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ABSTRACT

As latent diffusion models (LDMs) democratize image generation capabilities,
there is a growing need to detect fake images. A good detector should focus on
the generative model’s fingerprints while ignoring image properties such as se-
mantic content, resolution, file format, etc. Fake image detectors are usually built
in a data-driven way, where a model is trained to separate real from fake im-
ages. Existing works primarily investigate network architecture choices and train-
ing recipes. In this work, we argue that in addition to these algorithmic choices,
we also require a well-aligned dataset of real/fake images to train a robust de-
tector. For the family of LDMs, we propose a very simple way to achieve this:
we reconstruct all the real images using the LDM’s autoencoder, without any de-
noising operation. We then train a model to separate these real images from their
reconstructions. The fakes created this way are extremely similar to the real ones
in almost every aspect (e.g., size, aspect ratio, semantic content), which forces
the model to look for the LDM decoder’s artifacts. We empirically show that
this way of creating aligned real/fake datasets, which also sidesteps the compu-
tationally expensive denoising process, helps in building a detector that focuses
less on spurious correlations, something that a very popular existing method is
susceptible to. Finally, to demonstrate the effectivenss of dataset alignment, we
build a detector using images that are not natural objects, and present promising
results. Overall, our work identifies the subtle but significant issues that arise
when training a fake image detector and proposes a simple and inexpensive solu-
tion to address these problems. For implementation details, visit our project page:
anisundar18.github.io/AlignedForensics/.

1 INTRODUCTION

There has been a transformation in the visual world of the internet with the rise of modern generative
models. Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2020; Ho et al., 2020;
Dhariwal & Nichol, 2021) have been central to this shift, aided by internet-scale vision-language
datasets like LAION (Schuhmann et al., 2022), allowing users to create images from text (Ramesh
et al., 2022; Rombach et al., 2022; Saharia et al., 2022). Some welcome these tools for boosting
creativity and productivity; others, less so. Recently, AI-generated images led Twitter users to falsely
believe Donald Trump had been arrested1. As these algorithms grow more powerful, skepticism over
online images rises. Consequently, the field of fake image detection has grown to try to address these
issues.

Class-conditional pixel-space diffusion models (Saharia et al., 2022; Ramesh et al., 2022) are com-
putationally demanding and difficult to customize. Latent Diffusion Models (LDMs) (Vahdat et al.,
2021; Rombach et al., 2022) mitigate these challenges, making diffusion models more accessible.
Recent open-source text-to-image models (Chen et al., 2023; Li et al., 2024; Podell et al., 2023)
exemplify this shift, though the same efficiency also raises concerns about misuse. Existing works
(Corvi et al., 2022; Cozzolino et al., 2024; Ojha et al., 2024) detect images from these generators
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Figure 1: Different ways of generating images with the aid of latent diffusion models (LDMs). The
most popular way (left) is to start from noise and a text prompt and go through the denoising process
over many steps using a particular configuration (e.g., guidance scale, resolution, aspect ratio). Our
proposed approach is to take a set of real images (middle) in their original form (e.g., aspect ratio)
and reconstruct them using only the LDM’s autoencoder (right) without the denoising process.

but often fail on post-processed ones, thereby limiting their practical use. Therefore, rather than
focusing on generalization to unseen generators, we aim to improve the reliable detection of fake
images from latent diffusion models (fully generated, not partially inpainted).

The most effective way to detect fake images involves two steps: collecting real images and generat-
ing fake ones, then training a classifier to distinguish them. While much research focuses on training
strategies such as using augmentations (Wang et al., 2020) or minimizing trainable parameters (Ojha
et al., 2024; Ricker et al., 2024)—the choice of real/fake dataset remains crucial. Ideally, the only
difference between the real and fake images should be the artifacts introduced due to the generative
model. We believe that there is room for improvement in this area.

For training a fake image detector, dataset design is of critical importance. During training, the
detector could latch onto subtle differences between the real and fake images in the dataset. If these
differences are not controlled, the detector could learn to focus on spurious patterns. We highlight
some of these errors, and propose a principled way to mitigate these issues. Our key contribution
for better real/fake alignment is very simple - we take a set of real images (Fig. 1 middle) and
reconstruct them using the generative model (Fig. 1 right). These reconstructions are near-identical
to their real counterparts visually- e.g., in resolution, semantic content and color tone, except that
they have artifacts introduced through the generative model. Hence, they serve as our fake images.
With this improved alignment, we observe that the detector focuses less on the false patterns. With
latent diffusion models, we can use their VAE (Kingma & Welling, 2022; van den Oord et al., 2018)
to reconstruct the real images. By doing so, we force the fake detector to focus on the fingerprints of
the VAE decoder. Since all kinds of generated images always pass through the decoder, they must
share the same fingerprints.

If we compare our method to the more common paradigm in which fake images are generated using
the full denoising process (Ojha et al., 2024; Corvi et al., 2022; Cozzolino et al., 2024), there are
many advantages. First, our way of getting the fake images for training is not as expensive. The
standard way of generating images using diffusion models is an iterative, time consuming process.
In our case, there is just one forward pass through the autoencoder. Second, in the standard setup,
the real and fake images could have different properties beyond just the generative model’s artifacts.
For example, their resolutions could be different; and if they have to be resized to a fixed size,
real and fake images could have different amount of resizing artifacts, something that the classifier
can latch on to during training. We show that one of the most effective detectors (Corvi et al.,
2022) indeed suffers from this problem, and how our better aligned training data results in a much
more robust detector. Third, since generating fake images aligned to a set of real images is so
simple using our method (we don’t have to worry about setting the ideal guidance scale or prompt
engineering), we can use any set of real images to train the detector. To demonstrate this point,
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we collect algorithmically generated images using OpenGL, which look nothing like natural images
(Baradad et al., 2023). Treating those as our real images, we obtain their reconstructions and train a
detector to distinguish the two. The detector works well not just in detecting other algorithmically
generated real/fake images, but also in detecting natural looking real/fake images. This unreasonable
effectiveness points to a principle about building robust detectors: it may be more important how
real and fake images differ from each other, and less important how real images in themselves are.

