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ABSTRACT

Functional RNA sequence design plays an essential role in the regulation of life
processes. The RNA inverse folding problem, which involves designing nucleic
acid sequences based on their three-dimensional structures, remains highly chal-
lenging. This complexity arises not only from the inherent flexibility of RNA
structures but also from the base-pairing rules that impose critical spatial con-
straints on the RNA scaffold. In recent times, the design of RNA has often de-
pended on geometric graph networks to design sequences. Motivated by recent
advancements in protein design, we have developed the RNAformer module. This
module is capable of learning the geometric constraints of RNA molecules in co-
operation with geometric graph networks. Furthermore, to enhance the specificity
of sequence generation, we have integrated secondary structure information as
labels, ensuring that the designed sequences align more closely with secondary
structure constraints. Additionally, we have used RNA language models to un-
derstand average evolutionary constraints. By incorporating a range of constraint
insights, GeoRDe has demonstrated superior performance under identical training
data conditions and has also showcased generalization capabilities on the inde-
pendent casp15 and RNA-puzzle datasets. Through extensive experimentation,
the GeoRDe has proven to be an innovative solution to the challenges of RNA
design.

1 INTRODUCTION

Ribonucleic acid (RNA) performs a variety of essential functions within the cell, including but not
limited to catalyzing biochemical reactionsLewin (1982), regulating gene expressionPrasanth et al.
(2005), and forming components of cellular machineryJinek & Doudna (2009). These multifaceted
roles of RNA make it a key target for biomedical research and therapeutic development. Therefore,
the design of RNA sequences is not only crucial for understanding its biological functions but also
holds significant potential for developing new therapeutic strategiesYin & Rogge (2019)Lu & Thum
(2019).

While the diversity and functionality of RNA are largely determined by its three-dimensional (3D)
structure, the challenge of inferring the corresponding one-dimensional (1D) sequence from a given
3D structure, known as the RNA inverse folding problemChurkin et al. (2018), remains a signifi-
cant obstacle. Traditional approaches to this problem have often focused on RNA’s secondary struc-
tureSzabat et al. (2020)Sato & Hamada (2023). However, with an improved understanding of RNA’s
3D geometryTownshend et al. (2021), researchers have begun to explore computational methods that
can design RNA sequences directly from its 3D structure. For instance, the RiboDiffusion model
uses a generative diffusion model to iteratively transform random sequences into target sequences,
thereby learning the conditional distribution of RNA sequences within a specified 3D scaffold struc-
tureHuang et al. (2024). Additionally, methods like gRNAdeJoshi et al. (2024) and RDesignTan
et al. (2024) encode the 3D framework of RNA using multi-state graph neural networks, provid-
ing innovative pathways for RNA sequence design. The success of these methods highlights the
potential of deep learning in managing RNA structural data.

Advances in protein structure predictionJumper et al. (2021) and designRen et al. (2024a) have
also informed new models and strategies for RNA design. For example, CarbonNovoRen et al.
(2024b), which generates protein structures and sequences concurrently through a unified energy-
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based model, has shown its effectiveness in protein design. However, the unique features of RNA
molecules, such as the specificity of base pairing and the flexibility of the RNA backbone, require
that design methods be able to accurately address these distinctive structural characteristics. More-
over, compared to the extensive database of protein structures available in the Protein Data Bank
(PDB)Bank (1971), the scarcity of RNA structural data necessitates that design methods exhibit
greater data efficiency and generalization capabilities.

Building on the foundation of current research, this study introduces a novel inverse folding algo-
rithm known as GeoRDe (GEOMETRIC CONSTRAINT RNA DESIGN). This algorithm employs
innovative approaches to handle the distinctiveness of RNA’s three-dimensional structure. Firstly,
GeoRDe employs a hybrid architecture that integrates geometric graph networks with triangle atten-
tion networks to derive representations of RNA molecules. The triangle attention network represents
an advancement over the traditional attention mechanism, specifically adapted to capture the intri-
cate spatial configurations characteristic of RNA molecules. In contrast to geometric graph networks
for unstructured data, triangle attention networks excel at capturing proximal bases linked by cova-
lent bonds within structured RNA information. Secondly, the algorithm employs multi-task learning
to account for the significance of the base-pairing principle in RNA design. Lastly, the algorithm
harnesses large models to extract constraints from evolutionary information.

