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Abstract
Text-video retrieval (TVR) identifies relevant videos based on tex-
tual queries. Existing methods are limited by their ability to un-
derstand and connect different modalities, resulting in increased
difficulty in retrievals. In this paper, we propose a generation-based
TVR paradigm facilitated by LLM distillation to better learn and cap-
ture deep retrieval knowledge for text-video retrieval, amidsting the
rapid evolution of Large Language Models. Specifically, we first de-
sign the fine-tuning large vision-language model that leverages the
knowledge learned from language models to enhance the alignment
of semantic information between the text and video modalities. It
also incorporates an inductive reasoning mechanism, which focuses
on incorporating important temporal and spatial features into the
video embeddings. We further design question prompt clustering to
select the most important prompts, considering their contribution
to improving retrieval performance. Experimental results show that
our approach achieves excellent performance on two benchmark
datasets compared to its competitors.
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1 Introduction
Text-Video Retrieval (TVR) has emerged as an indispensable task
that aims to deliver relevant videos based on their textual queries
[51, 58]. It utilizes the fusion of text and video modalities to en-
hance the accuracy and diversity of search results. By effectively
integrating these two modalities, TVR enables users to find videos
that match their queries more effectively. It plays a crucial role in
a range of applications, including video recommendation systems
[16, 39] and video question answering systems [5, 49].

Text-video retrieval is different from uni-modal tasks like con-
ventional ad-hoc retrieval [14, 47], as it involves operating across
different modalities. The goal of text-video retrieval is to accurately
identify videos that are relevant to given textual queries. However,
this task is challenging due to the heterogeneity between text and
video modalities. Traditional methods [21, 54] for video retrieval of-
ten rely on metadata or manually annotated tags, which have limita-
tions in capturing the rich semantics and nuances present in videos.
Some approaches [2, 17] utilize textual information alone, such as
keyword matching or semantic techniques. Others leverage visual
features extracted from videos to improve retrieval accuracy[26, 45].
However, these methods struggle to handle the vast amount of tex-
tual and visual data available, leading to suboptimal retrieval results.
Cross-modality semantic representation and alignment are at the
core of the text-video retrieval task [25, 52]. Existing work can be
mainly divided into two categories: one focuses on cross-modal
semantic representation, and the other focuses on cross-modal
semantic alignment. Methods like CLIP [40] and CLIP4CLIP [35]
embed the textual query and the video into a shared semantic
space to calculate similarity, but they fail to capture fine-grained
interactions [43]. Other methods employ attention mechanisms to
capture the interaction between textual words and video frames,
achieving significant performance improvements [1, 36]. LEAN [27]
and DGL [53] utilize strategy fostering richer interactions between
text and video content. However, there is still a need to explore
cross-modality semantic learning in a more systematic manner.

In this paper, amidst the rapid advancement of Large Language
Models (LLMs), we break free from conventional thought patterns
and introduce a generation-based TVR paradigm through LLM
distillation (Figure 1), aiming to revisit and reassess the future
development and potential value of TVR. Unlike existing methods
that rely on pre-defined or context features, our approach designs
a Multi-Modal Inductive framework to better capture the seman-
tics of textual queries and video contents for Text-Video Retrieval
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Figure 1: We break free from conventional thought patterns
and introduce a generation-based text-video retrieval para-
digm through LLM distillation.

termed as MMI-TVR1. Specifically, we first design the fine-tuning
large vision-language model to learn the associations between tex-
tual queries and video contents, capturing the nuances and context
of both modalities. To incorporate important temporal and spatial
features into the video embeddings, we employ an inductive rea-
soning mechanism that utilizes the learned knowledge from the
languagemodel. This attentionmechanism helps to align the seman-
tic information between the text and video modalities, improving
retrieval performance. We further design the fine-grained knowl-
edge generation component to generate prompts that are relevant
and informative and facilitate retrieval and problem-solving. These
prompts serve the purpose of generating more features specifically
tailored for the TVR task. Furthermore, we employ question prompt
clustering to select the most important prompts, considering their
contribution to improving retrieval performance. Our extensive
experiments on benchmark datasets demonstrate that our approach
outperforms strong competitors and achieves excellent text-video
retrieval performance. Our contributions can be summarized as
follows.

• To our best knowledge, we are the first to fine-tune the large
vision-language model to understand better cross-modal
semantic relationships to enhance the TVR task.

• We design an inductive reasoning mechanism to incorporate
important temporal and spatial features and fine-grained
knowledge generation to incorporate retrieval reasoning
information.

• Experimental results indicate that the framework achieves
state-of-the-art performance on the public text-video re-
trieval datasets.

