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ABSTRACT

Assessing the privacy of large language models (LLMs) presents significant chal-
lenges. In particular, most existing methods for auditing differential privacy require
the insertion of specially crafted canary data during training, making them imprac-
tical for auditing already-trained models without costly retraining. Additionally,
dataset inference, which audits whether a suspect dataset was used to train a model,
is infeasible without access to a private non-member held-out dataset. Yet, such
held-out datasets are often unavailable or difficult to construct for real-world cases
since they have to be from the same distribution (IID) as the suspect data. These
limitations severely hinder the ability to conduct scalable, post-hoc audits. To
enable such audits, this work introduces natural identifiers (NIDs) as a novel
solution to the above-mentioned challenges. NIDs are structured random strings,
such as cryptographic hashes and shortened URLs, naturally occurring in common
LLM training datasets. Their format enables the generation of unlimited additional
random strings from the same distribution, which can act as alternative canaries for
audits and as same-distribution held-out data for dataset inference. Our evaluation
highlights that indeed, using NIDs, we can facilitate post-hoc differential privacy
auditing without any retraining and enable dataset inference for any suspect dataset
containing NIDs without the need for a private non-member held-out dataset.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly used in applications like chatbots and text genera-
tion, where they are often trained on sensitive data, such as private conversations. Since LLMs have
been shown to leak information about the training data (Carlini et al., 2019; 2021; Duan et al., 2024;
Mattern et al., 2023), we need auditing methods to evaluate and quantify their privacy risks, ensuring
safe deployment. Overall, there are two broad families of audits. Formal audits, e.g., (Jagielski et al.,
2020; Nasr et al., 2023; Panda et al., 2025; Steinke et al., 2023), aim to empirically verify claimed
theoretical privacy guarantees of models trained with differential privacy (DP) (Dwork et al., 2006).
Standard empirical privacy audits extend to models trained without privacy protection in mind and
aim to understand the general leakage of individual training data points (Carlini et al., 2022; Duan
et al., 2024; Shokri et al., 2017), or, in the case of dataset inference (DI) (Dziedzic et al., 2022; Maini
et al., 2021; 2024), ask the question whether an entire data subset was used to train the model.

Unfortunately, both types of audits experience significant limitations in LLMs. One key limitation of
the formal privacy auditing methods is that they require inserting canary data during training. As
a result, these methods are inapplicable to pretrained LLMs without retraining, which is typically
infeasible due to its high cost. Additionally, both types of audits rely internally on membership
inference attacks (MIAs) (Shokri et al., 2017), where an adversary attempts to determine whether a
particular data point was part of the model’s training set. To be successful, MIAs require non-member
held-out data from the exact same distribution as the member data used during training (Duan et al.,
2024; Maini et al., 2024; Mattern et al., 2023; Shi et al., 2024). In practice, this data is usually hard
to obtain, limiting the applicability of MIAs for audits. This limitation also equally affects DI, which
assumes access to a held-out validation set that matches the distribution of the training data. Currently,
the only widely used validation sets originate from the Pile (Gao et al., 2020), which is used in the
training of Pythia models (Biderman et al., 2023), and to a lesser extent, the Dolma dataset (Soldaini
et al., 2024), used in training the OLMo models (Groeneveld et al., 2024).
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We identify natural identifiers (NIDs) as a solution to all the above-mentioned problems. NIDs are
structured random strings, generated according to some well-defined criteria, such as outputs from
secure hash algorithms (e.g., MD5 or SHA-1), shortened URLs, or cryptocurrency wallet addresses.
We observe that these strings are naturally included in datasets, such as discussion platforms (e.g.,
StackExchange) and code repositories (e.g., GitHub) that are used as part of the training corpora for
state-of-the-art LLMs.1 Especially code repositories are relevant for training powerful LLMs (Hui
et al., 2024; Roziere et al., 2023) as, beyond supporting code generation, they also strengthen broader
capabilities such as logical reasoning, problem solving, and world knowledge (Aryabumi et al., 2025;
Petty et al., 2025; Kim et al., 2024; Hayase et al., 2024) which are important for LLMs’ performance.
Our unique insight is that each of the popular NIDs has a known generation function that we
can leverage to generate an unlimited number of held-out (non-member) data points from the
same distribution as the NIDs, which are naturally included in real-world suspect sets.

Equipped with these insights, we show how to leverage NIDs to perform formal post-hoc privacy
auditing for LLMs. We build on the currently fastest single training run auditing approach (Steinke
et al., 2023), which needs to include dedicated canaries prior to training. We demonstrate that when
NIDs naturally occur in the training set, we can construct their corresponding auditing set post-hoc
from the same distribution and retroactively assess the privacy guarantees of any LLM without the
requirement of expensive retraining from scratch. Our privacy auditing with NIDs improves the lower
bounds on the privacy parameters of an algorithm compared to the auditing framework by Steinke
et al. (2023). It also significantly reduces the sample complexity, i.e., it requires fewer NID canaries.
Finally, in contrast to the one training run privacy auditing by Steinke et al. (2023), our method
enables truly zero-run (post-hoc) audits of already pretrained LLMs.

Beyond formal audits, NIDs also make DI practically applicable, as one only has to identify NID
types in the data subset that is suspected to be included in an LLM’s training data, generate a held-out
set consisting of NIDs of the same type, i.e., from the same distribution, and then to perform the DI
procedure (Maini et al., 2024). Thus, our fully post-hoc approach leverages NIDs to perform DI
without any modifications to the training data, which contrasts with the prior approach by Zhang
et al. (2024a) that requires injecting random canaries into the pretraining dataset. We empirically
validate our approach in a controlled environment, using open-source LLMs and their known training
data. Specifically, we use the Pythia suite of models with the Pile dataset and the OLMo model
with the Dolma dataset. Our results show that we can accurately infer training membership across
diverse data subsets without false positives, suggesting that our approach may be useful in real-world
litigations (Coulter, 2024).

In summary, we make the following contributions:

1. We propose NIDs as a practical and scalable solution to a key challenge in LLM privacy research:
conducting post-hoc privacy audits in real-world settings without requiring model retraining or
access to a dedicated held-out set.

2. We adapt the one-run DP auditing framework (Steinke et al., 2023) to leverage NIDs, enabling truly
post-hoc DP auditing of pretrained LLMs without modifying the training process and achieving
tighter lower bounds.

3. We make DI more practical by creating the necessary held-out set post-hoc using the NIDs present
in the suspect set and improving its efficiency by introducing a novel ranking-based test.

4. We conduct extensive empirical evaluations, demonstrating the effectiveness of our NIDs for
post-hoc privacy assessment over multiple LLM families and training datasets.

2 BACKGROUND

Differential Privacy (DP). DP (Dwork et al., 2006) is a framework that limits privacy leakage
by ensuring no individual’s data significantly alters the outcome of a computation. A randomized

1Indeed, we observe that the publicly available datasets used to train popular LLMs, such as the Pile (Gao
et al., 2020) or Dolma (Soldaini et al., 2024), contain 30637 and 23571 different types of NIDs, respectively—
showcasing the practical availability of NIDs. The large number of NID-types and new types constantly emerging
makes it impossible to omit them through the web crawlers, thus NIDs are less prone to being excluded from the
LLMs’ training set.
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mechanism M satisfies (ε, δ)-DP if, for any two inputs x and x′ differing by one record and any
measurable set S, the following holds, where ε bounds leakage and δ is the failure probability:

P [M(x) ∈ S] ≤ eεP [M(x′) ∈ S] + δ.

In this work we adopt the under replacement adjacency, where two datasets are considered neighbors
if they differ only in the replacement of one candidate element (rather than by addition or removal).

Auditing DP. The goal of DP audits is to empirically estimate a lower bound on the privacy parameters
ε and δ post-training. These audits help evaluate the tightness of the theoretical analysis (Jagielski
et al., 2020; Nasr et al., 2023) and can also reveal errors in the mathematical analysis or flaws in
the algorithm’s implementation (Tramer et al., 2022). Privacy auditing generally relies on retraining
models and inserting canaries during training (Jagielski et al., 2020; Nasr et al., 2023; Steinke et al.,
2023; Mahloujifar et al., 2025). While Steinke et al. (2023) reduce computational costs with a privacy
auditing technique that only requires a single training run, for LLMs with trillions of parameters,
even this can be prohibitively expensive. We build on their approach and leverage NIDs to remove
the need for retraining altogether.

Membership Inference Attacks (MIAs). MIAs (Shokri et al., 2017) aim to determine whether
a specific data point was included in a model’s training set. They have diverse applications, and
in this work, we focus on their use for privacy auditing (Steinke et al., 2023). While MIAs have
been extensively explored for small-scale models, MIAs for LLMs are a much more challenging
problem. The latest work (Duan et al., 2024; Maini et al., 2024; Zhang et al., 2024a) indicates that the
success reported by previous MIAs on LLMs (Mattern et al., 2023; Shi et al., 2024) is rather due to a
distribution shift than to the attacks’ ability to distinguish between the member and non-member data
points. A prominent example is the temporal distribution shift that occurs when data before a specific
cutoff date is selected as members and data after the point is treated as non-members, resulting in
differences in language, wording, or formatting styles. When evaluated in the correct setting without
distribution shift, Maini et al. (2024) showed that most attacks do not outperform random guessing.