Our main contributions are summarized as follows:

1. Innovative Design of the RNAformer Module: This research has crafted an RNAformer
module that collaborates with geometric graph networks to learn the geometric constraints
of RNA molecules.

2. Introduction of Secondary Structure Constraints: By integrating secondary structure
constraints in a labeled format, the precision of the designed sequences is markedly im-
proved.

3. Embedding of RNA Language Models: The embedding of RNA language models intro-
duces average evolutionary constraint information for sequences, thereby enhancing their
evolutionary reliability.

4. Validation across Multiple Datasets: The performance of the algorithm has been vali-
dated across various datasets, and the findings indicate that the incorporation of diverse
constraint strategies effectively confines the sequence design space and exhibits robust gen-
eralization capabilities.

2 RELATED WORK

2.1 PROTEIN DESIGN

Protein sequence design generally refers to the process of creating amino acid sequences for pro-
teins with specified functions based on requirementsWu et al. (2021)Anand et al. (2022). Since the
three-dimensional (3D) structure of a protein largely determines its function, designing sequences
based on the protein’s 3D structure is a commonly used approach. Recently, methods like Protein-
MPNNDauparas et al. (2022) have demonstrated high recovery rates in protein sequence design.
ProteinMPNN utilizes deep learning frameworks and message-passing neural networks (MPNN) to
achieve this. Integrating pre-trained models with sequence and structural data can provide addi-
tional evolutionary information for generating sequences with designated functions. Examples of
such methods include protgenFerruz et al. (2022) and ESM3Hayes et al. (2024).

2.2 RNA SEQUENCE DESIGN

In recent years, an increasing number of studies have focused on designing RNA sequences to reg-
ulate life processes.Isaacs et al. (2006)Peters et al. (2015) RNA sequence design efforts include
both approaches that are based on existing RNA sequences and those that focus on RNA structures.
DeepCRISPRChuai et al. (2018) integrates unlabeled single-guide RNA (sgRNA) sequences and
employs a deep convolutional denoising neural network (DCDNN)-based autoencoder for unsuper-
vised learning. This is complemented by a convolutional neural network trained on labeled sgRNA
sequences to facilitate the design of CRISPR guide RNAs. RfamGenSumi et al. (2024) is developed
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by training on the Rfam family sequences, utilizing a variational autoencoder (VAE) and a covari-
ance model (CM) to generate synthetic RNA family sequences. EvoNguyen et al. (2024) represents
a foundational model for nucleic acids that harnesses deep learning and extensive genomic datasets
to systematically engineer RNA sequences tailored for specific functions.

RNA inverse folding is the process of generating one-dimensional RNA sequences based on their
secondary or tertiary structures. Techniques such as RNAiFoldGarcia-Martin et al. (2013) employ
constraint programming to optimize RNA sequence design to meet specific secondary structure cri-
teria. RNAinverseHofacker et al. (1994) utilizes an adaptive random walk approach, predicting RNA
sequences for target structures through iterative mutation and energy minimization. NUPACKZadeh
et al. (2011) employs a collective defect optimization strategy to craft RNA sequences that minimize
undesirable pairing. RDESIGNTan et al. (2024) leverages a hierarchical data-efficient representa-
tion learning framework, integrating cluster-level and sample-level contrastive learning to enhance
the design of RNA tertiary structures. gRNAdeJoshi et al. (2024) employs a multi-state graph neural
network to generate candidate RNA sequences conditioned on one or more 3D backbone structures,
taking into account both RNA structure and dynamics. RiboDiffusionHuang et al. (2024) applies a
generative diffusion model to RNA inverse folding design by learning the conditional distribution
given 3D backbone structures.

2.3 RNA STRUCTURE PREDICTION

RNA structure prediction involves predicting the folding conformation of RNA from its one-
dimensional sequence. Initially, RNA prediction efforts concentrated on predicting RNA secondary
structures. ViennaRNALorenz et al. (2011)Hofacker (2003) is a physics-based prediction tool that
employs a standard energy function to predict RNA secondary structures. SpotRNAYang et al.
(2014) introduces a deep contextual learning approach, trained via transfer learning to predict the
secondary structure of all base pairs, including atypical and non-nested (pseudoknot) pairs. Knot-
FoldGong et al. (2024) is an advanced method for accurately predicting RNA secondary structures,
including pseudoknots, by integrating learned potentials with minimum-cost flow algorithms and en-
hancing prediction accuracy through attention-based neural networks. Unlike proteins, RNA three-
dimensional structures exhibit greater flexibility. In recent years, with advancements in machine
learning, approaches such as AlphaFold3Abramson et al. (2024), RosettaFoldNABaek et al. (2024),
trRosettaRNAWang et al. (2023), and RhoFoldShen et al. (2022) have emerged. These methods uti-
lize multiple sequence alignments as input and leverage deep learning networks, often incorporating
modules like evofold, to predict the three-dimensional coordinates of RNA.

