

000 001 DIFFUSION-BASED IMAGE-TO-IMAGE AUGMENTA- 002 TION PRESERVING ACUPOINT LANDMARKS 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Deep learning models have achieved remarkable success in computer vision, yet
012 their generalizability remains limited when applied to new domains or unseen
013 tasks. Data augmentation is a common strategy to mitigate this issue, but tra-
014 ditional methods (e.g., rotation, scaling) often fail to capture the complex varia-
015 tions required by modern models. Recent advances in diffusion-based generative
016 models, such as Stable Diffusion, enable high-quality image synthesis; however,
017 their use in augmentation remains underexplored and faces challenges such as
018 preserving biometric consistency and avoiding semantic drift. To address this is-
019 sue, we propose a diffusion-based image-to-image augmentation workflow that
020 transforms the original human images into new samples while keeping biometri-
021 cal data unchanged, enriching the dataset without altering its key features. The
022 resulted augmented dataset contains 225 synthetic anatomical models, each con-
023 taining 44 images, resulting in a total of 9,900 images. Evaluation experiments
024 demonstrate that the augmented dataset maintains 99.99

025 1 INTRODUCTION 026

027 Recent advances in machine learning have demonstrated remarkable capabilities across a wide range
028 of tasks, including medical diagnostics, facial recognition, and human pose estimation. Traditional
029 data augmentation methods, such as rotation, scaling, and color jittering, are simple to apply but
030 are becoming more and more inadequate when facing modern machine learning tasks that require
031 more diverse augmented data. These low-level transformations are not likely to introduce enough
032 new data into the dataset. This limitation is especially critical in medical and biometric applications,
033 where requires huge amount of data, but usually harder to acquire due to privacy issue. To address
034 this challenge, diffusion models have recently emerged as a more powerful approach to data aug-
035mentation, which is able to produce realistic-level image with stable quality. Thus, a method based
036 on diffusion models are developed to conduct an image-to-image transformation, re-generating the
037 AcuSim dataset, which contains 63,936 synthetic RGB-D images with 174 annotated cervicocranial
038 acupoints. By introducing the proposed data augmentation workflow, augmented dataset is able to
039 be used directly by the following tasks, with no need to re-label the acupoints. The workflow is de-
040 signed to preserve the structural features of the original models, especially the annotated acupoints,
041 while introducing environmental factors such as lighting. Specifically, a controller program and two
042 custom nodes are built to automate the process. Moreover, the generated dataset is evaluated in two
043 approaches, a CNN-based model is used to evaluate the performance of the augmented dataset in
044 a follow-up task. The network resulted in an almost perfect result with an accuracy of 0.99, show-
045 ing that the augmented dataset can achieve the same level of performance as the original dataset.
046 Another program is applied to detect facial landmark drift between the original and the augmented
047 dataset. The analysis shows that most landmarks remain within a 5–8 pixel deviation, with only
048 one point reaching about 10 pixels, which is still acceptable within clinical tolerance. These results
049 demonstrate that the proposed augmentation method increases dataset diversity while maintaining
characteristic consistency.

050 2 RELATED WORK 051

052 Data augmentation is central to improving robustness and performance when datasets are limited.
053 Traditional methods (rotation, flipping, color jitter) are efficient but operate on low-level features