We conduct extensive experiments to assess our method. We train on images generated by the orig-
inal LDM model (Rombach et al., 2022), and test on images generated by later versions of Stable
Diffusion as well as newer latent models such as Playground (Li et al., 2024), Kandinsky (Razzhi-
gaev et al., 2023), PixelArt-α (Chen et al., 2023) and Latent Consistency models (Luo et al., 2023).
We also test it on images generated by Midjourney (mid), a closed-source commercial model. Our
method is able to match, and often outperform, the best existing detectors in detecting fake images.
Using our approach, one can train a detector that is less-likely to focus on spurious patterns. Finally,
since we generate fake training images using the LDM’s autoencoder, without any denoising opera-
tion, our approach is 10x less-expensive than state-of-the-art methods. We also identify and explain
the limitations of our approach. Overall, we hope that our work highlights the subtle errors that
can occur when training fake image detectors and encourages further research on training detectors
without these errors.

2 RELATED WORK

Several algorithms to identify fake images have been proposed. Wang et al. (2020) fine-tunes a
ResNet-50 (He et al., 2015) model to classify images as either real or fake. It trains on fake images
generated by ProGAN (Karras et al., 2018). Training with aggressive data augmentation enables the
detector to successfully identify images generated by various CNN-based models. To better preserve
low-level details of the image, Gragnaniello et al. (2021) removes the downsampling operations
present in the initial layers of the neural network. Furthermore, Chai et al. (2020) trains a detector on
image patches to force the model to learn local fingerprints. Combining the above practices, Corvi
et al. (2022) trains a fake image detector for LDM generated images. Unlike previous methods
that fine-tune the entire neural network, Ojha et al. (2024) demonstrate that linear probing of a
pre-trained, frozen CLIP image encoder (Radford et al., 2021) can effectively detect fake images
generated by a wide range of models. Work by Cozzolino et al. (2024) extends this approach to
detect images generated by additional models. Despite these algorithmic advances, the real and
fake images used for training these models are not well-aligned. Our work demonstrates the various
benefits that come from creating aligned fake images that are reconstructions of real images.

The use of reconstructions for fake image detection has been explored in prior work. Chai et al.
(2020) create a dataset of GAN-generated fakes by reconstructing real images (Bau et al., 2019),
but find that detectors trained this way underperform compared to those trained on randomly gen-
erated images—likely due to reconstruction inaccuracies. The most similar work to ours is DRCT
(Chen et al.), which reconstructs real and fake images using DDIM inversion. However, their dataset
remains misaligned since the fake images lack corresponding real counterparts. Moreover, DRCT
depends on the costly and time-consuming DDIM inversion, while we show that simple VAE re-
constructions suffice for training an effective LDM-image detector. In contrast to these works, we
use VAE reconstructions that efficiently preserve real image quality while outperforming detectors
trained on iteratively denoised images.

Reconstruction-based detection has also been studied for diffusion models. Wang et al. (2023) use
DDIM inversion (Song et al., 2022) to reconstruct images, training a classifier on their difference
(DIRE). Ricker et al. (2024) extend this to LDMs, using VAE-based reconstructions and LPIPS dis-
tance (Zhang et al., 2018) for detection. However, these methods require access to the generative
model at inference and fail under common post-processing. In contrast, our approach uses recon-
structions only during training, enabling faster inference and greater robustness to corruptions.

3 PRELIMINARIES

Our goal is to build a fake image detector to detect whether an image is real or fake, i.e., created with
the aid of a generative model. We first explain our problem statement and then provide an overview
of the existing paradigm.
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3.1 PROBLEM SETUP

Recently, various image generation models have emerged. Among them, latent diffusion models
(LDMs) (Vahdat et al., 2021; Rombach et al., 2022) and the subsequent stable diffusion (SD) series
have become noticeably ubiquitous. This is because they strike a good balance: users get control
(e.g., through text prompts) to generate quality synthetic images and the overall process is computa-
tionally more efficient than other text-to-image diffusion models (Saharia et al., 2022; Ramesh et al.,
2022). Hence, our specific goal in this work is to detect images generated by LDMs.

3.2 LATENT DIFFUSION MODELS

A latent diffusion model first compresses images into a lower dimensional latent space using an
autoencoder. The diffusion model then operates in this latent space. A text-conditioned latent diffu-
sion model consists of an encoder (ϕenc), decoder (ϕdec) and a UNet (ϵθ). Given a high dimensional
image space X and a lower-dimensional latent space Z , we train an encoder network to compress
an image (x ∈ X ) into a lower dimensional latent (z ∈ Z). The decoder is trained to reconstruct
the image from the latent.

In order to generate an image based on a conditioning signal c (prompt, bounding box, reference
image, etc.), we first sample zT from a fixed prior (gaussian noise), where T corresponds to the
number of timesteps. We then denoise the image for T steps using the UNet to get a latent z0. We
pass z0 through the decoder ϕdec to generate the image.

3.3 EXISTING FAKE DETECTION PARADIGM

Since we don’t know what precisely makes a fake image fake and a real image real, a common and
effective approach has been to learn that difference (Wang et al., 2020; Corvi et al., 2022; Cozzolino
et al., 2024). The first step is to create a dataset consisting of two categories (i) R consisting of
real images and (ii) F consisting of fake images sampled using a generative model G. The next step
involves training a deep neural network ψ on the collected dataset D = {R ∪ F} for the task of
binary classification, so that ∀x ∈ R, ψ(x) ≈ 0 and ∀x ∈ F , ψ(x) ≈ 1. The hope is that when ψ is
learning to separate the distribution of F from R, it does so only by discovering G’s artifacts in F
(something not present in R), and not by using some other spurious features. We explain what these
spurious features can be with the help of an example prior work.

Imperfect alignment between R and F: The work of Corvi et al. (2022) trains a detector in
the same way discussed above. For the real data R, it uses MS COCO (Lin et al., 2015) and
LSUN (Yu et al., 2016). For fake images F , it uses the text prompts from MS COCO to generate
images from an LDM model at a fixed 256 x 256 resolution. The real images tend to be at a higher
resolution than fake images (see Appendix A.1.1 for details). Fig. 1 (left) shows the discrepancy
in the sizes of real and fake images. To make the detector robust to image resizing, the random
resized crop 2 data augmentation is used during training. By first cropping the image and then
resizing the cropped image to a fixed final resolution, the random resized crop introduces both
upsampling and downsampling artifacts to the training data. However, due to the discrepancy in
resolution between real and fake images, the random resized crop introduces different signals to each
distribution. Consequently, there is potential for ψ to use this signal in some capacity to separate R
from F . Similar issues have been illustrated in prior works from Grommelt et al. (2024); Yan et al.
(2024). Later on in Sec. 5, we show that the resulting detector indeed learns such spurious features
and changes its prediction if the same image is saved at a different resolutions. We want to avoid
such situations and instead look for a principled way to learn a robust fake image detector.