3 METHODS

3.1 INVERSE FOLDING PROBLEM DEFINITION

In this paper, RNA inverse folding specifically denotes the process of identifying or engineering
RNA sequences capable of folding into a predetermined target structure. For a one-dimensional
RNA sequence S comprising N nucleotides, each nucleotide is composed of one of four types of
ribonucleotides, denoted as S ∈ {A,U,C,G}N . The secondary structure of RNA is depicted using
dot-bracket notation, where the majority of RNA secondary structure pairings are categorized into
three types: A-U, C-G, and G-U. Bases adhering to these pairings are denoted by brackets, while
those not conforming are indicated by dots.

Regarding the three-dimensional structure of RNA, this paper employs a coarse-grained backbone
representation to delineate the 3D configuration. This representation utilizes the C4’, C1’, N1 atoms
to signify pyrimidine nucleotides and the C4’, C1’, N9 atoms to signify purine nucleotides. The
model presented in this paper simulates the conditional distribution of RNA sequences given the
three-dimensional structure, which is mathematically represented as p(S|x).

3.2 FEATURE REPRESENTATION

The input features in this paper are categorized into two main components. Initially, the coarse
spatial arrangement of the RNA backbone is delineated through the local orientation of the C1’
atoms. All atoms within a 12 Å radius from each atom are enumerated, and their relative contact
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distances are harnessed as pair features to enhance the characterization of the local environment
surrounding each atom. Subsequently, to more accurately depict the arrangement of the RNA back-
bone, a graph-based approach is employed. The unit vectors, distances, angles, and torsion angles of
adjacent atoms are extracted as graph node attributes. Adjacent edges in the graph network are de-
fined between atoms that are in close proximity to one another. This methodology more effectively
encapsulates the spatial positional information between RNA backbones.

3.3 EVALUATION METRIC

In the field of computational RNA design, a series of metrics are commonly used to assess the
effectiveness of designed sequences, quantifying the fidelity and structural compatibility of the se-
quence compared to the target scaffold structure. Here, we evaluate the reliability of the generated
sequences from one or three dimensions.

3.3.1 NATIVE SEQUENCE RECOVERY

This metric measures the percentage of nucleotides in the designed sequence that accurately recover
the native sequence, serving as a direct measure of sequence conservation. The sequence recovery
rate is given by:

Recovery =
Nrec

Nnat
× 100% (1)

where Nrec is the number of nucleotides accurately recovered in the designed sequence, and Nnat is
the total number of nucleotides in the native sequence.

3.3.2 MACRO F1 SCORE

The Macro-F1 score is a comprehensive performance metric used to evaluate the accuracy of models
in the RNA design task across different classes of RNA letters (A, U, C, G). It is calculated by
averaging the F1 scores for each class, where the F1 score for a specific class c is defined as the
harmonic mean of its precision and recall, represented by the formula:

F1c = 2× Precisionc ×Recallc
Precisionc +Recallc

(2)

The overall Macro-F1 score is then computed as:

Macro-F1 =
1

|C|
∑

c∈{A,U,C,G}

F1c (3)

where |C| represents the number of classes, namely the four types of RNA letters. This metric
effectively balances the precision and recall for each letter class, providing a fair assessment of
model performance, especially in cases of class imbalance.

3.3.3 TERTIARY STRUCTURE SELF-CONSISTENCY SCORE

To evaluate the three-dimensional structural compatibility of the designed sequence, we employ a
tertiary structure prediction tool, namely RosettaFoldNA. The comparison between the design and
native structures utilizes the root-mean-square deviation (RMSD) of C4’ coordinates.

RMSD(xdesign, xpred) =

√√√√ N∑
i=1

d2i
N

(4)

where di represents the distance between the i-th atom in the designed sequence and the correspond-
ing atom in the predicted sequence, and N is the total number of atoms being compared.
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3.4 MODEL ARCHITECTURE

3.4.1 SEQFORMER MODULE

In this study, we introduce a module named SeqFormer for processing the three-dimensional struc-
ture of RNA (Figure 1). The input to the SeqFormer module includes the local spatial orientation
of C1’ atoms extracted from the coarse-grained atom coordinates of RNA and the relative distances
between these atoms. These inputs are defined as:

init S = C1’ local orientation,
init Z = residue distance map.

