), UDA Xie et al. (2020a), FixMatch Sohn
et al. (2020), Dash Xu et al. (2021), CoMatch Li et al. (2021), CRMatch Fan et al. (2021), Flex-
Match Zhang et al. (2021), AdaMatch Berthelot et al. (2021), and SimMatch Zheng et al. (2022).
We rigorously compare various SSL algorithms from them, Softmatch, Freematch, and Flexmatch,
constituting the previous state-of-the-art, dubbed as Previous SOTA. Also, we choose the basic
method Pseudo Label (Lee et al., 2013; Arazo et al., 2020) to illustrate the role of our approach in
unlocking potential. Initially, we assess the performance of these algorithms based on classification
error rates and training convergence speed, establishing a performance baseline. Subsequently, we
can introduce SemiReward into the workflow and conduct a comparative analysis.

Task Settings for Classification. Here are tasks and specific settings on datasets of each modality.
More information on datasets and experimental settings are detailed in Appendix A.1.

(a) For CV tasks, our investigations featured the deployment of renowned and challenging datasets,
including CIFAR-100 (Krizhevsky et al., 2009), STL-10 (Coates et al., 2011), EuroSAT (Helber
et al., 2019), and ImageNet (Deng et al., 2009), with the ImageNet pre-trained Vision Trans-
formers (ViT) (Dosovitskiy et al., 2021) or randomly initialized ResNet-50 (He et al., 2016)
architectures serving as the backbone.

(b) In the domain of NLP, we leveraged 3 datasets, including AG News (Zhang et al., 2015), Yahoo!
Answers (Chang et al., 2008), and Yelp Review (yel, 2014), employing the self-supervised pre-
trained Bert (Devlin et al., 2018) as the backbone.
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Table 1: Top-1 error rate (%), performance gain, and training speedup times on nine SSL classifica-
tion datasets with CV, NLP, and Audio modalities in various label settings.

Domain Dataset (Setting)
Pseudo Label FlexMatch SoftMatch/FreeMatch Average

Base +SR Base +SR Base +SR Gain Speed.

Audio

ESC-50 (250) 38.42±0.85 33.33±0.97 36.83±0.51 32.58±0.51 32.71±0.82 29.71±0.64 +4.11 ×1.73
ESC-50 (500) 28.92±0.24 27.65±0.32 27.75±0.41 25.92±0.31 29.07±1.27 25.98±0.49 +2.06 ×2.07

FSDnoisy18k (1773) 34.60±0.55 33.24±0.82 26.29±0.17 25.63±0.28 29.39±1.83 26.10±0.83 +1.77 ×1.30
UrbanSound8k (100) 37.74±0.96 36.47±0.65 37.88±0.46 36.06±0.93 37.68±1.82 34.97±1.02 +1.93 ×1.70
UrbanSound8k (400) 27.45±0.96 25.27±0.65 23.78±0.46 23.45±0.93 23.78±0.13 19.39±0.33 +2.30 ×1.08

NLP

AG News (40) 15.19±3.07 13.90±0.21 13.08±3.94 12.60±0.69 11.69±0.12 10.67±0.90 +0.93 ×2.77
AG News (200) 14.69±1.88 12.10±0.58 12.08±0.73 11.05±0.14 11.75±0.17 10.02±0.82 +1.78 ×2.30

Yahoo! Answer (500) 34.87±0.50 35.08±0.40 34.73±0.09 33.64±0.73 33.02±0.02 30.92±0.90 +0.99 ×1.80
Yahoo! Answer (2000) 33.14±0.70 32.50±0.42 31.06±0.32 29.97±0.10 30.34±0.18 29.11±0.15 +0.99 ×3.53

Yelp Review (250) 46.09±0.15 42.99±0.14 46.09±0.15 42.76±0.33 43.91±0.19 42.68±0.12 +2.55 ×1.40
Yelp Review (1000) 44.06±0.14 42.08±0.15 40.38±0.33 37.58±0.19 40.43±0.12 38.43±0.14 +2.26 ×1.01

CV

CIFAR-100 (200) 32.78±0.20 31.94±0.57 25.72±0.35 23.74±1.39 21.07±0.72 20.06±0.41 +1.28 ×1.04
CIFAR-100 (400) 25.16±0.67 23.84±0.20 17.80±0.57 17.59±0.35 15.97±0.24 15.62±0.71 +0.63 ×1.57

STL-10 (40) 20.53±0.12 17.37±0.47 11.82±0.51 10.20±1.11 17.51±0.61 9.72±0.62 +4.19 ×1.07
STL-10 (100) 11.25±0.81 10.88±1.48 7.13±0.20 7.59±0.57 8.10±0.35 7.10±1.39 +0.30 ×1.11

Euro-SAT (20) 25.25±0.72 23.65±0.41 5.54±0.16 4.86±1.00 5.51±0.54 4.22±0.34 +1.19 ×1.03
Euro-SAT (40) 12.82±0.81 8.33±0.33 4.51±0.24 3.88±0.69 5.46±0.34 3.94±0.71 +2.21 ×1.13

(c) For audio classification, we study the applications of SSL on 3 datasets, including Urban-
Sound8k (Salamon et al., 2014), ESC-50 (Piczak, 2015), and FSDNoisy18k (Fonseca et al.,
2019), where Hubert (Hsu et al., 2021) played the role of the pre-trained backbone.

Comparison Methods and Task Settings for Regression. To demonstrate the versatility of our ap-
proach, we extend our investigation to regression tasks alongside our primary focus. Specifically, we
select Pseudo Label and its counterparts, namely the Π model (Rasmus et al., 2015), CRMatch (Fan
et al., 2021), and Mean Teacher (Tarvainen & Valpola, 2017), as our baseline methods. We then eval-
uate their performance in comparison to the integration of SemiReward on 3 regression datasets. The
first two datasets, IMDB-WIKI (Rothe et al., 2018) and AgeDB (Moschoglou et al., 2017) with only
1% labeled data, perform face age regression. Additionally, we conduct a rotation angle estimation
task using our custom RCF-MNIST dataset (Yao et al., 2022), featuring a more complex CIFAR-
10 (Krizhevsky et al., 2009) background to align the samples closely to natural images and make
the task more difficult. Experimental results are assessed based on two standard regression metrics:
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).

SemiReward Implementations. To train the rewarderR and generator G, we apply Adam (Kingma
& Ba, 2014) optimizer with a fixed learning rate of 0.0005 in two-stage training for all tasks. We
set the scheduler’s T to 10% of total SSL training iterations. During the inference process ofR, we
use the average reward score as the threshold τ to filter pseudo labels dynamically. More specific
hyperparameters are provided in Appendix A.2.