4 OUR APPROACH

If we do not want ψ to learn any spurious features, then we need to make sure they are not available
for ψ to learn from the training data itself. So, our key idea is to align R and F as much as possible
so that their only difference is due to G’s artifacts. Note that prior methods (Ojha et al., 2024; Corvi
et al., 2022; Cozzolino et al., 2024) do try to align R and F in some capacity. For example, while

2https://pytorch.org/vision/stable/generated/torchvision.transforms.
RandomResizedCrop.html
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generating F , instead of using arbitrary prompts, they use R’s image descriptions to generate images
using LDM. However, such images are only similar to the real images in terms of semantics. We
instead propose an approach that can bring the distribution of F to be much closer to that of R,
which can aid in subduing many of the other differences in image properties (e.g., aspect ratio).

Our solution is simple. To generate F , we reconstruct images in R using G’s parameters. Typically,
reconstructing an image x involves a multi-step inversion (e.g., DDIM inversion (Song et al., 2022))
from the image space to the noise space to compute latent zx, such that G(zx) ≈ x. However,
for the particular G that is our target in this work, i.e., LDM/SD, there is a much simpler solution.
Specifically, given a real image x, we pass it only through the pre-trained autoencoder, without
using the U-Net to do any forward/reverse process. Using the notations defined in Sec. 3.2, we can
mathematically formulate the process in the following way:

F = { ϕdec(ϕenc(x)) | ∀x ∈ R}

The resulting reconstructed images can still be validly considered fake, at least for our task, since
they necessarily contain artifacts introduced by ϕdec. We create this distribution of F from R before
any training begins. Once we have this data, we then train a deep neural network ψ using the same
training recipe as proposed in Corvi et al. (2022). Specifically, we use ResNet-50 (He et al., 2015)
pretrained on ImageNet and finetune the whole backbone for real-vs-fake image classification. In
each iteration, we sample a batch of real Ri and fake images Fi, and train ψ using binary cross
entropy loss (real: 0 and fake: 1).

Within this framework, we consider two variants depending on the composition of real and fake
images in a batch (i). In one case, the batch could be a random assortment of real and fake images
where images in Ri and Fi do not need to have any correspondence between them. In the other case,
each image in Fi has a corresponding real image in Ri as part of the same batch, with identical data
augmentations (e.g., crop). With this latter variant, the alignment between real and fake images is
ensured not just at the dataset level, but also at the batch level in each iteration, and we explore
if this further helps the model to focus on the desired features for fake detection. We call the two
variants Ours and Ours-Sync respectively. For both, since we train ψ to focus on the artifacts of ϕdec,
the detector should detect even those images which have been produced through the full denoising
process using the U-Net ϵθ. This is because even those images will have their denoised latents go
through the same decoder ϕdec, and hence should have similar artifacts.

5 EXPERIMENTS

In this section, we demonstrate that using reconstructions provides a very inexpensive way to create
a well-aligned real-vs-fake training dataset which in turn reduces the likelihood of a detector learning
spurious patterns. Our experiments show that a detector trained using our approach can effectively
detect fake images generated by various other text-to-image latent diffusion models. Finally, we
show that as long as the real-vs-fake dataset is well-aligned, the content of the images is relatively
less significant for training a fake image detector.

5.1 BASELINES AND TRAINING DETAILS

We consider the following baselines for fake image detection: (i) CLIP-based detection (Ojha et al.,
2024), using linear probing on real/fake images with variants trained on GAN (Ojha-ProGAN) and
LDM (Ojha-LDM) data. (ii) Cozzolino-LDM (Cozzolino et al., 2024), which improves dataset qual-
ity and leverages an improved CLIP backbone. (iii) AEROBLADE (Ricker et al., 2024), a training-
free method based on LDM autoencoder reconstructions. (iv) Corvi (Corvi et al., 2022), a ResNet-50
trained on real (MS COCO + LSUN) and LDM-generated images, combining augmentation-driven
(Wang et al., 2020) and patch-based training (Chai et al., 2020).

We dedicate the first part of our experiments to comparing our method exclusively to (Corvi et al.,
2022). There are two reasons. First, Corvi is one of the most effective methods for detecting
fake images from various text-to-image latent diffusion models (we compare all methods later in
Table 1). Yet, the training pipeline used by Corvi gives rise to the classifier learning some spurious
features, and hence is a good test bed for our method, to see whether we can avoid making our
detector learn those features, while still preserving or improving fake detection in a general sense.
Second, since Corvi represents the existing paradigm of collecting fake images for training through
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a computationally intensive iterative denoising process, we compare our approach to assess the
increased efficiency of our dataset creation method.

Training details: Similar to Corvi et al. (2022), we use a combination of MS COCO (Lin et al.,
2015) and LSUN (Yu et al., 2016) as our real dataset, totaling 179257 images. We reconstruct
them using the autoencoder of the LDM model proposed by Rombach et al. (2022) to get the same
number of fake images. Starting from ImageNet pretrained ResNet-50 as ψ, we finetune it on the
real-vs-fake dataset. We optimize using Adam (Kingma & Ba, 2015) with an initial learning rate set
to 0.0001. The rest of the training details can be found in Appendix A.1.1.

5.2 SUBDUING SPURIOUS FEATURES

In our work, we emphasize that a well-aligned real-vs-fake dataset reduces susceptibility to spurious
features. Here, we test this by analyzing the detector’s sensitivity to image resizing. We also study
the sensitivity of our detector to other post-processing operations in Appendix A.2.5.

Issue caused by lack of well-aligned data: Corvi et al. (2022) use LDM-generated images as fake
and LSUN + MS COCO as real. All fake images are 256×256, while LSUN images match this
resolution. However, most COCO images are significantly larger, making real images, on average,
higher resolution than fake ones. A key component in the data augmentation pipeline is the ‘random
resized crop’ function, which works in the following way: a random crop is taken as a percentage
of the whole image. This percentage is chosen uniformly from the range [8,100]. The resulting
crop is then resized to a fixed 256 x 256 resolution. Hence, resize cropped fake images have only
up-scaling artifacts. On the other hand, many real images will have both up-scaling and down-
scaling artifacts. In contrast, our method uses the same real images (COCO + LSUN), but our fake
images are reconstructed from real ones, preserving their exact resolution. While we fine-tune the
network similarly to Corvi, we show that these issues also affect other training-based methods (e.g.,
Ojha-LDM). See Appendix A.2.2 for a detailed analysis.