(5)

The design of the SeqFormer module is inspired by related work in protein structure predic-
tionJumper et al. (2021) and protein designRen et al. (2024a), particularly the use of triangle mul-
tiplicative update and triangle attention update to satisfy constraints in three-dimensional space. In
representing the three-dimensional structure of RNA, we adopt a similar approach, combining local
orientation (init S) and residue distance map (init Z), and continuously updating sequence informa-
tion (seq act) and pair information (pair act) through N recycle iterations.

In each iteration, we first fully interact the sequence dimension information and the two-dimensional
information of pair, and integrate it using the outer product mean method. After integration, we use
triangle multiplicative update and triangle attention update to update the pair representation. The
iteration process is as follows:

Algorithm 1 SeqFormer Module Iteration
1: for i in range(N recycle) do
2: seq act+= transition(pair act, agg=’row’)
3: seq act+= transition(pair act, agg=’col’)
4: pair act+= outer product mean(seq act)
5: pair act+= triangle multiplication outgoing(pair act)
6: pair act+= triangle multiplication incoming(pair act)
7: pair act+= triangle attention starting node(pair act)
8: pair act+= triangle attention ending node(pair act)
9: pair act+= pair transition(pair act)

10: end for

3.4.2 GVP MODULE

In this study, we propose a graph neural network (GNN) based method (Figure 1) to extract geomet-
ric constraint features from the Protein Data Bank (PDB). The core of our method is the construction
of a graph representation G = (S, V ), where S represents the set of scalar features and V represents
the set of vector features. Specifically, S consists of node scalar features node s and edge scalar
features edge s, while V consists of node vector features node v and edge vector features edge v.

Firstly, we adopt the Geometric Vector Perception Graph Neural Network (GVP-GNN)Jing et al.
(2020) approach to update the features of nodes and edges. The update formulas are as follows:

node s, node v = gvp(node s, node v)

edge s, edge v = gvp(edge s, edge v)
(6)

where gvp denotes the function used to update the features of nodes and edges.

Next, we fuse the updated node and edge features (node s, node v, edge s, edge v). The message
passing process can be represented as:

message((si, vi), (sj , vj), edgeij) → updatenodei for j ∈ Ni (7)

where Ni represents the set of neighboring nodes of node i.

5
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Subsequently, we concatenate the updated node features update node with the sequence pair features
seq act, which are updated through a flow module. The concatenated features are passed through a
Multi-Layer Perceptron (MLP) layer, followed by the addition of position embeddings:

gvp seq act = mlp(concat(update node, seq act)) (8)

gvp seq act = gvp seq act+ position embedding (9)

Finally, we use a Transformer layer to process the concatenated features:

gvp seq output = transformer(gvp seq act) (10)

To predict the likelihood of each nucleotide position having bases (A, U, C, G), we designed an
MLP layer:

seq prob logit = mlp(gvp seq output) (11)

By constructing GVP, we are able to extract richer geometric information. Due to the equivariance
of SO(3), this method is more sensitive to the input geometric features, thereby effectively extracting
unstructured geometric information. This complements the structured information of the sequence
activity module for a comprehensive understanding of protein structures.

3.4.3 SECONDARY STRUCTURE INCLUDE

In this study, we developed a novel module named the pair constraint module for extracting sec-
ondary structure information of RNA from the Protein Data Bank (PDB) to improve the three-
dimensional structure prediction of RNA. The input to this module is pair act, which, after transfor-
mation, can predict the matching possibilities of different secondary structure positions on a seq len
× seq len matrix.

Firstly, we extract the secondary structure of RNA from the PDB and construct a seq len × seq len
matrix, where positions that conform to the base pairing rules {AU, CG, UG} are marked as
trueHalder & Bhattacharyya (2013). Subsequently, we employ a multi-layer perceptron (MLP) to
process pair act to predict the matching possibilities at each position:

pair prob logit = mlp(pair act) (12)

where mlp denotes a multi-layer perceptron that learns the mapping from pair act to pair prob logit.

Unlike traditional RNA inverse folding models that typically focus only on one-dimensional se-
quence information, our pair constraint module considers the constraints of secondary structure,
which aids in generating one-dimensional sequences in a more reasonable space.