2 Related Works
2.1 Text-Video Retrieval
In recent years, significant advancements have been made in the
field of Text-Video Retrieval (TVR). Several methods have been pro-
posed to address the challenge of retrieving relevant videos based
on textual queries [18, 35]. These methods involve the extraction
and encoding of multi-modal features from videos, including visual,
and textual information. The integration of multi-modal features
and the use of pre-trained models, such as the Multi-modal Trans-
former (MMT) [12] and CLIP [40], have significantly improved the

1The source code is available at https://anonymous.4open.science/r/MMI-TVR-9119.

performance of TVR systems. The Multi-modal Transformer (MMT)
model [12] effectively captures and integrates information from
different modalities to enhance retrieval performance. CLIP (Con-
trastive Language-Image Pretraining) [40] is a pre-trained model
that learns joint representations of images and texts. By leveraging
the pre-trained CLIP model, researchers have achieved notable im-
provements in video retrieval performance [11, 35]. The abovemeth-
ods demonstrate the effectiveness of joint learning multi-modal
features for the text-video retrieval task. Nevertheless, all of these
methods ignore the fine-grained multi-modal information, as well
as the object features.

Another effective strategy in text-video retrieval is to focus on
fine-grainedmatching and alignment between video and text [7, 29].
This approach aims to capture detailed correspondences between
the two modalities, leading to more accurate retrieval results. The
Context-Aware Mixture of Experts (CAMoE) network proposed
by Cheng et al. [4] leverages a mixture of expert models to align
video features with various textual aspects, enhancing retrieval
accuracy. The T2VLADmethod [46] employs global-local alignment
to better capture spatial and temporal information in videos. The
Hierarchical Transformer [31] performs cross-modal hierarchical
matching to capture semantic and temporal dependencies between
video frames and textual queries. These fine-grained matching
and alignment approaches have shown effectiveness in improving
retrieval performance [28, 38]. Furthermore, some approaches have
also introduced additional meta information, such as video captions
[48], video titles [9], and object features [29], to facilitate text-video
retrieval. Nevertheless, the above existing methods ignore fine-
grained alignment between text and video pairs and in turn may
constrain the effectiveness of the text-video retrieval.

Building on these foundations, our paper, set against the back-
drop of the rapid advancement of LLMs [55], introduces a generation-
based TVR paradigm through LLM distillation, as shown in Figure 1.
Our approach aims to revisit and reassess the future development
and potential value of TVR, marking a departure from conventional
methodologies.

2.2 Large Language Models
The development of NLP has boost remarkable progress in Multi-
modal Large Language Models (MLLMs) [30, 59]. Owing to the
robust background knowledge and inferential capabilities of multi-
modal systems, MLLMs are proficient in comprehensively under-
standing the correspondences between visual and textual inputs.
Consequently, this enables them to achieve relatively favorable
results in tasks such as text-video retrieval. Some methods use
MLLMs to enhance the original data [44, 57], such as generating
descriptions of images using MLLMs, thereby augmenting the orig-
inal data and improving the ability of image-text retrieval models.
FuseCap [42] uses LLM to fuse the output of such visual experts
with raw captions, producing comprehensive image descriptions
that are then used to enhance the model’s training data.

3 PRELIMINARIES
Definition 1. Text-Video Retrieval (TVR). Given a textual

query 𝑞 represented as a set of words, and a collection of videos 𝑉 =

{𝑣1, 𝑣2, . . . , 𝑣𝑛}, where each video 𝑣𝑖 consists of a sequence of frames,

https://anonymous.4open.science/r/MMI-TVR-9119
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Figure 2: The MMI-TVR framework for the text-video retrieval. The Fine-tuning large vision-language model is trained to
comprehend the associations between the textual and visual modalities. Fine-grained knowledge generation generates prompts
that promote thinking and reasoning by clustering question prompts.

and a set of corresponding textual descriptions 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛},
where each description 𝑡 𝑗 corresponds to the video 𝑣 𝑗 . The objective of
the TVR task is to retrieve a subset of relevant videos𝑉 ′ from𝑉 , which
are considered to have high relevance to the query 𝑞. Alternatively,
the goal is to retrieve a subset of relevant textual descriptions 𝑇 ′ from
𝑇 , which are highly relevant to the query 𝑞.

The task involves matching a given textual query with relevant
videos or textual descriptions. The retrieval objective is to retrieve
a subset of videos or textual descriptions from a collection that is
highly relevant to the query.

4 Methodology
This section introduces our proposed multi-modal inductive text-
video retrieval model (MMI-TVR). As shown in Figure 2, MMI-
TVR consists of the following two modules: 1) Fine-tuning large
vision-language model.With a large vision-language architec-
ture, the model is trained to comprehend the associations between
the textual and visual modalities. The inductive reasoning mecha-
nism contains two attention mechanisms utilized to highlight im-
portant temporal and spatial features in video embeddings, which
helps to align the semantic information between the text and video
modalities, improving retrieval performance. 2) Fine-Grained
Knowledge Generation. It generates prompts that promote struc-
tured thinking and reasoning by generating prompts that are rele-
vant and informative and facilitate retrieval. This is accomplished
through clustering question prompts and sampling demonstrations
that satisfy specific criteria.