Experiment details: We create a test set of real and fake images of increasing/decreasing resolu-
tions. For the real set, we randomly select 500 images from the Redcaps dataset (Desai et al., 2021).
For fake images, we generate 500 images using SD 1.5 (prompts pertain to object categories from
CIFAR (Krizhevsky et al., 2010)). The original resolution of both real and fake images is 512 x 512.
We resize these images to different resolutions in the range of [128, 1024] corresponding to scaling
factors of 0.25 and 2.00 respectively. We then test both detectors, Corvi and ours, to see how they
perform on this dataset. Both methods produce the probability of an input image being fake.

Figure 2: Sensitivity of fake detectors to image resizing for a set fake images (left) and a set of real
images (right). Corvi associates downsampling with real images and upsampling with fake images.
Our detectors do not learn that false pattern, showing better robustness.

Results and analysis: In Fig. 2 left and right, we see the behavior of the two detectors on fake and
real images respectively, where x-axis denotes the scaling factor of test images, and y-axis represents
the fakeness score of the model. We first focus on the performance on fake images (left). Soon after
we start downsizing from the base resolution (marked with the dotted line), the probability of the
image being fake drops drastically. This makes sense since during training, the Corvi detector has
only seen downsizing artifacts on real images. Our method’s performance declines much more
gradually, struggling only under extreme downsampling. We attribute this drop to the lack of scale
invariance in CNNs. Similarly, when upsampling real images (Fig. 2 right), the performance of
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Real SD MJ Kandinsky Playground PixelArt-α LCM

AEROBLADE (Ricker et al., 2024) 96.58 74.50 99.50 99.26 14.87 75.93 99.96
Ojha-ProGAN (Ojha et al., 2024) 95.13 17.84 12.96 23.56 21.03 19.73 23.93
Ojha-LDM (Ojha et al., 2024) 54.16 69.56 69.40 90.70 92.16 90.73 73.66
Cozzolino-LDM (Cozzolino et al., 2024) 85.36 47.36 50.93 51.06 59.73 59.52 34.70
Corvi (Corvi et al., 2022) 99.96 99.73 96.90 99.92 82.13 100 99.60

Ours 99.93 99.31 98.50 99.92 94.85 100 100
Ours-Sync 99.76 99.57 99.37 99.57 99.48 100 100

Table 1: Generalization results. Accuracy of different methods for detecting real and fake images.
The finetuning based detectors (Corvi, Ours, and Ours-Sync) generally outperform the training-
free and linear probing based methods. Our approach is robust to drastic changes in the UNet
architecture (Playground) showing a huge improvement (+12.72/+17.35 for Ours/Ours-Sync) from
the Corvi detector.

the baseline detector worsens since during training, up-sampling artifacts are seen more with fake
images. Our detectors remain much more consistent on real images throughout the resizing range.
Overall, these results highlight the effectiveness of the simple way in which we can make the detector
much more robust through a better dataset alignment.

5.3 EVALUATION ON DIFFERENT TYPES OF REAL/FAKE IMAGES

Now that we have seen the benefits of our method in being able to avoid certain spurious correlations
while being computationally very efficient, we now study how it fares in being able to detect different
types of fake images produced by different types of latent diffusion models.

Test datasets: We compare all the detectors introduced in Sec. 5.1 to our method on the following
datasets. (i) The Real set contains real images from multiple sources; 1000 images from Red-
Caps (Desai et al., 2021), 800 images from LAION-Aesthetics (Schuhmann et al., 2022), 1000 im-
ages from whichfaceisreal (whi) and 200 images from WikiArt (wik). For fake images, we collect
images from the following sources. (ii) Different variants of Stable Diffusion (SD), which includes
1000 fake images from InstructPix2Pix (Brooks et al., 2023), 1000 images from Nights (Fu et al.,
2023) dataset and 1000 DDIM inversion of real face images; (iii) 3000 images from Midjourney
(MJ) (mid), whose model architecture is not public; (iv) 3000 images from Kandinsky (Razzhigaev
et al., 2023) which has a VAE of a different architecture in comparison to the LDM model we train
on; (v) 3000 images from Playground (Li et al., 2024) and (vi) 3000 from PixelArt-α (Chen et al.,
2023), which have similar VAEs as ours, but their U-Net is different; and (vii) 3000 images from
Latent consistency model (LCM) (Luo et al., 2023) which was distilled from a finetuned version of
SD 1.5 using the objective proposed by Song et al. (2023).

We create this overall test set to ensure that there is enough diversity of natural and artistic looking
images. The selected models offer a wide range of architectural choices utilized by latent diffusion
models. Furthermore, for these same real/fake images, we separately construct their post-processed
versions where we randomly add JPEG compression, blurring, color jitter, and resize each image.
This enables us to test the robustness of detectors to common post-processing operations. Following
(Ojha et al., 2024), we use accuracy as the evaluation metric with 0.5 as the threshold (threshold
details for AEROBLADE can be found at Appendix A.1.3). We also report threshold-less metrics
such as average precision in Appendix A.2.3.

Results and analysis: Tables 1 and 2 show the performances of various baselines on our test set,
before and after applying common post-processing operations, respectively. Overall, the methods
that involve fine-tuning (Corvi and Ours) outperform the other methods that are either linear probing
based (Ojha-ProGAN, Ojha-LDM, Cozzolino-LDM) or without training (AEROBLADE). Ours fur-
ther outperforms Corvi, especially on post-processed images (Table 2). Both Corvi and our method
use the common image corruptions as data augmentations during training, however our method
shows huge improvements; e.g., our approach obtains a +36.98/+52.09 improvement for Ours/Ours-
Sync over Corvi on Playground generated images. Playground is built from SDXL (Podell et al.,
2023), which uses a fine-tuned version of the LDM autoencoder, but uses a UNet with thrice as many
parameters compared to LDM. We hypothesize that since our method only focuses on the VAE, it is
robust to drastic changes in UNet architecture as opposed to Corvi which uses the UNet for training.
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Real SD MJ Kandinsky Playground PixelArt-α LCM