3.4.4 LLM

In this study, we explore how to leverage the rich representational capabilities of large language
models in BiRNA-BERTTahmid et al. (2024) for RNA sequences by generating diverse sequence
information through a sequence module and superimposing this information onto the existing se-
quence activity (seq act). Additionally, we introduce a recycling mechanism that allows the model
to update errors in the next iteration process without increasing the model size.

Specifically, we first process the sequence embedding (sequence embedding) through a multi-
layer perceptron (MLP), and then add the result to the sequence result from the previous iteration
(r seq prev) to update the current sequence result (r seq). This process can be represented by the
following formula:

rseq = rseq +MLP(LLMEmbed(s)) + rseqprev
(13)
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where LLMEmbed(s) represents the embedding representation of the sequence s by a large language
model, MLP is a multi-layer perceptron that further processes the embedding, and rseqprev

represents
the sequence result from the previous iteration.
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Figure 1: GeoRDe Model Architecture with SeqFormer Module and GVP Module

3.5 TRAINING LOSS

In this study, we propose a training loss calculation method that comprehensively considers the
outputs of the sequence (seq) and pair modules. To effectively train the model, we employ the
cross-entropy loss to evaluate the outputs of these two modules. Specifically, we define the total
loss (Loss) as the weighted sum of the sequence module loss and the pair module loss, with weight
coefficients α and β. This method can be represented as:

Loss = αlce(seqprob, seq) + βlce(pairprob, pair) (14)

where lce(·) represents the cross-entropy loss function, seqprob and seq denote the predicted output
and the actual output of the sequence module, respectively, and pairprob and pair denote the predicted
output and the actual output of the pair module, respectively.

4 EXPERIMENT

We conducted comparative evaluations of five distinct methodologies on four datasets, focusing
on sequence recovery rate and Macro-F1 scores. Additionally, we assessed the capability of the
predicted sequences in terms of three-dimensional structure prediction accuracy. These methods
represent the state-of-the-art approaches for sequence design based on protein or RNA structures.
All methods were trained and tested on RNA structural datasets that were meticulously divided into
training, validation, and testing sets.

4.1 SEQUENCE DESIGN ON PRIMARY DATASETS

We initially compared the performance of these methods in nucleic acid sequence design. The test-
ing data were categorized based on sequence length into short (less than 50 nucleotides), medium
(50-100 nucleotides), and long (greater than 100 nucleotides) sequences. Both the gRNAde and
RDesign datasets leverage significant collections of known RNA 3D structural data, yet they utilize
different sets of RNA data. The gRNAde dataset incorporates all class member RNA structures, pre-
serving all corresponding structures post-sequence clustering to enrich structural diversity. In con-
trast, the RDesign dataset employs a subset of representative RNA structures, processed to enhance
dissimilarity between the test set and training data. Consequently, the RDesign dataset exhibits
relatively lower performance. Training on these two datasets, our results indicate that GeoRDe
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demonstrates state-of-the-art performance across both. The Performance on gRNAde dataset and
Rdesign dataset are shown in Table 1 and Table 2, respectively.

Table 1: Recovery and Macro-F1 on gRNAde dataset.

Method Recovery(%) Macro F1(x100)
Short Medium Long All Short Medium Long All

StructGNN 0.4053 0.4453 0.4397 0.4312 0.3122 0.4244 0.4014 0.3293
PiFold 0.5000 0.5965 0.5711 0.5686 0.4100 0.5827 0.5229 0.4413
RDesign 0.4666 0.5676 0.5508 0.5385 0.3819 0.5611 0.5029 0.4252
gRNAde 0.4543 0.4939 0.4945 0.4857 0.4356 0.4772 0.4594 0.4695
GeoRDe 0.6002 0.7007 0.6695 0.6645 0.4714 0.5573 0.5092 0.528

Table 2: Recovery and Macro-F1 on RDesign dataset.