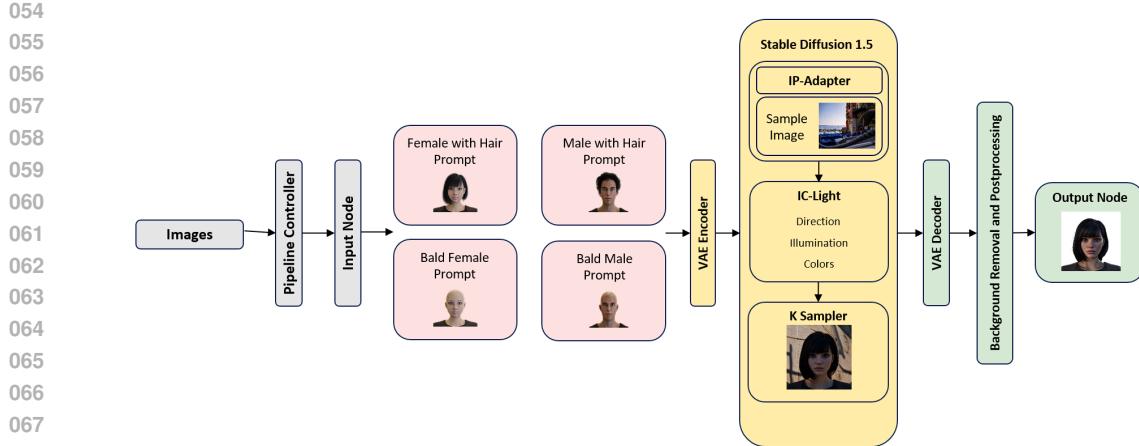


Figure 1: General Workflow

(Antoniou et al., 2018). To overcome this, model-based augmentation has been explored. For example, Loey et al. (2020) combined conditional GANs with classical augmentation for COVID-19 detection, and Choi et al. (2019) leveraged GAN-based augmentation for semantic segmentation in domain adaptation. However, GAN-based augmentation can be unstable and less controllable, which is problematic when strict structural consistency is required.

Diffusion models have advanced image synthesis, often surpassing GANs in fidelity and diversity (Dhariwal and Nichol, 2021). In medical imaging, diffusion approaches have been shown to generate high-quality images with improved diversity and stability relative to GANs (MedDiffusion, 2023). Concurrently, medical image analysis increasingly relies on synthetic and transferred knowledge: the AcuSim dataset (AcuSim, 2025) provides 63,936 synthetic RGB-D images with 174 annotated cervicocranial acupoints; transfer learning has enabled state-of-the-art results in data-scarce settings (e.g., malaria parasite detection) (ConvNeXt-TL, 2023). Outside medicine, diffusion-based augmentation has also been used to expand image datasets from reference images (EffDiffDA, 2023).

3 METHODOLOGY

3.1 OVERVIEW

Shown in Fig.1, we propose a diffusion-based image-to-image augmentation pipeline that preserves acupoint landmarks while transforming environmental factors (e.g., lighting, tone, background, hair colors) to strengthen dataset effectiveness. The workflow is automated and processes each image through a diffusion workflow. Real-world images are used as guidance in the background generation process to enhance re-lighting. The dataset used in this work is AcuSim (AcuSim, 2025), an open-source benchmark originally developed to automate acupuncture point annotation. It comprises 63,936 RGB-D images generated from 504 synthetic anatomical models, with 174 volumetric acupoints annotated per image. While this dataset provides a valuable resource for studying acupoint localization, prior work has primarily focused on synthetic models and did not explore transfer learning or validation on real human facial images, thereby limiting its applicability in real-world scenarios. Building upon this foundation, our goal is to expand AcuSim with diverse yet consistent facial variations while preserving anatomical landmarks, ensuring that the accompanying annotations remain directly applicable and improve generalization to real-life human acupoint annotation tasks. The workflow is built and tested in our development environment.

3.2 DIFFUSION WORKFLOW

The dataset includes labels for gender (M/F), body size (F/N/S), hairstyle, and eye state (O/C). These labels guide the reshaping process. The developed diffusion workflow combines text and image

108 guidance to control the overall tone and reshaping details. For text guidance, different prompts are
 109 used for male, female, bald male, and bald female samples. For image guidance, a single scene
 110 image is used to control the lighting vibe of the reshaped image. The lighting process is based on
 111 IC-Light to stabilize illumination and reduce changes around facial and head landmarks.
 112

113 **3.3 DIFFUSION PROCESS**

114
 115 The developed workflow uses a pre-trained latent diffusion model with S reverse steps. We splice
 116 the sample image from the original dataset into the process at $\lfloor St_0 \rfloor$, which controls how much the
 117 image is changed:

$$118 \quad \mathbf{x}_{\lfloor St_0 \rfloor} = \sqrt{\tilde{\alpha}_{\lfloor St_0 \rfloor}} \mathbf{x}_0^{\text{ref}} + \sqrt{1 - \tilde{\alpha}_{\lfloor St_0 \rfloor}} \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \quad (1)$$