AEROBLADE (Ricker et al., 2024) 96.85 28.10 61.80 27.60 3.17 10.22 4.60
Ojha-ProGAN (Ojha et al., 2024) 93.26 13.10 8.26 14.53 7.63 9.60 13.16
Ojha-LDM (Ojha et al., 2024) 48.46 57.20 51.63 64.63 66.16 64.37 64.33
Cozzolino-LDM (Cozzolino et al., 2024) 76.63 52.80 59.43 59.63 73.36 66.22 60.93
Corvi (Corvi et al., 2022) 98.40 77.78 50.45 59.23 24.27 64.41 58.31

Ours 99.85 86.50 70.68 64.88 61.25 84.36 90.12
Ours-Sync 99.50 88.06 72.36 68.60 76.36 86.10 91.08

Table 2: Sensitivity to common post-processing operations. Analogous to Table 1, but the test
images have undergone random compression, resizing, blur and color jitter. Our detectors show
improved robustness over the baselines when detecting fake images from different latent diffusion
models. Ensuring batch-level alignment (Ours-Sync) offers increased robustness.

Like Corvi, the other baselines also struggle with architectural differences used to process training
data vs. testing data. For example, AEROBLADE uses the VAEs of SD 1.1, SD 2 and Kandinsky
2.1 and uses the smallest reconstruction error of the three to perform real/fake detection. It is unable
to detect images from SD, Playground, and PixelArt-α as they use a different VAE. Furthermore,
AEROBLADE struggles to detect images that have been through common post-processing opera-
tions. Interestingly, the Kandinsky VAE uses a different architecture from the LDM VAE that we
trained on, as it replaces the convolutional decoder of LDM with a MoVQ decoder (Zheng et al.,
2022) for improved generation quality. We observe that our detector is less sensitive to this change
than other methods, likely because the other methods additionally utilize the UNet or are more sus-
ceptible to spurious correlations due to not enforcing aligned data during training, leading to larger
distributional differences in the generated training vs. testing images. Finally, Ours-Sync surpasses
Ours, suggesting that batch-level alignment during training improves generalization.

Our results confirm the advantage of using well-aligned real/fake training images from the LDM’s
VAE. This helps the detector focus on genuine signals, reduces spurious correlations, and improves
robustness to UNet changes. While we use a ResNet-50 backbone with ImageNet initialization,
Appendix A.2.4 shows these findings hold across various architectures and initializations.

5.4 EFFECT OF DATASET SIZE

We study the effect of training dataset size on our methods and Corvi. Instead of training on all
179,257 images, we try training each method using smaller dataset sizes. We test by sampling of
1000, 10,000, 50,000 and 100,000 real and fake images each from our training distribution and
report the results here. We evaluate the detectors based on their performance on the whole test
dataset from Section 5.3. Our real distribution has 6000 images, consisting of both the original and
post-processed real images. We have 30,000 images in our fake distribution coming from the 6
models that we test on. Furthermore, in order to disentangle the effects of resizing, we do not use
resizing as part of post-processing here. Due to the imbalanced nature of the dataset, we report the
true positive rate (TPR) at a fixed false postive rate of 5%.

Dataset Composition Corvi Ours Ours-Sync

1k / 1k 46.51 83.37 80.43
10k / 10k 87.64 98.13 98.58
50k / 50k 93.27 99.56 99.81
100k / 100k 95.84 99.69 99.75

Table 3: Effects of varying the dataset size. We report the TPR@5FPR for detectors trained
on lesser data. Using an aligned dataset helps the model learn a good hypothesis with less data.
Ours/Ours-Sync shows improvements of +36.86/33.92, +10.49/10.94, +6.29/6.54 and +3.85/3.91
over Corvi when trained with 1k, 10k, 50k and 100k images (each) respectively.

We report our results in Table 3. When training on a small dataset size of 1k real and fake images
each, the Corvi detector can detect only 46.51% of the fake images while allowing having a 5%
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Figure 3: We use OpenGL shader generated images (Baradad et al., 2023), as our real images and
reconstruct them to obtain our fake images. We then train a detector using this dataset.

Original With Post-Processing
Corvi Ours-Sync Ours

(shaders)
Ours-Sync
(shaders)

Corvi Ours-Sync Ours
(shaders)

Ours-Sync
(shaders)

Real 99.91 99.73 84.98 83.24 97.85 98.86 74.62 76.62
SD 99.68 99.80 99.75 99.44 78.05 84.73 77.82 72.30
MJ 97.71 99.30 98.56 95.79 51.03 72.38 53.45 46.43
Kandinsky 99.88 99.80 98.23 98.10 58.68 69.02 69.29 67.87
Playground 86.25 98.80 99.82 99.90 24.11 63.83 52.65 54.66
PixelArt-α 100 100 100 100 63.34 80.99 69.65 68.81
LCM 99.65 99.93 99.78 99.84 50.63 82.83 63.14 60.81

Table 4: Generalization results. Comparing the model trained using the shaders dataset (Baradad
et al., 2023) to models trained on natural image datasets (Corvi, Ours-Sync). All models use a
threshold calibrated using a validation set. The detectors trained on shader images, show good
performance on natural images. This shows that a well-aligned dataset is more important than the
exact content of the images themselves.

false positive rate. Ours and Ours-Sync on the other hand, can detect 83.37% and 80.43% of the
fake images respectively at the same threshold. A similar pattern can be seen with dataset sizes of
10k, 50k and 100k images each, this shows that Corvi needs a large dataset size in order to learn the
correct hypothesis. As oppposed to ours, which can learn it in a data-efficient manner. Creation of
the training dataset is also more efficient, which we show in Appendix A.2.1.

5.5 CAN WE TRAIN ON IMAGES THAT ARE NOT NATURAL?

Our experiments show that a properly aligned dataset can reduce spurious patterns, but both the
training set and test settings still contain similar real-world concepts. But if the goal of alignment
is to force the model to not look at anything else but the LDM decoder’s artifacts, can the detector
learn those artifacts without being trained on any naturally occurring real images at all? To study
this, we next train our detector using a dataset which does not capture the semantic concepts that we
test the model on, and see if it succeeds in detecting the same real/fake images described in Tables
1 and 2.

