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ABSTRACT

Building virtual humans requires more than just realistic appearances and diverse
motions; it necessitates simulating the intricate interplay between internal cogni-
tive states, external environments, and executed motion behavior, as framed by
the concept of embodied cognition. In this paper, we propose an embodied cog-
nitive architecture, EmbodiedHuman, that captures this interaction by integrat-
ing “Mind” - a structured cognitive module, with motor execution to drive the vir-
tual human’s behavior within an interactive 3D environment. To enable integrated
embodiment over both cognitive states and physical execution, we introduce three
novel modules in a unified framework: 1) a cognition-inspired Mind structure,
which models and modularize high-level reasoning and decision-making through
key causal variables (value, belief, desire, and intention); 2) an action execution
module, which translates internal intentions into embodied movements, enabling
physically grounded interactions; and 3) an exploration module, which empow-
ers the agent to actively explore the environment and update its mental states
through feedback of actions. Our approach allows virtual humans to continuously
adapt, learn, and evolve their behavior in response to environmental changes with
autonomy, supporting dynamic and natural human-like interactions in the long
horizon. Extensive experiments demonstrate the flexibility and scalability of our
method in simulating individualized, daily-level behaviors in unknown environ-
ments. Project page: https://embodiedhuman.github.io.

1 INTRODUCTION

What defines a truly “virtual human”? Traditional research in this domain has primarily focused on
creating realistic appearances (Kolotouros et al., 2024; Liu et al., 2024), replicating diverse human
movements (Tevet et al., 2023; Zhu et al., 2024), and simulating them using fixed rules in simulation
platforms (Puig et al., 2024). but these are not the whole picture. To create genuinely “human-
like” virtual agents, we must simulate the complexities of human behavior, which arise from the
interplay between internal mental states and external environments. A human-like agent requires
cognitive abilities where the mind drives the body to interact with the environment, and in turn, these
interactions shape the mind. This aligns with the philosophical notion of embodied cognition, where
cognition is not merely a product of the brain but emerges through the agent’s physical interactions
with its environment (Clark, 1998; Wilson, 2002; Varela et al., 2017).

Nonetheless, to implement such a framework for virtual humans is far from straightforward. The
primary challenge lies in simulating the complex, dynamic nature of an agent’s internal mental
states and their interplay with an external world that is ever-changing, only partially observable,
and revealed incrementally through embodied interaction. Unlike traditional systems that focus
on predefined, rule-based behaviors, a truly human-like agent must have autonomy across levels —
adapting its actions on-the-fly based on evolving mental states which are shaped by its continuous
sensory feedback from the environment.

To achieve this, we introduce an embodied cognitive architecture, EmbodiedHuman, that seamlessly
integrates a high-level cognitive “Mind” concept with low-level motor execution (Fig. 1), allowing
virtual humans to interact with environments based on their own mental and physical states.

Specifically, grounded in foundational theories in psychology and cognitive science (Bratman, 1987;
Rao et al., 1995; Dennett, 1988; Wooldridge, 2003), we structure the “Mind” via modularization
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Figure 1: EmbodiedHuman. We propose an embodied cognition-aware framework to simulate
natural daily behaviors of personalized virtual humans. Equipped with its own personality and
preferences (values). When a virtual human is randomly placed into an unfamiliar environment,
it continuously generates temporary desires that drive it to explore surroundings while updating
its beliefs about the environment. Accordingly, the agent formulates specific intentions to fulfill
its desires, which are further translated into embodied actions, such as navigation, static object
interaction, , and free-form human motions.

through four causal variables: value, belief, desire, and intention, it offers a principled framework
for self-directed reasoning and action in virtual humans. Concretely, within the Mind, value refers to
an individual’s intrinsic motivations, preferences, or long-term goals; belief reflects the agent’s per-
ception of the world, which may be accurate or inaccurate; desire encapsulates transient or context-
dependent aspirations that influence behavior, distinguishing itself from long-term values; and in-
tention is the specific action plan chosen to fulfill these desires, typically formed through a concrete
decision-making process based on the agent’s beliefs and desires. These causally interconnected
elements collectively shape the agent’s rich and adaptive behavior, as illustrated in Fig. 2.

While such a structured Mind concept grounds
the internal cognitive states of the agent, key Mind ®
challenges remain: /) how can the agent phys- Value Desire
ically enact its intentions through its body, inter-
act with the environment, and 2) in turn, allow ,
these interactions to shape and update its mental Belief Intention X - @
. . Embodied
states? To address this, we introduce two com-
plementary interaction modules that operational-
ize the cognitive architecture, enabling bidirec-
tional adaptation between cognition and embod-
ied experience. The first is the action execution
module, which translates the agent’s intentions
into a sequence of executable embodied actions.
Leveraging large-scale human motion data (Guo et al., 2022), we develop a spatial-aware motion
diffusion model to enable controllable motion generation with spatial control, supporting diverse
and versatile actions that span multiple levels of granularity, including navigation, object interac-
tion, and free-form human motions. The second is the exploration module, which enables the agent
to purposefully explore its surroundings and continuously update its mental states (i.e., beliefs and
desires) based on environmental feedback. Specifically, we propose an exploration strategy that di-
rects the agent towards unknown areas based on its current desires, the frontiers (Yamauchi, 1997)
of the scene, and scene understanding.

Environment
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Figure 2: Embodied cognitive architecture.
The conceptual workflow of proposed embod-
ied cognitive architecture, shaping the Mind and
its dynamic interaction with the Environment
through embodied actions.

To summarize, we propose to model virtual humans via an embodied cognition-aware framework,
beyond separate motion synthesis or mind modeling. Our technical innovations can be concluded as
follows: 1) We propose EmbodiedHuman, enabling the virtual human to continuously adapt, learn,
and evolve its behavior based on its own characteristics and interactions with the environment. 2)
We design an action execution module that leverages a spatial-aware motion diffusion model to
achieve versatile and controllable motion generation, enabling rich environmental interactions. 3)
We develop an exploration module that allows the agent to actively explore the environment, gather
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information, and establish a feedback loop between its internal mind and the external world. 4)
Experiments reveal the emergence of diverse, lifelike behaviors—such as picking its favorite foods,
exercising, dancing, or simply relaxing in a room—just like any of us in our daily lives. We hope
EmbodiedHuman can serve as a baseline prototype to advance research in embodied cognition and
virtual human modeling. To support adoption and reproducibility, we will release upon acceptance
a user-friendly framework with well-documented interfaces, modular components, and extensible
APIs. It integrates all modules into a cohesive workflow, offering researchers and practitioners
accessible tools to build, customize, and evaluate virtual humans at scale.

2 RELATED WORKS

Human Behavior Simulation. Human behavior simulation has been widely and long-term studied
across various domains. Early works (Shao & Terzopoulos, 2005; Funge et al., 1999) simulate hu-
man behavior by defining rules for human-environment interactions and generating motion through
basic motor skills. However, these approaches were limited to highly abstracted environments, and
the rule-based methodology constrained both behavioral diversity and motion quality. For behav-
ior planning, cognitive architectures like SOAR (Laird, 2019) and ACT-R (Anderson & Lebiere,
2014) model human-like decision-making and learning, while the BDI (Belief-Desire-Intention)
model (Rao et al., 1995) simulates rational agents driven by cognitive states. In virtual environment
platforms, VirtualHome (Puig et al., 2018) simulates 3D household tasks with atomic actions, and
Watch-And-Help (Puig et al., 2020) enables collaborative behaviors. BEHAVIOR (Srivastava et al.,
2022) offers a benchmark for realistic human activities, and Habitat 3.0 (Puig et al., 2024) pro-
vides an advanced simulation platform with accurate humanoid simulation and collaborative tasks.
V-IRL (Yang et al., 2024) attempts to drive virtual humans to interact with realistic urban scenes,
while it lacks physical embodiment. Our work advances these efforts by designing an embodied
cognitive architecture that enables agents to autonomously explore, plan, generate and execute em-
bodied actions in interactive environments, with a dynamic feedback loop that updates their mind,
allowing diverse and adaptive behavior in unfamiliar environments.

