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Abstract

Recent works have demonstrated that learned optimizers (LOs) can be competitive and at times
outperform hand-designed counterparts, paving a path towards improved optimizers by scaling up
LOs. However, learned optimizers still require substantial meta-learning compute, which limits
their scalability, requiring new methods that allow them to generalize to a wider array of problems
from a smaller meta-learning problems. One aspect of this is the training horizon mismatch between
meta-learning and real world training. We consider the problem of efficiently meta-learning L.Os
that can generalize to long training time horizons. We propose LoLO, which employs a replay
buffer to efficiently extend unroll length during meta-training without increasing meta-learning
cost. Furthermore, it incorporates on-policy imitation learning to ensure faithful trajectories and
stabilize meta-training. We evaluate LoLO on a variety of vision and language tasks, demonstrating
its success in achieving long unroll generalization in practical scenarios.

1. Introduction

The remarkable achievements of deep neural networks have largely been driven by scaling up train-
ing. Large-scale model training invariably relies on hand-designed gradient-based optimizers such
as SGD[17], Adam|[2, 6], or their variants[8]. Given the massive cost of these training runs, it
is natural to search for more performance gradient-based optimizers. One approach is to learned
the optimization algorithms themselves. Learned Optimizers (LOs)[1] offer the potential to auto-
matically discover better update rules from data and, thereby, can accelerate training and achieve
improved convergence. Despite being a promising paradigm, LOs are still in their early stages,
with many challenges yet to be addressed. One of the most pressing problems for LO is meta-
generalization as meta-learning new optimizers is expensive[13, 20]. A particularly pressing issue
of meta-generalization is how to ensure that LOs maintain stable convergence when applied over
very long unrolls, which is essential for effective downstream model training in practice.

In this work, we propose Long-horizon Resilient Learned Optimizer (LoLO) to address this
challenge. Our method integrates a replay buffer[18], enabling LOs to experience longer unrolls
during meta-training without incurring additional computational cost. This, in turn, equips LOs
with stronger generalization capabilities on downstream tasks that require long unrolls. However,
naively applying replay buffer mechanisms makes meta-training unstable in the early stages. To
address this, we incorporate behavior cloning[16, 21] by having the LO imitate a hand-designed
optimizer (in our case, Adam), ensuring constantly stable meta-training while still enabling the LO
to improve.
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Our main contributions can be summarized as follows:

* We introduce a replay buffer mechanism that enables LOs to observe sufficiently long unrolls
during meta-training without adding extra training cost.

* We propose a behavior cloning strategy to stabilize meta-training and to transfer potential
generalization benefits from an expert optimizer.

* We empirically demonstrate, across vision and language tasks, that LoLO consistently out-
performs strong hand-designed and learned baselines.

2. Related Work

Learned Optimizers (LOs). LOs employ trainable models (e.g., MLPs) to replace hand-crafted
optimization algorithms [1]. Previous literature has proposed a variety of approaches to improve
LOs. [10, 12] explored new architectures and large-scale training regimes. [20] introduced tech-
niques such as maximal update parameterization to leverage LOs in the training of large-scale mod-
els. Some researchers have also proposed to apply off-policy imitation learning to LOs to establish
stronger baselines [3, 19]. In this paper, while we focus on enhancing the generalization ability of
LOs under long unrolls, we also integrate on-policy imitation learning, but in a distinct way: we
introduce a set of novel hybrid integration strategies that tightly couple imitation learning with re-
play buffer mechanisms. This joint design not only saves training resources but also strengthens the
unroll generalization of LOs.

Replay Buffers. Replay buffer [18] originates from reinforcement learning (RL)[7, 24], where
experience replay buffers have become a fundamental mechanism. Such buffers store trajectories or
transitions collected during training, and allow the learner to sample from past experiences rather
than relying solely on the most recent data. This approach not only stabilizes training but also
improves sample efficiency and long-term credit assignment [23].

3. Method
3.1. Unroll Initialization from Replay Buffer for LOs

In existing meta-learning setups for learned optimizers, every unroll is randomly initialized[11, 20].
However, this approach is inefficient because, over time, the learned optimizer becomes adept at
handling the initial training stages. We thus propose reusing checkpoints from previous unrolled
trajectories to initialize new unrolls, rather than always starting from scratch. This can be achieved
efficiently via replay buffers from RL, which enable meta-learning to access longer unrolls without
substantially increasing the computational cost.

