
Implementing block-sparse matrix multiplication kernels using Triton

Priya Mishra 1 Trevor Gale 1 Matei Zaharia 1 Cliff Young 2 Deepak Narayanan 3

Abstract
MegaBlocks is the state-of-the-art system for ef-
ficient training of MoE models based on block-
sparse matrix multiplication kernels. The library
is currently restricted to a specific block size in
the sparse matrices, data type, and GPU architec-
ture. This is due to the CUDA kernels used for the
block-sparse matrix products in the MoE layers.
These kernels have been hand-tuned and manually
optimized to obtain the highest performance for a
specific choice of parameters.

In this work, we evaluate re-writing these kernels
in Triton, a Python-embedded domain specific
language (DSL) for high-performance kernels for
GPUs. We show that it is possible to achieve same
levels of performance as the hand-tuned CUDA
kernels, while maintaining portability across GPU
architectures and easily supporting different block
sizes and data types without any code changes.
We identify the challenges and advantages of us-
ing Triton in implementing these block-sparse
matrix multiplication kernels.

1. Introduction
MegaBlocks is the state-of-the-art system for efficient train-
ing of MoE models on GPUs (Gale et al., 2022). It is based
on a reformulation of MoE computations into block-sparse
operations that accommodates imbalanced assignment of to-
kens to experts without requiring dropping tokens or adding
padding. Despite its efficiency, MegaBlocks can only be
used with a block size of 128 for sparse matrices, fp16
datatype, and Ampere GPU architecture.

This limitation is a direct result of the block-sparse matrix
multiplication kernels used by MegaBlocks. These block-
sparse kernels are implemented in CUDA and are challeng-
ing to generalize across possible block sizes, data types, and

1Stanford University 2Google Brain 3Microsoft Research. Cor-
respondence to: Priya Mishra <priyamis@cs.stanford.edu>.

Work presented at the ES-FoMo Workshop at 40 th International
Conference on Machine Learning, Honolulu, Hawaii, USA. PMLR
202, 2023. Copyright 2023 by the author(s).

GPU architectures. The choice of these parameters affects
design decisions of the kernels, for instance, the shared
memory allocation and layout. The kernels have been man-
ually optimized for specific values of these parameters. To
maintain the same level of performance for a different set
of parameters requires non-trivial implementation changes
to the kernels, which makes experimenting across a range
of settings challenging.

In this work, we evaluate re-writing these kernels in Triton
(Tillet et al., 2019). Triton is a python embedded domain
specific language (DSL) for implementing high-performing
GPU compute kernels. After some evaluation, we find that
our Triton kernels achieve the same level of performance as
the highly optimized existing CUDA kernels. The kernels
are compact, with 10× fewer lines of code than the CUDA
kernels, and are portable across GPU architectures. They
support any data type or block size out-of-the-box without
requiring any code change while maintaining high perfor-
mance. Using Triton greatly simplifies the block-sparse
kernels, however, we encountered significant road blocks
in realizing this. First, Triton is under active development
and provides limited documentation which made it challeng-
ing to implement and debug performance issues. Second,
triggering optimizations like software pipelining required
careful experimentation and reformulating the kernel.

After some investigation, we were able to replace the exist-
ing CUDA kernels with these Triton kernels. This allows
us to generalize MegaBlocks for training MoEs with any
configuration while maintaining the training efficiency and
model quality 1.

2. Implementation
To describe the matrix products, we use the notation intro-
duced in (Tillet et al., 2019). Each operation is described
using three letters. The letters denote the output, left hand
input and right hand input respectively. Hence, SDD de-
notes the operation sparse = dense× dense. The letters
following this denote whether the input matrices are trans-
posed. We use N if the matrix is not transposed, and T if the
matrix is transposed. For example, TN denotes that the left
hand input matrix is transposed and the right hand matrix is

1Complete code at https://github.com/stanford-futuredata/stk

1



Implementing block-sparse matrix multiplication kernels using Triton

not transposed.

We use the hybrid blocked CSR-COO sparse matrix encod-
ing introduced in MegaBlocks (Gale et al., 2022). This
format is based on blocked compressed sparse row (BCSR)
primitive making it easy to iterate over the nonzero blocks
when one of the input matrices is sparse (DSD or DDS).
When the output matrix is sparse (SDD), we need to iden-
tify both the row and column of each nonzero block which
requires looping through the row offsets since BCSR only
stores the column indices of the nonzero blocks. The hybrid
blocked CSR-COO encoding additionally stores the row
indices for each nonzero block for trivial access in SDD
kernels. Since the MoE computations require sparse ma-
trix transposition during forward and backward passes, this
encoding also maintains metadata for the transposed matri-
ces without explicitly transposing the nonzero blocks. This
allows efficient iteration over the transposed sparse matrix
through a layer of indirection.