4.2 COMPARISON RESULTS ON SEMI-SUPERVISED BENCHMARKS

Results on Classification. Table 1 demonstrates the substantial performance improvements
achieved by plugging SemiReward into representative SSL algorithms across diverse modalities,
with notable impacts in audio-related tasks. When augmenting Pseudo Label with SemiReward, it
outperforms SoftMatch on UrbanSound8k with 100 labeled instances and achieves an average per-
formance gain of 4.11% on ESC-50 with 250 labels. This enhancement effectively guides basic
models, e.g., Pseudo Label, toward more favorable local minima. The inclusion of SemiReward
consistently expedites model convergence, as evidenced by the “avg. speedup” column in Table 1,
with acceleration factors ranging from ×1.5 to ×3.53 in most cases. Total training times are shown
in C.1. Meanwhile, the early stopping technique reduces training costs while maintaining desired
performance, representing a valuable trade-off. Furthermore, using SemiReward can reduce train-
ing times and achieve lower error rates on Imagenet, as shown in Table 3. Notably, FlexMatch,
in conjunction with SemiReward, surpasses previous SOTA methods, such as Freematch and Soft-
match. The basic method with consistency regularization, FixMatch, also demonstrates substantial
performance improvements when combined with SemiReward.

Results on Regression. We compare CRMatch, Mean Teacher, Π model, Pseudo Label, and Pseudo
Label added to SemiReward on RCF-MNIST, IMDB-WIKI, and AgeDB. The results are reported
in Table 2. From the results of RMSE and MAE, SemiReward has great gain. Especially on RCF-
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Table 2: RMSE and MAE, performance gain, and training speedup
times on three SSL regression datasets with 1% labels.

Method RCF-MNIST IMDB-WIKI AgeDB
RMSE MAE RMSE MAE RMSE MAE

Supervised 62.02±0.34 22.81±0.07 14.92±0.14 11.52±0.09 14.51±0.13 11.77±0.27

Pseudo Label 62.72±0.11 23.07±0.05 14.90±0.22 11.44±0.53 14.76±0.12 11.71±0.53

Π-Model 63.24±0.63 23.54±0.63 14.80±0.12 11.35±0.12 14.76±0.14 11.92±0.09

MeanTeacher 63.44±0.32 23.25±0.13 15.01±0.64 11.66±0.32 14.99±0.99 12.07±0.48

CRMatch 101.66±0.84 85.45±0.72 22.42±0.23 18.77±0.43 20.42±0.10 17.11±0.49

PseudoLabel+SR 61.71±0.34 22.45±0.05 14.80±0.53 10.91±0.12 14.01±0.12 10.77±0.22

Gain -0.90 -0.99 -0.10 -0.53 -0.75 -0.94

Table 3: Top-1 error rate (%),
performance gain, and train-
ing speedup times on ImageNet
with 100 labels per class.

Method Top-1 Gain Speedup
FixMatch 43.66 +0.00 ×1.00
FixMatch+SR 41.72 +1.94 ×1.98
FlexMatch 41.85 +0.00 ×0.00
FreeMatch 40.57 +1.28 ×1.50
SoftMatch 40.52 +1.33 ×1.46
FlexMatch+SR 40.36 +1.49 ×2.35

MNIST dataset, SemiReward can yield lower RMSE to 0.9 and MAE to 0.99, which is even better
than the supervised baseline. On the contrary, CRMatch performs poorly on various data sets,
inferior to other SSL baselines, indicating the strong effect of confirmation bias.

4.3 ANALYSIS AND ABLATION

This section presents experimental analysis to demonstrate the functionality of SemiReward.

Table 4: Ablation of rewarder
training. We search the stage-2
start timing T in the two-stage
scheduler and losses for Eq. (7)
and Eq. (8) on CIFAR-100 (400).

Scheduler Loss Error
T MSE BCE (%)

0% X 19.65
5% X 17.89
10% X 16.65
10% X 17.66
15% X 16.82

Contribution of Each Component. We do extensive ablation
experiments and place them in Appendix B and obtain the fol-
lowing observations: (i) The number of MLP layers has little
impact on the model’s performance. The key lies in the design
of the attention mechanism. (ii) Table 4 shows that replacing
the used MSE (`2) loss with BCE loss will make it difficult for
the rewarder to converge and achieve poor scoring performance.
Also, we find a scheduler that exceeds the reasonable setting
range will cause the rewarder to be trapped in the wrong direc-
tion. The empirical starting time T can be 10%. (iii) Compar-
ing the training objectives of several models, we find that cosine
similarity helps form the correspondence between pseudo labels
and scores. (iv) Using the mean of reward scores to dynamically
adjust the threshold τ performs much better than a fixed value in Figure A1.

Table 5: Analysis of parameters and
computational overhead (MFlops) of the
student model, Rewarder, and Generator.

Model Params. (M) FLOPs (M)
Student Model 21.7 607.9

Rewarder 0.140 0.198
Generator 0.137 0.139
Proportion 1.28% 0.056%

Simplicity of SemiReward. Table 5 shows SemiRe-
ward is very streamlined regarding parameters and
FLOPs based on ViT-S-P4-32 on the CIRFA-100
dataset. Compared with the student model, our model
accounts for a very low proportion of the training pro-
cess, only requiring 1.28% and 0.056% extra parame-
ters and FLOPs and computing two times forward and
one times backward propagation in each iteration.

Regression Tasks with SemiReward. Existing consistency regularization methods are unsuitable
for regression tasks, with CRMatch being the only open-source alternative. However, CRMatch
consistently yields subpar results, primarily due to confirmation bias (Arazo et al., 2020). Simulta-
neously, we note that in imbalanced regression datasets like IMDB-WIKI and AgeDB, SemiReward
encounters challenges in enhancing the selection of superior pseudo-labels, hampering improved
model convergence. Conversely, in tasks with balanced data distributions, such as rotation angle
estimation, SemiReward demonstrates notably superior performance. This phenomenon may be
attributed to the inherent difficulty in accurately labeling data points located at the distribution’s
extremes in imbalanced datasets, leading to partial performance degradation in such scenarios.