Dataset Inference (DI). DI (Maini et al., 2021) aims to resolve whether a given suspect dataset
was used to train a model. While initially proposed for model ownership resolution (Maini et al.,
2024; Dziedzic et al., 2022), DI was recently extended to identify training data in LLMs (Maini et al.,
2024; Zhao et al., 2025). Beyond LLMs, DI has also been successfully applied to other types of
generative models, including Diffusion Models (Dubiński et al., 2025) and Image Autoregressive
Models (Kowalczuk et al., 2025). In general, DI extracts diverse training membership features for the
individual data points in the suspect set using various MIAs, aggregates them, and applies statistical
testing to reliably determine whether the suspect set was used to train the model.

Limitations of DI. DI’s major limitation is that the method relies on access to a private held-out set
from the same distribution as a suspect set. Prior work (Zhang et al., 2024a) argues that this makes DI
inapplicable for real-world use-cases where such data is usually not available. As a solution, Zhang
et al. (2024a) propose to inject random and meaningless canaries into the data and then test how the
LLM ranks the selected canary among all alternatives. Since they assume access to the generator of
the random canaries, they can provide the corresponding validation data points and avoid distribution
shifts. The approach’s reliance on inserted random strings reduces its practical applicability, as
content creators would have to artificially include such specialized strings in their datasets and
hide them from human readers. Additionally, web crawlers can be trained to omit such arbitrary
context-free strings when scraping the data from the internet, reducing the likelihood of this data
being included in LLMs’ training data. Finally, this solution does not work for existing LLMs that
were trained without the use of injected canaries. In contrast, our observation is that we can leverage
NIDs that are naturally included in LLMs’ training sets, mitigating the need to insert purely random
strings and enabling auditing of existing pretrained LLMs without retraining. As an alternative
solution to overcome DI’s reliance on an IID held-out set, Zhao et al. (2025) proposed generating
a synthetic held-out dataset by training a suffix-based generator on the suspect set, followed by a
post-hoc calibration to reduce the distributional gap between the real and synthetic data. However,
this approach is computationally expensive, requiring extensive training and calibration, and it still
results in a residual distributional shift between real and synthetic datasets. In contrast, our generated
held-out set based on NIDs is from the exact same distribution as the suspect set.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 NATURAL IDENTIFIERS (NIDS)

We introduce NIDs, explore their natural occurrence, and provide the intuition on how they address
key challenges in LLM privacy research. We then present the notation and formalization of NIDs,
which will serve as the foundation for the subsequent sections.

3.1 NIDS IN THE WILD

Conceptually, NIDs are structured random strings, generated according to some well-defined functions.
Prominent examples include outputs from secure hash algorithms (e.g., MD5 or SHA-1, SHA-256),
shortened URLs, or cryptocurrency wallet addresses. Additionally, new types of NIDs, e.g., produced
through novel URL shortening approaches, are emerging continuously. Such strings are omnipresent
on the internet, for example, in code repositories (e.g., GitHub) and discussion platforms (e.g.,
StackExchange). Since large parts of the data used to pretrain state-of-the-art LLMs are crawled from
the internet, these NIDs get naturally included in the LLMs’ training sets. We carefully extract the
NIDs, as described in Appendix C.

While LLM providers may attempt to filter out natural NIDs during data crawling, auditors hold a
structural advantage in this setting (Hönig et al., 2024; Radiya-Dixit et al.). Removing all natural
NIDs is exceptionally challenging: even corpora with aggressive regex-based cleaning, URL canoni-
calization, PII filtering, and multistage deduplication, such as Dolma, still contain tens of thousands
of distinct NID types, as detailed in Table 6 (Appendix D). For our approach, an auditor only needs
to identify a small subset of NIDs in the suspect set to conduct effective post-hoc audits. This makes
our approach robust even under strict data curation pipelines, thus making our solutions for LLM
privacy auditing widely applicable.

We analyze a wide range of popular LLM training datasets, including Pile (Gao et al., 2020) and
Dolma (Soldaini et al., 2024), and identify that all of them contain multiple types of NIDs with
numerous examples per type. In Appendix D, we provide an overview of the analyzed subsets and
contained NIDs in Table 6. Notably, datasets that include code snippets, such as StackExchange
and GitHub, have a high number of NIDs. Additionally, large non-topic-specific corpora, such
as RefinedWeb and Pile Common Crawl, also contain a significant number of NIDs. SHA-1 and
MD5 are the most frequent types of NIDs overall. For some large subsets, such as RefinedWeb, we
have as many as 16989 NIDs. For instance, Pile’s entire validation and test set, which comprises
approximately 0.2% of the entire Pile dataset, contains 293 NIDs. Furthermore, as shown in Table 6,
even highly filtered and curated datasets such as Dolma (Soldaini et al., 2024) contain a substantial
number of NIDs. This makes our solutions for LLM privacy auditing widely applicable.

3.2 LEVERAGING NIDS

What makes NIDs special is their rigorously specified format in combination with a sequence of
random characters. Given that their format is known, it becomes possible to generate an infinite
number of other random strings that follow the same distribution. In the following, we present the
intuition on how this property contributes to solving the most pressing challenges in LLM privacy
research, namely, the lack of IID held-out data.

1) NIDs provide post-hoc DP audits. We can use NIDs to perform post-hoc auditing for LLMs
trained with DP. To do so, we build on the one-run privacy audit by Steinke et al. (2023). In their
method, they select a set of canary data points to be included or excluded during a training run. After
training, an auditor attempts to infer for each of these data points whether it was included or not. The
fraction of correct guesses provides a lower bound on the DP parameters. Using our NIDs, retraining
the model is no longer necessary. Instead, we generate random samples from the same distribution
as the NIDs seen during training. The NIDs as natural canaries can be ranked against the generated
ones, for auditing without any retraining, i.e., truly post-hoc. Section 4 outlines our approach to using
NIDs for post-hoc DP auditing.

2) NIDs enable DI. NIDs enable DI for suspect sets, i.e., a dataset for which we want to assess
whether it has been used to train a given LLM, without requiring a same-distribution private held-out
set. As detailed above, DI relies on a private held-out set from the same distribution as the suspect
set to perform its assessment—a requirement that is difficult to meet in practice. This is especially
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due to the challenge of obtaining same-distribution data post-hoc (Zhang et al., 2024a), rendering
DI challenging or impractical. By generating large held-out sets from the same distribution, NIDs
address this issue, thus enabling DI to detect if an LLM was trained on a suspect set. If the suspect
set was part of the LLM’s training data, it will react differently to the NIDs included in that set and
their generated held-out counterparts. Otherwise, if it was not trained on the suspect set, its behavior
will be the same over both sets, as both NIDs and their generated counterparts, since to the LLM,
they will just be the same type of random strings. We detail the use of NIDs for DI in Section 5.

3.3 FORMALIZING NIDS

An identifier (ID) is produced by sampling randomness z from a known distribution and applying a
generator W , i.e., v = W (z). The set of all possible IDs from this generator is V = {W (z) : z ∈ Z}.
A Natural Identifier (NID) is simply an ID that actually appears in a real dataset. Given such an NID,
we can draw fresh random inputs z′ to generate additional IDs from the same distribution, which
we call Generated Identifiers (GIDs). Because the identifier space V is extremely large, a newly
generated GID is overwhelmingly unlikely to coincide with any existing NID in the data.

As a concrete example, consider Ethereum addresses. An Ethereum address is effectively a
160-bit identifier, obtained from a private key through a deterministic derivation process. Given
an NID corresponding to an Ethereum address, we can use the associated generation function
W (z) := ETH(z) to generate new GIDs. In this case, the set V is the set of all valid Ethereum
addresses (see Appendix A for details on the structure of NIDs and GIDs, and Appendix B for
examples). Additionally, the probability of generating a GID that exactly matches one of the NIDs in
the training data is negligible, since the address space has size 2160 ≈ 1.46× 1048.

The main property of NIDs is that a priori each ID v ∈ V is equally likely to be generated and
published because it only depends on the source of randomness. The second important property
of NIDs is that they allow easy sampling from the set V . In the suspect datasets Dsus, which we
are auditing, there are usually m NIDs, with the corresponding sets V1, . . . , Vm. Although the
underlying identifier space V is extremely large, for computational purposes we restrict attention
to a finite candidate set: for each detected NID v̂i, we sample c − 1 fresh GIDs and form Vi =
{v̂i} ∪ {c− 1 GIDs} with |Vi| = c. Furthermore, for each set Vi where i ∈ {1, . . . ,m}, we denote
the NID as v̂i ∈ Vi, and specifically, the NID that belongs to the suspect dataset as v̂i ∈ Dsus. Finally,
we define Σi as the set of all the permutations over Vi.

4 DP AUDITING WITH NATURAL IDENTIFIERS

Using our NIDs, we adapt the one-run DP auditing method proposed by Steinke et al. (2023) to
create a novel post-hoc DP auditing. Their technique considers m canary samples and uses coin
flips to randomly determine which samples should be included in the training set. Therefore, it is a
binary case of adding or removing a single sample (and selecting between two options) that requires
further retraining. Subsequent works (Panda et al., 2025; Liu et al., 2025) build upon the settings and
methods proposed in the original paper, thus requiring retraining. In our case, we differ from previous
approaches by eliminating the need to retrain the model to insert canaries, since NIDs are inherently
present in the data. Therefore, adding or removing multiple training examples independently is not
required. This is particularly important for LLMs, for which retraining is prohibitively expensive
and time-consuming. Furthermore, our method operates under more realistic assumptions compared
to Kazmi et al. (2024), who, although they relax the assumption of retraining, require training a
generative model that must then generate samples following the original training data distribution.
Additionally, we do not strengthen the canary signal for the audit by surrounding the canaries with
random tokens, as in Panda et al. (2025). Finally, compared with Mahloujifar et al. (2025), our
method can be viewed as a ranking-based generalization, where the task is to correctly identify the
true NID from a set of c candidates, by requiring it to appear among the top-r ranked positions, rather
than only identifying it as the single top-1 candidate.