4.1 Text-Video Large Language Model
To effectively understand and retrieve information from both tex-
tual queries and video content, we propose fine-tuning a large
visual-language model (LVLM) that leverages transformer-based
architecture LLaVA [30]. It has demonstrated remarkable perfor-
mance inmulti-modal NLP tasks, as it excels at capturing long-range
dependencies and contextual information. The input for the fine-
tuning LLM consists of query text (𝑇 ) and key-images (𝐼 ) extracted
from videos (𝑉 ) and videos (𝑉 ). The key-images are selected based
on notable disparities [27] in the video content from all frames. To
represent the key-images of k-th, we average the weighted frames

between (k-1)-th and k-th in a video as a key-images of k-th input
h𝐼𝑘 =

∑𝑁 (𝑘 )
𝑖=𝑁 (𝑘−1) 𝛼𝑖 (W𝐼 · 𝑔 (𝐹 )), where 𝑁 (𝑘) is the number of last

frames of key-images of k-th, and the number of key-images repre-
sents K, and 𝐹 is the frames in the video, 𝛼𝑖 represents the weight
assigned to each frame and caculated by softmax function, and𝑊𝐼

is a trainable weight matrix, and 𝑔(·) represents the pre-trained
CLIP visual encoder ViT-L/14 [8]. To further represent the video
information, we average the weighted sum of all key-images in a
video as a video input h𝑣 =

∑𝑀
𝑖=1 𝛽𝑖 (W𝑉 · 𝑔 (𝐼 )), where 𝑀 is the

total number of key-images in the video, 𝛽𝑖 represents the weight
assigned to each key-image and caculated by softmax function,𝑊𝑉
is a trainable weight matrix. The fine-tuned model is constructed
using a transformer-based architecture that utilizes self-attention
mechanisms. These mechanisms capture dependencies and rela-
tionships between different tokens in input sequences.

4.1.1 Inductive ReasoningMechanism. The inductive attentionmech-
anism serves as a pivotal component in our framework, allowing
us to emphasize crucial temporal and spatial features within video
embeddings. By computing attention weights between the query
representation and the video embeddings, it effectively aligns the
semantic information across the text and video modalities.

Temporal Attention Mechanism. We further enhance the model’s
performance by applying a temporal attention mechanism. This
mechanism is designed to capture the temporal dynamics of video
sequences and align them with the corresponding textual queries.
To incorporate temporal attention, we extend the self-attention
mechanism of the transformer model to consider the temporal di-
mension of the video sequences. The temporal attention mechanism
can be mathematically described as:

TA(Q𝐼 ,K𝐼 ,V𝐼 ) = 𝜎

(
(Q𝐼 ·WTQ) · (K𝐼 ·WTK · H𝑇 )√︁

𝑑𝑘

)
·V𝐼 ·WTV, (1)

where Q𝐼 , K𝐼 , and V𝐼 represent the query, key, and value matrices
of key-images respectively, and 𝑑𝑘 is the dimension of the key vec-
tors.W𝑇𝑄 ,W𝑇𝐾 , andW𝑇𝑉 are learned weights corresponding to
the query, key, and value matrices. 𝜎 is the softmax function. The
temporal matrix H ∈ R𝐾×𝐾 captures the temporal relationships be-
tween key-images embeddings and obtains temporal embedding 𝐸𝑡 ,
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which allows the model to attend to relevant temporal features.H is
initialized by the combination metric of the positional information
of key-images and semantic similarities between the key-images to
learn each embedding considering the temporal connection.

Spatial Attention Mechanism. In addition to the temporal atten-
tion mechanism, we also introduce a spatial attention mechanism to
capture the spatial relations within video frames. This mechanism
aims to focus on specific regions or objects in the video frames that
are relevant to the textual queries. To incorporate spatial attention,
we extend the self-attention mechanism to consider the spatial di-
mension of video frames. The spatial attention mechanism can be
mathematically described as:

SA(Q𝐼 ,K𝐼 ,V𝐼 ) = 𝜎

(
(Q𝐼 ·WSQ) · (K𝐼 ·WSK · G𝑇 )√︁

𝑑𝑘

)
·V𝐼·WSV, (2)

whereW𝑆𝑄 ,W𝑆𝐾 , andW𝑆𝑉 are learned weights corresponding to
the query, key, and value matrices. The spatial matrix G ∈ R𝐾×𝐾

captures the spatial relationships between regions or objects in
the video frames and obtains spatial embedding h𝑠 , allowing the
model to attend to specific spatial features. G is initialized using
a strategy that integrates both geometric proximity and semantic
similarity among regions or objects within the frames, to ensure
that each embedding takes into account the spatial connection.
With the incorporation of this attention mechanism, the model
effectively emphasizes important temporal and spatial features
within the video embeddings. This process significantly improves
the alignment of semantic information between the text and video
modalities, leading to enhanced retrieval performance and a more
robust mapping of textual queries to relevant video content. The
final visual embedding h𝑣 is the fusion of temporal embedding h𝑡
and spatial embedding h𝑠 after the two attentions by using the
nonlinear transformation.