5 RELATED WORK

Pseudo Label (Lee et al., 2013) pioneered the generation of artificial labels for unlabeled data with
models trained on labeled data, followed by consistency regularization (Samuli & Timo, 2017) aim-
ing to ensure consistent predictions for different views of the same data, which are two foundational
techniques in SSL. However, confirmation bias (Arazo et al., 2020; Chen et al., 2022a) caused by
inaccurate pseudo labels limits SSL performances. Subsequent works mainly address this problem
from three aspects: (i) selecting high-quality pseudo labels, (ii) generating high-quality pseudo la-
bels, (iii) enhancing the tolerance of inaccurate labels. View Appendix D for detailed backgrounds.
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Improving Quality of Pseudo-labeling. Confidence-based thresholding techniques (Xie et al.,
2020a; Xu et al., 2021) are designed to determine high-confidential pseudo labels. FixMatch (Sohn
et al., 2020) relies on a fixed threshold but limits usage of more unlabeled data and leads to imbal-
anced pseudo-labels. FlexMatch (Zhang et al., 2021) employs class-specific thresholds to alleviate
class imbalance by reducing thresholds for challenging classes. SoftMatch (Chen et al., 2022c) ex-
plores a trade-off between pseudo-label quantity and quality with a truncated Gaussian function to
weigh sample confidence. FreeMatch (Wang et al., 2022b) introduces adaptive confidence thresh-
olds based on the model’s learning state. Moreover, contrastive learning is applied to thresholding
methods, e.g., adaptive contraction of the class space in ShrinkMatch (Yang et al., 2023) and the se-
mantic similarity for mutual calibration in SimMatch (Zheng et al., 2022). However, these methods
broadly enhance classification tasks but are inapplicable in regression tasks. CR-Match (Fan et al.,
2021) presents FeatDistLoss, which also works for regression but does not yield satisfactory results.

Improving Tolerance of Inaccurate Labels. Early SSL models exhibit heightened sensitivity to
low-quality pseudo-labels, necessitating the enhancement of the model’s error tolerance and label
quality. The Π model (Rasmus et al., 2015) introduces dual perturbations to input samples, while
Temporal Ensembling (Samuli & Timo, 2017) maintains an EMA of label predictions for each train-
ing example. Mean Teacher (Tarvainen & Valpola, 2017) takes a step further by averaging model
weights, reducing label dependency during training. Meanwhile, another line of research assumes
the labeled datasets contain noisy labels and designs robust training strategies to discriminate in-
accurate labels (Xu et al., 2021; Li et al., 2019a). Unlike them, SemiReward employs a two-stage
training approach to learn reward scores, separating rewarder and student model training.

Reward Modeling A reward function is crucial in conveying complex objectives to agents in
reinforcement learning (RL) (Christiano et al., 2017). Most reward models (Leike et al., 2018)
are supervised by classification losses, e.g., ranking loss (Bradley & Terry, 1952), on constructed
preference datasets from users. SURF (Park et al., 2022) adopts confidence-based pseudo-labeling
to learn a reward function for preference-based RL. Recently, InstructGPT (Ouyang et al., 2022)
provided a fine-tuning paradigm for aligning pre-trained large-scale language models (LLM) to
human preference. However, reward modeling is designed and used for RL optimizations (Schulman
et al., 2017) but has not been introduced to SSL scenarios.

6 CONCLUSION AND LIMITATION

Contributions and Social Impacts This paper introduces SemiReward, a general and pluggable
framework for SSL scenarios that evaluates and selects high-quality pseudo labels to boost the per-
formance and convergence speeds of self-training techniques. The core idea is to select accurate
pseudo labels by a reward score reflecting pseudo-label quality based on unlabeled data and pseudo
labels. To achieve this, a simple but efficient rewarder network is designed to model correlations
and predict credible reward scores, which is trained online in a two-stage pipeline assisted by a
generator network to avoid confirmation bias. Extensive experiments on diverse classification and
regression datasets demonstrate consistent performance gains and convergence speedup when ap-
plying SemiReward to popular SSL algorithms. We believe that SemiReward will be regarded as a
new paradigm for measuring pseudo-label quality compared to previous confidence-based strategies
and will inspire the SSL community to design effective methods in many application scenarios.

Limitations and Future Works We hope this work might be valuable and inspire the SSL com-
munity and list some limitations and future directions: (1) The defined reward scores and rewarder
only support sample-level labels, while fine-grained labels have been widely used in many scenarios
requiring token-level rewarding, e.g., object detection (Liu et al., 2021). (2) Despite the rewarder
predicting a reliable indicator for high-quality labels, it requires repeating the teacher model and the
rewarder several times to get reliable pseudo labels (discussed in Appendix B.3). It costs extra com-
putational costs and might lead to performance decreasing at the end of training in Figure 2. We may
further design a more efficient sampling and selection pipeline for SSL training. (3) In real-world
scenarios, it might be useful to pre-train a general rewarder with large-scale pre-trained backbones
on open-source datasets (Yalniz et al., 2019). Then, transfer it to specific SSL downstream tasks.
(4) In RL scenarios, SemiReward might be useful to popular RLHF (Christiano et al., 2017; Ouyang
et al., 2022) and LLM instruction alignment tasks, combining SSL with reward modeling for RL
training as Park et al. (2022). (5) Extending SemiReward with adaptive data augmentations, e.g.,
automatic mixup (Liu et al., 2022; Qin et al., 2024), to further enhance SSL performance.
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APPENDIX

The appendix is structured as follows:

(A) In Appendix A, we provide implementation details are provided including dataset settings,
hyperparameter settings, and training schedule.

(B) In Appendix B, we describe extensive ablation studies presented analyzing the impact of differ-
ent architectural choices, training techniques, and loss functions.

(C) In Appendix C, we provide additional experimental results, including detailed training time
statistics across different datasets and settings.

(D) In Appendix D, we further provide extensive related work to highlight connections and differ-
ences to the proposed approach.

(E) In Appendix E, we provide pseudocode for training pipelines of SemiReward.

A IMPLEMENTATION DETAILS

A.1 DATASET SETTING

For a fair comparison, we train and evaluate all methods with the same ViT backbones and hyper-
parameters in Table A3. As for CV, we evaluate SemiReward on common benchmarks: CIFAR-
100 (Krizhevsky et al., 2009), Euro-SAT (Helber et al., 2019), STL-10 (Coates et al., 2011), and
ImageNet (Deng et al., 2009) for image modality. Euro-SAT contains Sentinel-2 satellite images
covering 13 spectral bands, which is not a natural image dataset as the other three. As for NLP,
AG News (Zhang et al., 2015) (news topic material), Yahoo! Answer (Chang et al., 2008) (topic
classification), and Yelp Review (yel, 2014) (sentiment classification) to evaluate SSL algorithms on
more fine-grained sentiment NLP classification tasks. For audio classification, we choose Urban-
Sound8k (Salamon et al., 2014) with a maximum length of 4 seconds, ESC-50 (Piczak, 2015) with
a maximum length of 5 seconds, and FSDNoisy18k (Fonseca et al., 2019) with the length between
3 seconds and 30 seconds.