We show in Figure 1 how to leverage the NIDs to audit DP post-hoc. By leveraging the NIDs, our
framework enables us to compute lower bounds on the privacy parameters of an algorithm without
any additional training run of that algorithm. We first identify the NIDs that were present in the
training data and denote their total number as m. For each NID i ∈ {1, · · · ,m}, we generate the
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Figure 1: Post-hoc DP auditing with NIDs and their corresponding GIDs. 0 We consider the
NIDs as the input to a training procedure M (also referred to as the mechanism), which may satisfy
(ε, δ)-DP. 1 Given a suspect dataset, we identify the NIDs. 2 We generate the new c− 1 GIDs for
each NID. 3 We form the candidate sets V1, · · · , Vm by combining the NIDs with corresponding
GIDs. 4 Given the resulting trained model and filtered NIDs with corresponding GIDs, an auditor
seeks to infer, for each set Vi, which sample was the NID. To do so, the auditor ranks the samples in
Vi from the most to the least likely NID-candidate. A prediction is considered correct if the true NID
appears among the top-ri ranked samples, where ri is a predefined threshold.

corresponding GIDs, and the corresponding set of IDs Vi = {v1i , v2i , . . . , v̂
j
i , . . . , v

c
i }, where we have

c − 1 GIDs and a single NID denoted as v̂ji . One of the main properties of NIDs is that, a priori,
any element in Vi could have been part of the training data in place of the NID. This enables us
to model privacy auditing analogously to the fixed-length dataset variant proposed by Steinke et al.
(2023). The key distinction in our approach is that, rather than selecting between two alternatives
prior to training, we consider the NIDs as inserted canaries with the GIDs as multiple left-out canary
possibilities for each set Vi. For this reason, the attacker’s goal is to predict which sample was the
NID by ranking the samples from the most likely to the least likely to be part of the training data.
This offers more flexibility by enabling the attacker to represent uncertainty through a ranked list,
rather than having to make a binary, top-1 inclusion decision.

Following the analysis of Theorem 5.2 by Steinke et al. (2023), we adapt their privacy auditing
procedure to our setting to audit (ε, δ)-DP mechanisms. We compare the rank of the real and
alternative samples. For simplicity and clarity, we state the ε-DP version of the theorem, and in
Appendix E, we show the complete theorem (Theorem 2) for the (ε, δ)-DP case.

Theorem 1 Let M : V1 × · · · × Vm −→ Σ1 × · · · × Σm be an ε-DP mechanism under replacement.
Let S ∈ V1× · · · × Vm be uniformly random, and define T = M(S) ∈ Σ1× · · · ×Σm. Then, for all
v ∈ R, all t ∈ Σ1 × · · · × Σm in the support of T , all r1, · · · , rm with ri ≤ |Vi|, and rie

ε

|Vi|−1+eε ≤ 1,

PS←V1×···×Vm,

T=M(S)
[

m∑
i=1

1[rank(ti, Si) ≤ ri] ≥ v|T = t]

≤ P
Ŝ←Bernoulli(

rie
ε

|Vi|−1+eε
)
m

i=1

[Ŝ ≥ v] := β(ε, v, t)

rank(a, b) returns the 1-based position of the element b in permutation a.

In our setting, Theorem 1 states that if the mechanism (also referred to as the training procedure)
is ε-DP, any attacker attempting to detect the NID is constrained. Concretely, the attacker ranks
the mechanism’s output on both the NID and its corresponding GIDs from most to least likely to
be part of the training data without knowing which one is the NID. Then, they count how many
NIDs appear in the top-r, where r is a predefined threshold. The theorem states that this count is
bounded by a Bernoulli distribution, whose probability depends on ε, r, and the number of GIDs.
Furthermore, compared to Theorem 5.2 by Steinke et al. (2023), Theorem 1 and Theorem 2 (presented
in Appendix E) leverage a key property of NIDs: the ability to generate an unlimited number of GIDs
(non-members).
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Both theorems enable DP auditing through a hypothesis-testing framework. Moreover, in both
cases, we can construct a confidence interval for a lower bound on ε. The proofs of Theorem 1 and
Theorem 2 are provided in Appendix E.

101 102 103 104 105

Number of samples

0

2

4

6

8

Ideal 2 (Steinke et al.) 8 32

Figure 2: Randomized response with ε = 8 for
different cardinalities c = {2, 8, 32}.

An Example of Our Privacy Auditing for the
Randomized Response. To illustrate our auditing
framework, we use the classical randomized re-
sponse mechanism (Warner, 1965). In this setting,
each private value can either be revealed truth-
fully or replaced at random, with probabilities
chosen to ensure ε-DP (see Appendix G.1 for the
detailed description of the setting). The analogy to
our framework is straightforward: each true value
corresponds to an NID, and the alternative pos-
sibilities correspond to GIDs. The auditor ranks
possible values given the output, and without any
additional information, the best strategy is to place the observed output first. This yields a correct-
guess probability matching the theoretical bound in Theorem 1. Figure 2 shows the empirical behavior
of our auditor on randomized response for different set cardinalities c = |Vi|. We see that higher
cardinality (i.e., more generated GIDs) is especially beneficial at larger privacy budgets (ε ≥ 8),
which is the typical regime in LLM training with DP (Duan et al., 2023; Li et al., 2022; Rossi et al.,
2024; Hanke et al., 2024). This demonstrates how our framework scales naturally with the number of
GIDs. Additionally, in Appendix F, we analyze the relationship between the number of sample m
(i.e., number of NIDs) and c, as well as why a larger cardinality helps reduce the number of required
samples.

Post-hoc DP Auditing Without Retraining in LLMs. We verify that our proposed framework
applies to privacy auditing in LLMs by adapting the black-box procedures proposed by Steinke et al.
(2023) to the fixed-size dataset variant. The auditing process follows the algorithm described in
Appendix H.3. Due to the lack of open-source private pretrained LLMs, to show the capabilities of
our method, we finetune multiple Pythia models (70m, 160m, 410m, and 1b) using DP-SGD (Abadi
et al., 2016) We use all NIDs extracted from the Pile test set (Gao et al., 2020). All lower and upper
bounds are presented with 95% confidence intervals.

Setup. The training data consists m = 197 NIDs from the Github Pile test set, ensuring complete
coverage of our assumption. Then, for each NID, we generate c−1 GIDs. In this way, we have sets of
IDs V1, . . . , Vm. We set δ = 10−4 for various values of ε using the Privacy Random Variable (PRV)
accountant (Gopi et al., 2021), and finetune each model for 20 epochs using a maximum sequence
length of 64 tokens and a clipping norm of 0.1. To rank each set of ID from most to least likely to
be in the training data, we use Min-K% (Shi et al., 2024) and Loss (Yeom et al., 2018), and report
the best result. By default, we set the ranking threshold to ri = 1 (top-1) for all i ∈ {1, . . . ,m}. In
this setting, a prediction is counted as correct only when the attacker’s highest-scoring candidate
coincides with the true NID. Complementary results for additional models and for thresholds ri > 1
are reported in Appendix H.1.
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Figure 3: Impact of cardinality (c = {2, 8, 32}) on ε estimation. Experiments conducted using
ε values of {5, 10, 100,∞}. The case c = 2 corresponds to the method proposed by Steinke et al.
(2023). The error bars represent a 95% confidence interval.
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Higher Cardinality Improves Audits. As a reference, we use the auditing of fixed-length datasets
introduced by Steinke et al. (2023), which corresponds to a special case of our method where all
sets Vi have cardinality c = 2 and the corresponding threshold is ri = 1. The empirical analysis
in Figure 3 demonstrates that our method outperforms the baseline across multiple cardinality
parameters (c ∈ {8, 32}) in fixed-length dataset settings. See Appendix H.1 for the results of the
other models and for additional experiments with thresholds ri > 1. Although higher cardinality can
enhance the statistical power of the auditing procedure in the best-case scenario, meaning that fewer
samples are required, the ranking task becomes increasingly complex. Instead of merely comparing
two candidates, one must select from c = |Vi| options. For smaller privacy budgets (i.e., a more
challenging prediction task), smaller cardinalities are beneficial. In contrast, for larger ε, higher
cardinality tends to be advantageous and significantly outperforms the baseline. This trend aligns
with our insights for randomized response, where increasing cardinality makes the privacy auditing
more precise and tighter, particularly in less restrictive privacy settings.

5 DATASET INFERENCE WITH NIDS

Next, we turn to exploring the use of NIDs and our generated same-distribution GIDs for performing
DI (Maini et al., 2021). As discussed in Section 2, the strongest limitation of DI is its reliance on a
private held-out dataset from the same distribution as the suspect dataset, i.e., the dataset for which
we want to assess whether it was included in the training of the given model. Such datasets are often
not available in practical applications (Zhang et al., 2024a). We present how our NIDs can overcome
this limitation and enable successful DI for suspect datasets that contain NIDs. We experiment with
Pythia-2.8b, 6.9b, 12b (trained on the Pile), and OLMo-7B2 (trained on Dolma) to cover a range of
model sizes and families. For ethical reasons, we focus on open models with known training data
where we can verify the correctness our evaluation w.r.t. to the ground truth training sets, which is
impossible for proprietary models where we have no access to the true training data.

Table 1: MIAs on NIDs for Pythia-12b. The AUC for MIAs between the NIDs and the corresponding
GIDs on various subsets of the Pile dataset.

