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ABSTRACT

Offline reinforcement learning (RL) is becoming critical in risk-sensitive areas
such as finance and autonomous driving, where incorrect decisions can lead
to substantial financial loss or compromised safety. However, traditional risk-
sensitive offline RL methods often struggle with accurately assessing risk, with
minor errors in the estimated return potentially causing significant inaccuracies of
risk estimation. These challenges are intensified by distribution shifts inherent in
offline RL. To mitigate these issues, we propose a model risk-sensitive offline RL
framework designed to minimize the worst-case of risks across a set of plausible
alternative scenarios rather than solely focusing on minimizing estimated risk. We
present a critic-ensemble criterion method that identifies the plausible alternative
scenarios without introducing additional hyperparameters. We also incorporate
the learned Fourier feature framework and the IQN framework to address spectral
bias in neural networks, which can otherwise lead to severe errors in calculating
model risk. Our experiments in finance and self-driving scenarios demonstrate
that the proposed framework significantly reduces risk, by 11.2% to 18.5%, com-
pared to the most outperforming risk-sensitive offline RL baseline, particularly in
highly uncertain environments.

1 INTRODUCTION

Many application domains of offline reinforcement learning (RL), such as finance (Zhang et al.,
2020; Wang & Ku, 2022), self-driving (Bernhard et al., 2019; Seres et al., 2023), and healthcare (Lu
et al., 2020), are inherently risk-sensitive due to the potential for high costs or safety risks from in-
teractions between the agent and the environment at deployment. In these scenarios, both premature
and well-trained agents can make unsafe decisions, prompting active research efforts to integrate
offline RL with risk-sensitive RL (Urpı́ et al., 2021; Ma et al., 2021; Rigter et al., 2024). These
efforts aim to minimize risk instead of maximizing expected return in offline RL settings. Here,
(aleatoric) risk1 is defined as a real number representing the severity of potential harm associated
with the return distribution. The function that maps a return distribution to its corresponding risk
is called risk measure. For example, the risk calculated by conditional value at risk (CV@R) risk
measure with a confidence level α ∈ [0, 1] is the negation of the average from the most pessimistic
to the α-th quantile (Yoo et al., 2024).

As these risk measures are designed to emphasize rare events, while underestimating frequent ones,
the estimated risk becomes highly sensitive to changes in the underlying return distribution (Cont
et al., 2010; Kou et al., 2013; Embrechts et al., 2015; Pesenti et al., 2016). Such errors can lead
to incorrect risk management, especially when there is a distribution shift between the training and
deployment environments. This situation is common in offline RL, where the agent cannot receive
real-time feedback from the environment.

In finance, the issue is addressed by minimizing the worst-case of risks across a set of plausible
alternative scenarios rather than directly minimizing the risk estimated by the model (Bernard et al.,
2023). This worst-case is referred to as model risk, which quantifies the worst-case consequence of
using incorrect models (Breuer & Csiszár, 2016; Bernard et al., 2023). Unlike traditional approaches
that rely solely on the estimated risk and are vulnerable to model errors, the model risk acknowledges

1Whenever the context is clear, we will refer to aleatoric risk as risk.
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Figure 1: Difference between risk and model risk measured by CV@Rα. The negation of the shaded
area represents the risk.

the potential for inaccuracies in the model, enabling more robust and reliable risk-sensitive decision-
making. Inspired by this, our work in risk-sensitive offline RL shifts the focus from conventional risk
minimization to model risk minimization. In doing so, we address the common issue of estimating
return distribution statistics (mean and the standard deviation) in RL contexts, where the statistics
are often unreliable or unknown. This contrasts with finance, where the mean and deviation are
assumed to be known.

Figure 1 illustrates the difference between traditional risk-sensitive offline RL approaches (left-side
in the figure) and our model risk-sensitive offline RL (right-side in the figure). In the left-side,
existing risk-sensitive offline RL approaches minimize the risk estimated by critic (green area). In
the right-side, our model risk-sensitive RL minimizes risk (blue area) of the worst-case scenario
(blue line) among the plausible alternative scenarios set (gray lines). By minimizing the model risk,
the agent accounts for the possibility of being incorrect, aiming to achieve the best possible results
despite potential errors.

We present a model risk-sensitive offline RL framework that accounts for model errors, enhancing
robustness in highly uncertain environments. To the best of our knowledge, this is the first approach
that incorporates model risk into offline RL algorithms. Specifically, we develop a critic-ensemble
criterion method that identifies plausible alternative scenarios, enabling the calculation of model
risk without introducing additional hyperparameters. Achieving this requires accurate return distri-
bution statistics, particularly the mean and deviation. To enhance their precision, which is essential
for identifying plausible alternative scenarios, we adopt a Fourier feature network for quantile re-
gression. Through case studies in finance and self-driving scenarios, we demonstrate that our model
risk-sensitive offline RL framework is more robust than other approaches, achieving an 11.2% to
18.5% reduction in risk. Notably, our approach exhibits strong advantages in highly uncertain envi-
ronments with a large possibility of model errors.

Our contributions are as follows.

• We present the model risk-sensitive offline framework that minimizes the model risk, en-
abling more robust decision-making compared to conventional risk-sensitive offline RL
approaches.

• We introduce the critic-ensemble criterion, which adjusts a set of alternative scenarios by
expanding or contracting it based on the level of uncertainty, thereby enabling the compu-
tation of model risk.