To predict the masked tokens based on the context provided by
the remaining tokens, we mask certain tokens in textual queries and
video sequences, and train the model. It enables the model to learn
the semantic relationships between textual and visual modalities.
The objective function for fine-tuning involves minimizing the
negative log-likelihood of predicting the masked video embeddings
given the textual query, and vice versa. The objective function for
fine-tuning can be represented as:

Lm = − log 𝑃 (𝑉1, . . . ,𝑉𝑛 |𝑇 ) − log 𝑃 (𝑇 |𝑉1, . . . ,𝑉𝑛), (3)

where {𝑉1, . . . ,𝑉𝑛} represents a sequence of video embeddings, and
𝑇 represents the corresponding textual query.

4.2 Fine-Grained Knowledge Generation
Fine-grained knowledge generation generates knowledge that fa-
cilitates reasoning and problem-solving, referring to the process
of generating knowledge that can elicit specific information or re-
sponses. It encourages coherent and structured thinking, which
consists of two main modules: Knowledge generation and Knowl-
edge clustering.

4.2.1 Knowledge Generation. Knowledge generation involves gen-
erating knowledge in both textual and video formats to facilitate
coherent and structured thinking. It generates diverse and targeted

knowledge in both textual and video formats. These prompts serve
as the initial stimuli for the subsequent stages of clustering, facili-
tating coherent reasoning and problem-solving.

Textual Knowledge Generation. It is achieved by defining appro-
priate instruction templates for input into the LLM. These prompts
are designed to elicit implicit information by answering specific
questions.

1. What key concepts are mentioned in this text?
2. Which events are occurring, and which entities are

involved??

This prompt aims to guide the model to identify and extract impor-
tant entities or words from the given text to gain a better under-
standing. Multiple questions are generated for each text, capturing
different aspects of implicit information relevant to text retrieval
and comprehension.

Visual Knowledge Generation. The visual knowledge generation
focuses on generating prompts that are specific to visual content.
Instead of text-based prompts, the algorithm generates prompts
tailored to the visual information in a video. A corresponding “In-
struction Pool” has been defined, with a few selected examples
shown below

1. What are the important entities in this video?
2. What are the relationships of these entities in this

video?

Other settings for visual knowledge generation are consistent with
those of textual knowledge generation.

4.2.2 Knowledge Clustering. The knowledge clustering involves
partitioning a set of question prompts into a small number of clus-
ters. This partitioning is based on the number of demonstrations
that question prompts can support. A diversity-based clustering
approach is used, ensuring the mitigation of errors and the coverage
of different types of prompts.

To cluster questions, a diversity-based approach is applied. In-
stead of clustering entire demonstrations (question, answer and
retrieval result pairs), we only cluster the questions prompts them-
selves. We calculate a vector representation for each question by
the fine-tuning large vision-language model in Section 4.1. These
question representations are then processed using k-means clus-
tering.For each cluster 𝑖 , we sort the questions into a list q𝑖 =[
𝑞𝑖1, 𝑞

𝑖
2, . . .

]
in ascending order of distance to the cluster center.

When generating demonstrations, we give preference to the most
typical question in each cluster. The objective function for cluster-
ing the question prompts is as follows:

minimize
𝑘∑︁
𝑖=1

∑︁
𝑞𝑖
𝑗
∈q𝑖

d(𝑞𝑖𝑗 , 𝑐𝑖 ), (4)

d(𝑞𝑖 , 𝑐𝑖 ) =
 1
|𝑞𝑖 |

∑︁
𝑤∈𝑞𝑖

h(𝑤) − h(𝑐𝑖 )
 , (5)

where 𝑘 represents the number of clusters, ∥∥ means Euclidean
norm, q𝑖 is the list of questions in cluster 𝑖 , and 𝑐𝑖 is the centroid
(or center) of cluster 𝑖 . h(𝑤) and h(𝑐𝑖 ) represents the embedding of
word𝑤 and center 𝑐 . The goal is to minimize the distance between
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each question 𝑞𝑖
𝑗
and its cluster center 𝑐𝑖 . The distance function

d(𝑞𝑖 , 𝑐𝑖 ) measures the similarity between a question 𝑞𝑖 and the
cluster center 𝑐 . It is computed as the Euclidean distance between
the average embeddings of the words in the question 𝑞𝑖 and the
cluster center 𝑐𝑖 .