Specifically, we design our buffer B following the principles of a queue. At the initialization
of the outer states, we first define B’s capacity, i.e., the maximum number of inner state entries
it can hold. In this work, we set the default size of B to be 4. Then we define P, € [0,1], a
fixed threshold determines whether B should be used at a random outer step ¢. According to the
Binomial distribution, the expected buffer usage is E[X] = T'(1 — Py,). Thus, a smaller Py, leads
to more frequent buffer reuse, increasing the probability of encountering longer consecutive unrolls
and yielding a larger expected effective unroll length. Conversely, a larger P, reduces buffer usage,
resulting in shorter average unrolls.



SPECIFY RUNNING TITLE

At the beginning of each unroll, we first randomly generate a probability Pg ~ Uniform(0, 1).
If Ps > P, and t > 0, then the B’s head element is used for inner initialization; otherwise, inner
initialization falls back to a random state. Then we randomly sample a inner step index (between
the start step and the end step of the unroll), marked as Np,sn. Npysn determines at which step
in the unroll the current state will be inserted into 5. When inner training reaches that step, the
corresponding state is added to B. If B is already full, the oldest entry at the head of the queue
is removed before the new state is appended to the tail. Details descriptions of how replay buffer
works are introduce in Algorithm 1.

3.2. Composition of Optimization Trajectories

Our goal is to expose the LO to sufficiently long unrolls across meta-training, which motivates set-
ting a relatively small threshold P;,. However, generating long unrolls in the early stages of training
can severely impair convergence. At this stage, the LO remains underfit and tends to produce low-
quality optimization trajectories. Errors from these low-quality updates quickly accumulate across
steps, leading to noisy and biased gradient signals. As the unroll length increases, this compound-
ing effect becomes more severe, making the meta-objective unstable and in many cases causing
meta-training to collapse altogether.

Inspired by imitation learning, we employ Adam as an expert in the inner loop to improve the
quality of the trajectories. Concretely, for any inner step n, we construct an adaptive weighted sum
between the trajectories produced by the LO and those produced by Adam, as expressed in the
following formulation:

Tn = (1 — o) 7 + a4 70, (1)

where oy = ﬁ(t € Z, 0 <t <T), with H and O denoting Adam and the LO, respectively.
As the outer loop progresses, the quality of the trajectories generated by the LO are expected to
gradually improve. Accordingly, the weighting gradually shifts from relying entirely on Adam to
relying fully on the LO. This adaptive transition ensures that every inner-loop trajectory during
meta-training remains of high quality, thereby avoiding redundant meta-training and instability that
noisy trajectories would otherwise introduce.

3.3. Combining Meta-Learning and Supervises Loss

Directly relying on the fused trajectories makes the meta-loss (marked as £%*) less representa-
tive of the LO’s performance, causing meta-gradients to become noisy. This issue is particularly
pronounced when «y is large.

Given that Adam can produce high-quality trajectories, we can leverage a regularization loss
£ to guide the LO at each n, replacing the noisy £ with a more accurate signal. £ is defined
as:

N
£he=>Y"|63 - 033, )
n=1

where #© and #7* denote the parameters of the optimizee updated at unroll step n — 1 by the LO
and Adam, respectively. However, if the LO is trained solely under £, its performance will be
inherently bounded by that of Adam. Our ultimate goal, however, is to train an LO capable of
surpassing hand-designed optimizers on specific tasks. To this end, an advanced idea is to combine
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L£°¢ with the £ through a convex combination:
£meta — (1 _ at) ﬁbc + ay £task’ (3)

where o is set the same as in Eq. 1. In this way, the meta-gradients are initially dominated by £°°,
ensuring stable training signals in the early stage, and gradually shift towards being fully driven by
L% encouraging the LO to discover superior optimization rules.

Nevertheless, using such loss fusion implicitly assumes that the magnitudes of V(bﬁbc and
V¢£m5k remain comparable. Empirically, the relative scales of these two terms vary consider-
ably, with observed ratios frequently surpassing 10® and at times exceeding 10%, which undermines
the intended balance and makes the optimization very unstable.

To resolve this, we propose to align the magnitudes of Vd)ﬁbc and V¢£ta5k by simply applying
second moment normalization to both Aeﬁl,’f and A€£§;‘Sk at each n, so that the contributions of £
and £k are constantly governed by c;. Concretely, we define A LM? as:

ALT = (1 — ay) - P(ALLE) + g - P(ALEY), (4)

where the normalization operator is defined as:

Tn

Y(xn) = . (5)

1 N 2
VN Zn:l Ty, +€o

From Appendix Eq. 9, we know that when estimating V@£ using ES or its variants, A L} is
linearly related to Vo.L. Consequently, 1(A:L}) is as effective as 1 (V@L: ). This ensures that
both loss terms contribute at comparable scales, allowing o to precisely modulate the influence of
imitation and task-driven signals throughout meta-training. Detailed pipelines are in Algorithm 1.