A similar motivation was discussed in Baradad et al. (2023), where the authors wanted to learn image
representations without using real-world images. They proposed to generate images with 21,000
OpenGL fragment shaders, which are short programs that compute the color and transparency of
every pixel in an image. Sample images are shown in Fig. 3 (left). Although the images are generated
algorithmically, they do not involve a neural network. For our use case, we use these images as the
“real” set. Specifically, our R consists of 100k such images of 384 x 384 resolution. We pass
these images through the SD 1.5’s VAE in order to get our reconstructions which serve as our fake
distribution F . We train the two versions of our detectors (normal and sync) in the same way as
described in Sec. 4 (e.g., using same ResNet-50 as ψ), and evaluate them on the same test set from
section 5.3. We train detectors using 5 random seeds and report the average values. Since, the model
does not observe any natural images during training, it is not likely for those images to conform to a
0.5 threshold, therefore, we calibrate the threshold using the same validation set. For further details,
we refer the reader to Appendix A.1.2.

Results and Discussion: We report accuracy of our shaders-trained detectors in Table 4. We also
compare to detectors trained on natural real/fake images (Corvi and our method). For uniformity, we
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train them using 100k real/fake images. First, we notice that Ours (shaders)/Ours-Sync (shaders)
detect 84.98/83.24% of real images, compared to Corvi/Ours-Sync which detects 99.91/99.73% of
real images. However, what is surprising is how effective our shaders-detectors are at being able
to detect all types of fake images without perturbation, having almost the same accuracy as our
detectors trained with natural images. If we especially compare them to Corvi on post-processed
fake images (Table 4) (right), we see that they have a much better accuracy in almost every case by
a decent margin; e.g., Ours (shaders) shows improvements of +10.61, +28.54, +6.31 and +12.51
on Kandinsky, Playground, PixelArt and LCM respectively. However, while Ours-shaders detectors
do match the performance of our natural image trained detector (Ours-Sync) on clean fake images,
they cannot do so on post-processed fake images. Even so, given that the detectors proposed in this
section are trained without ever training on natural real image or a properly generated (iteratively
denoised) fake image, being able to outperform the best existing detector (Corvi) which has both of
those things highlights the crucial role that dataset alignment can play in deploying robust detectors.

6 DISCUSSION AND LIMITATIONS

Aligning data using the LDM’s autoencoder assumes that most properties of real images can be
transferred to the reconstructed image. However, there might be some low-level properties that do
not get transferred as effectively. As a specific example, if real images are originally saved in .webp
format, we find that the reconstructions might not inherit those compression artifacts, and hence the
resulting detector is not completely robust to .webp compression. This is depicted in Fig 4, which
plots the effect of different levels of .webp compression (x-axis) on the model’s output score, i.e.,
probability of the image being fake (y-axis). We start with a clean set of 500 images generated by
SD 1.5 (compression quality = 100). Both Ours-Sync as well as Corvi, which are trained on real
images containing .webp artifacts, correctly assign a high score to the images. As we increase the
compression level, the models’ scores drop drastically. This implies that the detector has learned to
associate .webp artifacts to real images. This is problematic as real images may contain unknown
arbitrary properties, like .webp artifacts, which could make the detector sensitive to those features.

Figure 4: Sensitivity to webp compression

However, algorithmically generated images,
like those discussed in Sec. 5.5, offer the ad-
vantage of complete control over their cre-
ation, allowing us to eliminate unnecessary
artifacts. In fact, the detector trained on
shaders generated images, Ours (Shaders), is
much more robust to .webp compression.

Finally, while we have shown that our method
can be robust to small architectural changes
in the U-Net (e.g., Playground) and VAE
(Kandinsky), it struggles when there are ma-
jor architectural differences in the VAE. As
an example, we tested our detector on 1950
images generated by FLUX.1-dev (Labs),
which utilizes a latent space of 16 channels (most SD variants have 4). The accuracy of Corvi,
Ours, Ours-Sync in detecting them as fake are 3.18%, 9.59%, 25.87%. Perhaps unsurprisingly, this
means that models with vastly different architectures tend to produce very different kinds of artifacts.

7 CONCLUSION

In this work, we demonstrated the need to train fake image detectors using a completely aligned
dataset. We introduced a principled way to achieve this for Latent Diffusion Models. Through
careful experimentation, we supported our claims. By training a fake image detector using OpenGL-
generated texture images, we demonstrated the importance of focusing on the differences between
the real and fake images, as opposed to the images themselves. An interesting future direction could
be to study the application of this idea in the context of pixel-space diffusion models where the VAE
is not available. We hope that our work highlights the importance of dataset alignment and paves
the way for robust fake image detectors that can help society combat misinformation.
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8 REPRODUCIBILITY STATEMENT

We provide precise details on our experimental setup to ensure reproducibility. For our experiments
on training with natural-looking real images, we provide training details in Section 5.1 and Appendix
A.1.1. Details of our test dataset can be found in Section 5.3. Details regarding our experiments on
shaders can be found in Section 5.5 and Appendix A.1.2. We also intend to release our pre-trained
checkpoints, datasets, and code to ensure reproducibility, with all resources made publicly available
on GitHub.
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digital space.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 ADDITIONAL TRAINING DETAILS

We follow the training recipe used by Corvi et al. (2022). We train on 96 x 96 crops of the whole
image using a batch size of 128. The data augmentations include random JPG compression and blur
from the pipeline proposed by Wang et al. (2020). Following Gragnaniello et al. (2021), grayscale,
cutout and random noise are also used as augmentations. Finally, in order to make the network
invariant towards resizing, the random resized crop was added. For our method as well as Corvi, we
train the model using two different random seeds and report the average reading.

We use the validation set provided by Corvi et al. (2022) for our training. Just like our training
set, the real images come from COCO/LSUN and the fake images are generated at 256 x 256 using
LDM. During training, if the validation accuracy does not improve by 0.1% in 10 epochs the learning
rate is dropped by 10x. The training is terminated at learning rate 10−6.

Dataset details: We use the dataset provided by Corvi et al. (2022). Half of the real images come
from LSUN (Yu et al., 2016), the remaining comes from COCO (Lin et al., 2015). There are a total
of 90,000 images from COCO out of which most of them are high resolution images. The most
frequently occurring resolutions are 640 x 480 and 640 x 427 which occur 19,581 and 11,292 times
respectively. For further details, we refer the reader to the download link3 provided by Corvi et al.
(2022).

A.1.2 SHADERS EXPERIMENT DETAILS

Dataset details: All our images are at a resolution of 384 x 384. By inspecting the code used by
Baradad et al. (2023), we figure out the exact post-processing done on our images. They were saved
in the JPG format. Therefore, we also save our fake images in the JPG format (quality ∼ [70, 100])
to make sure that the detector does not focus on compression artifacts.