Full Pile GitHub StackExchange Average
MIA Train Test Train Test Train Test Train Test

Loss 58.6 50.3 71.8 51.1 50.3 50.9 60.2 50.8
Min-K% 57.6 51.0 68.4 50.6 50.7 51.2 58.9 50.9
Min-K%++ 56.9 51.4 71.2 50.3 50.8 51.9 59.6 51.2
ReCALL 53.5 50.2 50.6 50.3 50.0 51.1 51.4 50.5
ReCALL(Hinge) 51.3 50.1 53.3 50.4 50.4 51.4 51.7 50.6
Hinge 58.7 50.5 71.8 51.5 50.4 50.5 60.3 50.8

MIAs for DI. DI for LLMs (Maini et al., 2024) aggregates the outputs of multiple MIAs to extract a
strong signal from the suspect data. We follow this approach and extract the signal from the suspect
set’s NIDs as a form of natural canaries. Therefore, we use MIAs on NIDs as a stepping stone for
LLM DI. In this setting, the attacker aims to distinguish NIDs from their corresponding GIDs. For
the training set, NIDs are drawn from the training data, while for the test set, they are drawn from the
test data. In both cases, GIDs are constructed from data that was not used during training, serving
as held-out samples. For the test set evaluation, we expect the AUC to be close to random guessing.
This serves as a sanity check to confirm that the GIDs and NIDs come from the same distribution,
since neither is present in the training data. To mimic the DI setting, we generate c = 127 new
GIDs for each NID, balancing computational cost and distribution quality. Using our identified
NID suspect set and the respective generated GIDs held-out set, we analyze existing state-of-the-art
MIAs for LLMs, namely Loss (Yeom et al., 2018), Min-K% (Shi et al., 2024), Min-K%++ (Zhang
et al., 2024b), ReCaLL (Xie et al., 2024), and Hinge (Carlini et al., 2022) to obtain useful signals for
DI. For most MIAs, performance on the test set is close to random guessing, as expected, confirming
no distribution shift between the NID suspect set and the generated GID held-out set. Train-test
behavior is well-calibrated, with higher average AUC on the train set. Results for Pythia-12b appear
in Table 1; Appendix I reports additional models (Pythia, OLMo-7B) and TPR@1% FPR.

DI on NIDs. Given a suspect set Dsus, we first need to identify and extract all the NIDs in the dataset.
The extracted NIDs form the suspect subset D′sus, which we use to perform the DI. Then, for every real

2https://huggingface.co/allenai/OLMo-7B-0424-hf
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NID in D′sus, we generate 127 new GIDs with the same NID type and with the same structure to form
the held-out set from the same distribution as D′sus. With the signal from the MIAs above, following
Maini et al. (2024), we extract the features from the suspect set and D′sus and our generated held-out
set. Next, following the DI protocol, we need to learn the correlation between the features (the MIA
scores) and their membership status. To learn this correlation, we train a gradient boosting trees
classifier to distinguish between the two distributions. To use all the samples available, we train and
score the samples using K-Fold, and we ensure that the generated samples derived from a real sample
end up in the same fold. Finally, following Maini et al. (2024), we perform statistical testing and
compute the p-values. Under the null hypothesis, which assumes that the NIDs in the suspect set are
not part of the training data, the ranks of each NID relative to its corresponding GIDs should follow a
uniform distribution. This means that if we order the NIDs based on their association with GIDs, their
positions should be evenly distributed across the ranking scale. We apply the Kolmogorov-Smirnov
(KS) test to test this assumption. If the KS test detects a significant deviation from uniformity, we
reject the null hypothesis, suggesting that the NIDs may, in fact, be present in the training data. Small
p-values (< 0.01) indicate that we can reject the null hypothesis, i.e., we are confident that the model
was trained on the suspect set. Large p-values (>> 0.01) suggest inconclusiveness of the test, i.e.,
we are not confident whether the model was trained on the suspect set.

Practical DI with NIDs. Using our generated held-out set with GIDs and the suspect set D′sus with
NIDs, we perform DI on various models and data subsets. Our main results for DI are summarized
in Table 2 and Table 3. Compared with Maini et al. (2024), who used 1000 samples, we take much
smaller suspect sets D′sus with 100 real NIDs to simulate a realistic setup. For each subset, we
generate a held-out set using the NIDs, and perform DI. Our method shows that for the suspect sets
that were included in the training data, DI obtains low p-values (< 0.01) that allow us to reject the
null hypothesis. This highlights that the suspects are correctly identified as training data. At the
same time, for test data (denoted as Test), i.e., datasets that were not used to train the given LLM, we
observe high p-values that do not allow us to reject the null hypothesis. The sets are, hence, correctly
not marked as training data (p-values >> 0.01). We present further results on models of various
sizes and with varying numbers of NIDs in the suspect set in Figure 7 of Appendix J. The results
highlight that the more NIDs are available in D′sus, the more reliable the DI. Overall, using NIDs
and the generated held-out set, we observe no false positives, while correctly identifying all training
subsets (true positives). This highlights NIDs’ ability to enable practical DI.

Table 2: P-values for DI on the Pile Dataset at 100 samples in the suspect data. To reject the null
hypothesis, we use the threshold of 0.01 for the p-values. To reject the null hypothesis for all the
training subsets (p-values ≤ 0.01), and not reject it in the test set (p-value > 0.01). All the outcomes
from our method are correct (✓).

Model GH SE HN CC AX PM IRC Full GH (Test) Full (Test)

Pythia 12B 0.0031 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.8182 ✓ 0.2847 ✓
Pythia 6.9B 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0002 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.6139 ✓ 0.0811 ✓
Pythia 2.8B 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.9632 ✓ 0.0660 ✓

Notation: GH = GitHub, SE = StackExchange, HN = HackerNews, CC = Pile-CC, AX = ArXiv, PM = PubMedCentral, IRC = UbuntuIRC

Table 3: P-values for DI on the Dolma Dataset at 100 samples in the suspect data. To reject the
null hypothesis, we use the threshold of 0.01 for the p-values. To reject the null hypothesis for all the
training subsets (p-values ≤ 0.01), and not reject it in the test set (p-value > 0.01). All the outcomes
from our method are correct (✓).

Model OWM PeS2o RFW AStack MWika AX C4 PP2 (Test)

OLMo 7B 0.0001 ✓ 0.0001 ✓ 0.0003 ✓ 0.0001 ✓ 0.0002 ✓ 0.0001 ✓ 0.0001 ✓ 0.8961 ✓
Notation: OWM = OpenWebMath, RFW = RefinedWeb, AStack = Algebraic Stack, MWika = MegaWika, AX = ArXiv, PP2 = Proof Pile 2

Controlled Ablations. We also perform controlled ablations to characterize further how NID-based
DI behaves under different design choices. First, we compare our NIDs against standard injected
canaries, i.e.,, canaries that do not naturally occur in the training data but must be manually added.
Although injected canaries fall outside our post-hoc threat model, this controlled setting helps
contextualize the strength of the NID leakage relative to existing auditing methods. We detail the
choice and design of these canaries in Appendix K.1. Our results in Table 16 show that NIDs achieve
competitive DI performance, measured in p-values. Second, we evaluate the impact of the GIDs being
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carefully sampled from the same distribution of the NIDs. Remember that DI critically depends on
the GID generator matching the NID distribution: misimplementations that change casing produce
strong signals for both members and nonmembers, thereby inflating false positives. To quantify this
impact, we design GID generations that mismatch the original NIDs to various degrees. We describe
our experimental setup in Appendix K.2. Our results show that deviations in distribution between
NIDs and GIDs lead to false positives, highlighting the importance of our approach to generating
GIDs exactly from the same distribution as NIDs. Third, we evaluate the impact of stronger MIAs on
DI performance. Specifically, we augment the baseline features with CAMIA (Chang et al., 2024) and
SURP (Zhang & Wu, 2024). See Appendix K.3 for details. Our results, shown in Table 18, indicate
that adding more powerful MIAs consistently improves DI results. These results suggest that ongoing
advances in MIA techniques further improve our framework’s results. Fourth, we quantify whether
the identifier structure matters. We construct a synthetic string that follows the format of each NIDs
to measure the impact of the identifier structure. In Appendix K.4, we detailed the experimental setup.
Our findings suggest that longer or more structured formats, such as SHA-512 and Java Serialization
strings, yield the strongest DI signals, although shorter formats, such as MD5, still produce highly
significant results, as shown in Table 19. Finally, we assess the impact of increasing the number
of NIDs on the results of DI in Appendix K.5. Our results in Table 20 suggest that increasing the
number of NIDs in the suspect set monotonically decreases the p-value in DI, illustrating the expected
gains in statistical power.

Task-Specific NIDs. In some smaller, task-specific datasets, standard NIDs might be less common.
To address this constraint and make DI practical for these datasets, new task-specific NIDs can be
discovered. As a case study, we consider the GSM8K dataset (Cobbe et al., 2021), which consists of
math word problems that do not inherently include standard NIDs. To generate valid, coherent, and
indistinguishable GIDs for DI, we create task-specific NIDs by treating each problem as a numeric
template: for example, in “Natalia sold 48/2 = «48/2=24»24 clips in May. Natalia sold 48+24
= «48+24=72»72 clips altogether in April and May. #### 72.”, we replace 48 and all dependent
quantities (such as 24 and 72) with variables, resample consistent numbers to obtain a new problem,
and use these as NIDs and GIDs. In Appendix B, we provide some practical examples of NIDs and
the corresponding GIDs. See Appendix K.6 for details on the experimental setup. To assess whether
the resulting NIDs and GIDs are suitable for our framework, we finetune Pythia-1b on 100 such NIDs,
and run DI. The results in Table 4 show that this new task-specific type of NIDs produces statistically
significant evidence for DI, confirming its effectiveness in various settings.