Conditional Motion Generation. Generating human motion from various conditions has attracted
widespread attention (Petrovich et al., 2022; Guo et al., 2022; Tevet et al., 2023; Chen et al., 2023;
Zhang et al., 2023; Zhu et al., 2024; Wang et al., 2024a). Recent advances such as MDM (Tevet
et al., 2023) leverage diffusion models for motion generation. MLD (Chen et al., 2023) proposes
motion latent diffusion for better efficiency. Although achieving high-quality motion generation,
prior methods typically employ relative motion representation, which undermines spatial controlla-
bility, as it lacks a sense of global positions. Several methods attempt to introduce spatial control
based on MDM (Karunratanakul et al., 2023; Xie et al., 2024), while high control precision remains
challenging under the relative representation. To address this, we propose a spatial-aware motion
diffusion model to incorporate spatial information, thereby enhancing control precision.

Human-Scene Interaction. One line of works trains motion control policies through reinforcement
learning (RL) and imitation learning to drive humanoid robot to navigate (Rempe et al., 2023; Cheng
et al., 2025) and interact with environment (Tessler et al., 2024; Zhao et al., 2023; Peng et al., 2021;
2022; Fu et al., 2024). However, these approaches generally focus on short-term motion and are
limited by predefined motion patterns or overfitting to specific environments, overlooking the cog-
nitive nature of virtual humans. The other focuses on scene-aware motion generation (Hassan et al.,
2021; Wang et al., 2022; Cen et al., 2024; Jiang et al., 2024b;a; Wang et al., 2024b; Pi et al., 2023).
For example, TRUMANS (Jiang et al., 2024b) expands human-scene interaction dataset and trains
an autoregressive motion diffusion model to generate motion based on action label. LINGO (Jiang
et al., 2024a) further extends TRUMANS by incorporating textual descriptions into the dataset. De-
spite remarkable progress, previous approaches generally assume a known environment and generate
separate motion sequences. Moreover, they synthesizes human motions primarily based on external
instructions, overlooking the internal mental states of virtual humans.

3 METHODOLOGY

In this section, we first present the high-level embodied cognitive architecture (Sec. 3.1 and Fig 3),
followed by details of the mind (Sec. 3.2) and the two interaction modules (Sec. 3.3).
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Figure 3: Framework of our EmbodiedHuman. To simulate a truly “virtual human” in an un-
familiar environment (Sec. 3.1), we design an embodied cognitive architecture, EmbodiedHuman,
shaping the mind with value, belief, desire, and intention (Sec. 3.2), and coupling cognition with
actions for embodied interaction. Starting from the value (virtual human profile) and the belief (dy-
namic scene graph), we leverage an LLM to generate temporary desires, which are translated into
concrete intentions. Two interactive modules are proposed to enable embodied action execution and
dynamic environment exploration (Sec. 3.3).

Daily description: It's a holiday!

3.1 EMBODIED COGNITIVE ARCHITECTURE

To define a virtual human’s behavior, we consider a triplet (M, A;, &), where ¢ is the simulated
time. M, represents the Mind at time ¢, i.e., the internal cognitive states, including value, belief,
desire, and intention; Ay represents the Action taken by the agent at time ¢, reflecting its embodied
interaction with the environment; and &; represents the Environment at time ¢, i.e., the external world
that the virtual human perceives and interacts with. Simulated time ¢ can be associated with real-
world time (e.g., 8:30 AM) when performing daily activities. See Appendix A.4 for more details.

We formulate the interaction between the three components via the following relationships inspired
by embodied cognition, which emphasizes that cognitive processes emerge from continuous in-
teractions between the mind, body, and environment: (1) The Action A; of the virtual human
is directly determined by its internal cognitive state, M, and the external environment, &, via
A = 1(My, &), where 7 is the policy function that maps M, and &, to a specific action, reflect-
ing the influence of both internal mind and external world on the behavior. (2) The Environment £
evolves as a result of the action. Specifically, the new environmental state £, is determined by
the previous environment &; and the action A;. Formally, &1 = T (&, At), where T models how
the environment changes in response to actions. (3) The Mind M, is updated based on the out-
come of the action .4, interacting with the environment &, i.e., M1 = ¥(My, A, &), where ¢
is a function that models the evolution of the mental states, incorporating feedback from the actions
taken and changes in the environment.

These relationships model the dynamic interaction and feedback loop between the virtual human’s
mind, body (actions), and environment, reflecting key insights of embodied cognition. Concretely,
the environment transition function 7 represents the objective evolution of the external environment,
which is typically specified by the environment itself. Our primary focus, therefore, is on the im-
plementation of the policy function 7 and the mind update function %) to more effectively simulate
dynamic human behavior through the interplay of the mind, body, and environment.

3.2 MIND

Mind consists of four interconnected modules (value, belief, intention and desire), structured
through causal relationships that model human decision-making process. Below, we outline the
key design principles, while additional details can be found in the Appendix C.

Value. The virtual human’s value (V') represents its intrinsic motivations, preferences, and goals.
These values remain relatively stable over the timescale we study, typically measured in hours or
days, and guide the agent’s overall behavior in the environment. We define the virtual human’s value
via a character profile, describing attributes such as profession, personality, and other characteristics.

Belief. The agent’s belief (B;) represents its perception of the environment at time ¢. The belief is
updated based on observations the agent makes as it interacts with the environment. In our frame-
work, the agent does not have access to oracle-like global scene information; instead, it perceives
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the environment from an egocentric view and dynamically forms its belief through continuous in-
teraction. Thus, belief may be accurate or biased at any given moment, but is gradually refined over
time as the agent gathers more information from its surroundings.

To represent this evolving belief, we employ a dynamically updated 3D scene graph composed of
the objects the agent has explored. Each object is characterized by properties such as its 3D lo-
cation, geometric information, and optional affordances, as illustrated in Fig. 3. More details are
provide in Appendix. To achieve open-world perception in unknown environments, we employ
Grounded-SAM (Ren et al., 2024; Kirillov et al., 2023; Liu et al., 2023) to extract semantic infor-
mation from egocentric RGB observations, which is projected into 3D space using depth to generate
3D instance-level point clouds. As the virtual human interacts with the environment, the scene graph
is progressively updated. This process can be formulated as:

Bii1 = Fp(Bt, Et41), ey
where Fp denotes the belief update function, which is implemented by estimating the overlap be-
tween newly perceived instances and existing ones, and then merging them accordingly.

Desire. The agent’s desire (D;) reflects its immediate, context-driven goals at time ¢. Each desire
can be mapped to a scheduled conceptual time to enable human-readable time representation. While
value represents long-term motivations, desire is more specific and dynamic, shaped by the agent’s
current situation and needs. For example, a desire might manifest as “ I want to grab some food” or
“I want to take a break” at the moment. The generation of a particular desire is closely influenced
by the agent’s value and evolving belief about the environment, which can be expressed as:

Dy = Fp(V, By). 2

Intention. The agent’s intention (I;) represents a concrete, actionable plan formed to achieve its
goals at time ¢t. While desire expresses what the agent wants (e.g., “I want to eat”), intention ad-
dresses the question of how the agent intends to fulfill that desire (e.g., “I will go to the kitchen and
cook a steak’). In this way, intention serves as a bridge between desire and action, translating ab-
stract goals into specific steps. Shaped by value, desire, and the current environmental understanding
(i.e., belief), this process can be formulated as:

I = F1(V, Dy, By). 3)

3.3 INTERACTION MODULES

We propose two interaction modules to enable the agent to execute physically grounded Actions
in the environment while establishing a dynamic feedback loop between its internal Mind and the
external Environment. Specifically, if the agent determines, based on its current belief, that its desire
can be satisfied, the action execution module translates intentions into embodied actions. Otherwise,
the exploration module actively drives the agent to explore the environment, guided by the agent’s
belief and desire, and, in turn, updates them as new information is gathered from the surroundings.

3.3.1 ACTION EXECUTION

The action execution module translates infentions into executable humanoid actions. For precise
scene interaction and diverse motion simulation, it requires two key properties: precise spatial mo-
tion controllability and free-form motion generation.

While employing RL to control humanoid actions is a straightforward solution, it often yields limited
and unnatural motion patterns and can easily overfit to specific scenes. Therefore, leveraging motion
generation with priors from large-scale human motion data offers a more promising path, either via
standalone (Tevet et al., 2023) or scene-aware (Jiang et al., 2024b) manners.