• We devise the Fourier feature quantile regression network to precisely estimate the statistics
of distributions, which are required to calculate the model risk.

• Through several case studies, we demonstrate the robustness of our approach in highly
uncertain environments.

2 RELATED WORK

Risk-sensitive RL. Traditional research on risk-sensitive RL is based on risk measures that can be
computed without estimating whole return distributions (Howard & Matheson, 1972; Sato et al.,
2001; Mihatsch & Neuneier, 2002; Tamar et al., 2015; Chow et al., 2017). With the rise of dis-
tributional RL, Dabney et al. (2018a) developed IQN framework, which enables the direct com-
putation of risk via quantile regression, thereby unifying the risk-sensitive RL framework. Other

2
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approaches include the direct calculation of CV@R policy gradient without calculating the return
distribution (Tamar et al., 2015; Chow et al., 2017), entropy-based methods (Mihatsch & Neuneier,
2002), dynamic CV@R(Du et al., 2022; Lim & Malik, 2022), and entropic value at risk (EV@R, Ni
& Lai (2022)). Dynamic CV@R recursively accounts for risk at each timestep and is related to
1R2R (Rigter et al., 2024). EV@R is a risk measure that is out of our scope, but it is closely related
to CODAC (Ma et al., 2021). Another interesting approach is integrating risk-sensitive RL with safe
RL. For example, Kim & Oh (2022) integrate the risk-sensitive approach to the safe RL, constrain-
ing the CV@R of costs instead of expected costs. Meanwhile, Ying et al. (2021); Greenberg et al.
(2022) constrain the risk using the safe RL method, while maximizing return.

Risk-sensitive Offline RL. Research in risk-sensitive offline RL relies on integrating IQN and of-
fline RL frameworks. Urpı́ et al. (2021) first proposed a risk-sensitive offline RL framework ORAAC
by combining IQN and BCQ (Fujimoto et al., 2019). ORAAC is hindered by excessive constraints
on the behavior policy, limiting its capability to generate better trajectories. To address the limita-
tion, CODAC (Ma et al., 2021), which is based on CQL, was proposed. Yet, CODAC inherits the
issues from CQL, such as hyperparameter sensitivity (Tarasov et al., 2024) 2. Another approach,
1R2R (Rigter et al., 2024), is a model-based RL method that estimates risk with worst-case pertur-
bations of the transition. However, its main limitation is that it is only guaranteed when transition
probabilities follow a normal distribution.

Model Risk. Our work is built on the concept of model risk, which has been extensively studied in
the field of mathematical finance (Bernard et al., 2023; Breuer & Csiszár, 2016; Blanchet & Murthy,
2019; Glasserman & Xu, 2014). Focusing on the worst-case expectation among scenarios aligns
with Breuer’s approach to aleatoric risk using a coherent risk measure (Breuer & Csiszár, 2016;
Glasserman & Xu, 2014). However, we focus on the worst-case of aleatoric risk among alternative
scenarios, following Bernard et al. (2023), which leads to a different formulation. This approach
allows comparison of value distributions with different support, which is crucial in offline RL, since
the worst-case distribution may not match the model’s support (Bernard et al., 2023).

3 BACKGROUND AND PROBLEM FORMULATION

3.1 BACKGROUND

Risk-sensitive RL. We consider a Markov decision process (S,A, R,P, γ) where S is a set of
states,A is a set of actions, R : S ×A → △(R) is an immediate reward which may be random, and
P : S ×A → △(S) is a transition probability. Here△(X ) denotes a set of random variables whose
supports are subsets of X . Further, we assume that all random attributes’ means and variances are
finite. An optimal risk-sensitive policy is formulated as

π∗ = argmin
π

Hϕ (Z
π(s, a)) where Zπ(s, a) =

T∑
t=0

R(st, at)γ
t|s0 = s, a0 = a. (1)

Here Hϕ(Z
π(s, a)) denotes the risk of policy π with respect to its return Zπ(s, a) and Hϕ denotes a

risk measure given by the user or environment. As we are interested in spectral risk measures (Adam
et al. (2008), in Def. 2), we use the quantile function of a random variable.

Definition 1 (Koenker, 2005) Let Z be a random variable. A quantile function of the random vari-
able Z, F−1

Z : [0, 1]→ R, is defined as the left inverse of cumulative distribution of Z. Specifically,

F−1
Z (p) := inf{x ∈ R | p ≤ FZ(x)}, (2)

where FZ : R → [0, 1] is the cumulative distribution function of Z. For readability, we denote
F−1
Z (·; s, a) as the quantile function of dependent random variable, Z|s, a, rather than F−1

Z|s,a(·).

The spectral risk is the weighted integral of the quantile function.

2This is also a problem commonly seen in GAN-based approaches. See Appendix for an explanation of the
relationship between CQL and GAN.
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Definition 2 (Adam et al., 2008) A function Hϕ : L1 → (R ∪ {∞}) is called spectral risk measure
which has the following representation

Hϕ(Z) = −
∫ 1

0

F−1
Z (p)ϕ(p)dp = −

∫ 1

0

F−1
Z (F−1

ϕ (u))du︸ ︷︷ ︸
u:=Fϕ(p) ⇒ du=dFϕ(p)=ϕ(p)dp with p=F−1

ϕ (u)

= −Eu∼U [0,1][F
−1
Z (F−1

ϕ (u))], (3)

where ϕ : [0, 1] → [0,∞] is a weight function; right-continuous, non-increasing with
∫ 1

0
ϕ(p)dp =

1; i.e, ϕ is a density function for some random variable. Further, the value of this function given Z,
Hϕ(Z), is called the risk of Z. Here L1 is a set of random variables whose means are finite. The
right most term is followed by and inverse transform sampling (Miller et al., 2010; Dabney et al.,
2018a) and Monte-Carlo integral.