Table 4: P-values for DI on GSM8K. P-values obtained by our DI test on the GSM8K dataset,
illustrating the effectiveness of task-specific NIDs.

Number of NIDs 50 60 70 80 90 100
P-Value 8.43× 10−4 9.56× 10−5 3.35× 10−4 1.63× 10−5 2.12× 10−6 1.60× 10−6

6 DISCUSSION AND CONCLUSIONS

We introduce the concept of natural identifiers (NIDs) as a practical and scalable solution to a central
challenge in LLM privacy research: enabling truly post-hoc privacy auditing, i.e., auditing models
after training without requiring retraining or access to dedicated held-out data. This directly addresses
a key limitation of most existing approaches, which rely on costly retraining procedures or artificially
constructed held-out sets. While we focus on leveraging NIDs within the language domain for models
trained on datasets containing such identifiers, our analysis shows that NIDs are pervasively present
in standard LLM pretraining corpora. Their structured and reproducible nature enables the generation
of an unlimited number of non-member samples from the same distribution, which we use to construct
effective post-hoc auditing sets. Building on the one-run auditing framework, we demonstrate that
NIDs yield tighter DP bounds with reduced sample complexity. By extending the task from binary
classification to ranking-based inference, our approach further improves the flexibility and statistical
power of privacy attacks. Beyond formal auditing, NIDs also make DI practically feasible using
only the suspect data, without requiring access to held-out sets. Our empirical evaluations on open-
source LLMs validate the effectiveness and practicality of this approach. In summary, NIDs offer a
principled, both practical and efficient foundation for real-world post-hoc privacy auditing, advancing
the feasibility of scalable and responsible privacy assessments for modern language models.
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7 ETHICS STATEMENT

This work develops post-hoc auditing methods for LLMs using NIDs, which raises dual-use concerns:
the same techniques that help auditors and regulators assess training-data usage and privacy guarantees
could, in principle, be misused to better locate training artifacts or strengthen reconstruction attempts
against weakly protected models. We acknowledge this risk, and believe such tools should be
deployed only in controlled settings. At the same time, we view this kind of research as necessary:
without realistic auditing techniques, it is difficult to verify privacy claims, detect misuse of training
data, or incentivize stronger protections such as robust DP training.
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A STRUCTURE OF NIDS AND GIDS

To extract the MIA signal, we use NIDs and their corresponding GIDs together with the surrounding
textual context. Examples are provided in Appendix B. For each NID and its context, we generate
a GID by replacing the NID with a randomly generated string that matches the original format,
including structural features and casing patterns. This ensures that there is no distribution shift
between the NID and its generated GIDs by construction. Each resulting string, whether it contains
a NID or a GID, is limited to a maximum of 256 tokens. This includes both the identifier and its
surrounding context. Within this limit, the final 64 tokens are reserved as a fixed suffix, and the
remaining tokens are used for the prefix and the identifier itself. We ensure that both NIDs and
GIDs are included in full and never partially truncated. All MIA signals are computed using these
context-augmented strings. We include surrounding context to enhance the MIA signal, as prior
work (Shi et al., 2024; Zhang et al., 2024b; Xie et al., 2024) has shown that longer input sequences
can improve attack effectiveness.

B EXAMPLES OF NIDS AND GIDS

In this section, we show a series of examples to represent common appearances of the NIDs. We
bold the parts that differ between the NIDs and GIDs. As shown in these examples, to create a new
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held-out sample, we only replace the NID with a GID. From the boxes below, we observe that a
priori both the NID and the corresponding GID are equally likely to be part of the training data.

NID for MD5 from RefinedWeb Dolma (NID: 34d42a69a258fa51222a2e94b4563007)

For a future birthday party – fairy party favors. But I want to figure out a different fairy, not
Disney...
34d42a69a258fa51222a2e94b4563007.jpg 300×300 pixels
A quick, easy project for the kids: playful, pom-pom covered trees.
Carrot & Apple Cinnamon Streusel Muffins | a cup of mascarpone
Strawberry Banana Muffins recipe
PaperVine: Got Kids? Make your own Dinosaur Fossils!
Use modeling clay and some plastic dinosaurs to create dinosaur fossils. Made this last
night to test it out. Turned out pretty cool. Trying to see if this would work for a kids event
at work. I think it will! You only need 1 oz. of modeling clay per fossil.

GID for MD5 from RefinedWeb Dolma (GID: 9659875b92ba8fa639ba476aedbb73b9)

For a future birthday party – fairy party favors. But I want to figure out a different fairy, not
Disney...
9659875b92ba8fa639ba476aedbb73b9.jpg 300×300 pixels
A quick, easy project for the kids: playful, pom-pom covered trees.
Carrot & Apple Cinnamon Streusel Muffins | a cup of mascarpone
Strawberry Banana Muffins recipe
PaperVine: Got Kids? Make your own Dinosaur Fossils!
Use modeling clay and some plastic dinosaurs to create dinosaur fossils. Made this last
night to test it out. Turned out pretty cool. Trying to see if this would work for a kids event
at work. I think it will! You only need 1 oz. of modeling clay per fossil.

NID for SHA-1 from the training set of Dolma PeS2o (NID:
fac437a7d35ecfd53600ff4dc667563dfb251d25)

Data availability
COPRO-Seq and INSeq datasets are deposited at the European Nucleotide Archive
(ENA) under study accession: PRJEB38095. Proteomic data are available in the Mas-
sIVE database under project number: MSV000085341. COPRO-Seq analysis software
can be accessed at https://gitlab.com/hibberdm/COPRO-Seq and INSeq analysis soft-
ware at https://github.com/mengwu1002/Multi-taxon_ analysis_pipeline; a copy has been
archived at swh:1:rev: fac437a7d35ecfd53600ff4dc667563dfb251d25.
Additional information Competing interests Jeffrey I Gordon: Co-founder of Matatu, Inc.,
a company characterizing the role of diet-by-microbiota interactions in animal health. A
provisional patent on the MFAB technology has been submitted (Washington University,
assignee; PCT Application PCT/US2020/042678). The other authors declare that no
competing interests exist.
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GID for SHA-1 from Dolma PeS2o (GID: 95dfcf6dfc09c310e64c6540ad0b10e86394b006)

Data availability
COPRO-Seq and INSeq datasets are deposited at the European Nucleotide Archive
(ENA) under study accession: PRJEB38095. Proteomic data are available in the Mas-
sIVE database under project number: MSV000085341. COPRO-Seq analysis software
can be accessed at https://gitlab.com/hibberdm/COPRO-Seq and INSeq analysis soft-
ware at https://github.com/mengwu1002/Multi-taxon_ analysis_pipeline; a copy has been
archived at swh:1:rev: 95dfcf6dfc09c310e64c6540ad0b10e86394b006.
Additional information Competing interests Jeffrey I Gordon: Co-founder of Matatu, Inc.,
a company characterizing the role of diet-by-microbiota interactions in animal health. A
provisional patent on the MFAB technology has been submitted (Washington University,
assignee; PCT Application PCT/US2020/042678). The other authors declare that no
competing interests exist.

NID for GSM8K

**Question**
Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April and May?
**Answer**
Natalia sold 48/2 = «48/2=24»24 clips in May.
Natalia sold 48+24 = «48+24=72»72 clips altogether in April and May.
#### 72

GID for GSM8K

**Question**
Natalia sold clips to 46 of her friends in April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April and May?
**Answer**
Natalia sold 46/2 = «46/2=23»23 clips in May.
Natalia sold 46+23 = «46+23=69»69 clips altogether in April and May.
#### 69

C POST-HOC EXTRACTION OF NIDS

We describe how to extract natural identifiers (NIDs) robustly. First, we select a series of regular
expressions to identify potential natural identifiers. Depending on the type of secret, there might be a
high number of false positives, therefore, we need to further remove invalid samples. We achieve that
by first removing duplicates and then running a blind baseline (Das et al., 2024; Zhang et al., 2024a)
using the n-grams as features and different types of tabular classifiers, such as Naive Bayes classifier,
Gradient Boosting Trees, and Logistic Regression. Via K-Fold, we compute the MIA score of each
sample, then we compare the rank of the real sample with respect to the generated ones. If the rank
of the generated sample is too low or too high, we discard that sample.

We follow this procedure to robustly filter invalid natural identifiers. For instance, strings with
"0123456789" are unlikely to be random strings and are most likely false positives. Finally, we check
that the final blind baseline performance at the end of the filtering procedure is close to random
guessing.

Table 5 summarizes the NID format, structure, and entropy. Additionally, for each type of NID, we
have a specific way to generate them to closely resemble the original sample.
MD5. We generate the samples uniformly using this condition [a-fA-F0-9]{32} following the
sample casing.
SHA-1. We generate the samples uniformly using this condition [a-fA-F0-9]{40} following
the same casing of the original sample.
SHA-256. We generate the samples uniformly using this condition [a-fA-F0-9]{64} following
the same casing of the original sample.
SHA-512. We generate the samples uniformly using this condition [a-fA-F0-9]{128}
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following the same casing of the original sample.
Ethereum Address. We generate the samples uniformly using this condition
0x[a-fA-F0-9]{40}. We select and generate only samples using case sensitivity as a
checksum (EIP-55: Mixed-case checksum address encoding).
Java serialization. All serializable Java classes have the serialVersionUID attribute,
which is often equal to a random number, for instance, private static final long
serialVersionUID = 6146619729108124872L.

Table 5: Summary of NID formats, alphabets, and entropy in bits.