However, such pre-trained models often fail to satisfy both properties—either lacking effective envi-
ronmental interaction or struggling to generalize across diverse environments due to data limitations.
Based on the above observations, we develop a spatial-aware motion diffusion model (SA-MDM),
which enhances spatial control capability through two design levels: spatial-aware motion repre-
sentation and gradient-based motion control. Such designs improve the virtual human’s ability to
interact with the environment while utilizing large-scale scene-agnostic human motion data. As
shown in Fig. 4, SA-MDM enables precise motion control via both texts and spatial cues, allowing
the virtual human to perform specific, context-aware actions. We unfold the details below.
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does not account for the virtual human’s physi-
cal volume. Consequently, relying solely on joint
control is inadequate for preventing penetration
with surrounding objects. Thus, we propose a
hybrid spatial-aware motion representation that
fuses joint positions with SMPL-X parameters 6.
We follow MLD to perform diffusion in a latent space (compressed with VAE) for better efficiency
and motion quality. The two representations are tightly coupled throughout the generation process
to ensure coherence, where joints govern the global position and posture, while the mesh vertices
derived from SMPL-X parameters provide the necessary body shape information for penetration
avoidance.

MDM). The diffusion process is further guided
by gradients from spatial constraints, where red
curves indicate sparse joint locations (taking
root and hand joints as examples) and green ar-
rays are global orientations.

Motion Control. With SA-MDM, we can control the motion in a spatial-aware manner through
two key components. First, we regulate the global joint positions to perform specific environment-
aligned actions by designing tailored joint loss functions £; for different types of controls (e.g., joint
position, heading angle, efc). Second, we reduce potential human—scene penetration by computing
a penetration loss £, between mesh vertices and the dynamically updated scene occupancy. Thanks
to our spatial-aware motion representation, both forms of control can be seamlessly applied by
incorporating the guidance directly into the denoised latent code, which is formally expressed as:

is = X5 — OCVXS (‘CJ (p) + ‘Cp(e))a (p7 9) = D(XS) (4)
where D(-) represents the decoder of the VAE in SA-MDM, X, and x, denote the perturbed and
original latent estimates at time s, and « represents the gradient scale, respectively. Using this
strategy, we can effectively control virtual humans’ interaction with the external environment in
a unified manner. Additionally, we enable text-based motion control, allowing for freeform style
adjustments. These texts leverage the agent’s cognitive context, making the motion more flexible
and personalized. More details are provided in the Appendix A.4.

Training with Multi-Source Data. To enhance motion quality for complex interactions, we aug-
ment the HumanML3D (Guo et al., 2022) dataset with additional human-object interaction datasets,
including SAMP dataset (Hassan et al., 2021) and GRAB dataset (Taheri et al., 2020).

Hand-object Alignment. To create more realistic hand poses during object interaction, we leverage
GRIP (Taheri et al., 2024) to generate hand poses based on hand and object geometry. Since GRIP
does not provide object’s poses, we determine it via a two-step process: first, we perform an initial
alignment using the hand’s surface normals, and second, we track the object’s pose frame-by-frame
with hand’s rigid transformation by registrating the hand vertices. See Appendix D for visualization.

3.3.2 EXPLORATION

Notably, since the agent dynamically gathers information and forms its belief about the environment
through continuous interactions (as discussed in Sec. 3.2), it may not always be able to form a
specific intention that fulfills its desire (e.g., when a required object is in another room, and the
agent is unaware of it). In such cases, we propose an exploration module with a desire-driven
strategy, where exploration itself becomes a form of intention. This enables the agent to actively
seek new information in response to its unmet desire, and further update its mental states.

Specifically, the agent needs to distinguish between known and unknown areas, and identify regions
for further exploration. In practice, we compute two distinct maps during exploration: explored
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map and obstacle map. By analyzing their differences, we detect frontiers (i.e., boundary regions
between explored and unexplored spaces) (Yamauchi, 1997). However, these frontiers lack semantic
information. To bridge this gap and connect the frontiers with human-like cognition, we employ an
LLM to assess the exploration priority of each frontier based on the current desire and descriptions
of surrounding object instances. For an intuitive example, if the current desire is to go to the bath-
room, a frontier near a sink would more likely be useful and therefore prioritized for exploration.
Nonetheless, there are times when the desire simply cannot be fulfilled within the environment. We
terminate the process when no frontiers remain or when the exploration for a single desire exceeds
a certain number of attempts. At that point, we update the agent’s desire based on the feedback, just
as a real human would. This process reflects how active interaction with the environment influences
the virtual human’s mind, including its belief and desire. Refer to Appendix C for details.

4 EXPERIMENTS

In this section, we first brief describe our experimental setup (Sec. 4.1), then present the main results
of the daily human behavior simulation (Sec. 4.2). Finally, we evaluate the two main interactive
modules, i.e., action execution (Sec. 4.4) and exploration (Sec. 4.3) .

4.1 EXPERIMENTAL SETUP

We model V', B, D;, and I, using natural language and implement Fp and F; by prompting a pre-
trained LLM (GPT-40 (Hurst et al., 2024) in our experiments), considering the complexity of human
mental states. We adopt Habitat 3.0 (Puig et al., 2024) as the simulation platform and use SMPL-
X (Pavlakos et al., 2019) as the skeleton representation. We select 10 scenes from HSSD (Khanna
et al., 2024) and AI2-THOR dataset (Kolve et al., 2017). We define 10 virtual human profiles en-
compassing different professions, personalities, daily goals, efc. We then randomly assign virtual
humans to scenes, creating 20 human-scene combinations. Refer to Appendix for more details.

4.2 DAILY HUMAN BEHAVIOR SIMULATION

We investigate two key research questions (RQs) in this subsection to examine if EmbodiedHuman
can reflect variations in internal value and external environment, and generate diverse, contextually
appropriate behaviors at the meantime:
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Figure 7: A day of Fiona. Fiona is a manager working at a trading company. She is a social
butterfly and is passionate about dancing. Today is a holiday. We generate long-term daily behaviors
of Fiona: She starts the day by chatting with her friend on the phone and then dances to wake up
herself. Thereafter, she feels tired and sits down to eat an apple. Then, she needs to go to toilet. The
simulated behaviors reflect the value of Fiona and the belief from the environment.

RQ1: How does value influence virtual human behavior? Virtual human behavior is shaped by
their values, leading to distinct choices even in the same environment. To examine this, we conduct
a controlled experiment with two virtual humans sharing the same desires in the same environment.
As shown in Fig. 5(a), Ben and Rachel select different foods according to their dietary preferences:
Ben chooses chips due to his preference for fried food, while Rachel opts for a tomato, valuing her
nutritional benefits. Additionally, we compare the quantitative gait difference via visualizing the
foot height of both virtual humans (Fig. 5(b)). We observe that Ben’s gait is brisker, aligning with
his value of being “outgoing.”

RQ2: How does the environment influence virtual human behavior? The external environment
plays a crucial role in shaping the agent’s cognition and behavior. As shown in Fig. 6, we place
the virtual human Armin into two different environments with the same desire and observe different
decisions. To fulfill the desire to “chat with friends online,” Armin chooses either a cellphone or a
laptop, depending on which is available in the environment. By perceiving environmental cues, the
agent forms different beliefs, leading to diverse yet reasonable behaviors.

Simulate a Day of Virtual Humans. Based on the ability of EmbodiedHuman, we can simulate
dynamic and diverse human behaviors. Figs. 7 and 8 depict a simulated day in the lives of two
virtual humans, Fiona and Diego. They have distinct professions and personalities, which lead
them to make different choices throughout the day. For example, as a social butterfly, Fiona enjoys
chatting on the phone and dancing, while Diego, an athlete, prioritizes working out to maintain his
energy. The results show that our pipeline can generate a wide range of human behaviors based
on the virtual humans’ values, allowing for rich and meaningful interactions with the environment.
This is achieved through the effective interaction between the cognition and the environment, along
with diverse human actions, including navigation, static object interactions (e.g., SitOn), dynamic
object interactions (e.g., PickUp), and open-vocabulary human motions (e.g., Dance Cha-Cha).