To select a representative question prompt from each cluster and
generate a reasoning chain as the skeleton using the model, we use
demonstration sampling. Formally, for each cluster 𝑖 (𝑖 = 1, . . . , 𝑘),
a demonstration 𝑑𝑖 , consisting of a question, answer, and retrieval
result, is generated. Starting with the closest question to the cluster
center, a prompted input is formulated as Section 4.2.1. The input
is then fed into the fine-tuning model to produce a reasoning chain
comprising an answer 𝑎𝑖

𝑗
and a retrieval result 𝑟 𝑖

𝑗
. A candidate

demonstration 𝑑𝑖
𝑗
for cluster 𝑖 is as:

𝑑𝑖𝑗 = [Q : 𝑞𝑖𝑗 , A : 𝑎𝑖𝑗 ◦ 𝑟
𝑖
𝑗 ], (6)

where 𝑑𝑖
𝑗
is constructed by concatenating the question 𝑞𝑖

𝑗
, answer

𝑟 𝑖
𝑗
, and retrieval result 𝑎𝑖

𝑗
. The algorithm generates prompts that

encourage structured thinking by clustering prompts and sampling
demonstrations that satisfy specific criteria.

The objective function for demonstration sampling is as:

argmin𝑑𝑖
𝑗

(
len(𝑞𝑖𝑗 ), len(𝑎

𝑖
𝑗 ), count(∇, 𝑎

𝑖
𝑗 )

)
. (7)

The objective for demonstration sampling is to minimize the length
of the question, the length of the answer, and the count of the
answer terms. ∇ is a predefined set of answer terms.Through fine-
grained knowledge generation, the model generates two types of
skeletons: the Text Skeleton and the Video Skeleton.

Text Skeleton. The text skeleton is the generation of a text skele-
ton, which involves extracting key semantic concepts and coher-
ently structuring them. It also contains the answer to the textual
question prompt.

Video Skeleton. It includes the generation of a video skeleton,
which aims to distill the salient visual and temporal features of the
video data. This process identifies important objects, actions, and
their temporal boundaries within the video by the answer to the
visual question prompt.

4.3 Joint Objective
The objective is to bridge the gap between text and video modali-
ties and facilitate the retrieval of relevant videos based on textual
queries. To achieve this objective, we employ the cosine similarity
metric, to compute a similarity score between the text representa-
tion (h𝑇 ) and the video embeddings (h𝑉 ) obtained from the videos
in the dataset. The text-video retrieval process can be formalized
as follows:

L𝑟 = 𝑠𝑖𝑚(h𝑇 , h𝑣) . (8)

In order to further improve the performance of fine-tuned large-
scale language-visual models for text video retrieval tasks, we adopt
the LVLM encoder 𝐸𝑛𝑐 () to evaluate the similarity between the
generated Text Skeleton (𝑇𝑠 ) and Video Skeleton (𝑉𝑠 ).

Ls = 𝐸𝑛𝑐 (𝑃,𝑇𝑠 ,𝑉𝑠 ), (9)

where 𝑃 is the prompt for evaluate the similarity. The prompt is
that "Given a probability value of [0,1], evaluate the probability that
the Textual Skeleton and Video Skeleton are describing a scene." In this
way, the model can understand and mine the fine-grained semantic
connections between text queries and video content, thereby pro-
viding richer and more accurate semantic information for retrieval.

The overall joint objective is formed by combining the two losses
in the following formulation:

L = 𝜆𝑟L𝑟 + 𝜆𝑠L𝑠 , (10)

where 𝜆𝑟 , and 𝜆𝑠 are trade-off parameters. The optimization is
performed using a mini-batch strategy.

5 Experiments
5.1 Dataset and Evaluation Metric
We conducted experiments on five widely used Text-Video Retrieval
datasets: MSR-VTT [50] is a well-known dataset specifically de-
signed for open-domain video captioning. MSVD [3] is another
widely used dataset for text-video retrieval tasks. LSMDC [41] is a
dataset created in a joint effort by Johns Hopkins University and
FAIR. DiDeMo [20] consists of 10K Flickr videos annotated with
40K text captions. ActivityNet [19] contains 20K YouTube videos
annotated with 100K sentences, with 10K videos in the training set.

To evaluate the performance of our models, we reported several
official evaluation metrics that are widely used in the retrieval liter-
ature, including R@1, R@5, R@10, MdR, and MnR. These metrics
provide a comprehensive assessment of the models’ performance
in terms of retrieval accuracy and ranking evaluation. They have
been extensively employed in previous works [15, 36].