Table A1: Settings and details classification datasets in various modalities.
Domain Dataset #Label per class #Training data #Validation data #Test data #Class

CIFAR-100 2 / 4 50,000 - 10,000 100
CV STL-10 4 / 10 5,000 / 100,000 - 8,000 10

EuroSat 2 / 4 16,200 - 5,400 10
ImageNet 100 1,28,167 - 5,0000 1000

Yelp Review 50 / 200 250,000 25,000 50,000 5
NLP AG News 10 / 50 100,000 10,000 7,600 4

Yahoo! Answer 50 / 200 500,000 50,000 60,000 10
ESC-50 5 / 10 1,200 400 400 50

Audio UrbanSound8k 10 / 40 7,079 816 837 10
FSDnoisy18k 52-171 1,772 / 15,813 - 947 20

Table A2: Settings and details of regression datasets in CV.
Domain Dataset Task #Label arrange #Training data #Validation data

RCF-MNIST Rotation [0, 360] 50,000 10,000
CV IMDB-WIKI Face age [1, 101] 167,562 23,938

AgeDB Face age [1, 101] 106,750 15,250

We conducted age regression experiments on two datasets, IMDB-WIKI (Rothe et al., 2018) and
AgeDB (Moschoglou et al., 2017) with 1% labels. AgeDB contains images of various celebrities,
such as actors, writers, scientists, and politicians, and each image is annotated with identity, age, and
gender attributes. The minimum and maximum ages are 1 and 101, respectively. The IMDB-WIKI
dataset contains around 167,562 face images. Each image has an age and gender label associated
with it, and the age range is 1∼101. The task here is to extract human features so that the model
returns a continuous real value to predict age. Furthermore, we performed a rotation angle esti-
mation task on our custom RCF-MNIST (Yao et al., 2022) dataset, which features a more intricate
background CIFAR-10 (Krizhevsky et al., 2009), rather than the simple three-color backgrounds, to
align the dataset’s images more closely with natural images and make it more difficult. This dataset
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can be solved with rotation features of objects except for the background image, allowing the model
to regress a rotation angle of the foreground object.

A.2 HYPERPARAMETER AND TRAINING SETTINGS

Basic Settings. As for classification tasks, regarding hyperparameter settings of SSL classifica-
tion benchmarks constructed in USB (Wang et al., 2022a), we adopted the original settings with
pre-trained Transformers as the backbone and made a few adjustments to adapt to SemiReward, as
shown in Table A3. The total training iterations are set to 220, and an early stop technique is used
for calculating the convergence times. Meanwhile, we use the full experimental settings in Flex-
Match (Zhang et al., 2021) for ImageNet, which uses 100 classes per class with ResNet-50 as the
backbone. All methods are trained from scratch by SGD (Loshchilov & Hutter, 2016) optimizer
with a momentum of 0.9, a basic learning rate of 0.03, and a cosine learning rate decay as USB.
Note that Semi-AVES (Su & Maji, 2020) uses 224× 224 input resolutions and ViT-S-P16-224 with
the labeled and unlabeled batch size of 32, and other settings are the same as STL-10. We apply `1
loss as the basic regression loss. As for regression tasks, we follow CV settings in USB to construct
similar experiment settings for IMDB-WIKI (Rothe et al., 2018) (224 × 224 resolutions as Semi-
AVES in USB), AgeDB (Moschoglou et al., 2017) (as Semi-AVES), RCF-MNIST (Yao et al., 2022)
(32 × 32 resolutions as CIFAR-100). All experiments are implemented with PyTorch and run on
NVIDIA A100 GPUs, using 4GPUs training by default.

Table A3: Hyper-parameters and training schemes of SSL classification tasks based on USB.
Domain CV NLP Audio
Dataset CIFAR-100 STL-10 Euro-SAT AG News Yahoo! Answer Yelp-5 UrbanSound8k FSDNoisy ESC-50
Image Size 32 96 32 − −
Max Length − 512 4.0 5.0 5.0
Sampling Rate − − 16,000
Model ViT-S-P4-32 ViT-B-P16-96 ViT-S-P4-32 BERT-Base HuBERT-Base
Weight Decay 5e-4 1e-4 5e-4
Labeled Batch size 16 4 8
Unlabeled Batch size 16 4 8
Learning Rate 5e-4 1e-4 5e-5 5e-5 1e-4 5e-5 5e-5 5e-4 1e-4
Layer Decay Rate 0.5 0.95 1.0 0.65 0.65 0.75 0.75 0.75 0.85
Scheduler η = η0 cos( 7πk

16K )
Model EMA Momentum 0.999
Eval EMA Momentum 0.999
Weak Augmentation Random Crop, Random Horizontal Flip − Random Sub-sample
Strong Augmentation RandAugment(Cubuk et al., 2018) Back-Translation (Xie et al., 2020a) Random Sub-sample, Gain, Pitch, Speed

Table A4: Hyper-parameters and training schemes of SemiReward for various tasks and modalities.
Hyperparameter Classification Regression

CV NLP Audio RCF-MNIST IMDB-WIKI AgeDB
Threshold τ Average Top-k Average
Optimizer Adam
Learning rate 0.0005
Loss MSE
Embedding dim. 128
MLP Layer-number 2
Schedule T 10% of total iterations
Sun-sampling λ 0.1

SemiReward Settings. In Table A4, we provide detailed hyper-parameters and settings for
SemiReward training. The two-stage online training of the rewarder R and generator G is trained
by Adam (Kingma & Ba, 2014) optimizer with a learning rate of 0.0005 for all tasks, independent
of the student model’s optimization. For each training step after T iterations, R infers once and
selects high-quality pseudo labels for the student with the average reward score as the threshold τ ,
except for using top-k highest pseudo-labels for RCF-MNIST with k = 16. The generator G utilizes
a 4-layer MLP (only containing FC layers and ReLU) with 256, 128, and 64 hidden dimensions.

B ABLATION STUDY DETAILS

B.1 CALIBRATION CURVE

To explore the properties of our proposed reward score in Sec. 3.1, we visualize the correlation
between ground truth or learned reward scores and the quality of pseudo labels according to the
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concept of calibration curves (Clark, 1975) in Figure 4 and Figure 5. Our goal in Eq. 4 is to learn
a mapping from pseudo-labels to scores, which can be approximately linear or positively correlated
and will have good discrimination and reliability in evaluating pseudo-label qualities. The data
will not be classified as particular points within a small range, leading to excessive random error
interference.

Therefore, we plan to analyze the reward score from four aspects: the threshold of reward score
screening, the pseudo-label accuracy, and the confidence of the reward score. Based on the direct
proportional relationship, we explore whether the model can achieve the required effect under differ-
ent module designs and use this to illustrate through ablation experiments and theoretical analysis.
Concretely, for each pseudo label that passes through the rewarder, we will return a correspond-
ing score value and calculate the accuracy of the pseudo-labels after different thresholds by setting
thresholds for different score values to draw a graph. In Figure 4(a), when calculating similarity,
there is a sudden accuracy drop near a threshold value close to 1. This is caused by adding epsilon
in numerical calculations to prevent division by zero errors in PyTorch implementation.

B.2 NETWORK ARCHITECTURE OF REWARDER

From the model design perspective, our rewarder network mainly incorporates a cross-attention
mechanism to extract the information interaction between labels and data. On the other hand, it
uses several layers of MLP to deepen feature processing further. Therefore, we conducted ablation
experiments on CIRFA-100 with 400 labels to explore the impact of these mechanisms.