4.3 EVALUATION OF EXPLORATION MODULE

We investigate the exploration module from two aspects: (1) success rate (in main manuscript), and
(2) efficiency (Appendix D). Concretely, we introduce two metrics to assess the planner’s ability to
generate valid intentions that fulfill desires: Desire Plan Success Rate (Desire Plan.) and Daily Plan
Success Rate (Daily Plan.). The former measures the ratio of individual desires that can be fulfilled
based on the agent’s belief, while the latter evaluates the success rate of fulfilling all desires within
a day. We experiment with removing desire guidance and ablating the exploration module entirely.
Table 1 shows that both Daily Plan. and Desire Plan. drop significantly without exploration. In this
scenario, the virtual human’s ability to achieve its desires depends solely on its initial position; if
the current belief cannot satisfy the desire, the plan fails. Additionally, incorporating desire further
improves success rates by enabling more efficient, semantically-aware exploration.
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(L) 7:45 T wake up and want to drink coffee. @ 11:23 I want to prepare lunch.

Navigate CoffeeMug PickUp CoffeeMug Drink coffee

Navigate CoffeeMaker PickUp Steak Navigate Microwave

T will

*I will bring the steak to the microwave.
W L el

get the coffee mug first and then go to the coffee maker:”
— I o— W — —
*/.L 13:31 I want to do a walkout routine. ®> 20:42 I want to relax and drink some wine.

Jumping jack Deep squat Stretch arms Navigate Cup PickUp Cup Navigate Wine

"I will start with some exercise and then do some stretching” "1 jog over to get a cup and then go for some wine.”

Figure 8: A day of Diego. As an athlete, he enjoys drinking coffee to stay alert and occasionally
has alcohol to relax. Today, he needs to exercise. He starts the day with a cup of coffee to energize
himself. As he prioritizes high-protein foods, he chooses steak for lunch. Afterward, he completes a
workout routine to meet his daily goal. In the evening, he treats himself to a glass of wine to unwind.

4.4 EVALUATION OF ACTION EXECUTION MODULE

We assess the precision of
the proposed action execution
module using the following
metrics: Daily Executed Rate
Daily Exec.), Desire Executed Daily Desire Action Goal

E(ate y(DesirZz Exec.), Action Methods Exec.T Exec.t Exec.1 Dist.| Pene.}
Executed Rate (Action Exec.), OmniControl* (Xic etal.,2024)  0.05 0.64 0.83 0.313 0.039
Goal Distance (Goal Dist.), TextSceneMotion™ (Cen et al.,2024)0.00 0.57 0.80 0.265 0.209
and Penetration Ratio (Pene.). TRUMANS* (Jiang etal., 2024b)  0.20 0.70 0.88 0.267 0.033
Specifically, Goal Dist. refers gy 0.30 079 0.91 0.2370.027
to the distance between the
joint and the goal; Action Exec. measures the rate at which the executed action successfully realizes
the intention (i.e., when Goal Dist. is below a predefined threshold 7). Daily Exec. and Desire Exec.
represent the proportion of fully successful intentions at the daily and desire levels. For example,
Duaily Exec. requires all intentions within a day to succeed; if any fail, the entire day is considered
unsuccessful. Please refer to the Appendix B, D for more details and analysis of SA-MDM.

Table 2: Evaluation of action execution module. *We adapt the
baseline methods to our framework by carefully modifying them
to replace our action execution module.

Comparison with SOTA. We compare our method against two scene-aware human motion gener-
ation methods (i.e., TextSceneMotion (Cen et al., 2024) and TRUMANS (Jiang et al., 2024b)) and
a spatially controllable motion generation method (i.e., OmniControl (Xie et al., 2024)). Specifi-
cally, we replace our action execution module with each baseline method, adapting them to fit our
scenarios. As shown in Table 2, TextSceneMotion exhibits a notably higher penetration ratio, likely
due to its object-centric approach. However, limitations in its dataset hinder its performance when
transferred to new environments in Habitat 3.0. TRUMANS benefits from a larger human-scene
interaction dataset, but its success rates remain significantly lower than ours, especially at the desire
and daily levels, where errors accumulate across actions. OmniControl employs joint position con-
trol for human-scene interaction, but its precision is lower than ours, leading to much lower success
rates. We attribute this to its reliance on relative motion representation.

5 CONCLUSION

We propose EmbodiedHuman, an embodied cognitive architecture to simulate realistic virtual hu-
man behavior by integrating “Mind” with two interactive modules. We shape the “Mind” with four
interconnected causal variables: value, belief, desire and intention. To achieve physically grounded
interactions, we propose an action execution module to generate diverse motions. We further design
a desire-driven exploration module to actively explore unknown environments. Experiments show
that EmbodiedHuman supports individualized, daily-level behavior simulation.
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APPENDIX

In this appendix, we provide: (1) additional implementation details (Section A); (2) benchmark de-
tails (Section B); (3) an extended discussion on the cognitive modeling of the Mind (Section C);
(4) further experimental results and analysis (Section D); and (5) a discussion on the broader im-
pact/limitations/future work of our method (Section E). Additionally, we provide a Supplementary
Video showcasing key design elements.
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A IMPLEMENTATION DETAILS

A.1 PROBLEM DEFINITION
This work aims to simulate embodied virtual human behaviors in an unfamiliar environment. The

input includes the value of a virtual human and an unexplored environment. The output are human
behaviors, which are represented with human motions and their interactions with the environment.

A.2 TRAINING DETAILS
We conduct all experiments on a single NVIDIA L40 GPU. The latent code dimension of SA-MDM

is set to 1 x 256, following the original MLD (Chen et al., 2023). For denoising diffusion, we employ
DDIM (Song et al., 2021) as the scheduler, setting the number of denoising steps to 200.

14
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A.3 MOTION CONTROL

As mentioned in the main manuscript, we apply guidance to SA-MDM to control the human motion.
Our joint control signals consist of two types: joint position and heading angle. To control the joint
positions of the virtual human, we calculate the Lo distance between the predicted joint position and
the target position. To control the heading angle of the virtual human, we estimate the heading angle
based on the joint positions and then compute the L; distance between them.

We observe that applying guidance to all diffusion steps leads to a significant decrease in quality and
perturbing only a few diffusion steps can precisely control the joint position. Therefore, we only
apply guidance at the last several diffusion steps. Additionally, we improve the control accuracy by
repeating the guidance K times within a single step with a small gradient scale ae. We set a to 0.05
and K to 50 in our implementation. The guidance is applied to the last 5% diffusion steps.

A.4 IMPLEMENTATION IN SIMULATOR

We employ Habitat 3.0 (Puig et al., 2024) as the simulator, which supports humanoid agent control
based on SMPL-X parameters. We use Grounded-SAM (Ren et al., 2024) for open-world object de-
tection, which supports object category inputs. The detected objects are fused based on point cloud
overlap and mapped to the objects in the simulator by calculating their center distances. The daily
activity of the virtual human is discretized into a set of desires, each associated with a conceptual
time of a day. Each desire is then transformed into a set of intentions, with each intention corre-
sponding to a specific action. For each action, we use SA-MDM to generate a sequence of human
motions for motion control in the simulator. To achieve interaction between the virtual human and
the environment, we employ spatial control as discussed above. To ensure continuity between mo-
tions, the initial pose of each motion is regularized based on the final pose of the previous motion.
We provide the details below:

(1) For “PickUp” action, we first grab the object by regularizing the wrist joint’s distance to the
object in the final frames and then use the final grabbing pose as the initial pose for picking-up. We
also regularize the orientation of the virtual human to ensure it faces the object. The loss can be

formulated as:
22

i Fi_
L5 = oy’ —ofl3 + (167 — 0113 + > lIpf — pi" [, (5)
%

where pgt represents the wrist joint’s position in the last frame (F3) of the current motion, o denotes
the object position, #* is the orientation vector of the virtual human, § is the target orientation

vector to face the object, p? represents the joint position in the starting frame of the current motion,
Fyy

b;

(2) For “PutDown” action, we regularize the wrist joint’s distance to a randomly generated position
on the target object. The loss can be formulated as:

is the joint position in the last frame (F}_1) of the previous motion.

22
Fy_
L = |plt — o3+ IIpY —pi I3, 6)
7

where o, is the randomly generated position on the target object.