NID Type Length Alphabet Entropy
MD5 32 hex [0-9a-fA-F] 128
SHA-1 40 hex [0-9a-fA-F] 160
SHA-256 64 hex [0-9a-fA-F] 256
SHA-512 128 hex [0-9a-fA-F] 512
Ethereum Address 40 hex [0-9a-fA-F] 160
Java Serialization ~20 digits [0-9] 64

Although the overall computational cost for processing trillions of tokens is not negligible—
approximately one week of processing on a 128-core server—several considerations are important.
First, the current implementation has not been optimized, and substantial acceleration could be
achieved with relatively modest engineering improvements. Second, the cost of computing each NID
is only on the order of tens of milliseconds, making the per-instance evaluation highly efficient. Most
importantly, this approach is considerably less expensive than retraining large models from scratch.
For example, a single training run of Pythia-12b with a highly optimized implementation requires
approximately 72,300 hours of GPU computation. In contrast, our method avoids this prohibitive
expense while still providing meaningful insights. Finally, it is not necessary to process the entire
dataset; robust estimates can be obtained by sampling a substantially smaller subset, which further
reduces the computational burden.

Once the NIDs are extracted, the GPU cost is relatively small, as it consists of running the model
inference once or twice, depending on the MIA used, for each identifier. All the GPU experiments
were conducted on a Linux server equipped with NVIDIA A100 GPUs.

D DISTRIBUTION OF NATURAL IDENTIFIERS

Table 6 shows for each subset and type of NID the number of NIDs. We highlight that large subsets,
such as Dolma RefinedWeb, have a significant number of NIDs.

E FURTHER THEORY AND PROOFS

First, we state a useful definition and Lemma by Steinke et al. (2023), and then use them to prove
Theorem 1.

Definition 1 (Stochastic Dominance) [Definition 4.8, Steinke et al. (2023)] Let X,Y ∈ R be ran-
dom variables. We say X is stochastically dominated by Y if P[X > t] ≤ P[Y > t] for all
t ∈ R.

Lemma 1 [Lemma 4.9, Steinke et al. (2023)] Suppose X1 is stochastically dominated by Y1. Suppose
that, for all x ∈ R, the conditional distribution X2|X1 = x is stochastically dominated by Y2. Assume
that Y1 and Y2 are independent. Then, X1 +X2 is stochastically dominated by Y1 + Y2.

Here, we have the proof of Theorem 1.

Proof: Our analysis is similar to Proposition 5.1 by Steinke et al. (2023).
Fix some t ∈ Σ1 × · · · × Σm, and i ∈ {1, . . . ,m}, a ∈ Vi, and s<i ∈ V1 × · · · × Vi. Using Bayes’
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Table 6: Natural Identifiers in Different Datasets. We present the number of various natural
identifiers (here: SHA-1, MD5, SHA-256, Java Serialization, SHA-512, and Ethereum Address) in
the analyzed datasets. The Total Number denotes the total number of natural identifiers in a given
dataset.

Dataset Total Number SHA-1 MD5 SHA-256 Java Serialization SHA-512 Ethereum Address

dolma RefinedWeb 16989 8098 6192 2130 42 110 417
pile train github 13182 5389 1938 4158 819 701 177
pile train stackexchange 9862 4850 3235 1200 348 121 108
pile train pile cc 3422 1078 2008 274 1 8 53
dolma algebraic stack train 2384 1264 464 612 1 28 15
pile train hackernews 2268 1340 821 93 0 7 7
dolma openwebmath train 2207 1212 727 221 1 20 26
pile train ubuntuirc 1056 618 340 88 0 9 1
dolma c4 791 408 301 63 0 4 15
dolma PeS2o 435 235 174 11 0 1 14
dolma MegaWika 383 115 200 62 0 2 4
dolma ArXiv 332 239 58 21 0 2 12
Pile test (all subsets) 293 130 69 62 13 14 5
pile train pubmedcentral 225 66 152 7 0 0 0
pile train ArXiv 207 75 122 7 0 0 3
pile test github 197 80 36 52 13 12 4
pile train wikipediaen 85 15 66 3 0 1 0
pile test stackexchange 58 34 16 6 0 2 0
openwebmath test 46 19 20 6 0 1 0
algebraic stack test 39 28 4 7 0 0 0
dolma wiki 38 11 22 3 0 2 0
pile test pile cc 18 6 8 3 0 0 1
pile train philpapers 16 1 15 0 0 0 0
pile train freelaw 15 1 14 0 0 0 0
pile test hackernews 13 7 6 0 0 0 0
dolma tulu flan 10 0 9 1 0 0 0
pile test ubuntuirc 5 3 2 0 0 0 0
pile train enronemails 4 0 4 0 0 0 0
pile test wikipediaen 2 0 1 1 0 0 0
dolma books 2 0 2 0 0 0 0
pile train gutenbergpg 19 1 0 1 0 0 0 0
pile train pubmedabstracts 1 0 1 0 0 0 0

law and ε-DP, we have

P[Si = a|M(S) = t, S<i = s<i]

=
P[M(S) = t|Si = a, S<i = s<i]P[Si = a]

P[M(S) = t|S<i = s<i]

=
P[M(S) = t|Si = a, S<i = s<i]

1
|Vi|∑|Vi|

j=1 P[M(S) = t|Si = Vi,j , S<i = s<i]P[Si = Vi,j ]

=
P[M(S) = t|Si = a, S<i = s<i]

1
|Vi|∑|Vi|

j=1 P[M(S) = t|Si = Vi,j , S<i = s<i]
1
|Vi|

=
1

1 +
∑|Vi|

j=1,Vi,j ̸=a
P[M(S)=t|Si=Vi,j ,S<i=s<i]

P[M(S)=t|Si=a,S<i=s<i]

∈
[

1

1 + (|Vi| − 1)eε
,

eε

|Vi| − 1 + eε

]

Additionally, we can observe that for all i ∈ {1, . . . ,m}, we have that P[rank(ti, Si) ≤ ri] =∑ri
j=1 P[Si = ti,j ]. Therefore, we can bound

P[rank(ti, Si) ≤ ri] =

ri∑
j=1

P[Si = ti,j |M(S) = t, S<i = s<i]

1

1 + (|Vi| − 1)eε
≤ P[Si = ti, j |M(S) = t, S<i = s<i] ≤ ·

eε

|Vi| − 1 + eε

ri
1 + (|Vi| − 1)eε

≤ P[rank(ti, Si) ≤ ri |M(S) = t, S<i = s<i] ≤
rie

ε

|Vi| − 1 + eε
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P[rank(ti, Si) ≤ ri|M(S) = t, S<i = s<i] ∈
[

ri
1 + (|Vi| − 1)eε

,
rie

ε

|Vi| − 1 + eε

]
Thus, P[rank(ti, Si) ≤ ri|M(S) = t, S<i = s<i] ≤ rie

ε

eε+|Vi|−1 . With that, we can prove the result

by induction. We inductively assume that Wm−1 :=
∑m−1

i=1 1[rank(ti, Si) ≤ ri] is stochastically
dominated by Ŵ which is Bernoulli( rie

ε

|Vi|−1+eε )
m−1. As above, 1[rank(ti, Si) ≤ ri] is stochastically

dominated by Bernoulli( rmeε

eε+|Vm|−1 ). By Lemma 4.9 by Steinke et al. (2023), Wm = Wm−1 +

1[rank(tm, Sm) ≤ rm] is stochastically dominated by Bernoulli( rie
ε

|Vi|−1+eε )
m

i=1
. □

To show the case (ε, δ)-DP, we will first state Lemma 5.6 by Steinke et al. (2023). Then following
the analysis of Proposition 5.7 and Theorem 5.2 by Steinke et al. (2023), we prove Theorem 2.

Lemma 2 [Lemma 5.6, Steinke et al. (2023)] Let P and Q be probability distributions over Y . Fix
ε, δ ≥ 0. Suppose that, for all measurable S ⊆ Y , we have

P (S) ≤ eε ·Q(S) + δ and Q(S) ≤ eε · P (S) + δ.

Then there exists a randomized function EP,Q : Y → {0, 1} with the following properties.

Fix p ∈ [0, 1] and suppose X ∼ Bernoulli(p). If X = 1, sample Y ∼ P ; and, if X = 0, sample
Y ∼ Q. Then, for all y ∈ Y , we have

PX∼Bernoulli(p), Y∼XP+(1−X)Q

[
X = 1 ∧ EP,Q(Y ) = 1 | Y = y

]
≤ p

p+ (1− p)e−ε
.

Furthermore,
EY∼P [EP,Q(Y )] ≥ 1− δ and EY∼Q[EP,Q(Y )] ≤ δ.

Theorem 2 Let M : V1×· · ·×Vm −→ Σ1×· · ·×Σm be an (ε, δ)-DP mechanism under replacement.
Let S ∈ V1 × · · · × Vm be uniformly random. Let T = M(S) ∈ Σ1 × · · · ×Σm. Then, for all v ∈ R,
all t ∈ Σ1 × · · · × Σm in the support of T , all r1, . . . , rm with ri ≤ |Vi|, and rie

ε

|Vi|−1+eε ≤ 1,

PS←V1×···×Vm,T=M(S)[

m∑
i=1

1[rank(ti, Si) ≤ ri] ≥ v|T = t]

≤ β + αδ

m∑
i=1

|Vi|

where

β = PŜ [Ŝ ≥ v],

α = max (
1

i
PŜ [Ŝ ≥ v − i] : i ∈ {1, . . . ,m}),

Ŝ ← Bernoulli

(
rie

ε

|Vi| − 1 + eε

)m

i=1

.