Table A5: MLP number stands for the FC
layers in the rewarder.

attention MLP Accuracy(%) iteration
X 1 83.35 100352 iters
X 2 83.26 129024 iters
X 3 83.32 145408 iters

1 81.99 194559 iters
2 82.20 194559 iters
3 82.25 204799 iters

As presented in Table A5, we find that the incorpo-
ration of the cross-attention mechanism within the
architectural module exerts a profound influence on
both the pace of convergence and the ultimate ef-
ficacy of the model. Subsequent to the integration
of a more profound MLP, the performance of the
rewarder in the context of SemiReward exhibits no
statistically significant enhancements. Instead, it is
discernible that the augmentation has engendered a
deceleration in the training process. Drawing upon
our meticulous calibration curve analysis in Figure 4 and Figure 5, it becomes readily apparent that
the attention mechanism assumes a paramount role in evaluating the intrinsic performance of the
rewarder model and the holistic training regimen. Its profound impact is manifest in the capability
to orchestrate a seamless and continuous spectrum for score mapping of pseudo labels, as opposed
to engendering numerous isolated points that could precipitate a distortion in the alignment between
accuracies and reward scores.

B.3 SCHEDULER FOR SEMIREWRD

We conducted experiments on the CIFAR-100 with 400 labels and ESC-50 with 250 labels datasets.
The model training effects under different start timings were counted. Start timing represents the
time node from pre-training (stage-1) to semi-supervised training (stage-2) of the rewarder, indicat-
ing that SemiReward will utilize high-quality pseudo labels to ensure the further convergence of the
student model and itself. This is what we define as SemiRewards scheduler.

Table A6: The starting time is the comparison of the round in which training starts to the total
rounds. At the same time, we measured the convergence time and accuracy.

Start Timing CV Audio
Accuracy(%) iteration Accuracy(%) iteration

0% 80.35 159743 iters 62.86 96255 iters
5% 82.11 169984 iters 65.59 65535 iters
10% 83.35 100352 iters 67.42 38911 iters
15% 83.18 174080 iters 67.10 69631 iters

It can be seen that when switching at 0%, the model achieves poor results on the two data sets.
However, there is experience value in the range of 5%-15%, and the robustness to nodes is main-
tained. In fact, for the scheduler selection of the model, the intuitive understanding is that turning
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out of range is more likely to produce poor results. This is because premature means that the pre-
training phase has not been completed, causing problems with the score mapping during the initial
screening and causing subsequent online training to learn worse score targets. Too late will make the
model converge slowly and easily fall into local optimality, making it difficult to achieve favorable
performance in the early stage.

Table A7: Analysis of selecting
pseudo labels on CIFAR-100 (400 la-
bels) with or without decay. Top-1 ac-
curacy (%) and the training speedup
times are reported.

Method FlexMatch
Baseline 82.12 (×1.0)
+Decay 79.42 (×1.4)
Semireward 82.90 (×2.7)
+Decay 83.25(×2.2)

For the screening phase, we employed a multi-forward
approach to generate multiple pseudo-labels for a given
dataset, facilitating iterative screening. The parameter de-
cay denotes the frequency of forward passes. In the sub-
sequent stages, we introduced an annealing strategy, dy-
namically adjusting decay throughout the training process.
Specifically, we divided the total training steps by the cur-
rent iteration, rounding up the result as the updated num-
ber of forward passes. To underscore that the performance
enhancement of our algorithm extends beyond the impact
of decay alone, we augmented the baseline algorithm with
multiple forward passes and conducted comparative experiments A7. Our findings revealed that the
algorithm achieves peak performance when decay and reward-based screening collaborate.

B.4 LOSS FOR SEMIREWRD

In the ablation experiment, we not only compared the results of replacing MSE (`2) loss with BCE
loss. We also changed the algorithm of SemiReward total loss. Initially, two independent losses were
used for gradient backpropagation, but we also considered the impact of weighting on the overall
model training. We conducted ablation experiments on CIRFA-100 with 400 labels to compare their
difference and find that the proposed MSE loss yields the best results.

Table A8: Analysis of the loss types and loss
weight for the proposed reward loss.

MSE BCE Weighted Accuracy(%) iteration
X − 83.35 100352 iters
X 0.1 80.99 204799 iters
X 0.5 81.25 204799 iters
X 0.9 79.85 204799 iters

X − 82.34 153600 iters
X 0.1 80.02 196608 iters
X 0.5 81.11 194559 iters
X 0.9 81.01 196608 iters

As shown in Table A8, we can find that the
weighted loss is more negative for model train-
ing, which may cause the rewarder to not con-
verge and introduce many low-quality labels
into the training process. Therefore, the impor-
tance of independent loss design can be seen
here. On the other hand, BCE loss is also diffi-
cult to train the rewarder to convergence. This
may be because our scoring model essentially
follows the idea of regression tasks.

B.5 TARGET FOR SEMIREWRD

As for the reward score, i.e., the target of the rewarder model, its distance measurement is essential.
We pursue that the scored pseudo-standards can be distributed evenly on the accuracy-score mapping
with favorite properties mentioned in Sec. 3.1. Therefore, we constructed different score labels using
different distance measures to train the rewarder and inferred why cosine similarity is an acceptable
distance measure. We conducted ablation experiments on CIRFA-100 with 400 labels to compare
the differences. As analyzed of Sec. 3, it can be seen that the divergence method represented by JS

Table A9: Analysis of the impact of training scoring targets calculated using different distance metric
methods on the model, including using L2 distance and cosine similarity or not in SemiReward.

Cosine Similarity L2 Distance Accuracy(%) iteration
X 83.35 100352 iters

X 80.23 202751 iters
− − 82.25 204799 iters

divergence has serious failures in the thinking of the calibration curve. This is because JS divergence
may cause the scores of some tags to be too concentrated so that bad labels with similar scores will
be selected as reliable labels. In Table A9, we found that the target score derived from the negative
L2 distance will cause the filtering ability of the rewarder to decline rapidly so that many low-
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quality labels are selected, causing the training process of the student model trapped in relatively
low accuracy.

B.6 THRESHOLD FOR SEMIREWRD

In Appendix A1, we ablate the thresholding strategy for SemiReward, which compares the average
thresholding with several fixed threshold τ settings, including 0.5, 0.7, and 0.9. The red dotted line
denotes the result of the average strategy. In the context of reward score threshold-based filtering, it
becomes evident that the fixation of this threshold engenders a multitude of challenges. During the
training of SSL, employing a static threshold for pseudo-label selection poses prominent challenges
(Zhang et al., 2021). During the early epochs of training, a model is still in its nascent state of un-
derfitting and unstable. Setting a high threshold during these phases can inadvertently discard a sub-
stantial portion of potentially informative pseudo-labels. Such an action can curtail the model’s abil-
ity to learn from these early indicators, potentially decelerating the overall convergence trajectory.
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Figure A1: Thresholding τ for re-
ward scores with adding SemiRe-
ward to FlexMatch on CIFAR-100
with 400 labels.