(3) For “Navigate” action, we regularize the pelvis position to follow the planned trajectory. The
loss can be formulated as:
Fy/h

22
av h Fi_
£ =" p" = pll I3+ Ip? —pi B, 7
f i

where h is the time interval for loss calculation, p;fh and p{r};j denote the pelvis position and trajec-
tory point in frame fh, respectively.

(4) For “Open” and “Close” actions, we regularize the wrist joint trajectory with the estimated handle
trajectory. The loss can be formulated as:
Fi/h

22
h Fy_
£ =" et =l 1B+ Ip? - pi B, ®)
f 7
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where p/" and p{r};jh denote the wrist joint’s position and handle trajectory point in frame fh.

(5) For actions like “SitOn”, “LieOn” and “StandUp”, we directly generate the motion conditioned
on the geometry of the target object.

(6) For “Dolt” action, we directly generate the motion based on the textual description.

To alleviate penetration with surroundings, we derive the mesh of virtual humans from the SMPL-X
parameters 6. Denoting the vertices as V = {v; };=1,... n,, Where N,, is the number of vertices, the
penetration loss £, can be defined as:

Ny
[:p = ZO(Vi), (9)
i=1

where O(-) represents the occupancy map of the 3D scene, which is constructed online as the virtual
human explores the environment.

B BENCHMARK DETAILS

B.1 DETAILS OF EVALUATION

We employ two types of metrics for evaluation, i.e., action-level metrics to evaluate the action exe-
cution module, and plan-level metrics to evaluate the exploration module. The action-level metrics
include Daily Exec., Desire Exec., Action Exec., Goal Dist., and Pene.. The executed rates across
three levels are defined based on Goal Dist., i.e., an action is considered as executed if Goal Dist.
is below a threshold 7, where 7 is set to 0.5m in our implementation. To evaluate the Goal Dist.,
for whole-body movements such as Navigation, we calculate the closest distance between all joints
to the goal object; for movements based on the hand (e.g., PickUp), Goal Dist. is measured as the
distance between the wrist joint and the goal object.

We simulate 20 human-scene combinations (i.e., 20 days, 155 desires and 464 intentions). In gen-
eral, an intention covers 1 to 3 action executions, corresponding to 80 to 500 frames for each.

B.2 VIRTUAL HUMAN CONSTRUCTION

An individual virtual human consists of its value and appearance. To generate the value, we prompt
the LLM to generate the name, profession, age, personality, gender and also daily goal. For ap-
pearance modeling, we utilize the texture maps from SMPLitex (Casas & Comino-Trinidad, 2023),
ensuring that each virtual human asset is visually distinct, while maintaining alignment with per-
sonality traits. We employ the official Habitat 3.0 tool to convert these texture maps into textured
SMPL-X models, which are represented using URDF (Unified Robot Description Format) models
for seamless integration with physics-based simulation frameworks. This allows for realistic articu-
lation, grasping, object manipulation, and full-body motion simulation, supporting scenarios where
dexterous hand interactions are necessary.

B.3 SCENE CONSTRUCTION

Habitat 3.0 provides various simulation environments. To meet the requirements for realistic and
meaningful agent-environment interactions, we curate synthetic scenes for our benchmark from
AI2THOR and HSSD, ensuring the diversity of interactive household objects, navigable spaces,
and spatial layouts that could support a wide range of human-like activities. Additionally, to ex-
pand the diversity of object assets, we integrate high-quality 3D models from Sketchfab (Authors),
including items such as wine and beef.

C ANALYSIS OF MIND

The mind is implemented using LLM (GPT-40 in our implementation). We summarize the imple-
mentation in Fig. A-1.
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Table A-1: Example of generated desires.

Example of generated desires.

“Desirel”: { “Time”:*“07:30”, “Desire”:“Wake up and stretch.”, },

“Desire2”: { “Time”:“08:30”, “Desire””: “Prepare a healthy breakfast.”, },

“Desire3”: { “Time”:*09:00”, “Desire”:*Sit at my desk and start my work.”, },

“Desire4”: { “Time”:“12:00”, “Desire””:“Take a short break and have a nutritious snack.”, },

“Desire5”: { “Time”:*“12:15”, “Desire”:“Try a new stretching routine to stay active.”, },

“Desire6”: { “Time”:“13:00”, “Desire”:“Take a cup of coffee.”, },

“Desire7”: { “Time”:*13:30”, “Desire”:*“Continue working on my research at the desk.”, },

“Desire8”: { “Time”:*“17:00”, “Desire”:“Make a healthy dinner.”, },

“Desire9”: { “Time”:*19:00”, “Desire”:“Sit down and watch TV.”, }

}

: Tab

Yalue. Valye represents .the 1qternal proper- v Intention A5 [ Action
ties of the virtual human, including the profes- Tab A-9/10 Tab A-4 Execution
sion, age, personality, daily goal, etc. Value in- 1, 5 » Ves + Tab A8
fluences the.de(:1s1.on—mak1ng process of a vir- ——— Can the desire Bellef
tual human, including the short-term desire and Tab Al be fulfilled? Tab A6

concrete intention, as illustrated in Fig. 4 of the
main manuscript. We implement value using
human profiles. As shown in Tables A-9 and A-
10, we define 10 virtual humans in our experi-
ments.

No
Yes | Reach maximum | No
Update (Tab A-3) exploration time? Explore (Tab A-7)

Figure A-1: Implementation of Mind. We provide
Desire. Desire represents the short-term goal of examples and prompt designs for each mind com-
a virtual human. We implement desire by main- ponent.
taining a sorted list, with each element contain-
ing a specific goal and a conceptual time. We provide examples of desires in Tab A-1. As discussed
in the main manuscript, desire can be generated and updated based on the value and belief: (1)
Desire generation. As shown in Table A-2, the LLM is prompted to generate desires of the virtual
human according to its profile. To ensure feasibility, we impose constraints of supported actions
that prevent the generation of desires that the action execution module cannot fulfill. (2) Desire up-
dating. As discussed in the main manuscript, exploration is terminated either when no unexplored
frontiers remain or when a single desire exceeds a predefined number of attempts. In such cases, the
LLM updates the virtual human’s desire by generating a new one based on prior desires, the virtual
human’s profile, and the current scene graph, as shown in Table A-3.

Intention. Intention is generated based on the short-term desire, the long-term value, and the belief.
We implement intentions with a sorted list, where each element consists of an action to be executed
and the object to be interacted with. We provide examples of infentions and their corresponding
desires in Table A-4. We define several common infentions that can be completed with specific
actions (i.e., PickUp, Navigate). For free-form motions (i.e., “dance”) that do not require interaction
with the environment, we assign Dolt as the intention and directly use text descriptions to control the
action. Intention can then be transformed into human motions using SA-MDM. For more details,
please refer to Appendix A.4.

We provide the implementation details for in-
tention generation in Table A-8. The LLM is o
prompted to generate specific intentions based

on the current desire, the virtual human pro-
file, the current scene graph, and previous in- ' y ' '
tentions. Besides, we prompt LLM to gener-
ate a motion style for whole-body movements 5, | 0%, VIS L lvn Lomiongra

based on the Current and preVlous intenl‘ions7 as Affordance: Sit Affordance: None Affordance: None  Affordance: Eat  Affordance: Eat
shown in Table A-5.

Explored

Unexplored

Figure A-2: Illustration of 3D scene graph.
Belief. Belief defines the perception results of
the environment. As shown in Fig. A-2, we represent the belief as a scene graph, comprising a set
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Table A-2: Prompts for desire generation.

Prompts for desire generation.

You are an virtual human in a room. Below is your profile:
{VIRTUAL HUMAN PROFILE}
How will you spend your day in the room?
Please list desires of your day.
The desires must can be completed using the following actions or completed by your self (do not
require interactions with the environment):
1] Open: open some articulated objects.
2| Close: close some articulated objects.
3] PickUp: pick up something, can be used for eat something or drink something.
4] PutDown: put down something on something.
5] Navigate: go to somewhere in the room.
6] SitOn: sit on a chair or a sofa.
7] LieOn: lie on a bed.
8] StandUp: stand up from a chair, a sofa or a bed.
9] Dolt: if the desire does not need interaction with the environment, just plan as Dolt.
Example desires:
1] I am hungry and want to eat something.
2| Someone knocks the door and I need to go to open the door.
3] I want to sit to watch TV.
4] I want to go to toilet.
The results should be organized as json format:
{Desirel: {Time: TIME, Desire: DESIRE, Actions: ACTIONS}}

Table A-3: Prompts for desire updating.