5.2 Comparision Methods
We compare our method with three traditional TVRmodelsCE [32],
SSB [37], and FROZEN [1], which focus on multi-modal modeling,
and five CLIP-based TVR models CLIP4Clip [35], CLIP2Video
[11], X-CLIP [36], ClipBERT [24], and CenterCLIP [56], which
focus on intergrate more multi-modal information, and five cross-
modality learning TVRmodelsMIL-NCE [33],DiCoSA [23],LEAN
[27], TS2-Net [34], EMCL [22],X-Pool [13], TT-CE [6],DGL [53],
and UATVR [10], which focus on cross-modality semantic repre-
sentation and alignment among the videos and the texts.

5.3 Implementation Details
We used PyTorch2 as a deep learning framework to develop the
TVR. All experiments were conducted on a server with four GPU
(Tesla V100). The LLava version is llava-v1.5-13b in huggingface3
for text and video initialization and the dimension was set to 768.
Training is performed using Adam optimizer with a learning rate
of 0.001, and learning rate is 3e-5. We use a batch size of 512 and
apply a dropout rate of 0.1 to prevent overfitting. The text and
visual instruction pool have 50 questions respectively. The number
of clusters k is calculated by the knowledge clustering. For hyper-
parameters, the best coefficients 𝜆𝑟 , 𝜆𝑠 are 0.6, and 0.3.

2https://pytorch.org/
3https://huggingface.co/liuhaotian/llava-v1.5-13b
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Table 1: Main experiments. The best and second-best results are highlighted in bold and underlined, “–” means results are not
available. ‘↑” denotes that higher is better. "↓" denotes that lower is better.

Dataset Method Text-to-Video Retrieval Video-to-Text Retrieval
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

MSR-VTT

CE [32] 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 5.3 25.1
SSB [37] 27.4 56.3 67.7 3.0 - 26.6 55.1 67.5 3.0 -
FROZEN [1] 31.0 59.5 70.5 3.0 - - - - - -
CLIP4Clip-meanP [35] 43.1 70.4 80.8 2.0 16.2 43.1 70.5 81.2 2.0 12.4
CLIP2Video [11] 45.6 72.6 81.7 2.0 14.6 43.5 72.3 82.1 2.0 10.2
X-CLIP (ViT-B/16) [36] 49.3 75.8 84.8 2.0 12.2 48.9 76.8 84.5 2.0 8.1
MIL-NCE [33] 47.2 73.0 82.8 2.0 13.9 46.3 74.1 84.8 2.0 8.8
DiCoSA [23] 47.5 74.7 83.8 2.0 13.2 46.7 75.2 84.3 2.0 8.9
DGL [53] 48.3 71.8 80.6 - 13.4 45.7 74.0 82.9 - 10.9
LEAN [27] 50.6 77.1 85.2 2.0 11.4 49.1 78.2 86.7 2.0 7.3

MMI-TVR (Ours) 52.4 78.0 87.6 2.0 11.1 51.2 79.5 87.4 2.0 6.8

MSVD

CE [32] 19.8 49.0 63.8 6.0 23.1 - - - - -
SSB [37] 28.4 60.0 72.9 4.0 - - - - - -
FROZEN [1] 33.7 64.7 76.3 3.0 - - - - - -
CLIP4Clip-meanP [35] 46.2 76.1 84.6 2.0 10.0 56.6 79.7 84.3 1.0 7.6
CLIP2Video [11] 47.0 76.8 85.9 2.0 9.6 58.7 85.6 91.6 1.0 4.3
X-CLIP (ViT-B16) [36] 50.4 80.6 - - 8.4 66.8 90.4 - - 4.2
MIL-NCE [33] 47.5 78.0 86.6 2.0 9.3 70.2 88.1 92.7 1.0 6.0
DiCoSA [23] 47.4 76.8 86.0 2.0 9.1 - - - - -
UATVR(ViT-B16) [10] 49.7 79.0 87.3 2.0 8.9 - - - - -
LEAN [27] 52.1 81.9 87.0 2.0 7.4 71.3 91.7 93.8 1.0 4.1

MMI-TVR (Ours) 53.8 82.5 87.7 2.0 7.1 73.0 93.4 94.7 1.0 3.6

LSMDC

TS2-Net [34] 23.4 42.3 50.9 9.0 56.9 - - - - -
FROZEN [1] 15.0 30.8 39.8 20.0 - - - - - -
CLIP4Clip (seqLSTM) [35] 21.6 41.8 49.8 - 58.0 20.9 40.7 49.1 - 53.9
EMCL [22] 23.9 42.4 50.9 10.0 - 22.2 40.6 49.2 - -
X-CLIP [36] 23.3 43.0 - - 56.0 22.5 42.2 - - 50.7
CenterCLIP [56] 21.9 41.1 50.7 - 55.6 21.1 41.2 50.2 - 51.0
X-Pool [13] 25.2 43.7 53.5 8.0 53.2 22.7 42.6 51.2 - 47.4