3https://github.com/grip-unina/DMimageDetection/tree/main/training_code
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Training and Evaluation details: We train our detectors using the configurations from before
(refer Appendix A.1.1). In addition, we use the same validation set to compute the threshold for
classification. It is important to notice that our validation set consists of natural looking images.
We take 5000 real and fake images each from the validation set, and apply compression, resizing,
blur and color jitter operations to these images. We evaluate all the models listed in Table 4 on the
validation set, selecting the threshold for each model that achieves the best accuracy. We use this
threshold when evaluating the model on the test set.

A.1.3 EVALUATION OF AEROBLADE

AEROBLADE (Ricker et al., 2024) is a training-free reconstruction based fake image detection
technique. The first requirement is to collect an ensemble of VAE’s of prominent latent diffusion
models. Given an image, it is first reconstructed using the VAE and then the reconstruction is
saved. The original image as well as the reconstruction are passed through the VGG16 (Simonyan
& Zisserman, 2015) and the LPIPS distance is computed. The key hypothesis is that, a fake image
can be reconstructed in an easier manner than a real image, therefore the distance will be lower. In
the paper, the authors provide a plot showing the distribution of real and fake images. Based on this
plot and our trials with the model, we pick a threshold of 0.018 for classification.

A.2 ABLATIONS

A.2.1 COMPUTATIONAL EFFICIENCY

Training a fake image detector requires generating a large number of images. This can become
computationally heavy when using latent diffusion models, which utilize multiple rounds of forward
pass through the UNet (ϵθ) and final decoding through the ϕdec. Additionally, a text encoder is also
used to condition the generation on text prompts. Since our approach neither utilizes the text encoder
nor the UNet, and only generates images with a single forward pass through ϕenc and ϕdec, it is much
more efficient. We measure this difference in terms of the number of multiply-accumulate operations
needed to generate the 179257 fake images. We ensure ours and the baseline are generating images
at the same resolution.

Figure 5: Computational cost mea-
sured in the number of multiply-
accumulate operations. Ours is
more than 10x efficient than the
state-of-the-art method of (Corvi
et al., 2022). Note that text en-
coder cost is relatively negligi-
ble compared to the U-Net and
autoencoder.

Results and Discussion: Figure 5 shows the results, where our method of curating the dataset is
ten times more cost-effective than the existing state-of-the-art approach. Unsurprisingly, majority
of the cost comes from running the UNet. By skipping the UNet step, we are able to reduce the
computational cost. Furthermore, our approach can maintain similar effectiveness even with lesser
data, compared to the full dataset, setting it apart from Corvi. We discuss this in detail in Appendix
5.4.

A.2.2 FALSE PATTERN LEARNING IN OJHA-LDM

Ojha et al. (2024) train a Universal Fake Image detector by linear probing a CLIP backbone on
ProGAN (Karras et al., 2018) generated images. However, they also train a version trained on
LAION (Schuhmann et al., 2022) and LDM (Rombach et al., 2022) images. This model (Ojha-
LDM) ends up associating downsampling with real images. We demonstrate this using a simple
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experiment. First evaluate Ojha-LDM on our set of real images and SD generated images. Now
downsample both sets of images to 256 x 256 and measure the performance again.

Real SD
Original 54.16 69.56
Downsampled to 256 x 256 83.58 29.83

Table 5: Effects of resizing on Ojha-LDM. Real accuracy improves when the same real images
are downsampled. The fake accuracy on SD images also drops. This shows that images which have
downsampling artifacts are likely to be identified as real images by Ojha-LDM.

Table 5 shows the results of our experiment. We can see that downsampling real images increases
the chance of the detector identifying them. But at the same time, the fake accuracy decreases.

Analysis: Such false patterns are also caused by lack of a well-aligned real-vs-fake dataset. We
look into the dataset that Ojha-LDM was trained on. Their fake images come from LDM, and are
generated at a resolution of 256 x 256. However, their real images which come from LAION are
present in a variety of resolutions. However, they were resized to 256 x 256 during training. During
training, the model is able to use some of these artifacts to fit the training distribution. This further
suggests that without proper dataset alignment, the detector can very easily pick up on spurious
features present in the data.

A.2.3 THRESHOLD-LESS EVALUATION

In Tables 1, 2, and 4, we assess the accuracy of various detectors under a fixed threshold, simulating
a test environment. In this section, we present the results for two important evaluation metrics:
average precision (AP) and true positive rate at a 5% false positive rate (tpr@5fpr). These metrics
serve as indicators of the classifier’s maximum ability to correctly identify fake images. For our
evaluation, we use the same test dataset described in Section 5.3. Specifically, we examine both the
original images, as referenced in Table 1, and the post-processed images, which are presented in
Table 2, grouping them into the same category for a comprehensive analysis. The dataset consists
of 6000 real images and 6000 images for each of the respective categories.

The results for average precision (AP) and true positive rate at 5% false positive rate (tpr@5fpr) are
reported in Tables 6 and 7, respectively. From these tables, we observe that classifiers trained on a
well-aligned dataset demonstrate near-perfect separability, as evidenced by the high AP scores and
the tpr@5fpr values. Furthermore, the linear-probing based methods (Ojha et al., 2024; Cozzolino
et al., 2024) as well as the training-free, reconstruction based method (Ricker et al., 2024) achieve a
low AP, tpr@5fpr. This shows that these approaches cannot be improved by calibrating the threshold.

A.2.4 IMPACT OF ARCHITECTURE CHOICE AND INITIALIZATION

In this section, we experiment with different architectural choices and initializations in order to
disentangle the effects that a particular architecture/initialization may have on the results. We exper-
iment with the following variation,

• Same Architecture, Different Initialization: We use the same ResNet-50, but we use the
DINO initialization (Caron et al., 2021). DINO is a self-supervised, self-distillation based
approach to pre-train image feature extractors. We also fine-tune a FCN (Long et al., 2015)
backbone which was originally trained on the semantic segmentation task on the (Lin et al.,
2015) dataset.

• Different Architecture, Same Initialization: We fine-tune a Wide-ResNet (Zagoruyko
& Komodakis, 2017) pre-trained on ImageNet. Wide-ResNets are widened versions of
original ResNet with decreased depth. We also perform the same experiment with the ViT-
B/16 (Dosovitskiy et al., 2021) architecture. For ViT-experiments, we crop the image to
224x224 due to the input resolution requirements.