Conversely, as training progresses and the model refines its
internal representations, a static low threshold may fall short
in filtering out subpar-quality pseudo-labels. This introduces
the hazard of the model overfitting these less reliable markers,
jeopardizing its generalization capabilities. We advocate for a
dynamic thresholding strategy grounded in averaging princi-
ples to address these challenges. Instead of adhering to a rigid
threshold, our approach recalculates the threshold value within
each mini-batch, considering the current quality distribution
of the pseudo-labels. Such a mechanism ensures consistent
retention of high-quality pseudo-labels throughout the train-
ing lifespan while effectively sidelining low-quality ones. Our
empirical evaluations underline the efficacy of this method, not
only amplifying the model’s rate of convergence but also bol-
stering its performance on out-of-sample evaluations.

Method FlexMatch+SR
Coupled Training 82.12 (×1.0)
+Gradient Ascent 82.23 (×1.2)
Decoupled Training 83.11 (×2.2)
+Gradient Ascent 83.25(×1.7)

Table A10: Analysis of two training
processes and the gradient accent of
pseudo labels on CIFAR-100 (400
labels). Top-1 accuracy (%) and the
training speedup times are reported.
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Figure A2: Analysis of SR training on CIFAR-100 with Flex-
Match. The mean and std of top-1 accuracy are plotted for (a)
pseudo labels for the coupled and decoupled training and (b)
pseudo and fake labels in the decoupled training.

B.7 DECOUPLING OF STUDENT AND REWARDER TRAINING

As discussed in Sec. 3.2, we decouple the training of the student model and the rewarder by intro-
ducing the Generator and two-stage training pipeline to prevent confirmation bias. Here, we analyze
the two training processes to verify whether the decoupled two-stage training with the Generator is
an essential design. The first type of training process is to optimize the student and the Rewarder
together without the Generator, where the teacher model generates candidate pseudo labels for the
student and the Rewarder, which we call coupled training. Contrastively, the proposed two-stage
training is the decoupled training. There are two reasons for decoupling the training process of the
student and the Rewarder. Firstly, the Rewarder requires diverse pseudo-labels as the training data
to fit the ground truth reward scores rather than deterministic high-performance labels. Secondly,
the student and the Rewarder might suffer from confirmation bias. To further enhance the gener-
ated pseudo labels for the student training, we also designed a gradient ascent trick. Given selected
reliable pseudo labels, we can modify them to generate more high-quality pseudo labels (or fake
labels) by maximizing the reward scores with a step of gradient ascent in the inference process of
the Rewarder.
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Table A11: Training times and the average speedup times on nine SSL classification datasets with
CV, NLP, and Audio modalities in various label settings.

Modality Dataset (Setting)
Pseudo Label FlexMatch SoftMatch/FreeMatch Avg. SpeedupBase +SR Base +SR Base +SR

Audio

ESC-50 (250) 5.700 7.125×0.8 10.053 3.142×3.2 9.100 7.583×1.2 ×1.73
ESC-50 (500) 6.750 3.214×2.1 10.806 4.912×2.2 10.751 5.658×1.9 ×2.07

FSDnoisy18k (1773) 7.467 8.297×0.9 12.133 8.089×1.5 11.467 7.645×1.5 ×1.34
UrbanSound8k (100) 5.250 5.833×0.9 4.728 1.525×3.1 6.167 5.606×1.1 ×1.70
UrbanSound8k (400) 4.217 6.024×0.7 2.833 2.361×1.2 3.033 2.757×1.1 ×1.08

NLP

AG News (40) 2.400 1.714×1.4 6.267 1.333×4.7 13.333 6.060×2.2 ×2.77
AG News (200) 2.889 1.699×1.7 3.556 1.693×2.1 4.444 1.434×3.1 ×2.30

Yahoo! Answer (500) 0.178 0.445×0.4 8.711 5.807×1.5 9.000 2.571×3.5 ×1.80
Yahoo! Answer (2000) 8.689 1.889×4.6 8.122 1.692×4.8 9.919 8.266×1.2 ×3.53

Yelp Review (250) 22.400 22.400×1.0 20.066 20.066×1.0 22.400 10.667×2.1 ×1.39
Yelp Review (1000) 1.822 4.673×0.4 21.411 16.470×1.3 19.133 16.394×1.2 ×1.00

CV

CIFAR-100 (200) 9.320 11.314×0.8 54.280 49.345×1.1 54.889 49.899×1.1 ×1.04
CIFAR-100 (400) 14.920 13.564×1.1 100.240 45.564×2.2 94.044 67.174×1.4 ×1.57

STL-10 (20) 0.528 1.320×0.4 11.760 8.400×1.4 19.360 15.600×1.3 ×1.07
STL-10 (40) 0.268 0.693×0.4 9.556 7.351×1.3 20.267 13.889×1.5 ×1.11

Euro-SAT (20) 1.196 5.980×0.2 14.320 17.900×0.8 10.755 5.121×2.1 ×1.03
Euro-SAT (40) 1.092 5.460×0.2 21.040 23.378×0.9 16.800 7.304×2.3 ×1.13

Table A12: Top-1 error rate (%), performance gain, and training speedup times on additional SSL
classification datasets with CV and NLP modalities in various label settings.

Domain Dataset (Setting)
Pseudo Label FlexMatch SoftMatch/FreeMatch Average

Base +SR Base +SR Base +SR Gain Speed.

NLP Amazon Review (250) 53.45±1.90 49.13±0.77 45.73±0.11 43.08±0.11 45.29±0.95 42.98±0.24 +3.09 ×2.59
Amazon Review (1000) 47.00±0.79 44.21±0.64 42.25±0.33 41.11±0.89 42.21±0.20 39.17±0.32 +2.32 ×2.92

CV Semi Aves 3959 (3959) 40.35±0.3 37.93±0.45 32.48±0.15 31.23±0.09 32.85±0.31 31.02±0.15 +1.82 ×2.01
Tissuemnist (80) 56.92±4.54 53.06±0.11 58.36±3.8 54.27±0.71 58.24±3.08 53.52±1.07 +4.22 ×1.92

As shown in Table B.6, when using the coupled training of the student and the Rewarder, Flex-
Match+SR yields worse performance than the baseline (82.12 vs. 82.20), and FlexMatch+SR with
the gradient ascent can only obtain a limited performance gain and speedup over the baseline. As
shown in Figure 2(a), selected pseudo labels in the coupled training are unstable and affected by the
student model, while the decoupled training produces high-quality pseudo labels steadily. Mean-
while, the proposed two-stage training decouples the student and the Rewarder by the Generator
(aiming to maximize the reward score). It achieves a great trade-off between performance gains
and speedup. Further applying the gradient ascent to the decoupled training will yield a little per-
formance gain with more extra computational costs and cause unstable training. As shown in Fig-
ure 2(b), the quality of fake labels is relatively diverse, and it is difficult to obtain high-quality labels
steadily. Therefore, we intend to use the decoupled training process without the gradient ascent trick
as the final design.