Since ϕ is non-increasing, the risk measure necessarily prioritizes worse outcomes, as intended. The
negation is required in the definition, since we aim to minimize the risk. For example, when we
want to optimize for the worst-case risk measure (i.e., ϕ is a Dirac-delta function), we minimize the
negation of the worst-case outcome, the risk.

To calculate the risk Hϕ(Z
π(s, a)), we use the quantile function of Zπ(s, a), F−1

Zπ (·, s, a). To learn
the quantile function, we use the following distributional Bellman equation (Bellemare et al., 2017;
Dabney et al., 2018b;a).

Zπ(st, at)
distr.
= R(st, at) + γZπ(st+1, a), (4)

where a=argmina′ Hϕ(Z(st+1, a
′)). Specifically, we use the quantile regression method to esti-

mate the quantile of return Zπ(s, a). The quantile regression loss (Koenker, 2005; Dabney et al.,
2018b) of the critic is

Lcrit.(θ) =
1

NN ′

N ′∑
j=1

N∑
i=1

|pi − 1(δθij < 0)|︸ ︷︷ ︸
Asymmetric weighted

· |δθij |︸︷︷︸
L1loss

, (5)

where δθij is the distributional Bellman residual and θ is a critic’s parameter. The distributional
Bellman residual is defined as a pairwise difference between the target quantile and the critic’s
quantile as

δθij = R(st, at) + γF−1
Zπ (pj ; st+1, a, θtar)− F−1

Zπ (pi; st, at, θ), (6)

where pi, pj denote N,N ′ numbers of independent random variables which follow U [0, 1] and θtar
denotes the parameter of target-critic.

Risk-sensitive Offline RL. In offline settings, an agent is not allowed to interact directly with the en-
vironment and can only access a transition dataset D := {(si, ai, ri, s′i)}

|D|
i=1. Due to this constraint,

naive RL approaches suffer from overestimation of Zπ(s, a) from distribution shifts (Fujimoto et al.,
2019). Thus, an auxiliary regulation is commonly applied. The objective of offline RL is defined as

π∗ = argmax
π

E[Zπ(s, a)] constraint to D(π∥πD) < ϵ, (7)

where D(·∥·) is some divergence (or metric), πD is the behavior policy for the dataset D, and ϵ > 0
is a tolerance. Incorporating this regulation, the objective of risk-sensitive offline RL is extended
from Eq.(1) as

π∗ = argmin
π

Hϕ (Z
π(s, a)) constraint to D(π∥πD) < ϵ. (8)

3.2 PROBLEM FORMULATION

The primary concern of risk-sensitive offline RL is that the error of computing Hϕ(Z
π(s, a)) can

be significant, as the agent cannot receive direct feedback from the environment in offline settings.
To address this, we instead compute the worst-case of risks among alternative scenarios (i.e., model
risk) and focus on minimizing the model risk. The model risk is defined as the highest possible risk
within a

√
ε-ball with mean µ and standard deviation σ. The random variables in the ball specify

the plausible alternative scenarios.

4
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Figure 2: Overall framework of MR-IQN. Q.R. loss is abbreviation of quantile regression loss and
s.g. trick is stop-gradient trick. Note that the stop-gradient trick does not change the value.

Definition 3 (Bernard et al. (2023)) The model risk MRϕ(Z
π(s, a);µ, σ, ε) is defined as

MRϕ(Z
π(s, a);µ, σ, ε) := sup

X∈M(Zπ(s,a);µ,σ,ε)

Hϕ(X), (9)

where M(Zπ(s, a);µ, σ, ε) = {X ∈ L2 | E[X] =µ,Var[X] =σ2, DW ;2(X,Zπ(s, a))<
√
ε} and

L2 is a set of random variables whose mean and variance are finite. Here, DW ;2 is the Wasserstein

2-distance defined as DW ;2(X,Y ) =
√∫ 1

0
|F−1

X (p)− F−1
Y (p)|2dp. The distribution of random

variable Zπ(s, a) is called reference distribution.

Our goal is to find a policy π∗ such that

π∗ = argmin
π

MRϕ(Z
π(s, a);µ, σ, ε) constraint to D(π∥πD) < ϵ. (10)

4 MODEL RISK-SENSITIVE OFFLINE RL ALGORITHM

To achieve a model risk-sensitive offline RL agent satisfying the objective in Eq.(10), we introduce
Model Risk IQN (MR-IQN), which integrates the TD3+BC framework (Fujimoto & Gu, 2021)
with the model risk objective from Eq.(10). The MR-IQN consists of distributional critics and a
deterministic actor. The critic is trained to minimize the loss function in Eq.(5), similar to other
approaches (Urpı́ et al., 2021; Dabney et al., 2018a; Kuznetsov et al., 2020). Specifically, the critics
are implemented using IQN (Dabney et al., 2018a) and TQC (Kuznetsov et al., 2020), following Yoo
et al. (2024). Meanwhile the actor is trained to minimize the loss function,

L(π) = λq.learnMRϕ(Z
π(s, a);µ, σ, ε)︸ ︷︷ ︸

Model risk

+(a− aD)
2︸ ︷︷ ︸

BC loss

. (11)

Here λq.learn > 0 is a scale parameter, aD is a batch action, and a = π(s).