Method Recovery(%) Macro F1(x100)
Short Medium Long All Short Medium Long All

StructGNN 0.3182 0.3077 0.2805 0.3111 0.3407 0.304 0.2497 0.3024
PiFold 0.375 0.4676 0.4522 0.4167 0.3877 0.4494 0.4458 0.4348
RDesign 0.3777 0.4841 0.4375 0.4382 0.389 0.4919 0.4282 0.4433
gRNAde 0.3744 0.3581 0.3557 0.3755 0.3505 0.3554 0.3414 0.3603
GeoRDe 0.4932 0.5787 0.5766 0.5267 0.4675 0.5861 0.5653 0.5515

4.2 SEQUENCE RECOVERY RATE ON ADDITIONAL DATASETS

We assessed the performance of models trained on the gRNAde dataset using additional datasets.
The CASP15Elofsson (2023) and RNA-PuzzleMagnus et al. (2020) datasets are two well-known,
independent datasets. The CASP15 dataset, a comprehensive collection of RNA structures not ac-
cessible during the training phase, provides a platform for evaluating the model’s capacity to gen-
eralize to novel structural data. Likewise, the RNA-Puzzle dataset offers a diverse and challenging
array of RNA structures. Our findings, as illustrated in Table 3, demonstrate that GeoRDe sustains
superior performance when extended to these external datasets, with sequence recovery rates that are
competitive with the most advanced methods available. This indicates that GeoRDe maintains high
performance when applied to these external datasets, indicating its robust generalization capabilities
to new RNA structures.

Table 3: Recovery and Macro F1 on CASP15 and RNA-puzzle dataset.

Method Recovery(%) Macro F1(x100)
CASP15RNA RNA-puzzle CASP15RNA RNA-puzzle

StructGNN 0.4329 0.4486 0.3627 0.4195
PiFold 0.4262 0.6324 0.3859 0.6265
RDesign 0.3642 0.4839 0.3328 0.4515
gRNAde 0.3044 0.3292 0.2977 0.3286
GeoRDe 0.4623 0.6310 0.4016 0.6442

4.3 TERTIARY STRUCTURE RECOVERY EXAMPLES

In further assessing the performance of the GeoRDe model, we focused on the three-dimensional
structural prediction accuracy of RNA sequences designed by GeoRDe in Figure 2. To this end,
we selected a series of RNA sequences designed by GeoRDe and predicted their three-dimensional
structures using the RosettaFoldNABaek et al. (2024) tool. We observed that the predicted structures
exhibited low root-mean-square deviation (RMSD) from the original target structures, demonstrating
GeoRDe’s exceptional ability to preserve the structural integrity of designed sequences in three-
dimensional space. These results not only substantiate GeoRDe’s efficiency in sequence design but
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also showcase its accuracy in structural prediction, providing a reliable tool for future RNA design
and functional studies.

Figure 2: Visualization of GeoRDe’s designed examples.

4.4 ABLATION STUDY

To systematically evaluate the contribution of various components within the GeoRDe model, we
performed a series of ablation studies, the results of which are summarized in Table 4. As a baseline,
we employed the SeqFormer module for independent RNA sequence prediction. By introducing key
node and edge features and integrating the GVP module, we significantly enhanced the model’s per-
formance. This notable improvement underscores the pivotal role of three-dimensional structural
information encoded by the GVP module in bolstering the accuracy of sequence design. Further-
more, incorporating RNA secondary structure information and embedding vectors from pre-trained
language models marginally refines performance, achieving optimal results.

Table 4: Ablation Study

Method gRNAde dataset RDesign dataset
Recovery(%) Macro F1(x100) Recovery(%) Macro F1(x100)

Baseline 0.5393 0.4351 0.4316 0.4198
Baseline + LLM 0.5384 0.4357 0.4391 0.3345
Baseline + GVP 0.6565 0.5224 0.5187 0.5435
Baseline + Secloss 0.5506 0.4403 0.4408 0.4516
Baseline + All 0.6645 0.5280 0.5267 0.5515

5 CONCLUSION

In this study, we have presented GeoRDe, a novel algorithm designed to address the RNA inverse
folding problem. Its innovative approach to handling the geometric constraints of RNA molecules,
coupled with the integration of secondary structure information and evolutionary constraints.Our
approach has demonstrated significant advancements in the field of RNA sequence design, offering
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a comprehensive solution that not only aligns with the structural intricacies of RNA molecules but
also exhibits strong generalization capabilities across different datasets. In conclusion, GeoRDe
represents a significant step forward in the field of RNA sequence design, positions it as a powerful
tool for both research and therapeutic development.

Despite GeoRDe’s outstanding performance in multiple aspects, there are still limitations in its
performance evaluation. The current metrics used, such as sequence recovery rate and F1 score,
only partially reflect the accuracy of computational design. To comprehensively assess the model’s
performance, further experimental validation is required to ensure its reliability and accuracy in
practical applications.
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