Theorem 2 shows the analogous result of Theorem 1 using (ε, δ)-DP.

Now, we show the proof of Theorem 2.

Proof: Our analysis follows Proposition 5.7 and Theorem 5.2 by Steinke et al. (2023).

For i ∈ {0, . . . ,m} and s≤i ∈ V1 × · · · × Vi, let M(s≤i) denote the distribution on Σ1 × · · · × Σm

obtained by conditioning M(S) on S≤i = s≤i. We can express this as a convex combination:

M(s≤i) =
∑

s>i∈Vi×···×Vm

M(s≤i, s>i) · PS>i←Vi×···×Vm
[S>i = s>i].
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Additionally, for all i ∈ {1, . . . ,m}, and a ∈ Vi, we define M̂(s≤i, a) as the distribution on
Σ1 × · · · × Σm obtained by conditioning on S≤i = s≤i and Si+1 ̸= a, as follows:

M̂(s≤i, a) =
∑

b∈Vi,a̸=b

1

|Vi| − 1
M(s≤i, b).

We define S ← V1 × · · · × Vm to represent uniform sampling over V1 × · · · × Vm. For all i ∈
{1, . . . ,m}, we have that the distributions P and Q on Σ1, . . . ,Σm, and let EP,Q : Σ1, . . . ,Σm →
{0, 1} be the randomized function given by Lemma 2 (using p = 1

|Vi| ). Specifically, all s≤i ∈
V1 × · · · × Vi, all t ∈ Σ1 × · · · × Σm, and all a ∈ Vi, we have

PS←V1×···×Vm,T←M(S),E [Si = a ∧ EM(s<i,a),M̂(s<i,a)
(T ) = 1|S≤i = s≤i, T = t] ≤ eε

|Vi| − 1 + eε
,

ES←V1×···×Vm,T←M(S),E [EM(s<i,a),M̂(s<i,a)
(T )|S≤i = (s<i, a)] ≥ 1− δ.

For simplicity, for all i ∈ {1, . . . ,m}, we define EM(s<i,Vi)(y) :=
∏

a∈Vi
EM(S<i,a),M̂(S<i,a)

(y)

and, for b ∈ Vi, we have

ES←V1×···×Vm,T←M(S),E [EM(s<i,Vi)(T )|S≤i = (s<i, b)] ≥ 1− |Vi|δ.

For all a ∈ Vi, let j := rank(ti, a), where we use 1-based ranks: rank 1 corresponds to the
highest-scoring element, rank 2 to the next, and so on. So we can rewrite

PS←V1×···×Vm,T←M(S),E [Si = a ∧ EM(s<i,Vi)(T ) = 1|S≤i = s≤i, T = t]

= PS←V1×···×Vm,T←M(S),E [rank(ti, Si) = j] ∧ EM(s<i,Vi)(T ) = 1|S≤i = s≤i, T = t].

Note that there is a bijective relationship between a and j. Therefore, we have that

PS←V1×···×Vm,T←M(S),E [rank(ti, Si) ≤ ri ∧ EM(s<i,Vi)(T ) = 1|S≤i = s≤i, T = t] ≤ rie
ε

|Vi| − 1 + eε
.

For j ∈ {1, . . . ,m}, s ∈ Vi × · · · × Vm, and t ∈ Σ1 × · · · × Σm, define

W̃j(s, t) :=
∑
i<j

1[rank(ti, Si) ≤ ri] · EM(s<i,Vi)(t) =
∑
i<j

1[rank(ti, Si) ≤ ri ∧ EM(s<i,Vi)(t) = 1]

Ŵj(t) =
∑
i∈[j]

Si(t),

where, for each i ∈ {1, . . . ,m} independently, S(t)i ← Bernoulli
(

rie
ε

|Vi|−1+eε

)
By induction and Lemma 1, for any j ∈ {1, . . . ,m} and t ∈ Σ1 × · · · × Σm, the conditional
distribution (W̃m(S, t)|M(S) = t) where S ← V1 × · · · × Vm is stochastically dominated by
Ŵm(t).

For s ∈ V1 × · · · × Vm and t ∈ Σ1 × · · · × Σm, define

F (s, t) :=

m∑
i=1

1
[
EM(s<i,Vi)(t) = 0

]
,

so that

Wm(s, t) :=

m∑
i=1

1[rank(ti, Si) ≤ ri] ≤ Ŵm(s, t) + F (s, t).
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Since the conditional distribution (Wm(S, t)|M(S) = t), where S ← V1×· · ·×Vm is stochastically
dominated by Wm(t), Wm is stochastically dominated by the convolution Ŵm(T )+F (S, T ). Finally,
F (s, t) is supported on {0, 1, . . . ,m} and

E[F (s, t)] =

m∑
i=1

P[EM(s<i,a),M̂(s<i,a)
(T ) = 0] ≤ δ

m∑
i=1

|Vi|.

Since Ŵm(T ) does not depend on S, the input S does not contribute to the dependence between
F (S, T ) and Wm(T ), so we can elide this input in the statement, that is, F (T ) = F (S, T ) for S
drawn from an appropriate distribution.

Given these constraints, we can formulate finding the optimal distribution F (t) for a given t ∈
Σ1 × · · · × Σm and v ∈ R as a linear program:

maximize PW̌ ,F [W̌ (t) + F (t) ≥ v]−
m∑
i=0

P[F (t) = i] · P[W̌ (t) ≥ v − i]

subject to EF [F (t)] =

m∑
i=0

PF [F (t) = i] · i ≤ δ

m∑
i=1

|Vi|,

m∑
i=0

PF [F (t) = i] = 1, and

PF [F (t) = i] ≥ 0 ∀i ∈ {0, 1, . . . ,m},

where W̌ (t) :=
∑m

i=1 1[rank(ti, Si) ≤ ri] for Si ← Bernoulli
(

rie
ε

|Vi|−1+eε

)m

.

By strong duality, the linear program above has the same value as its dual:

minimize α · δ
m∑
i=1

|Vi|+ β

subject to α · i+ β ≥ PW̌ [W̌ (t) ≥ v − i] ∀i ∈ {0, 1, . . . ,m},
α ≥ 0.

Any feasible solution to the dual gives an upper bound on the primal. So, in particular, we can use the
solution provided by

β = PW̌∗ [W̌
∗ ≥ v],

α = max

(
{0} ∪

{
1

i

(
PW̌∗ [W̌

∗ ≥ v − i]− β
)
: i ∈ {1, 2, . . . ,m}

})
,

where W̌ ∗ is a distribution on R that satisfies PW̌∗ [W̌
∗ ≥ v − i] ≥ PW̌ [W̌ (t) ≥ v − i] for all

i ∈ {0, 1, . . . ,m} and all t in the support of T . □

F SAMPLE COMPLEXITY ANALYSIS ON THE CARDINALITY

A natural question is what advantage arises from increasing the cardinality c = |Vi| (for simplicity we
assume that all sets Vi have the same cardinality). By Theorem 1, the probability that a mechanism
produces a correct guess within the top-r elements is stochastically dominated by a Bernoulli random
variable with success probability

p =
reε

c− 1 + eε
, with p ≤ 1.

Thus, if we consider m independent guesses, the total number of correct guesses is stochastically
dominated by a Binomial(m, p) random variable.
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Applying the Bernstein inequality to this binomial distribution yields the following tail bound: for
any β ∈ (0, 1),

P

[
Ŝ

m
≥ p +

1

3m
log

(
1
β

)
+

√
1

9m log2
(

1
β

)
+

2p(1− p)

m
log

(
1
β

)]
≤ β,

where Ŝ ∼ Binomial(m, p) and Ŝ/m represents the empirical accuracy (i.e., the observed fraction
of correct guesses).

On the right-hand side of this inequality, the first term p corresponds to the expected accuracy, while
the remaining terms form the concentration margin. Among these, the dominant contribution for
large m and c is √

2p(1− p)

m
log

(
1
β

)
.

To understand the scaling, observe that for fixed r and ε, we have

p = Θ
(
1
c

)
, p(1− p) = Θ

(
1
c

)
.

Consequently, the concentration margin decays as

Θ

(√
1
mc

)
.

This shows that the accuracy concentrates faster as the cardinality c increases: compared to the binary
case (c = 2), the deviation shrinks by a factor of

√
2/c. In other words, larger cardinalities yield

tighter accuracy concentration bounds, providing a clear sample complexity improvement over the
1-out-of-2 setting.

G RANDOMIZED RESPONSE ANALYSIS

In the following subsections, we analyze in detail our novel auditing method using randomized
response.

G.1 RANDOMIZED RESPONSE FORMALIZATION

We now provide the complete derivation of the auditing bound for randomized response in our setting.
Formally, we are given m samples, each corresponding to a private integer vi ∈ {1, . . . , c}. The
randomized response mechanism releases

yi =

{
vi with probability 1

c + γ,

a with probability 1
c −

γ
c−1 , ∀a ̸= vi,

where γ = eε−1

c

(
1+

eε

c−1

) ensures ε-DP.

The auditor ranks the c possible values from most to least likely. Since yi is always the most likely
input to produce itself, the optimal strategy is to rank yi first and order the remaining values randomly.
The probability of a correct guess is therefore

P[correct] = eε

c−1+eε ,

which exactly matches the bound of Theorem 1.

G.2 ADDITIONAL RANDOMIZED RESPONSE EXPERIMENTS FOR r > 1

Figure 4a and Figure 4b show additional results for the randomized response setting. We highlight
that our method is tight for rank threshold r = 1, and the higher the ε, the larger the improvement
given by a larger cardinality c.