The implementation of our SDD matrix product launches a
1D grid of thread blocks that run in parallel. The number of
thread blocks launched is equal to the number of nonzero
blocks in the sparse matrix output. Each thread block uses
the blocked-COO metadata to identify the row and col-
umn of the nonzero block, and hence the sub-matrices of
the dense input operands needed to compute the particular
nonzero block. Pseudo-code for SDD kernel is shown in
Figure 1. The kernel provides a high level abstraction of
the matrix multiplication computation simplifying the code.
The lower level details such as shared memory allocation or
synchronization are handled by the Triton compiler. Note
that the kernel is not specific to any block size or data type,
allowing ease of experimentation for a range of configura-
tions.

For DSD and DDS, we launch a 2D grid of thread blocks in
the size of number of blocks in each dimension. In contrast
to SDD, these operations involve indirect memory access of
the dense input operand based on the layout of the nonzero
blocks in the sparse input operand. We use the sparse matrix
metadata to only load the sub-matrices of the dense input
that will contribute to a nonzero block in the sparse matrix.

3. Evaluation
We started with implementing the kernels in Triton 2.0, the
latest stable release. However, the throughput of the Triton
implementation was 50% worse than the CUDA implemen-
tation. This major gap in performance was a result of miss-
ing software pipelining when accessing the input matrices
through a layer of indirection from the sparse matrix meta-
data. Support for software pipelining with indirect memory
accesses was added during our investigation 2. Hence, we

2https://github.com/openai/triton/pull/1291

1 def _sdd_kernel (A, B, C, M, N, K,
2 BLOCK_M, BLOCK_N, BLOCK_K,
3 row_indices, column_indices):
4
5 # Identify the row & column of non-zero block
6 pid = tl.program_id()
7 pid_m = tl.load(row_indices + pid)
8 pid_n = tl.load(column_indices + pid)
9

10 # Pointers to the input matrices
11 A = A + pid_m * BLOCK_M
12 B = B + pid_n * BLOCK_N
13
14 # Matrix multiplication
15 acc = tl.zeros(BLOCK_M, BLOCK_N)
16 for k in range (0, K // BLOCK_K):
17 a = tl.load(A)
18 b = tl.load(B)
19 acc += tl.dot(a, b)
20 A += BLOCK_K
21 B += BLOCK_K
22
23 # Store to sparse output matrix
24 C = C + pid * BLOCK_M * BLOCK_N
25 tl.store (C, acc)

Figure 1. Pseudo-code of SDD kernel in Triton.

use a nightly build of Triton for all experiments. Since
Triton is being actively developed, it has limited documen-
tation and can have unexpected behavior, for instance, the
pipelining issue described above. It is also unclear to which
cases the Triton compiler optimizations apply, and we exper-
imented with multiple ways of structuring the main loops in
our kernel to trigger software pipelining. We relied on the
PTX source code to understand the Triton code compilation
and debug performance issues. Adding debugging support
(Brahmakshatriya & Amarasinghe, 2023) in Triton can help
in identifying these bottlenecks more easily.

In the following sections, we evaluate the Triton implemen-
tation (MegaBlocks-Triton) against the CUDA implementa-
tion (MegaBlocks-CUDA) of the MegaBlocks kernels.

We note that Blocksparse is an existing library built us-
ing Triton for block-sparse matrix multiplication kernels 3

(Tillet et al., 2019). However, it assumes that the location
of nonzero blocks in the matrices remains constant between
kernel invocations. These kernels rely on pre-processing the
sparse matrix layout to compute lookup tables which adds
a significant overhead. This makes Blocksparse unusable
for MoE computations since subsequent training iterations
and different MoE layers have different sparsity layout and
we would incur the cost of the pre-processing at every step
repeatedly. Hence, we did not use Blocksparse in our work.

3.1. Throughput

The performance of blocksparse matrix multiplication
kernels is crucial to the training speedups obtained by

3https://github.com/openai/triton/blob/main/python/
triton/ops/blocksparse/matmul.py

2



Implementing block-sparse matrix multiplication kernels using Triton

MegaBlocks. We noted in section 2 that kernels using previ-
ous versions of Triton had significant performance limita-
tions, necessitating the present CUDA-based kernels used
within MegaBlocks.

In this section, we evaluate the throughput obtained with
these implementations for various matrix operations and
different matrix sizes (sequence length/output matrix side
length). The notation used for the matrix operations is
described in section 2.