4. Empirical Studies

In this section, we provide a rigorous validation and analysis of our proposed method. LoLO
achieves state-of-the-art performance across various vision and natural language tasks, while also
demonstrating way stronger long unroll generalization than naive LO. Furthermore, we conduct a
series of ablation studies to disentangle the respective contributions of the replay buffer and behavior
cloning components.

4.1. Experimental Details

Our experimental setup and meta-training pipelin largely follow that of [12, 20]. Specifically, both
LoLO and the naive-LO baselines use 3-layer MLP with a hidden width of 32, and take a variety
of input features inspired by [9]. Unlike naive-LO, LoL O integrates a replay buffer to extend unroll
exposure, while leveraging Adam (Ir=1 x 1073) as an expert to ensure stable training. For both
methods, we applied best hyperparameter settings. Meta-training was conducted on the ImageNet-
1k[4] (32%x32) dataset for 5K outer steps with an unroll length of 1K steps. We estimate meta-
gradients using persistent evolution strategies (PES) [22] with truncations of length 50.

For AdamW [8] baselines, we adopted a classic configuration with a learning rate of 1 x 1073
and weight decay of 1 x 10~*. For vision tasks, we used ImageNet-1k (32x32) as the benchmark
dataset. We experimented with a 3-layer MLP (hidden width 128) and with ResNet-18 [5], using
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Algorithm 1: Long-horizon Resilient Learned Optimizer (LoLO)

Input: The size M of replay buffer, the threshold Py, of applying buffer initialization.
Initialize: Replay buffer B = {s1, s2,...,Sm}, m < M, where s, indicates a inner state.
Notations: The notations used are defined in Appendix A.
fort=0,1,2,...,7T —1do
Sample Pg ~ Uniform(0,1);
if (Pg > Py,) A (t > 0) then

‘ Select s from B for inner initialization (K := m¢(s1))

else

‘ Randomly initialize inner state () = 0)
end
sample Npush € [K, N + K)NZ;
forn=K K+1,K+2,.. K+ N —1do
071 = 0n + DO s
01 = On + AGD, s

Oni1 = (1 — )0}ty + )y s
ALl = £b(p +€) — L2(¢ — €);
AeﬁzaSk — ﬁ%ask((b 4 6) _ ‘C?Sk(d) _ 6);
Spt1 = (Ont1, Cor1)s
if n == N, then

)

B {enqueue(B, Sn), m< M

enqueue(dequeue(B), s,), m =M

end
end

9t = LA PES((1 — a)p(AcLh) + arp(ALE) );
b1 =U(ge, t; ¢1)

end

a practical batch size of 4,096. For language tasks, we employed the FineWeb-10B [14] dataset
along with the GPT-2-mini [15] model. Due to computational resource constraints, the batch size
for language experiments was set to 512.

4.2. Comparison experiments.

We aim for LoLO to be applicable in practice rather than remaining confined to research settings.
To this end, we evaluate its unroll generalization ability on widely adopted real-world tasks. Specifi-
cally, we take LOs that were meta-trained with unrolls of only 1K steps and assess them on 10K-step
unroll training using multiple models across the ImageNet and FineWeb datasets. As shown in Fig-
ure 1, LoLO consistently achieves the lowest final train-loss compared to other methods across
all tasks. Moreover, LoLO maintains convergence stability on longer unrolls (beyond 1K steps)
comparable to AdamW, while naive-LO exhibits flattened curves, and even slightly diverges finally.
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Figure 1: Comparing LoLO with other baselines on ImageNet-1K using 3-layer MLP and ResNet-
18, and on FineWeb-10B using GPT-2-mini.

To further study generalization, we also track performance on test sets. As reported in Appendix
Figure 3, the trends observed on test data closely mirror those on the training data.

4.3. Ablations.

We further aim to disentangle the individual contributions
of LoLO’s components. We conduct ablation studies on 7.00

. . . 6.75 —— Naive-LO
the repl;‘ay buffer ‘and behavior cllonmg, in order to estal?— e L Naivelo.s BC
lish their respective roles and investigate whether their 4 —— LoLO

combination yields synergistic effects. Specifically, we 7o
first evaluate the performance of Naive-LO, then verify ~— £57
the results of incorporating behavior cloning (since test- >0

5.25
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gence during meta-training), and finally we examine the Training Steps

complete LoLO method. As shown in Figure 2, the naive

LO, by imitating Adam online, already achieves reason- Figure 2: Ablation study on ImagNetlk
able unroll generalization, while the replay buffer further using 3-layer MLP.

strengthens this property.