Figure 2 describes the MR-IQN framework. We extract µ and σ from the critic estimation. To
precisely estimate the statistics, µ and σ, we leverage the Fourier feature architecture (Tancik et al.,
2020) for the critics, as in Li & Pathak (2021). Next, we calculate ε as the distance between the
ensemble of the critics obtained by quantile mixture of individual critics. Finally, we calculate
MRϕ(Z

π(s, π(s))) and minimize the loss function in Eq.(11). To do so, we first introduce the
theorem and corollary below for calculating model risk.

Theorem 1 (Bernard et al., 2023) Let Z be a random variable. For ε > (µZ − µ)2 + (σZ − σ)2,
there exists a unique quantile function hλ : [0, 1]→ R which satisfies

MRϕ(Z;µ, σ, ε) = −
∫ 1

0

hλ(p)ϕ(p)dp, (12)

where µZ is the mean of Z, σZ is the standard deviation of Z. We have

hλ(p) = µ− σ

(
ϕ(p) + λF−1

Z (p)− aλ
bλ

)
, (13)
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where λ ≥ 0 is some constant, and aλ = E[ϕ(U) + λF−1
Z (U)], bλ = std[ϕ(U) + λF−1

Z (U)]. Here
U denotes the uniform random variable U [0, 1] and std denotes the standard deviation operator. If
ε ≤ (µZ − µ)2 + (σZ − σ)2 holds, the problem is ill-posed or it has only a trivial solution.

Let c0 = corr(F−1
Z (U), ϕ(U)). If ε < (µZ − µ)2 + (σZ − σ)2 + 2σσZ(1− c0) holds, we achieve

λ =
K

σ2
Z

√
V σ2

Z − C2
ϕ,Z

σ2σ2
Z −K2

−
C2

ϕ,Z

σZ
, (14)

where V = Var[ϕ(U)], Cϕ,Z = Cov[F−1
Z (U), ϕ(U)], and K = 1

2

(
(µZ − µ)2 + σ2 + σ2

Z − ε
)
.

Otherwise, λ = 0. Here, corr is the Pearson correlation.

Corollary 1 (Bernard et al., 2023) The solution of Eq.(9) exists and unique whenever hλ exists as

MRϕ(Z
π(s, a);µ, σ, ε) = −(µ− σstd[ϕ(U)]corr[ϕ(U), ϕ(U) + λF−1

Zπ (U ; s, a)]︸ ︷︷ ︸∫ 1
0
hλ(p)ϕ(p)dp in Eq.(12)

), (15)

where λ ≥ 0 is the constant determined by Eq.(14) in Theorem 1.

4.1 CRITIC-ENSEMBLE CRITERION

To calculate the model risk for policy gradient using Eq.(15), it is required to determine µ, σ and
tolerance ε. For ε, we want to set ε large when there is a large inconsistency between an individual
critic while setting ε small when the inconsistency is small. For conservatism, we choose µ as the
minimum value among the critics’ estimation and σ as the maximum to reduce overestimation bias
as discussed by Fujimoto et al. (2018). From now on, we use K to denote the number of critics.

Step 1. Calculating µ,σ. To ensure conservatism, we select µ0, σ as the smallest expectation and
the largest deviation of Zπ , as follows.

µ0 := min
i=1,...,K

E[Zπ(s, a, θ(i))], σ := max
i=1,...,K

std[Zπ(s, a, θ(i))] (16)

When λ = 0, the gradient of the policy in Eq.(15) solely depends on the mean-deviation risk mea-
sure, which often leads to local optima. To mitigate this, we apply the stop gradient trick to µ
as

µ := −Hϕ(Z
π(s, a)) + stop-grad(Hϕ(Z

π(s, a))) + µ0, (17)

where Hϕ(Z
π(s, a)) = maxi=1,...,K Hϕ(Z

π(s, a, θ(i))), i.e., the most conservative critic.

Step 2. Calculating ε through quantile mixture. We construct an ensemble of critics as a single
quantile function by mixing their quantiles and calculate the distance between this ensemble and
individual critics.

We first form the critic ensemble by sorting the estimates from all critics and interpolating them
over an equally divided space (i.e., quantile mixture). Next, we calculate the Wasserstein-2 distance
between the ensemble of critics and individual critics. The largest of these distances is selected as ε.

The first step involves calculating the sorted critic values yk defined as

{y1, . . . , yNK} = ∪Ki=1 ∪Nj=1 F
−1
Zπ (pj ; s, a, θ

(i)), y1 ≤ y2 ≤ · · · ≤ yNK , (18)

where N represents the number of random variables pj ∼ U [0, 1]. Let X be an equally divided
set of [0, 1] defined as X = {x1 = 0, x2 = 1/(NK − 1), . . . , xNK = 1}. By interpolating
pairs {(x1, y1), . . . , (xNK , yNK)}, we construct the ensemble of critics, F−1

ens. . Figure 3 depicts the
procedure of calculating F−1

ens. . Finally, ε is computed by

ε = max
i=1,...,K

∫ 1

0

|F−1
ens.(x; s, a)− F−1

Zπ (x; s, a, θ
(i))|2dx = D2

W ;2(F
−1
Zπ (·; s, a, θi), F−1

ens.(·)). (19)

We use the trapezoid method to numerically calculate the integral in Eq.(19).