Prompts for desire update.

You are an virtual human in a room. Below is your profile:
{VIRTUAL HUMAN PROFILE}

Your previous desires are:

{Desire 0:{DESIRE} }

{Desire 1:{DESIRE}}

Your current desire is {DESIRE}

Your current desire can not be fulfilled in the room.

The visible scene graph is { VISIBLE SCENE GRAPH}

Please update your current desire. The output format should be json format: {Desire:DESIRE}

of detected objects and their properties. We provide an example of the input scene graph used in
the LLM (Table A-6). Belief determines whether the desire can be fulfilled and the intention to be
executed, as illustrated in Fig. 3 of the main manuscript. Belief is updated during exploration. We
also provide the prompt design for exploration in Tab. A-7, where the LLM is prompted to determine
a direction to explore based on the desire and the objects near the frontiers.

(O 1418 1 want to drink cola. (O)15:21T want to drink cola.

@ 11:34 T want to eat something. @ 15:11 I want to eat something.

\
I pick up Cola and place it in a new spot. I go to the new spot for Cola,

T'll eat the Tomato. No Tomato Now. I'll eat the Apple.

Figure A-3: The virtual human chooses to eat

the Apple when the Tomato has been caten. Figure A-4: The virtual human navigates to a

different place due to Cola’s location change.
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Table A-4: Example of generated intentions.

Example of generated intentions.

Desire: Take a short break and have a nutritious snack.

Intentions: [“Navigate Apple_73”, “PickUp Apple_73”, “Navigate Sofa_3”, “SitOn Sofa_3"]
Desire: Take a cup of coffee.

Intentions: [“Navigate Cup-33”, “PickUp Cup-33”, “Navigate CoffeeMachine_9”]

Table A-5: Prompts for motion style generation.

Prompts for motion style generation.

You are an virtual human in a room. Below is your profile:

{VIRTUAL HUMAN PROFILE}

Your previous intentions are {PREVIOUS INTENTIONS}. Your current intention is { CURRENT
INTENTION}. Please generation a simple motion style description with only a few words. Example
motion style: jogging, tiredly, briskly, run, naturally. Example answers: Example 1: A person runs.
Example 2: A person walks tiredly.

Besides, action can also change the state of the environment, thus altering the belief. Consequently,
the scene dynamics resulting from prior actions impact subsequent intentions. We illustrate this with
two examples in Figures A-3 and A-4. In Figure A-3, the virtual human opts to eat the apple because
the tomato has already been consumed. Similarly, in Figure A-4, the change in the cola’s location
prompts the virtual human to navigate to a different area.

D MORE RESULTS

We first analyze the effectiveness of our hand-object alignment strategy, and then provide more
quantitative results to demonstrate the effectiveness of our method from the aspects of behavior
diversity, motion quality, and exploration efficiency.

Hand-object alignment. As mentioned before,
We propose a hand-object alignment strategy to
generate more natural hand-object interaction
poses. Fig. A-5 demonstrates the effectiveness
of this strategy. According to the visualization,
the baseline pose exhibits noticeable misalign-
ment and causes the object to appear unnatu-
rally floating. Our strategy successfully aligns
the hand with the object geometry, yielding a
significant improvement in interaction quality.

Before hand-object alignment After hand-object alignment

Figure A-5: Effectiveness of hand-object align-

Behavior diversity. To illustrate the diver-
ment strategy.

sity of virtual human behavior, we calculate the
uniqueness ratio (I1/12 Uniq.) and IoU of agent-object interactions under the same scene. As shown
in Tab A-11, (a)-(e) represent different agent combinations within the same scene. The uniqueness
ratio illustrates the overlap of objects interacted with by two individuals, demonstrating the high
diversity of behavior generated by our framework.

Table A-11: Comparison of object interactions by different agents.

Scene (a) (b) (c) (d) (e) Avg

I1 Unig. 77.8 75.0 50.0 80.0 778 72.1
12 Unig. 800 846 556 84.6 800 77.0
TIoU 11.8 105 308 95 11.8 149
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Table A-6: Example of belief.

Example of belief.

{

“AlarmClock 87" { “Location”:[-3.5, 0.7, 3.3] },
“Apple_47”: { “Location™:[1.5, 1.0, -5.7] },
“BaseballBat_46”: { “Location™:[-2.7, 0.0, 2.6] },
“BasketBall_17": { “Location™:[-0.9, 0.1, 3.3] },

“Bowl 27" { “Location™:[1.7, 0.8, -4.5] },

“CellPhone_57": { “Location™:[1.2, 0.6, 2.3] },

“Chair_54": { “Location™:[1.4, 0.5, -1.7], “Affordance”:Sit },
“Chair_55": { “Location™:[1.9, 0.5, -0.8], “Affordance”:Sit },
“Cup-39”: { “Location”:[-3.0, 0.9, -1.4] },

“Laptop-90”: { “Location™:[-4.2, 0.9, -2.3] },

“Bed_33": { “Location™:[-3.2, 0.5, 2.1] },
“CoffeeMachine_120": { “Location™:[1.7, 1.1, -5.4] },

Table A-7: Prompts for exploration.

Prompts for exploration.

You are an virtual human in a room. Below is your profile:

{VIRTUAL HUMAN PROFILE}

Your current desire is DESIRE

Below is the objects around each direction, which direction should you explore?
Direction 1: {OBJECTS}

Direction 2: {OBJECTS}

The result should organized as json format: {Direction:DIRECTION, Reason:REASON}

Analysis of SA-MDM. As previously mentioned, we propose a hybrid spatial-aware motion rep-
resentation that fuses joint positions with SMPL-X parameters. To evaluate this strategy, we apply
joint-level control to the MLD trained on relative motion representation and conduct experiments
across five human-scene combinations. As shown in Table A-12, while our action execution mod-
ule still performs reasonably without global joint positions, control precision is compromised. The
Desire Exec. drops significantly without global joint positions, and the Goal Dist. increases, high-
lighting the importance of global joint positions in improving the spatial awareness of the motion
generation model.

Table A-12: Analysis of the influence of global joint position.

Method Desire Exec. T Action Exec. T Goal Dist.
w/o global (MLD) 0.76 0.90 0.222
with global 0.89 0.94 0.205

Human motion quality. To demonstrate the quality of the generated human motion, we provide
quantitative comparisons with OmniControl (Xie et al., 2024) on HumanML3D dataset (Guo et al.,
2022). According to the results shown in Tab A-13, our method achieves lower FID and higher
R-Precision, demonstrating the high quality of the generated human motion.

Table A-13: Results of motion generation on the HumanML3D dataset.

Method FID], R-Precision (Top3)T
OmniControl  0.31 0.693
Ours 0.27 0.773
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Table A-8: Prompts for intention generation.

Prompts for intention generation.

You are an virtual human in a room. Below is your profile:

{VIRTUAL HUMAN PROFILE}

You can use following actions and the objects in the scene graph to complete a desire:
Open: open some articulated objects.

Close: close some articulated objects.

PickUp: pick up something, can be used for eat something or drink something.
PutDown: put down something on something.

Navigate: go to somewhere in the room.

SitOn: sit on a chair or a sofa.

LieOn: lie on a bed.

StandUp: stand up from a chair, a sofa or a bed.

Dolt: if the desire does not need interaction with the environment, just plan as “Dolt”.
10] Explore: explore the room if the current scene graph can not meet your intention.
Note: If the current scene graph can not meet your intention, Do not hypothesize anything. For exam-
ple, you can not plan as “PickUp Something”.

You should also be aware of previous intentions. For example, if the last previous action is “SitOn
Chair_5”, you should plan “StandUp Chair_5" before the next Navigation action.
Output Response Format: {“plan”: task plan}

Ensure the output can be parsed as json format.

[Start Demonstration]

Demonstration 1:

Desire: I want to lie down.

Visible Scene Graph: {Chair_0, Chair_1, Cup_0, Cup_1, Table_0, Table_1}

Plan: {“plan”: [“Explore”]}

Demonstration 2:

Desire: I want to drink some water.