119 The model then runs step 0 with IP-Adapter weight w_{ipa} for structure and IC-Light multiplier w_{ic}
 120 for re-lighting. Other control variables include splice ratio t_0 , CFG scale, sampler and scheduler,
 121 denoise strength, and the number of steps. In practice, a combination of VAE Encode, IP-Adapter,
 122 IC-Light, and a K-Sampler is used.
 123

124 **VAE.** The variational autoencoder (VAE) is responsible for converting images between pixel and
 125 latent space. During encoding, a real frame (e.g., F.Brisen.F.HA.C.0141.jpg) is passed through
 126 VAE Encode, which compresses it into a latent representation. This representation is easier for the
 127 diffusion model to manipulate, while still retaining semantic information such as acupoint positions.
 128 After diffusion steps, decoding returns the latent to pixel space, producing a final augmented image.
 129 The VAE ensures all modifications occur in latent space, making reshaping faster and more robust
 130 than editing directly in pixel space.
 131

IP-Adapter. The IP-Adapter is mainly for the image-to-image processes by providing visual controls. It will pass the characteristics of the input images to the generation processes, preserving information from the sample image.

IC-Light. IC-light is one of the core modules, interpreting lighting tune into the diffusion process. For instance, if a frame is captured with side lighting, IC-Light ensures that the augmented image still reflects this lighting condition rather than inventing a completely new one. This reduces unrealistic highlights or shadows that could otherwise confuse the model during training, while still allowing small variations in brightness or color temperature.

K-Sampler. K sampler controls the core sampling process in diffusion. It determines how random noise is gradually removed to generate the final image. The parameters in K sampler, for example, step, directly affecting the final image quality and fidelity. Moreover, the random seed controls the repeatability of the whole diffusion process. By changing the seed, the system can produce multiple distinct versions of the same base image.

146 **4 IMPLEMENTATION**

147 **4.1 OVERALL DESCRIPTION**

148
 149 The workflow is divided into two main parts, controller and diffusion workflow. Due to the variety
 150 of the workflow, a python-based controller program is used to select different positive and negative
 151 prompt words for different sample IDs. The workflow is tested to be optimal when having dedicated
 152 prompt words for different set of samples. For example, a neutral-gender prompt is likely to blur the
 153 gender-different characteristics. Women samples are likely to have masculine characteristic when
 154 sharing prompt with male samples. Hair-related prompt with no bald-related-prompt-word may give
 155 hair to bald samples. According to (AcuSim, 2025)), the sample id contains model gender, name,
 156 body size, hairstyles, eye state, and image ID. We developed three dedicate prompt sets for female,
 157 male, and bold samples, and the controller program is used to detect the sample id to select different
 158 prompt set. After that, a custom-made input node will import a batch of images for processing, the
 159 quantity is depended on running environments. Similarly, after the imported images are processed,
 160 another custom-made output node will output the resulted images and restore the original dataset
 161 structures.

162 4.2 PARAMETERS AND SETTINGS
163

164 The detailed settings of the proposed workflow are described in this section. The base model of
165 the workflow is Stable Diffusion (SD) 1.5 with a built-in variational autoencoder (VAE). We chose
166 SD 1.5 because it is one of the most widely used diffusion backbones, offering stable performance,
167 wide community support, and relatively low computational cost compared to more recent versions.
168 Moreover, it arguably performs the best compatibility with IC-Light, which is one of the most im-
169 portant modules of the workflow. The inclusion of VAE allows efficient encoding and decoding
170 between pixel space and latent space, making the augmentation process both faster and more ro-
171 bust. For lighting control, we applied IC-Light with a multiplier of 0.3. IC-Light is a learning-based
172 illumination correction model designed to enhance lighting uniformity across images. The 0.3 mul-
173 tipplier value was selected to maintain moderate lighting consistency. Strong artificial corrections
174 for higher multiplier values may distort facial or head landmarks, while small value is likely to blur
175 the human facial data by adding a strong lighting. The IP-Adapter module was used with a weight
176 range of 0.3–0.6. The purpose of this setting is to preserve structural and identity-related features
177 of the input image. In practice, it is mainly used to balance the mixing ratio of background and
178 generated foreground image. An extreme low or high IP-Adapter weight is likely to result in a little
179 influenced background or foreground image. The chosen range provides a balance, allowing the
180 workflow to re-render the image with lighting changed, but leave no obvious trace of background
181 reference image. This helps in the following background reduction and result generation module.