Step 3. Calculate the model risk. We take the most conservative critic and take the reference
distribution of the critic estimates in the place of F−1

Z in Eq.(14) and Eq.(15).

F−1
ref (·) = F−1

Zπ (·; s, a, θ(∗)), where θ(∗) = argmax
θ(i)

Hϕ(Z
π(s, a, θ(i))). (20)

6
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Algorithm 1 Critic-Ensemble Model Risk

Inputs: Critic Parameters θ(i), Risk Measure’s Density ϕ, N the number of samples.
Output: Model Risk MRϕ(Z

π(s, a), µ, σ, ε)
Step1 Calculate µ, σ:
Sample pj from U [0, 1] with j = 1, . . . , N . ▷ To estimate risk and mean by inv. trans. sampling.
µ0 ← mini=1...K Epj [F

−1
Zπ (pj ; s, a, θ

(i))] ▷ Get minimal mean over critics; mean over pj .
p′j ← F−1

ϕ (pj), Hϕ(Z
π(s, a))← maxi=1,...,K −Ep′

j
[F−1

Zπ (p
′
j ; s, a, θ

(i))]) ▷ Eq.(3)
µ← −Hϕ(Z

π(s, a)) + stop-grad(Hϕ(Z
π(s, a))) + µ0 ▷ Stop-Gradient Trick in Eq.(17)

σ ← maxi=1,...,K stdpj [F
−1
Zπ (pj , s, a, θ

(i))] ▷ Get maximal standard deviation over critics.
Step 2 Calculate ε:
{yk}NK

k=1 ← sort(∪Ki=1 ∪Nj=1 {F−1
Zπ (pj ; s, a, θ

(i))}) ▷ Sort
{x1 ← 0, x2 ← 1

NK−1 , . . . , xNK−1 ← NK−2
NK−1 , xNK ← 1} ▷ x← linspace(0, 1, NK)

F−1
ens. ← interpolation({(xk, yk)}NK

k=1) ▷ Rearrange and Interpolate
ε = maxi=1,...,K

∫ 1

0
|F−1

ens (x)− F−1
Zπ (x; s, a, θ

(i))|2dx ▷ Calculate via numerical integral.
Step 3 Calculate Model Risk:
θ(∗) ← argmaxθ(i) Hϕ(Z

π(s, a, θ(i))), F−1
ref ← F−1

Zπ (·; s, a, θ(∗)) ▷ Take the most conservative.
λ← calculate lambda(F−1

ref , µ, σ, ε, ϕ) ▷ using Eq.(14).
MRϕ(Z

π(s, a))← calculate model risk(F−1
ref , µ, σ, ε, ϕ) ▷ using Eq.(15)

Return: MRϕ(Z
π(s, a))

𝐹ens.
−1

𝐹𝑍𝜋
−1(⋅; 𝑠, 𝑎, 𝜃 1 ) 

𝐹𝑍𝜋
−1(⋅; 𝑠, 𝑎, 𝜃 2 )

𝐹𝑍𝜋
−1(⋅; 𝑠, 𝑎, 𝜃 3 )

Quantile-Level

R
e
tu

rn
s

𝑦1
𝑦2

⋮

𝑦𝑁𝐾

𝑥1 𝑥2 ⋯ 𝑥𝑁𝐾

𝐹ens.
−1

Figure 3: Procedure of calculating F−1
ens. with three critics. F−1

ens. is a quantile mixture of critics,
therefore, it shows a mid-level pessimism similar to F−1

Zπ (·, s, a, θ(3)).

If a solution does not exist, (i.e., ε < (µZ − µ)2 + (σZ − σ)2), we substitute Hϕ(Z
π(s, a)) for

MRϕ(Z
π(s, a);µ, σ, ϵ) to preserve the gradient signal.

Algorithm 1 outlines the procedure of computing model risk throughout the critic-ensemble crite-
rion. First, the most conservative µ, σ among critics, are chosen. Next, we compute ε by measuring
the DW ;2 distance between each individual critic and the ensemble, which is obtained by quantile
mixture via sort and rearrange. Finally, we compute the model risk using the parameters obtained
from the previous steps.

4.2 ADDRESSING SPECTRAL BIAS OF QUANTILE REGRESSION

Although our framework accounts for model errors, it is essential to estimate the mean (µ) and devia-
tion (σ) as accurately as possible, since these statistics are assumed to approximate the ground truth.
While quantile regression yields an unbiased estimator (Koenker, 2005), due to spectral bias (Ra-
haman et al., 2019), conventional neural networks often fail to capture these statistics effectively.
Spectral bias refers to the phenomenon where neural networks struggle to learn high-frequency
components of patterns. For risk-sensitive RL to be effective, Zπ must converge in the distributional
sense to ensure proper signals can be back-propagated. According to the Lévy convergence theo-
rem (Williams, 1991), this is equivalent to the pointwise convergence of the Fourier transform of
Zπ , emphasizing the critical role of the high-frequency domain (and thus spectral bias) in conver-
gence. The Fourier feature network (Tancik et al., 2020; Li & Pathak, 2021) is a known solution to
the spectral bias problem.
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(a) Vanilla IQN
DW ;1: 2.23± 0.05
Crossing(%): 6.07± 2.08
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(b) Fourier feature in level domain
DW ;1: 2.33± 0.14
Crossing(%): 0.01± 0.00
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Full Fourier IQN

(c) Full Fourier feature
DW ;1: 0.06± 0.02
Crossing(%): 0.01± 0.00

Figure 4: Results of quantile regression. DW ;1 is the Wasserstein 1-distance between ground truth
quantile, and Crossing is the ratio of the numbers of crossing quantiles (%).