5. Conclusion.

In this work, we introduced LoLO, a memory-guided imitation framework for learned optimiza-
tion. By coupling replay buffers with on-policy imitation, LoLO enables stable meta-training while
exposing the optimizer to longer unrolls, thus improving its generalization to long unrolls in down-
stream tasks. Our experiments across vision and language benchmarks demonstrate that learned
optimizers meta-learned with LoLO consistently outperform strong baselines, highlighting LoLO’s
potential as a practical and effective meta-training framework for improving learned optimizers’
generalization to longer training horizons.
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Appendix A. Notation for Algorithm 1

: Indicating hand-designed optimizer, here is Adam
: Indicating LO
: Parameters of the optimizee

e o QO X

: Parameters of the optimizer (LO)
Pg : Probability of selecting a state from B for initialization
K : Start step of each inner loop

Npush : Inner step index at which the state is pushed into B
(n @ Auxiliary accumulators (e.g., momentum, step count)

: Projection operator extracting the step index from state s

3
s
—
VA
SN—

: Second moment normalization

L =

: Generic update operator

Appendix B. Background

Behavior Cloning. Behavior Cloning (BC) is one of the most widely used paradigms in offline
imitation learning, where the objective is to approximate an expert policy by directly regressing
from observed states to expert actions. Formally, given a dataset of expert demonstrations D =
{(xi,aX)}Y,, where 7; € X denotes the state and a} € A is the corresponding expert action, the
goal is to learn a policy mp : X — A, parameterized by 6, that closely approximates the expert’s
behavior. A simple version of behavior cloning solves the supervised regression problem:

N

R : 1

fip = argminmy — Z 7o (i) — af]|3 - (6)
i=1

Learned Optimization. In this work we adopt the small_fc_lopt architecture of [12], a three-
layer MLP with ReL.U activations. The optimizer takes as input a feature vector (u) for each param-
eter in the optimizee and outputs an update direction, d, and magnitude, m. That is, f¢(-) = [d, m],
where f is the learned optimizer and ¢ are its parameters. The optimizee’s parameters (0) are then
updated as follows:

0, = 0,1 — \yde™™. (7

In general, learning the meta-parameters, ¢, involves solving an optimization problem of the form [20]:

1 T-1
T E‘C(X7Y7f¢(ut)th)]] . (8)

min Ep £ )7 [E(X,Y)ND
¢ =0

Here, 7 is a distribution of tasks defined as a distribution, an objective function, and an initialization
triple. The objective seeks to minimize the sum of per-timestep losses over the training horizon 7'.
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Persistent evolution strategies estimator Evolution strategies (ES) estimators are helpful gra-
dient estimators for unrolled optimization problems as they do not explode or vanish as T is in-
creased [11]. A standard antithetic ES gradient can be computed as follows:

N/2

L ES- 1 : i i
gESA:W;6()<£(¢+6())—£(¢—6())>. 9

Where e ~ A (0,02) is a perturbation and N is the number of antithetic perturbations sampled.
When the meta-loss is evaluated after T steps, the estimator is unbiased with respect to our objective
in equation 8. However, this can be computationally expensive when 7' is large. Alternatively, we
can consider updating our meta-parameters, ¢, at an intermediate point during the full unroll. This
biased algorithm, known as Truncated ES, follows equation 9 but evaluates the loss every k steps,
where k£ is the truncation length. Persistent evolution strategies [22] is an unbiased alternative to
ES, which we use to estimate the meta-gradients in our work.

Appendix C. Test results on vision and language tasks
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6.50 —— Naive-LO 6 —— Naive-LO 7.5 —— Naive-LO
2 6.25 —— LoLO 2. —— LoLO 070 —— LoLO
i=} Q
= 6.00 -
é 5.75 &4
5.50
3
5.25
500 0 2000 4000 6000 8000 10000 2 0 2000 4000 6000 8000 10000 & 0 2000 4000 6000 8000 10000
Training Steps Training Steps Training Steps
(a) Test Loss on In1K, MLP (b) Test Loss on InlK, (¢) Test Loss on FineWebl0B,
ResNet18 GPT2-mini

Figure 3: Comparing LoLO with other baselines on ImageNet-1K using 3-layer MLP and ResNet-
18, and on FineWeb-10B using GPT-2-mini.
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