• Different Architecture, Different Initialization: We fine-tune a modified ResNet trained
using the CLIP (Radford et al., 2021) objective. The CLIP ResNet is deeper and bigger
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Method SD MJ Kandinsky Playground PixelArt-α LCM

AEROBLADE (Ricker et al., 2024) 90.81 96.48 94.03 71.53 87.84 89.99
Ojha-ProGAN (Ojha et al., 2024) 62.02 52.33 64.55 61.58 61.45 64.75
Ojha-LDM (Ojha et al., 2024) 61.93 61.72 74.21 69.39 68.72 70.05
Cozzolino-LDM (Cozzolino et al., 2024) 71.63 73.72 74.16 74.52 75.90 70.95
Corvi (Corvi et al., 2022) 97.87 94.81 95.32 90.93 94.16 96.15

Ours 99.32 98.37 97.97 98.17 98.38 99.84
Ours-Sync 99.40 98.30 98.14 98.54 98.58 99.79

Table 6: Average Precision. AP of different methods for detecting real and fake images. Our
approach shows better separability between real and fake images across various settings as indicated
by the AP. We

SD MJ Kandinsky Playground PixelArt-α LCM

AEROBLADE (Ricker et al., 2024) 59.08 85.31 69.66 13.57 50.95 54.62
Ojha-ProGAN (Ojha et al., 2024) 13.28 9.33 17.08 12.20 12.85 16.27
Ojha-LDM (Ojha et al., 2024) 12.63 14.32 26.34 16.58 17.56 18.35
Cozzolino-LDM (Cozzolino et al., 2024) 18.66 21.46 21.70 20.21 24.10 20.76
Corvi (Corvi et al., 2022) 91.69 81.46 83.86 65.75 83.66 84.32

Ours 96.82 92.19 91.00 91.52 94.25 99.02
Ours-Sync 97.08 91.77 91.08 92.88 94.58 98.53

Table 7: True Positive Rate (TPR) at 5% False Positive Rate (FPR) for different methods across
various evaluation settings. The best results for each setting are highlighted in bold.

than the ResNet that we used for our earlier experiments. In order to process images of
varying scales, we replace the attention pooling with adaptive average pooling.

For our new variants, we follow the practice of Gragnaniello et al. (2021) by modifying the stem
where we remove the downsampling operations. For each configuration, we train two variants, one
of them is trained on the dataset used by Corvi et al. (2022) and the other one is trained on our
dataset (Ours-Sync). We measure performance using the AP metric that we used in Appendix A.2.3.
We report the results in Table 8.

We observe that the detectors trained using an aligned dataset exhibit superior performance to their
counterparts irrespective of the network architecture and initialization. Furthermore, among the
detectors trained using the dataset used by Corvi et al. (2022), we observe that the results are mostly
similar, except for the CLIP-initialized Modified ResNet. The CLIP ResNet has more parameters in
comparison to the other networks, therefore we hypothesize that it might have overfit more to the
spurious correlations present in the training data. ViT-based detectors perform worse than CNN-
based detectors, we hypothesize that this is an effect of patch-based training in CNN-architectures
which show better generalization.

A.2.5 ROBUSTNESS TO POST-PROCESSING

Previously, we evaluated our model on several post-processing operations. We also examined the
sensitivity of our approach to resizing (Fig 2) and .webp compression. In this section, we study
in-detail the robustness of our method to additional post-processing operations which are commonly
found in the real world. We experiment with the following post-processing operations,

• Blur: We blur the images by using a gaussian kernel of size 9. We vary the standard
deviation of the kernel, denoted by σ.

• Gaussian Noise: We add gaussian noise to original image. We control the standard devia-
tion of the added noise in order to study the behaviour of our model.

• JPEG Compression: We study the effects of JPEG compression by varying the compres-
sion quality.
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Initialization Architecture Dataset SD MJ Kandinsky Playground PixelArt LCM
Corvi 97.87 94.81 95.32 90.93 94.16 96.15ImageNet ResNet-50 Ours 99.40 98.3 98.14 98.54 98.58 99.79
Corvi 98.27 95.26 96.25 94.26 95.09 97.05DINO ResNet-50 Ours 99.52 98.52 98.81 98.96 99.09 99.84
Corvi 98.29 95.81 96.14 93.45 94.97 96.23FCN ResNet-50 Ours 99.27 98.4 97.86 98.88 99.12 99.83
Corvi 97.72 94.82 95.59 91.54 94.54 95.31ImageNet Wide-ResNet Ours 99.06 98.22 97.23 97.12 98.13 99.51
Corvi 85.78 66.2 72.57 65.42 65.61 71.98ImageNet ViT-B/16 Ours 93.68 89.46 87.85 82.01 92.58 91.58
Corvi 96.90 93.86 93.39 88.09 93.6 91.02CLIP Modified-ResNet Ours 99.12 98.44 97.17 96.86 97.99 99.36

Table 8: Average Precision (AP) Across Architectures and Initializations. Performance of net-
works with different initializations and architectures, trained on the dataset provided by Corvi and
our dataset. A detector trained on a well-aligned dataset consistently outperforms the Corvi base-
line. This indicates that the positive effects of dataset alignment are independent of the choice of
architecture and pretraining.

Our design of the perturbations follows AEROBLADE (Ricker et al., 2024). For these experiments,
we use the same images from our experiments in Section 5.2. Sensitivity of our detector to blur,
noise and compression can be found in Fig 6, 7 and 8 respectively.

Figure 6: Sensitivity of fake detectors to image blurring for a set fake images (left) and a set of
real images (right). We use a kernel size of 9 and vary the standard deviation. Ours-Sync shows
increased robustness to blurring showing the importance of batch-level alignment.

Figure 7: Sensitivity of fake detectors to additive noise for a set fake images (left) and a set of real
images (right). We control the noise level by varying the standard deviation of the added noise.

There is a huge performance gap between the Ours-Sync method and the others when the image
is blurred. This adds to our earlier observations from Tables 1 and 2 that ensuring batch-level
alignment is a very important design choice along with the design of the dataset. Furthermore, the
general robustness observed also shows that our detectors are not just looking at some low-level
traces which can be washed away by simple post-processing operations.
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Figure 8: Sensitivity of fake detectors to JPEG Compression for a set fake images (left) and a set
of real images (right). We control the compression level by varying the JPEG compression quality.
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