Feature 

Extractor

F. F. Layer

F.F. Layer

Q. R. Head

𝑠, 𝑎

𝑝

𝑋0: Inputs

sin(2𝜋𝑋0
𝑇𝜉) cos(2𝜋𝑋0

𝑇𝜉) 𝑋0

𝜉: Param
Concatenate

F.F. Layer

Output

Figure 5: Fourier feature quantile regression network.
⊙ is pairwise multiplication operator.

Figure 4 demonstrates the importance of
the Fourier feature network in quantile re-
gression. Here the networks are trained
to estimate F−1

N (µ,σ2) given µ ∼ N (0, 1),
log σ ∼ N (0, 1). (a) is the result of a
network trained by Vanilla IQN. (b) is the
case when we handle the spectral bias in the
level of quantile. (c) shows the case when
we handle the spectral bias of all input do-
mains. As shown, the spectral bias is the
cause of inaccurate distribution estimation.
Note that applying Fourier features in the
level domain3 helps reduce the crossing quantile, but it does not improve overall accuracy. This
is because the cosine embedding used in IQN already functions as a type of Fourier feature net-
work. Figure 5 depicts the implementation of the Fourier feature network in (c). For parameters ξ
initialized from N (0, σff ) and input X0, the Fourier feature is

X1 = sin(2πXT
0 ξ)# cos(2πXT

0 ξ)#X0, (21)

where # denotes the concatenation operator, and X1 denotes the feature passed to the next layer.
We also leverage using the Fourier feature IQN instead of cosine embedding IQN to reduce crossing
quantile error. The remaining process is the same as conventional MLP.

5 EXPERIMENTS

5.1 BASELINES AND CRITERION

Risk Measures. For the experiments, we are interested in following risk measures.

(i) CV@R. considers average over below α’s quantile. The risk measure’s density ϕCV@R
α parame-

terized by α ∈ [0, 1] of is

ϕCV@R
α (p) =

1

α
1[0,α](p). (22)

(ii) Wang. is a risk measure motivated by areas where one’s cost becomes another’s benefit, like an
option trading (Wang, 2002). The density of Wang risk measure, ϕwang

α , parameterized by α < 0 is

ϕwang
α (p) =

φ(F−1
N (0,1)(1− p) + α)

φ(F−1
N (0,1)(1− p))

, (23)

where F−1
N (0,1) and φ are the quantile and density of standard normal distribution, respectively.

3The input domain of quantile function; i.e., the space of p in F−1
Z (p).
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Baseline Algorithms. ORAAC (Urpı́ et al., 2021) is a risk-sensitive variant of BCQ (Fujimoto et al.,
2019). It achieves the risk-sensitive offline RL objective by only having slight modifications in the
dataset’s actions. CODAC (Ma et al., 2021) is a risk-sensitive variant of CQL (Kumar et al., 2020).
It achieves a dataset constraint by minimizing KL-divergence between the RL agent’s actions and
the dataset’s actions using the Donsker-Varadhan representation. IQN-TD3+BC is a risk-sensitive
variant of the TD3+BC (Fujimoto & Gu, 2021) algorithm, where the IQN-Critic is used. The optimal
actor πTD3+BC in IQN-TD3+BC is defined as

πTD3+BC = argmin
π

λq.learnHϕ(Z
π(s, a)) + (a− aD)

2. (24)

Here λq.learn > 0 is a scale hyperparameter, aD is a batch action, same as in Eq.(11).

5.2 MAIN RESULTS

We evaluate MR-IQN on finance and self-driving scenarios comparing with the baselines above. The
label Mean is the average of the mean score over seeds and−Hϕ(Z

π) is the mean negative risk over
seeds. All reported scores are averaged across 5 seeds. Numerical descriptions provided without
explicit criteria are the results of comparing the negative risk. We also present the D4RL results,
comparing the baselines and 1R2R, in Appendix A.1. The results and analysis about CV@R(10%)
risks are in Appendix A.4, and Dataset details are provided in Appendix B.

Table 1: Performance comparison in finance scenarios.

Target Risk Measure CV@R (50%) Wang (−0.5)
Env. Algorithm Mean −Hϕ(Z

π) Mean −Hϕ(Z
π)

Forex
Env.
(High)

CODAC 1577.47± 41.52 249.53± 28.33 1591.76± 8.12 892.34± 54.06
ORAAC 302.37± 19.27 −99.90± 0.01 304.89± 38.05 70.47± 17.22
IQN-TD3+BC 2103.16± 103.43 454.16± 11.76 2181.16± 123.41 1307.52± 90.05
MR-IQN (ours) 2537.52± 289.57 556.94± 172.92 2681.40± 114.00 1639.79± 57.88

Stock
Env.
(Low)

CODAC 37.67± 7.54 13.98± 2.34 33.43± 7.01 21.89± 4.65
ORAAC 78.48± 3.27 26.07± 2.25 78.57± 6.09 50.97± 3.98
IQN-TD3+BC 80.49± 1.87 30.92± 1.15 83.10± 3.05 55.55± 1.76
MR-IQN (ours) 74.78± 2.10 31.16± 1.02 87.03± 2.62 58.56± 1.61

Finance. To investigate the real-world scenarios, we conduct experiments using the trading log data
ranging from 2023-Feb-3rd to 2023-December-1st. The trading environment is based on the Meta-
Trader Simulator (Amin, 2021). We evaluate 1000 episodes for each seed to calculate CV@R and
Wang negative risk. For the details, see Appendix. Table 1 depicts the results.