C EXTENSIVE EXPERIMENT RESULTS

C.1 DETAILS IN SPEEDUP

In Sec. 4, we give the average speed gain but not the specific training time. Table A11 gives the
different training times corresponding to the nine sets of data sets in the three modes in the main
text. We stipulate that the calculation is on a single NVIDIA A100 GPU to carry out relevant
statistics, and the reported unit is the total hours.

C.2 CAPACITY OF SEMIREWARD

From Table 1 and Table A11. In a few situations, SemiReward did not reach full convergence in a
shorter time frame for primitive SSL algorithms like Pseudo Label, especially when evaluated on
certain datasets such as STL-10 and Euro-SAT. This may be attributed to the simplicity of those
basic methods like pseudo-labeling and entropy regularization in SSL tasks, which do not guide
the model effectively towards a better local minimum. In contrast, our SemiReward compensates
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for these shortcomings and unveils the potential of unlabeled data, allowing the model to progress
toward better local minima, albeit requiring more time. This represents a trade-off and specific
decisions about early stopping times for the optimal balance between speed and quality.

Table A13: Top-1 error rate (%), performance gain, and training speedup times on SSL classification
datasets with CV in more label settings.

Domain CIFAR-100 (1000) CIFAR-100 (2500) CIFAR-100 (10000) Average
Flexmatch +SR Flexmatch +SR Flexmatch +SR Gain Speed.

CV 11.19±0.79 9.94±0.23 10.82±1.90 9.42±0.66 10.22±1.21 8.99±0.42 +1.29 ×1.71

Table A14: Top-1 accuracy rate (%) and performance gain on ImageNet with 1% and 10% labels.

Dataset Label FixMatch CoMatch SimMatch Average
Settings Base +SR Base +SR Base Gain

Imagenet 1% 53.5 55.1 66.0 67.4 67.2 +1.5
10% 71.6 72.8 73.6 74.5 74.4 +1.1

C.3 RESULTS FOR ADDITIONAL DATASETS AND MORE LABEL SETTINGS

Due to the relatively antiquated nature and lower quality of the STL-10 dataset, our approach did
not achieve optimal mean gain while emphasizing speed and lightweight characteristics. This can
be attributed to the fact that we selected different random seeds multiple times, resulting in varied
averages. Consequently, we have supplemented our study with datasets from the CV and NLP
domains that exhibit superior performance in A12. In several settings of CIFAR-100, we have
augmented the relevant tasks, as illustrated in A13, with the ImageNet pre-trained Vision Trans-
formers (ViT) architecture serves as the backbone. Additionally, we have supplemented the data
results for 1% and 10% labeled datasets (i.e., 13 and 128 labels per class) in A14. We find that
applying the proposed SemiReward (+SR) upon FixMatch (Sohn et al., 2020) and CoMatch (Li
et al., 2021) can achieve around 1.3% performance gains, and CoMatch+SR outperforms the current
SOTA SimMatch (Zheng et al., 2022)).

D EXTENSIVE RELATED WORK

D.1 SELF-TRAINING

In semi-supervised learning (SSL), self-training frameworks (Rosenberg et al., 2005; Grandvalet
& Bengio, 2004; Yarowsky, 1995) play a very important role in unlabeled data utilization. Then,
pseudo-labeling (Lee et al., 2013), as one of the classic self-training ways, pioneered the generation
of artificial labels for unlabeled data. However, this embodiment faces the need for high-quality
labels due to the problem of confirmation bias (Arazo et al., 2020). Subsequent work will mainly
address this problem from two perspectives: one is to design a class or combine multiple methods to
improve the quality of pseudo-label generation and application, and the other is to consider enhanc-
ing the network’s acceptance of pseudo-labels, that is, a small number of low-quality pseudo-labels
will not affect the overall prediction of the network.

Consistency Regularization. Samuli & Timo (2017) first proposed consistency regularization to
ensure consistent predictions for similar data points, which has become a basic method for gener-
ating high-quality pseudo labels. Based on this, MixMatch (Berthelot et al., 2019b) and its vari-
ants (Berthelot et al., 2019a; Liu et al., 2023) performs data augmentation on unlabeled data, in-
puts multiple data into the same classifier, obtains different predicted classification probabilities,
and uses a class method to make the average variance of multiple probability distributions smaller.
UDA (Xie et al., 2020a) goes a step further and starts to use two branches of weak and strong aug-
mented samples and regards the predictions of the weak augmentation branch as the target of the
strong augmentation branch to improve the consistency of the pseudo-label and predictions. After
that, ReMixMatch (Berthelot et al., 2019a) uses the distribution alignment method to encourage
the marginal distribution of predictions for unlabeled data to be close to the marginal distribution of
ground truth labels. Fixmatch (Sohn et al., 2020) designs a fixed confidence threshold to filter pseudo
labels so that the high-quality pseudo-labels can be used in the SSL training process. The following
works, like FlexMatch (Zhang et al., 2021), deeply explore the idea of confidence thresholds and
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propose curriculum learning to dynamically adjust the thresholds generated by pseudo labels based
on the training process. Additionally, softmatch (Chen et al., 2022c) shows the trade-off between
the quantity and quality of pseudo labels and also derives a truncated Gaussian function to weight
sample confidence. Freematch (Wang et al., 2022b) proposes a free matching method that adaptively
adjusts confidence thresholds based on the model’s learning state. The above methods essentially
follow the strategy of training teacher-student distillation. Even the most advanced methods still rely
on the manual design of confidence thresholds for screening. Although Meta Pseudo Labels (Pham
et al., 2021) proposes to generate more accurate pseudo labels with a meta learner through bi-level
optimization, it doubles training times and requires large-scale teacher models. This is why we
proposed SemiReward as a simple but efficient solution for pseudo-label selection.

Tolerance to Inaccurate Pseudo Labels. Early SSL models have a certain sensitivity to low-
quality pseudo labels. Then, another aspect of work starts by improving the model’s tolerance to
errors or low-quality labels. Π-Model (Rasmus et al., 2015) adds two different perturbations to an
input sample, inputs the network twice to get the result, and then compares the consistency of the
two results. This weakens the impact of low-quality labels but may be less efficient since two for-
ward propagations are required to calculate the loss. Based on this, Temporal Ensembling (Samuli
& Timo, 2017) maintains an EMA of label predictions on each training example and penalizes pre-
dictions that are inconsistent with this goal. Mean Teacher (Tarvainen & Valpola, 2017) further
averages model weights instead of label predictions. This allows the use of fewer labels than se-
quential integration during training and also improves the accuracy of testing. Meanwhile, another
branch of research assumes the labeled datasets are noisy and designs robust training or ad-hoc label
selection policies to discriminate inaccurate labels (Xu et al., 2021; Li et al., 2019a; Tan et al., 2021).