Visible Scene Graph: {Cup_0, Cup_1, Sink_1, Chair_1, Chair_2}

Plan: {“plan”: [“Navigate Cup_0”, “PickUp Cup-0”, “Navigate Sink_1"]}
Demonstration 3:

Desire: I want to sit to watch TV.

Visible Scene Graph: {Chair_0, Chair_1, Remote_Control_1, TV_1}

Plan: {“plan”: [“Navigate Remote_Control_1”, “PickUp Remote_Control_1”, “Navigate Chair_17,
“SitOn Chair_1"]}

Demonstration 4:

Desire: I want to sit down and stand up.

Visible Scene Graph: {Chair_0, Chair_1, Remote_Control_1, TV_1}

Plan: {“plan”: [“Navigate Chair_0”, “SitOn Chair_0”, “StandUp Chair_0"]}
Demonstration 5:

Desire: I want to drink some water.

Visible Scene Graph: {Chair_1, Chair_2}

Plan: {“plan”: [“Explore”]}

Demonstration 6:

Desire: I want to dance for a while.

Visible Scene Graph: {Chair_1, Chair 2}

Plan: {“plan”: [“Dolt”]}

[End Demonstration]

Your current desire: {DESIRE}

Previous intentions: {PREVIOUS ACTIONS}

Visible Scene Graph: {VISIBLE SCENE GRAPH}

© 00 ~ O UL s W N —

Exploration efficiency. To further demonstrate the effectiveness of desire-driven exploration, we
compare it with the original frontier-based exploration approach. In addition to the planning success
rate, we also calculate the average navigation distance (Nav. Dist.) required to reach the goal object.
According to the results in Tab A-14, our desire-driven strategy enhances the planning success rate
and significantly reduces the navigation distance.
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Table A-14: Effectiveness of desire-driven exploration.

Method Daily Plan. T Desire Plan. T  Nav. Dist.|
Frontier-based (Yamauchi, 1997) 0.45 0.91 142.6
Desire-driven 0.65 0.95 94.9

E DISCUSSIONS

E.1 BROADER IMPACT

As virtual human agents advance, several societal and ethical considerations should be taken into
account. These agents, capable of simulating human-like behavior, may influence social interactions
by potentially reducing human-to-human contact, which could have implications for social dynam-
ics, particularly in certain contexts or communities. Additionally, the use of data-driven approaches
in developing these agents poses the risk of unintentionally reinforcing biases, especially if the train-
ing data does not sufficiently reflect the diversity of the real world. This could result in agents that
inadvertently overlook or misrepresent certain groups. We hope that through our work, more people
will recognize both the significance and challenges of autonomous virtual human agents, fostering
greater awareness and discussion within the research community. By addressing key issues such as
aligning agents’ values with human values and improving the inclusiveness of training datasets, we
aim to contribute to the development of virtual agents that are more ethically and socially responsi-
ble.

E.2 STATEMENT OF LLM USAGE

In addition to implementing the “Mind”, we also used LLMs to polish the manuscript. Specifically,
we prompted LL.Ms to correct grammatical errors and improve the overall writing fluency.

E.3 COMPARISON WITH OTHER COGNITION ARCHITECTURES

Behavior simulation has traditionally been approached through cognitive architectures such as
SOAR (Laird, 2019), ACT-R (Anderson & Lebiere, 2014), and the BDI model (Rao et al., 1995).
These frameworks have been instrumental in modeling reasoning and decision-making processes,
particularly in the context of controlled cognitive tasks and psychological experiments. However,
they largely abstract away the physical body and environment, and do not emphasize the continuous,
dynamic interaction between cognition and physical experience.

In contrast, our proposed EmbodiedHuman architecture is grounded in the principles of embodied
cognition, which emphasize that cognitive processes emerge through continuous interaction between
mind, body, and environment. By integrating a structured cognitive module with motor execution
and environmental feedback, our system constructs a closed-loop that allows virtual humans to per-
ceive, act, and adapt in a physically grounded and context-sensitive manner. This embodied integra-
tion distinguishes our approach from prior cognition frameworks, and supports the development of
virtual agents capable of more natural, context-sensitive, and adaptive behavior in complex environ-
ments. Tables A-15 and A-16 compare the actions generated by our EmbodiedHuman framework
and SOAR, which we modified by incorporating an LLM and enabling environmental exploration
and perception updates. The results demonstrate that our approach more accurately captures the
value of virtual humans and produces actions that are both more reasonable and temporally contin-
uous.

E.4 EXTENSION TO MULTI-AGENT INTERACTION

Our framework is primarily designed for single-agent behavior modeling; nevertheless, it can be
readily extended to multi-agent scenarios by incorporating Interaction as an additional intention.
For example, when Fiona encounters Diego, Fiona will decide whether to initiate interaction, and
Diego will decide whether to respond. If both agents choose to engage, as shown in Figure A-6, they
begin the interaction by generating an interaction prompt for each agent (e.g., “talking to a person
with gestures”).
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Figure A-6: An example of multi-agent interaction. Fiona and Diego talk with each other when they
decide to interact.

E.5 LIMITATIONS

Although our method enables complex interactions with the environment, there are still some limi-
tations, as outlined below:

1) Ultra-realistic motion quality. Although our method supports free-form motion, certain actions
requiring specific tools remain challenging to execute, such as “a person works out with a dumb-
bell.” These actions are difficult to accomplish through joint control and may arise during intention
generation, potentially leading to failures. Besides, due to the lack of full physical simulation, we
can not achieve ultra-realistic human motion.

2) Diverse multi-agent interactions. Although our framework has the potential to be extended to
multi-agent settings (as shown in Section E.4), it is currently limited to simple dialogue scenarios
and cannot handle complex interactions, such as handshakes or collaborative task completion.

E.6 FUTURE WORK

We identify three key directions to further enhance and expand the capabilities of our approach.

1) Building an open-source ecosystem. We will open-source our code and maintain it in the long
term. Since our framework only requires an unknown scene and a virtual human profile as input,
it is highly scalable. We will also continue to expand the benchmark. Finally, we will create a
user-friendly interface to enable further research and development on this foundation.

2) Enabling multi agent interactions. Future work could further explore interactions among multi-
ple virtual humans. One potential direction is leveraging an LLM to simulate social relationships
between individuals and model their interactions—both verbal and physical—based on these re-
lationships, which could also enable collaborative task completion. Besides, multi-human motion
generation methods can be employed to enable complex interactive motions (e.g., “hug”, “shake
hands”).

3) Improving motion quality. In future work, it would be beneficial to incorporate physical informa-
tion to enhance the quality of motion. This could involve leveraging imitation learning to achieve
physics-based human motion control and incorporating additional physical attributes for perception,
such as object weight.
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Table A-9: Virtual human profiles: Part I.

Profession: Athlete

Age: 27

Personality: Diego is a dedicated athlete who
places a strong emphasis on his fitness. His
rigorous training routine is complemented by
a balanced, high-protein diet that fuels his
high-performance workouts. To stay sharp
and energized throughout his day, he relies on
his love for coffee, savoring each cup to main-
tain focus and alertness. After a long training
session or busy day, Diego unwinds by occa-
sionally enjoying a drink, using it as a way to
relax and decompress. He maintains a strong
sense of balance between his passion for fit-
ness and his need for rejuvenation.

Daily Goal: Diego needs to do some exercise
today.

Profession: Manager

Age: 28

Personality: Fiona is a dynamic and outgoing
manager at a thriving trading company, known
for her exceptional leadership and strong in-
terpersonal skills. With a natural talent for
building relationships, she’s a social butterfly
who thrives in fast-paced environments, eas-
ily connecting with colleagues, clients, and
partners alike. Her enthusiasm and positivity
are contagious, making her a beloved figure in
the office. Outside of work, Fiona has a deep
passion for dancing. Dancing allows her to
express herself creatively and unwind after a
busy day.

Daily Goal: Today is a holiday.