Figure 2 compares the throughput (in TFLOPS) using dif-
ferent implementations across a range of matrix product
benchmarks. We observed that MegaBlocks-Triton achieves
same levels of throughput as the MegaBlocks-CUDA imple-
mentation. The throughput of MegaBlocks-Triton kernels
ranges between 0.96× to 1.1× compared to the through-
put of MegaBlocks-CUDA kernels and the implementations
have the same throughput on average . This makes it feasi-
ble to replace the CUDA-based kernels with MegaBlocks-
Triton.

(a) Sequence length 8192.

(b) Sequence length 32768.

(c) Sequence length 65536.

Figure 2. Throughput (in TFLOPS) for different matrix product
benchmarks using MegaBlocks-Triton and MegaBlocks-CUDA
implementations of block-sparse matrix multiplication kernels.

3.2. Source Lines-of-Code

We use source lines-of-code (SLOC) (Wheeler) as a measure
to compare the complexity of different implementations. As
summarized in Table 1, MegaBlocks-Triton has 10x fewer
lines of code than MegaBlocks-CUDA.

Table 1. Source Lines-of-Code in different implementations

IMPLEMENTATION SLOC

MEGABLOCKS-TRITON 298
MEGABLOCKS-CUDA 3139

Triton allows us to write the kernels at a high-level abstrac-
tion and hides the lower-level optimization details such as
shared memory allocation, synchronization, and memory
coalescing. This makes the MegaBlocks-Triton kernels com-
pact, portable across different hardware architectures and
easily extensible to any block size and data type without
requiring any code modification.

3.3. Generality

Figures 3 and 4 describe the throughput of MegaBlocks-
Triton kernels for bfloat16 datatype and block size 64 respec-
tively. These parameters are not supported by MegaBlocks-
CUDA. The average throughput obtained when using
bfloat16 across different sequence lengths and matrix op-
erations is 170 TFLOPS, and when using a block size 64
is 130 TFLOPS. MegaBlocks-Triton supports a range of
configurations out-of-the-box while maintaining high levels
of performance.

(a) Sequence length 8192.

(b) Sequence length 32768.

(c) Sequence length 65536.

Figure 3. Throughput (in TFLOPS) for different matrix product
benchmarks with block size 128 and bfloat16 datatype.

3



Implementing block-sparse matrix multiplication kernels using Triton

(a) Sequence length 8192.

(b) Sequence length 32768.

(c) Sequence length 65536.

Figure 4. Throughput (in TFLOPS) for different matrix product
benchmarks with block size 64 and float16 datatype.

4. Conclusion
In this work, we evaluated re-writing the block-sparse ma-
trix multiplication kernels used for MoE computations in
MegaBlocks in Triton. Using Triton greatly simplified our
kernels, however, it is under active development and has
unexpected behavior in some cases. It is challenging to
debug since it there is limited documentation, and the opti-
mizations applied by the Triton compiler in different kernel
formulations can vary significantly. We relied on the PTX
source code to debug performance issues and reformulated
the kernels multiple times to trigger certain optimizations
such as software pipelining.

We show that our Triton kernels (MegaBlocks-Triton) can
obtain same performance as the existing CUDA kernels
(MegaBlocks-CUDA) making them a feasible replacement.
Replacing the existing CUDA kernels with MegaBlocks-
Triton removes any restrictions on block size, data type,
and architecture. This extends MegaBlocks into a general
system for training MoE models across a range of configura-
tions while realizing the same training speedups and model
quality.

References
Brahmakshatriya, A. and Amarasinghe, S. D2x: An ex-

tensible contextual debugger for modern dsls. In Pro-

ceedings of the 21st ACM/IEEE International Sympo-
sium on Code Generation and Optimization, CGO 2023,
pp. 162–172, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9798400701016.
doi: 10.1145/3579990.3580014. URL https://doi.
org/10.1145/3579990.3580014.

Gale, T., Narayanan, D., Young, C., and Zaharia, M.
Megablocks: Efficient sparse training with mixture-of-
experts, 2022.

Tillet, P., Kung, H. T., and Cox, D. Triton: An in-
termediate language and compiler for tiled neural net-
work computations. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on Machine Learn-
ing and Programming Languages, MAPL 2019, pp.
10–19, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450367196. doi: 10.
1145/3315508.3329973. URL https://doi.org/
10.1145/3315508.3329973.

Wheeler, D. A. Sloccount. https://dwheeler.com/
sloccount/.

4

https://doi.org/10.1145/3579990.3580014
https://doi.org/10.1145/3579990.3580014
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://dwheeler.com/sloccount/
https://dwheeler.com/sloccount/