D.2 DISAGREEMENT-BASED MODELS

From the view of disagreement SSL, it is required to train two or three different networks simulta-
neously and label unlabeled samples with each other (Zhou & Li, 2010) so that they are less affected
by model assumptions and loss functions. Co-training (Blum & Mitchell, 1998) assumes that each
data point has two different and complementary views, and each view is sufficient to train a good
classifier. Noisy Student (Xie et al., 2020b) is assigned pseudo-labels by a fixed teacher from the
previous round, while (Yalniz et al., 2019) scales up this training paradigm to billion-scale unlabeled
datasets. MMT (Ge et al., 2019), DivideMix (Li et al., 2019a) learn through multiple models or clas-
sifiers through online mutual teaching. Multi-head Tri-training (Ruder & Plank, 2018) uses training
to learn three classifiers from three different training sets obtained using bootstrap sampling. In these
methods, each classifier head is still trained using potentially incorrect pseudo-labels generated by
other heads. Afterward, the classifier for pseudo-labels generated by DST (Chen et al., 2022b) is
trained with unused pseudo-labels, thus having better tolerance to inaccurate pseudo-labels.

D.3 SELF-SUPERVISED LEARNING FOR SSL

Self-supervised learning Xie et al. (2022); Li et al. (2023b; 2022; 2023a) techniques like contrastive
learning (CL) approaches (Chen et al., 2020; He et al., 2020) are also widely applied to SSL, such
as CoMatch (Li et al., 2021) that first introduced CL to the consistency regularization framework.
ShrinkMatch (Yang et al., 2023) allows the model to search for contracted class space adaptively.
In detail, for each uncertain sample, ShrinkMatch dynamically defines a shrunk class space, includ-
ing the original top-1 class and less likely classes. Similarly, SimMatch (Zheng et al., 2022) uses
semantic and instance similarity for mutual calibration. It uses the labeled data to train a seman-
tic classifier and uses this classifier to generate pseudo labels for the unlabeled data. Meanwhile,
ReMixMatch (Berthelot et al., 2019a) and CR-Match (Fan et al., 2021) utilize rotation prediction as
the auxiliary task for SSL. Moreover, fine-tuning a pre-trained model on labeled datasets is a widely
adopted form of transfer learning (TL), and several recent works (Li et al., 2018; 2019b; You et al.,
2020; Ximei et al., 2021) like Self-Tuning (Ximei et al., 2021) combining TL with SSL methods.
Self-Tuning (Ximei et al., 2021) and HCR (Tan et al., 2022) introduce CL pre-trained models as the
regularization to mitigate confirmation bias in TL.
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D.4 ADVERSARIAL TRAINING FOR SSL

In the realm of SSL, innovative approaches have emerged that utilize adversarial training. One ap-
proach involves generating synthetic data (Odena, 2016; Dai et al., 2017) using a generator network
and assigning it to a new ”generated” class. The goal is to make the discriminator network pro-
vide class labels for these synthetic samples. Another line of research creates adversarial examples
through techniques like VAT (Miyato et al., 2018), which adds noise to input data; VAdD (Park et al.,
2018), introducing an adversarial exit layer into the model’s architecture; and RAT (Suzuki & Sato,
2020), extending the concept of noise to input transformations. These methods aim to impose lo-
cal smoothness constraints on the model’s learned representations without relying on pseudo-labels
during training. These advancements enhance model robustness and generalization, particularly in
data-scarce scenarios, by utilizing latent data distribution structures for more effective learning. This
research contributes significantly to improving SSL algorithms, addressing challenges in leveraging
unlabeled data to enhance the applicability and performance of machine learning models in real-
world applications. These innovative adversarial training approaches are poised to advance SSL.
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E ALGORITHM

SemiRewards algorithm flow, including two-stage training (SR Train Stage 1 and SR Train
Stage 2) and inference (SR inference), is as shown in Algorithm 1.

Algorithm 1 Pseudocode of SemiReward training and inference in a PyTorch-like style.

# SR_Train Stage 1
iteration < T:

# set SemiReward data loader
for x_l,y_l in loader:

x_r,y_r,B_R = x_l,y_l,B_l
# load data in B_R size batch, x_r is labeled data and y_r is ground truth label

for x_r,y_r,B_R in loader:
feat(x_r) = f_s.feat(x_r) # get feature
y_f = G(feat(x_r)) # get fake label

r = S(feat(x_r),y_f) # get reward
S = cossimin(y_r,y_f)) #get label similarity as targte

# calculate loss
L_R += MSE(r,S)
L_G += MSE(r,1)

L_aux = (L_R+L_G)/B_R
# adam update

L_aux.backward
update(G)
update(R)

# SR_Train Stage 2
iteration >= T:

# set SemiReward data loader
for x_u,x_l in loader:

x_r = x_u+x_l

# get pseudolabel y_p
y_p = Pseudolabel(f_s(x_r))

r = R(y_p,x_r) # calculate reward for each pseudolabel in N

# select top k reward in N
sorted_indices = np.argsort(r)[::-1]
y_p = y_p[sorted_indices]
y_k = y_p[-k:]

# get loader batch size B_R
B_R = (B_l+B_u)*k/N

# load data in B_R size batch, x_r is unlabeled data
for x_r,y_k,B_R in sr_dataloader:

y_f = G(x_r) # get fake label
r = S(x_r,y_k) # get reward
S = cossimin(y_k,y_f)) #get label similarity as targte

# calculate loss
L_R += MSE(r,S)
L_G += MSE(r,1)

L_aux = (L_R+L_G)/B_R
# adam update

L_aux.backward
update(G)
update(R)

# SR_Inference
iteration > T:

for x_u,x_l,y_l in loader:
# get pseudolabel y_p
y_p = Pseudolabel(f_s(x_u))
feat(x_u) = f_s+++.feat(x_u) # get feature

r = R(feat(x_u),y_p) # evaluate score
T = r.mean # get threshold
mask_r = where(r>T,1,0)
L_u = CrossEntropy(y_p,f_s(x_u))*mask # filter label
L_l = CrossEntropy(y_l,f_s(x_l))

# calculate loss
L = L_u/B_U+L_l/B_L+L_aux # total loss
# adamW update

L.backward
update(f_s)

feat: feature of input; cossimin: normalized cosine similarity; cat: concatenation.
Pseudolabel: pseudolabel method can see in Pseudo Label algorithm (https://arxiv.org/abs/1908.02983)
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