182 The sampling process was controlled by the K-Sampler, where we used the `dpmpp_2m` sampler with
183 the `sgm_uniform` scheduler. The number of steps was set between 20 and 32, and the classifier-
184 free guidance (CFG) scale was chosen within the range of 2.5–7. These values were selected to
185 achieve a balance between generation speed, output quality, and fidelity. Fewer steps can reduce
186 computational time but may lead to lower visual quality, while excessively large step counts in-
187 crease cost without significant improvements. Similarly, the CFG scale controls the trade-off be-
188 tween prompt adherence and diversity; a moderate range ensures that the augmented images remain
189 realistic without collapsing to identical outputs.

190 5 EVALUATION AND RESULTS
191192 5.1 EVALUATION METHODOLOGY
193

194 **CNN-based acupoint localization and identification.** The overall network design follows the
195 example network structure used in (AcuSim, 2025)). The network is used to perform an acupoint
196 classification and coordinate regression task. Specifically, the dataset is divided into training and
197 testing subsets, with an 80The model is trained for 200 epochs using the AdamW optimizer with
198 an initial learning rate of 5e-5 and a weight decay of 1e-5. The loss function includes Euclidean
199 distance root mean square error (RMSE) for the visibility test, cross-entropy loss for classification,
200 and a soft-wing loss for coordinate regression.

201 **Facial-landmark-based difference comparison.** We assess geometric consistency between the
202 original and augmented images using a facial-landmark-based pixel-offset analysis. MediaPipe is
203 used to obtain selected 2D facial landmarks on each image in both datasets, before and after augmen-
204 tation. Considering the stability of the landmark extraction process, we use eight landmarks on the
205 human face: outer and inner canthi of both eyes (`LE_outer`, `RE_outer`, `LE_inner`, `RE_inner`),
206 left and right mouth corners (`Mouth_L`, `Mouth_R`), Philtrum (upper-lip apex), and the midpoint of
207 the nasal bridge between the two inner canthi (`NasalBridgeMid`). These points are widely used
208 in facial analysis studies ?. Thus, the evaluation settings form a robust facial-landmark difference-
209 detection protocol.

210 Moreover, we add a discard mechanism because the dataset contains top-view and back-view sam-
211 ples that do not provide reliable landmarks for comparison. Specifically, a pair is discarded if: (i)
212 landmark detection fails on either the original or the augmented image; (ii) the estimated face width,
213 computed from the Face-Oval span, is below 80 pixels (typically extreme profile or back-of-head
214 views); or (iii) fewer than 6 of the 8 selected keypoints are successfully detected in both images.

216
217
218
219
220
221

Figure 2: Enter Caption

For each retained pair and each keypoint k , we compute the Euclidean distance between the corresponding 2D locations:

$$d_k = \left\| \mathbf{p}_k^{(\text{aug})} - \mathbf{p}_k^{(\text{orig})} \right\|_2. \quad (2)$$

228

$$\Delta x_k = x_k^{\text{aug}} - x_k^{\text{orig}}, \quad \Delta y_k = y_k^{\text{aug}} - y_k^{\text{orig}}, \quad d_k = \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}. \quad (3)$$

where (x,y) are pixel coordinates, aug stands for augmented dataset, and orig stands for original dataset.