MMI-TVR (Ours) 26.6 44.6 54.1 7.0 51.8 24.3 43.2 53.9 10.0 45.3

5.4 Main Results
To validate the effectiveness of our proposed model, we present
comprehensive results in Table 1, which reflect the overall perfor-
mance of our model across various evaluation metrics. From the
table, we can observe that: 1) Our model consistently outperforms
all the baseline models across all evaluation metrics. In particular,
we achieve a notable improvement of at least 1.7% on R@1 for
TVR and 0.7% on R@10. This clearly indicates that our model is
capable of effectively fine-tuning large language models for each
text query and video, enabling it to capture intricate correlations
between different modalities with great accuracy. 2) When com-
pared to fine-grained matching and alignment TVR models, our
approach exhibits superior performance. By effectively capturing
the underlying associations between textual and visual modalities,
our model surpasses the performance of these models, showcasing

the effectiveness of our proposed methodology. 3) Our model also
outperforms existing multi-modal transformer-based TVR models.
By leveraging the benefits of both TVR large vision-language model
and fine-grained knowledge generation, our approach demonstrates
improved performance compared to these models. This suggests the
advantages of ourmodel in handling complex relationships between
different modalities. 4) It is worth noting that our model even sur-
passes graph neural networks designed specifically for TVR tasks.
This further supports the fact that our fine-tuning large language
model can capture intricate correlations and generalize effectively,
leading to superior performance. 5) By conducting experiments
on multiple text-video retrieval datasets, our model consistently
performs the best. This further reinforces the effectiveness and
robustness of our model across different scenarios and datasets. All
these observations highlight the efficacy of our model in leveraging
multi-modal information and capturing complex correlations.



Multi-Modal Inductive Framework for Text-Video Retrieval MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Table 2: Main experiments of text-to-video retrieval on the ActivityNet and DiDeMo datasets.

Method Text-to-video retrieval on ActivityNet Text-to-video retrieval on DiDeMo
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

CE [32] 18.2 47.7 63.9 6.0 23.1 16.1 41.1 - 8.3 43.7
ClipBERT [24] 21.3 49.0 63.5 6.0 - 24.0 48.0 60.8 6.0 -
TT-CE [6] 23.5 57.2 - 4.0 - 21.6 48.6 62.9 6.0 -
CLIP4Clip [35] 40.5 72.4 83.6 2.0 7.5 42.8 68.5 79.2 2.0 18.9
TS2-Net [34] 41.0 73.6 84.5 2.0 8.4 41.8 71.6 82.0 2.0 14.8
UATVR [10] - - - - - 45.8 73.7 83.3 2.0 13.5
DiCoSA [23] 42.1 73.6 84.6 2.0 6.8 45.7 74.6 83.5 2.0 11.7

MMI-TVR (Ours) 45.3 75.1 87.9 2.0 5.7 51.2 76.0 86.2 2.0 10.5

Table 3: Variant experiments on the MSR-VTT and MSVD datasets. “w/o” means removing corresponding module. “repl.” means
replacing corresponding module with the other. ‘↑” denotes that higher is better. "↓" denotes that lower is better.

Variants Text-to-Video Retrieval Video-to-Text Retrieval
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

MMI-TVR (Ours) on MSR-VTT 52.4 78.0 87.6 2.0 11.1 51.2 79.5 87.4 2.0 6.8

w/o Fine-tuning LVLM 51.3 77.6 86.7 4.0 11.4 49.1 77.3 85.2 3.0 6.9
w/o Inductive Reasoning Mechanism 51.8 77.1 86.9 4.0 11.7 50.2 78.0 86.3 3.0 7.3
w/o Temporal Attention Mechanism 52.1 77.8 87.3 3.0 11.6 50.3 78.4 86.9 3.0 7.0
w/o Spatial Attention Mechanism 52.4 77.2 87.1 3.0 11.5 50.7 78.6 86.8 3.0 7.1
repl. Self Mechanism 52.1 77.0 87.2 3.0 11.9 50.3 78.4 86.2 3.0 7.6

w/o Fine-Grained Knowledge Generation 51.5 77.0 86.2 4.0 11.8 49.2 77.5 85.7 4.0 7.2
w/o Textual Knowledge Generation 52.3 77.2 87.0 3.0 11.7 50.4 78.6 86.9 3.0 7.3
w/o Visual Knowledge Generation 52.2 77.6 87.5 3.0 11.3 50.6 78.5 86.2 3.0 7.6
w/o Knowledge Clustering 52.7 77.3 87.4 3.0 11.5 50.8 78.0 86.5 3.0 7.5