In the experiment, MR-IQN shows the highest performance in both Forex and Stock environments.
In Forex environment, where uncertainty is high due to high leverage (High), the model risk ap-
proach effectively covers tail risk, maintaining high average returns and low risk, compared to the
baseline approaches without model risk. IQN-TD3+BC, which is comparable to MR-IQN shows
degraded performance (18.5%-11.2%) in Forex, indicating that MR-IQN is particularly useful in
handling higher uncertainty and errors. Meanwhile, MR-IQN shows a slightly degraded average
compared to ORAAC and IQN-TD3+BC in Stock environment. This indicates that there is a trade-
off between conservatism and average performance.

Self-Driving. To simulate the self-driving scenario, we utilize the Airsim environment (Shah et al.,
2017). In this scenario, RL agents are tasked with driving a quadcopter drone to a designated
goal while avoiding obstacles, with wind disturbances affecting the drone’s movement. The agents
receive rewards based on the cosine of the angle between their movement direction and the goal. We
evaluate performance in 100 episodes for each seed to measure negative risk. Table 2 depicts the
results.

MR-IQN outperforms other baselines, showing the highest success rate (87.4%-88.8%) and the
lowest collision rate (10.6%-11.6%). CODAC showed a relatively low average of rewards and a
higher success rate compared to ORAAC. This implies that CODAC fails to generalize efficient
actions and hovers over. The high collision rate of ORAAC implies that it fails to avoid obstacles
because of the strict constraint to the batch action.

9
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Table 2: Performance comparison in self-driving scenarios

Risk Measure Algorithm Mean −Hϕ(Z
π) Success(%) Collision(%)

CV@R
(50%)

CODAC 43.56± 89.45 −425.72± 97.73 65.0± 13.1 21.4± 5.5
ORAAC 92.37± 40.51 −88.37± 4.20 23.0± 15.7 68.0± 10.2
IQN-TD3+BC 411.78± 33.10 265.51± 45.25 81.8± 5.6 14.8± 5.6
MR-IQN(ours) 431.44± 30.41 290.96± 46.95 88.0± 4.6 11.6± 4.9

Wang
(−0.5)

CODAC 6.67± 1.02 −2.15± 0.75 52.6± 19.3 31.2± 27.6
ORAAC 156.22± 32.09 51.73± 27.53 36.2± 6.4 58.4± 8.1
IQN-TD3+BC 412.98± 26.68 311.20± 31.03 83.8± 5.1 14.4± 3.9
MR-IQN(ours) 436.17± 19.16 341.26± 18.36 87.4± 1.8 10.6± 2.6

5.3 ABLATION STUDY

Table 3: Ablation results. ✓ represents presence and ✗ represents absence. M.R. and F.F. are the
abbreviations for model risk and Fourier feature, respectively.

Components CV@R (50%) Wang (−0.5)

M.R. F.F. TQC Mean −Hϕ(Z
π) Mean −Hϕ(Z

π)

✓ ✓ ✓ 2537.52± 289.57 556.94± 172.92 2681.40± 114.00 1639.79± 57.88
✓ ✓ ✗ 2003.37± 214.76 464.84± 57.01 1975.85± 104.49 1160.65± 87.82
✓ ✗ ✓ 2410.83± 86.94 513.02± 77.54 2324.31± 146.95 1376.27± 122.96
✓ ✗ ✗ 1763.21± 278.16 278.16± 94.26 1607.13± 76.54 872.54± 56.23
✗ ✓ ✓ 2103.16± 103.43 454.16± 11.76 2181.16± 123.41 1307.52± 90.05
✗ ✓ ✗ 1712.79± 75.40 295.10± 49.83 1650.28± 51.48 934.79± 30.00
✗ ✗ ✓ 2170.68± 186.55 476.23± 75.94 2188.57± 134.40 1297.15± 88.15
✗ ✗ ✗ 1454.30± 76.87 153.84± 38.57 1414.44± 40.00 750.22± 37.45

We also conduct an ablation study in the Forex environment, identifying model risk, Fourier features,
and TQC as key contributors to the model’s improvement. Table 3 presents the results. MR-IQN
achieves an 8.6%-19.8% performance gain from the Fourier feature and a 19.8%-41.3% perfor-
mance gain from TQC. The performance gain from model risk is reported in Section 5.2. Notably,
model risk enhances performance when combined with other factors, due to the design of the critic
ensemble criterion and the requirement for accurate estimation of µ and σ, as discussed in Sec-
tion 4.2.

Our framework achieves approximately 118.6%-262.0% performance gains compared to the naive
implementation, which omits the key components. The reason why TQC is introduced to our frame-
work is to construct a target quantile which is similar to F−1

ens. . As a result, the calculated model
risk tolerance, ε, becomes more aligned with our intention, i.e., large ε for high inconsistency and
vice versa. However, the performance improvement of TQC without other factors (72.9%-209.6%)
implies that TQC itself is not a negligible factor.