231

5.2 RESULTS

235

CNN evaluation. Shown in Fig.2, for the CNN evaluation, the overall loss decreased steadily, and the visibility accuracy improved from 0.73 in the first epoch to a stable level close to 0.9 in the later epochs. The classification accuracy quickly spiked to 0.99, and went steady along the process, indicating the network is able to consistently identify the correct acupoint. Meanwhile, the coordinate regression loss decreased from 4.56 in the first epoch to values between 1.0 and 2.0 after convergence. These results demonstrate that the augmented dataset supports robust model training without loss of performance compared to the original dataset. For the facial recognition evaluation, most keypoints showed average displacements in the range of 5–8 pixels, including the outer and inner canthi, the mouth corners, and the nasal bridge midpoint. The philtrum point showed a slightly larger offset at around 10.1 pixels. The philtrum is a relatively unusual landmark, which is likely to be harder to locate. According to (Anthropometric Study of Philtrum (Face) and other nasal parameters in Nepal), philtrum is classified as soft tissue, which may vary with small facial expression changes. But still, 10.1 pixels are regarded within the tolerance of 5mm according to conversion method mentioned in (AcuSim, 2025)).

249

Facial-landmark evaluation. For the CNN evaluation, the overall loss decreased steadily, and the visibility accuracy improved from 0.73 in the first epoch to a stable level close to 0.9 in the later epochs. The classification accuracy quickly spiked to 0.99, and went steady along the process, indicating the network is able to consistently identify the correct acupoint. Meanwhile, the coordinate regression loss decreased from 4.56 in the first epoch to values between 1.0 and 2.0 after convergence. These results demonstrate that the augmented dataset supports robust model training without loss of performance compared to the original dataset. For the facial recognition evaluation, most keypoints showed average displacements in the range of 5–8 pixels, including the outer and inner canthi, the mouth corners, and the nasal bridge midpoint. The philtrum point showed a slightly larger offset at around 10.1 pixels. The philtrum is a relatively unusual landmark, which is likely to be harder to locate. According to (Anthropometric Study of Philtrum (Face) and other nasal parameters in Nepal), philtrum is classified as soft tissue, which may vary with small facial expression changes. But still, 10.1 pixels are regarded within the tolerance of 5mm according to conversion method mentioned in (Acusim).

263

6 CONCLUSION

265

In this work, we proposed a diffusion-based image-to-image augmentation workflow for human facial data augmentation. The workflow was designed with a controller program, as well as a custom input and output node, enabling automatic process for samples with different characteristics. Evaluation results demonstrated that the augmented dataset maintained high performance in a CNN based acupoint localization and classification task. A MediaPipe based pixel difference comparison is also

270 conducted, with most landmarks falls in between 5-8 pixels, and only one landmark shows a higher
271 difference of 10 pixels. These findings indicate that our method successfully increases data diversity
272 while preserving key structural and biometric information. Future work may explore extending this
273 workflow to other anatomical regions and integrating more advanced techniques to further improve
274 efficiency and generalizability.

275

276 ACKNOWLEDGMENTS

277

278 REFERENCES

279 A. Antoniou, A. Storkey, and H. Edwards. Data Augmentation Generative Adversarial Networks.
280 arXiv:1711.04340, 2018.

281

282 M. Loey, G. Manogaran, and N. E. M. Khalifa. A deep transfer learning model with classical data
283 augmentation and CGAN to detect COVID-19 from chest CT images. *Neural Computing and*
284 *Applications*, 2020.285 J. Choi, T. Kim, and C. Kim. Self-Ensembling with GAN-based Data Augmentation for Domain
286 Adaptation in Semantic Segmentation. arXiv:1902.11124, 2019.

287

288 P. Dhariwal and A. Nichol. Diffusion Models Beat GANs on Image Synthesis. *NeurIPS*, 2021.289 Author(s) omitted. A multimodal comparison of latent diffusion and GANs for medical image syn-
290 thesis. 2023. (Add full citation.)

291

292 Q. Sun, J. Ma, P. Craig, L. Dai, and E. G. Lim. AcuSim: A Synthetic Dataset for Cervicocranial
293 Acupuncture Points Localisation. *Scientific Data*, 2025. (Add DOI.)294 Author(s) omitted. Application of ConvNeXt with transfer learning and data augmentation for
295 malaria parasite detection. 2023. (Add full citation.)

296

297 Author(s) omitted. Effective Data Augmentation with Diffusion Models. 2023. (Add venue/DOI.)

298

299

300 A APPENDIX

301

302 Additional details and qualitative examples can be included here.

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323