MMI-TVR (Ours) on MSVD 53.8 82.5 87.7 2.0 7.1 73.0 93.4 94.7 1.0 3.6

w/o Fine-tuning LVLM 52.7 80.2 85.0 4.0 5.1 71.3 91.5 92.6 3.0 2.4
w/o Inductive Reasoning Mechanism 53.4 81.1 86.5 3.0 6.8 72.0 92.3 93.9 2.0 2.7
w/o Temporal Attention Mechanism 53.8 81.0 86.6 3.0 6.7 72.2 92.3 93.8 3.0 2.1
w/o Spatial Attention Mechanism 53.0 81.8 86.4 2.0 6.2 72.1 92.6 93.9 2.0 2.5
repl. Self Mechanism 53.0 81.8 86.4 2.0 6.2 72.1 92.6 93.9 2.0 2.5

w/o Fine-Grained Knowledge Generation 52.9 80.5 85.7 3.0 5.8 71.5 91.3 92.6 3.0 2.2
w/o Textual Knowledge Generation 53.7 81.4 86.7 3.0 6.9 72.2 92.1 93.3 2.0 2.8
w/o Visual Knowledge Generation 53.3 81.8 86.6 2.0 6.7 72.0 92.2 93.5 3.0 2.1
w/o Knowledge Clustering 53.8 81.7 86.3 3.0 6.6 72.5 92.4 93.2 2.0 2.9

5.5 Discussion for Model Variants
To investigate the effectiveness of each module in our proposed
model, we conducted variant experiments and showcased the re-
sults in Table 3.From the table, we can observe that: 1) The impact
of the fine-tuning large vision-language model tends to be more
significant than that of other modules. This highlights the crucial
role of fine-tuned text-video retrieval large language model in effec-
tively understanding and retrieving information from both textual
queries and video contents. By leveraging this module, the model
gathers more clues and insights. 2) When the Inductive Reason-
ing Mechanism is removed, a decrease in performance is observed.
This finding emphasizes the pivotal role played by this mechanism

in deducing relevant patterns and insights from both textual and
visual modalities. 3) When the temporal attention mechanism is re-
placed, a decline in performance is observed. This indicates that our
full model, which incorporates the temporal attention mechanism,
is better equipped to capture the complex correlations between
textual and visual modalities. 4) The removal of any one of the
prompts used in our model leads to a decrease in performance. This
demonstrates the usefulness of each prompt by capturing differ-
ent retrieval semantics and providing valuable information. 5) The
removal of the knowledge clustering also results in a decrease in
performance. This suggests that the selected prompts are indeed
helpful for the text-video retrieval task.
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Figure 3: Impact of different knowledge generation and number of prompts.

Figure 4: An example of text-videos pairs for the prompts and the corresponding skeletons.

5.6 Discussion for Knowledge Generation
To analyze the impact of different question prompts on the model’s
performance, we conducted a thorough comparison by selecting
various prompts as input. Specifically, we compared the perfor-
mance of the model when using the generated prompt by the large
language model (GP), fine-grained knowledge prompt (FKP), and
the generated prompt by the multi-modal large language model
(MGP), as shown in Figure 3 (a). From the figure, we can observe
that: 1) The model achieved the highest performance when the fine-
grained knowledge prompt module is used as the input prompt.
It indicates that the information provided by the FKP module is
particularly valuable. The module’s ability to generate coherent
and contextually relevant prompts seems to have a positive impact
on the model’s effectiveness in retrieving accurate information. 2)
The performance of the model when using the generated prompt
by the large language model is comparable to that achieved when
using the prompt. This suggests that the prompt generation serves
as crucial information for enhancing retrieval.

5.7 Discussion for Visual Question Prompts
We further investigated the performance of the model by examining
its performance with different numbers of question prompts, as
shown in Figure 3 (b).From the figure, we can observe that: 1) We
noticed that the performance of the model improves as the number
of prompts increases. This suggests that having more effective
key prompts is beneficial, as it allows the model to capture more
correlated information between the text and video. 2) We found that

the model’s performance stabilizes when the number of prompts
reaches five. It indicates that within a certain range of prompt
numbers, the model is already capable of effectively capturing the
correlated information between the text and video.

5.8 Discussion for Interpretability
We delve into the interpretability of the multi-modal inductive
framework for the text-video retrieval task by examining the out-
comes generated from prompts in both text prompt and skeleton
pairs, and video prompt and skeleton pairs. An example is shown in
Figure 4. From the figure, we can observe that the interpretability
aspect is crucial for understanding how the proposed framework
processes and aligns differentmodalities—textual queries with video
content—through the responses generated from prompts.

6 Conclusion
This paper proposes themulti-modal inductive large vision-language
framework for text-video retrieval. It leverages LLM to capture the
semantics of textual queries and video contents, enabling accu-
rate and efficient retrieval of relevant videos. We also incorporate
an inductive reasoning mechanism to enhance retrieval perfor-
mance, which focuses on incorporating important temporal and
spatial features into the video embeddings. We further design the
fine-grained knowledge generation and knowledge clustering to
generate retrieval-relevant prompts for generating more features
specifically tailored. Our proposed model achieves state-of-the-art
performance on the TVR task, outperforming existing methods.
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