6 CONCLUSION

We proposed a model risk-sensitive offline RL framework, devising the critic-ensemble criterion
to capture model risk effectively. To ensure the precision of model risk calculation, we employed
Fourier feature networks, which accurately estimate both the mean and standard deviation—critical
components for calculating the model risk. The framework ensures more reliable decision-making
in risk-sensitive applications by accounting for potential model errors and striving to make the best
decisions despite them. While our framework is limited to spectral risk measures and cannot ac-
commodate those outside this class, such as CMV (Vadori et al., 2020) or EV@R (Ni & Lai, 2022),
the broad applicability of spectral risk measures covers many practical real-world problems. Our
future work involves extending the framework to partially observable Markov decision processes,
including embodied control and decision-making in mission-critical business applications.
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learning with quantile regression. In Proceedings of the AAAI conference on artificial intelligence,
2018b.

Yihan Du, Siwei Wang, and Longbo Huang. Provably efficient risk-sensitive reinforcement learning:
Iterated cvar and worst path. arXiv preprint arXiv:2206.02678, 2022.

Paul Embrechts, Bin Wang, and Ruodu Wang. Aggregation-robustness and model uncertainty of
regulatory risk measures. Finance and Stochastics, 19:763–790, 2015.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in Neural Information Processing Systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Paul Glasserman and Xingbo Xu. Robust risk measurement and model risk. Quantitative Finance,
14(1):29–58, 2014.

Ido Greenberg, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Efficient risk-averse
reinforcement learning. Advances in Neural Information Processing Systems, 35:32639–32652,
2022.

Ronald A Howard and James E Matheson. Risk-sensitive markov decision processes. Management
science, 18(7):356–369, 1972.

11

https://github.com/AminHP/gym-mtsim


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dohyeong Kim and Songhwai Oh. Trc: Trust region conditional value at risk for safe reinforcement
learning. IEEE Robotics and Automation Letters, 7(2):2621–2628, 2022.

Roger Koenker. Quantile regression, volume 38. Cambridge university press, 2005.

Steven Kou, Xianhua Peng, and Chris C Heyde. External risk measures and basel accords. Mathe-
matics of Operations Research, 38(3):393–417, 2013.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In International
Conference on Machine Learning, pp. 5556–5566. PMLR, 2020.

Alexander Li and Deepak Pathak. Functional regularization for reinforcement learning via learned
fourier features. Advances in Neural Information Processing Systems, 34:19046–19055, 2021.

Shiau Hong Lim and Ilyas Malik. Distributional reinforcement learning for risk-sensitive policies.
Advances in Neural Information Processing Systems, 35:30977–30989, 2022.

MingYu Lu, Zachary Shahn, Daby Sow, Finale Doshi-Velez, and H Lehman Li-wei. Is deep rein-
forcement learning ready for practical applications in healthcare? a sensitivity analysis of duel-
ddqn for hemodynamic management in sepsis patients. In AMIA Annual Symposium Proceedings,
volume 2020, pp. 773. American Medical Informatics Association, 2020.

Yecheng Ma, Dinesh Jayaraman, and Osbert Bastani. Conservative offline distributional reinforce-
ment learning. Advances in Neural Information Processing Systems, 34:19235–19247, 2021.

Oliver Mihatsch and Ralph Neuneier. Risk-sensitive reinforcement learning. Machine learning, 49:
267–290, 2002.

F.P. Miller, A.F. Vandome, and M.B. John. Inverse Transform Sampling. VDM Publish-
ing, 2010. ISBN 9786131753268. URL https://books.google.co.kr/books?id=
OFtdXwAACAAJ.

Xinyi Ni and Lifeng Lai. Risk-sensitive reinforcement learning via entropic-var optimization. In
2022 56th Asilomar Conference on Signals, Systems, and Computers, pp. 953–959. IEEE, 2022.

Silvana M Pesenti, Pietro Millossovich, and Andreas Tsanakas. Robustness regions for measures of
risk aggregation. Dependence Modeling, 4(1):000010151520160020, 2016.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 5301–5310. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/rahaman19a.html.

Marc Rigter, Bruno Lacerda, and Nick Hawes. One risk to rule them all: A risk-sensitive perspec-
tive on model-based offline reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Makoto Sato, Hajime Kimura, and Shibenobu Kobayashi. Td algorithm for the variance of return
and mean-variance reinforcement learning. Transactions of the Japanese Society for Artificial
Intelligence, 16(3):353–362, 2001.

Peter Seres, Cheng Liu, and Erik-Jan van Kampen. Risk-sensitive distributional reinforcement learn-
ing for flight control. IFAC-PapersOnLine, 56(2):2013–2018, 2023.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and
physical simulation for autonomous vehicles. In Field and Service Robotics, 2017. URL https:
//arxiv.org/abs/1705.05065.

12

https://books.google.co.kr/books?id=OFtdXwAACAAJ
https://books.google.co.kr/books?id=OFtdXwAACAAJ
https://proceedings.mlr.press/v97/rahaman19a.html
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aviv Tamar, Yonatan Glassner, and Shie Mannor. Optimizing the cvar via sampling. In Association
for the Advancement of Artificial Intelligence, 2015.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Process-
ing Systems, 33:7537–7547, 2020.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
Corl: Research-oriented deep offline reinforcement learning library. Advances in Neural Infor-
mation Processing Systems, 36, 2024.
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