Profession: Dancer

Age: 27

Personality: Rachel is a vibrant and ex-
pressive dancer whose passion for movement
flows into all aspects of her life. She loves
experimenting with different cuisines but pri-
oritizes a balanced diet rich in fresh vegeta-
bles, lean proteins, and the occasional indul-
gent dessert to keep her energy high for per-
formances. Outside of dance, Rachel enjoys
spending quiet moments practicing yoga or
exploring art galleries for creative inspiration,
always seeking beauty in movement and still-
ness alike.

Daily Goal: Rachel will hold a party tonight.

Profession: Engineer

Age: 27

Personality: Ben is a dynamic and outgo-
ing engineer with a zest for life and a knack
for solving complex problems. His charis-
matic personality shines through in both his
professional and personal interactions. While
he thrives on tackling engineering challenges,
Ben also knows the importance of balance.
He likes treating himself to some crispy fried
food and a cold cola, especially after a produc-
tive day. With his blend of technical expertise
and an easygoing nature, Ben embodies the
perfect mix of dedication and fun.

Daily Goal: Ben needs to finish his project to-
day.

Profession: Researcher

Age: 27

Personality: Sophia is a passionate re-
searcher dedicated to advancing the field of
computer vision. Her work involves designing
algorithms, analyzing complex visual data,
and exploring the interplay between artificial
intelligence and human perception. Outside
her professional life, Sophia is a fitness en-
thusiast with a disciplined approach to health
and wellness. She values physical activity
as a way to maintain mental clarity and of-
ten engages in activities like yoga, running, or
strength training.

Daily Goal: Sophia works from home today.

Profession: Student

Age: 26

Personality: Luke is a vibrant and curious
student with a strong passion for geek culture.
He loves immersing himself in the worlds of
TV shows and video games, where he finds
excitement, creativity, and endless entertain-
ment. Whether it’s unraveling intricate story-
lines or mastering new gaming levels, Luke
thrives on intellectual challenges and imagi-
native experiences. His enthusiasm for pop
culture and technology makes him a true geek
at heart, always eager to learn, explore, and
connect with others who share his interests.
Daily Goal: Today is a holiday.
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Table A-10: Virtual human profiles: Part II.

Profession: Saleswoman

Age: 32

Personality: Clara, a dynamic and personable
saleswoman, has a knack for connecting with
people and building lasting relationships. She
enjoys staying active in her free time, often
going for early morning runs to clear her mind
before a busy day of meetings and client calls.
With a preference for balanced, nutrient-rich
meals, Clara usually starts her day with a
smoothie packed with greens and fruit, keep-
ing her energized and focused. In her down-
time, she loves exploring local art galleries,
finding inspiration in creative expressions out-
side her usual business-driven routine.

Daily Goal: Clara needs to make some phone
calls today.

Profession: Programmer

Age: 24

Personality: Armin is a young programmer
with a passion for solving complex problems
and creating efficient, innovative solutions.
Outside of work, Armin is curious and always
eager to learn—he spends his free time ex-
ploring new technologies, reading about ad-
vancements in Al, or contributing to open-
source projects. Despite his tech-heavy focus,
he balances his life with hobbies like gaming,
hiking, or playing chess, which help sharpen
his strategic thinking. Socially, Armin is ap-
proachable and thoughtful, with a knack for
explaining technical concepts in an under-
standable way.

Daily Goal: Armin needs to solve an issue to-
day.

Profession: High school teacher

Age: 35

Personality: Megan is a thoughtful and ded-
icated high school teacher who finds joy in
sparking curiosity and encouraging her stu-
dents to reach their potential. She has a pas-
sion for cooking and enjoys experimenting
with new, healthy recipes that she can share
with family and friends. Outside the class-
room, Megan loves hiking and exploring local
trails, finding peace and inspiration in nature,
and is also an avid reader, especially of his-
torical novels and biographies that deepen her
understanding of the world.

Daily Goal: Megan needs to prepare for a

Profession: Chef

Age: 38

Personality: Evan has a keen sense for bal-
ancing flavors, blending traditional techniques
with modern twists to create dishes that are
as visually stunning as they are delicious.
With years of experience in diverse cuisines,
Evan specializes in transforming fresh, locally
sourced ingredients into mouthwatering meals
that tell a story. Outside of work, he en-
joys experimenting with new recipes, explor-
ing global cuisines, and mentoring budding
chefs, sharing his love for food and the art of
cooking.

Daily Goal: Evan will try some new cooking.

class.
\
Table A-15: Generated actions of SOAR (Laird, 2019).

{
"Actionl": "Navigate Apple_115", "Action2": "PickUp Apple_115",
"Action3": "SitOn Chair_38", "Action4": "PickUp Cup_39",
"Action5": "PutDown Cup_39", "Action6": "StandUp Chair_ 38",
"Action7": "Navigate Laptop_86", "Action8": "SitOn Chair_108",
"Action9": "StandUp Chair_108", "ActionlO": "Navigate ArmChair_62",
"Actionll": "SitOn ArmChair_62", "Actionl2": "PickUp Newspaper_ 91",
"Actionl3": "PutDown Newspaper_ 91", "Actionl4": "StandUp ArmChair_ 62",
"Actionl5": "Navigate Bed_120", "Actionl6": "LieOn Bed_120",
"Actionl7": "StandUp Bed_120", "Actionl8": "Navigate YogaSpot",
"Actionl9": "DoIt: Yoga exercise", "Action20": "DoIt: Strength training",
"Action2l1": "Navigate Sink_67", "Action22": "PickUp SoapBottle_40",
"Action23": "PutDown SoapBottle_40","Action24": "Navigate Sofa_41",
"Action25": "SitOn Sofa_41"

¥
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1350
1351
1352
1353
1354
1355
1356
1357
1358 Table A-16: Generated actions of EmbodiedHuman.
1359
1360
{
1361 "Desirel": {
1362 "Time": "07:30",
1363 "Desire": "Start the morning with yoga to energize and clear my mind before
work.",
1364 "Intentions": ["DoIt"]},
"Desire2":
1365 —
Time": "08:10",
1366 "Desire": "Prepare a light breakfast and enjoy it while planning the day.",
1367 "Intentions": ["Navigate Apple_115", "PickUp Apple_115"] },
"Desire3": {
1368 "Time": "08:45",
1369 "Desire": "Begin computer vision research and coding work on the laptop.",
"Intentions": ["Navigate Laptop_86", "PickUp Laptop_86", "Navigate
1370 Chair_100", "SitOn Chair_100"1},
"Desired": {
1371 e
Time": "10:20",
1372 "Desire": "Take a short coffee break to stay refreshed.",
1373 "Intentions": ["StandUp Chair_ 100", "Navigate Mug_30", "PickUp Mug_30",
"Navigate CoffeeMachine_8"1},
1374 "Desire5":
1375 "Time": "11:05",
"Desire": "Continue working on algorithms and data analysis.",
1376 "Intentions": ["Navigate Chair_100", "SitOn Chair_100"1},
"Desire6": {
1377 "Time": "12:40",
1378 "Desire": "Eat a healthy lunch with some bread and lettuce.",
1379 "Intentions": ["StandUp Chair_100", "Navigate Bread_58", "PickUp Bread_58"]},
"Desire7": {
1380 "Time": "14:10",
1381 "Desire": "Have a midday stretch.",
"Intentions": ["DoIt"]},
1382 "Desire8": {
"Time": "14:35",
1383 "Desire": "Resume research tasks and writing code at the desk.",
1384 "Intentions": ["Navigate Chair_ 100", "SitOn Chair_100"1},
"Desire9":
1385 "Time": "17:15",
1386 "Desire": "Relax and read a book to wind down after work.",
1387 "Intentions": ["StandUp Chair_ 100", "Navigate Book_54", "PickUp Book_ 54",
"Navigate Sofa_41", "SitOn Sofa_41"]},
1388 "Desirel0": {
1389 "Time": "18:25",
"Desire": "Prepare and enjoy a light dinner, drinking water to stay hydrated.",
1390 "Intentions": ["StandUp Sofa_41", "Navigate Cup_39", "PickUp Cup_39", "Navigate
Sink_67",]
1391 "Desirell": { o
1392 "Time": "20:15",
1393 "Desire": "Unwind for the evening by lying on the bed and reflecting on the
day.",
1394 "Intentions": ["Navigate Bed_120", "LieOn Bed_120"]}
1395 }
1396
1397
1398
1399
1400
1401
1402
1403
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