In the specific case of randomized response, r > 1 is not tight, as there is no further information
to exploit, as the attacker’s best response is to give the mechanism response as the first choice and
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(a) ε = 1

101 102 103 104 105

Number of samples

0

2

4

6

8

Ideal
Steinke et al. (2, 1)

(4, 1)
(4, 2)

(128, 1)
(128, 8)

(128, 64)

(b) ε = 8

Figure 4: Randomized response mechanism with ε = {1, 8}. The red dashed line indicates the real
ε of the mechanism, while other ones indicate the estimated lower bound of ε with 99% confidence
for different choices of cardinality c, and rank threshold r. The (2,1) case corresponds to the method
proposed by Steinke et al. (2023). Each label is written as (cardinality c, rank threshold r).

the other ones in random order. The randomized response mechanism returns a random value with
a small bias towards the private one. From the auditor’s point of view, the best attack returns the
privatized value as the first option and the others in a random permutation. This means that the
first value has some information about the private value, while the other ones have no information.
Specifically, the probability of the first sample being the private sample is eε

c−1+eε , while for the
other ones it is 1

c−1+eε (these results come from the randomized response output distribution). If
we consider a certain threshold r, Theorem 1 roughly states that the probability of being correct is
bounded by reε

c−1+eε . However, based on our attack, the probability that the correct value is in the
top-r is eε

c−1+eε + r−1
c−1+eε . For r = 1, we can observe that the two results match, while for r > 1,

the attacker’s probability is always strictly smaller than the ideal one (except for ε = 0). Theorem 1
and Theorem 2 give this additional flexibility of selecting the top-r threshold; however, depending on
the setting, this might be more or less useful.

H DP-SGD AUDITING

In the following subsections, we show additional experiments for DP-SGD auditing and the pseu-
docode of the auditing procedure.

H.1 FURTHER EXPERIMENTS ON DP-SGD AUDITING

Figure 5 shows results for experiments conducted following settings described in Section 4 for other
Pythia models (70m and 160m) (Biderman et al., 2023). The experiments substantiate observa-
tions from larger models, and the proposed framework constantly outperforms the baseline method
proposed by Steinke et al. (2023).
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2 (Steinke et al.) 8 32

(a) Pythia-160m
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(b) Pythia-70m

Figure 5: Impact of cardinality (c = {2, 8, 32}) on ε estimation for other Pythia models.
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Moreover, we explore different values of the r parameter to estimate the lower bound of ε. The
results shown in Figure 6 confirm our choice of parameter r = 1, thus providing the tightest and most
reliable outcomes for our post-hoc DP auditing framework with NIDs.
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(b) c = 8

Figure 6: Impact of rank r = {1, 2, 4} on ε estimation for Pythia-1b.

H.2 CONFIDENCE INTERVALS ACROSS 4 RANDOM SEEDS FOR DP AUDITING

Table 7 shows the confidence interval across 4 random seeds using Pythia-1b. The results show a low
standard deviation across all of the settings.

Table 7: DP auditing across 4 seeds. Mean estimated ε for Pythia-1b computed across 4 seeds.

cardinality ε Estimated ε
2 5 0.086± 0.021
2 ∞ 0.979± 0.028
2 10 0.106± 0.020
2 100 0.245± 0.023
8 5 0.720± 0.144
8 10 0.789± 0.144
8 100 1.094± 0.129
8 ∞ 2.329± 0.058
32 5 1.761± 0.226
32 10 1.830± 0.231
32 100 2.178± 0.218
32 ∞ 3.775± 0.067

H.3 PSEUDOCODE FOR DP-SGD AUDITING

Algorithm 1 summarizes our approach for auditing DP-SGD using the results given by Theorem 2.
We highlight that when for all i ∈ {1, . . . ,m}, we have |Vi| = 2 and ri = 1, the algorithm is
equivalent to the fixed-length dataset case proposed by Steinke et al. (2023).
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Algorithm 1: Adapted version of the black-box DP-SGD Auditor algorithm proposed by Steinke
et al. (2023) for fixed-length dataset with NIDs.
Input: Dataset D0, sets of canaries V = {V1, . . . , Vm}, the target ranks r1, . . . , rm, and the

DP-SGD settings
1: for i ∈ {1, . . . ,m} do
2: Si ← Unif{Vi}
3: end for
4: D1 := {Vi,Si : i ∈ {1, . . . ,m}}
5: D = D0 ∪D1

6: Run DP-SGD on D with given parameters, yielding {w0, w1, . . . , wℓ}
7: for i ∈ {1, . . . ,m} do
8: Yi,j ← SCORE(Vi,j ;w

ℓ) ∀j ∈ [|Vi|]
9: Ti ← argsort(Yi,j∀j ∈ [|Vi|])

10: end for
11: c← 0
12: for i ∈ {1, . . . ,m} do
13: if Ti,Si ≤ ri then
14: c← c+ 1
15: end if
16: end for
17: return Compute εlower using the formula given by Theorem 2

I ADDITIONAL EVALUATION OF MIAS PERFORMANCE

Table 8, Table 10 and Table 11 show the MIA performance of the individual MIAs on the subsets of
the Pile using the NIDs, where the goal is to distinguish the real from the generated ones. Furthermore,
for completeness, we have Table 12, Table 13, Table 14, and Table 15 that show the MIA performance
using TPR @ 1% FPR.

Table 8: MIAs on NIDs for Pythia-12b. The AUC for MIAs between the NIDs and the corresponding
GIDs on various subsets of the Pile dataset.

Stack Ubuntu Wiki- PubMed Hacker Pile
Full Pile Github Exchange IRC pedia(en) Central News CC ArXiv Average

MIA Train Test Train Test Train Test Train Train Train Train Train Train Train Test

Loss 58.6 50.3 71.8 51.1 50.3 50.9 50.3 50.6 50.6 60.5 51.1 50.4 54.9 50.7
Min-K% 57.6 51.0 68.4 50.6 50.7 51.2 51.1 50.6 50.7 60.5 52.3 51.0 54.8 50.9
Min-K%++ 56.9 51.4 71.2 50.3 50.8 51.9 51.1 51.3 51.1 69.7 53.2 50.9 56.2 51.2
ReCALL 53.5 50.2 50.6 50.3 50.0 51.1 50.3 51.3 50.2 57.8 50.1 50.2 51.6 50.5
ReCALL(Hinge) 51.3 50.1 53.3 50.4 50.4 51.4 50.5 51.9 50.8 50.3 50.4 50.0 51.0 50.6
Hinge 58.7 50.5 71.8 51.5 50.4 50.5 50.4 50.4 50.5 60.8 50.9 50.4 54.9 50.8

Table 9: MIAs on NIDs for OLMo-7B. The AUC for MIAs between the NIDs and the corresponding
GIDs on various subsets of the Dolma dataset. All but Proof Pile 2 (Test) are part of the training data
of Dolma.

Dolma Average
MIA C4 PeS2o MegaWika ArXiv RefinedWeb Algebraic Stack OpenWebMath Proof Pile 2 (Test) Train

Loss 50.1 50.2 50.2 51.2 50.1 50.0 50.9 50.6 50.4
Min-K% 50.1 50.2 50.5 51.3 50.1 50.5 51.7 51.3 50.6
Min-K%++ 50.4 50.2 50.0 50.7 50.1 50.2 50.8 51.0 50.3
ReCALL 50.2 50.9 51.0 50.7 50.1 50.4 51.0 51.0 50.6
ReCALL (Hinge) 50.3 51.4 50.2 51.9 50.2 50.7 50.2 51.0 50.7
Hinge 50.1 50.2 50.2 50.9 50.1 50.0 50.7 51.0 50.3

J FURTHER EXPERIMENTS ON DI

We evaluate DI on various models and data subsets. More concretely, we experiment with Pythia
models 12b, 6.9b, and 2.8b and OLMo-7B. Additionally, we investigate the impact of increasing the
number of samples in the suspect set. All results are summarized in Figure 7.
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Table 10: MIAs on NIDs for Pythia-6.9b. The AUC for MIAs between the NIDs and the corre-
sponding GIDs on various subsets of the Pile dataset.

Full Pile Github StackExchange UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Average
MIA Train Test Train Test Train Test Train Train Train Train Train Train Train Test

Loss 57.6 50.4 69.9 51.1 50.3 50.6 50.3 50.7 50.7 61.7 50.8 50.6 54.7 50.7
Min-K% 56.0 51.0 65.7 50.5 50.8 51.4 50.9 50.6 50.9 63.2 51.8 50.7 54.5 51.0
Min-K%++ 55.1 51.3 69.3 50.5 51.3 50.4 51.4 51.8 51.6 74.5 52.8 51.8 56.6 50.7
ReCALL 52.4 51.4 55.9 51.1 50.1 51.0 50.1 50.5 50.4 60.3 50.3 50.7 52.3 51.2
ReCALL (Hinge) 51.2 50.6 53.2 51.2 50.1 50.1 51.0 50.9 50.1 52.6 50.0 50.0 51.0 50.6
Hinge 57.7 50.7 69.9 51.6 50.4 50.1 50.2 50.0 50.7 61.7 50.7 50.3 54.6 50.8

Table 11: MIAs on NIDs for Pythia-2.8b. The AUC for MIAs between the NIDs and the corre-
sponding GIDs on various subsets of the Pile dataset.

Full Pile Github StackExchange UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Average
MIA Train Test Train Test Train Test Train Train Train Train Train Train Train Test

Loss 52.8 50.0 58.9 50.4 50.2 50.2 50.1 50.5 50.5 60.3 50.8 50.6 52.8 50.2
Min-K% 52.1 52.4 59.5 52.9 50.6 50.3 50.2 50.1 50.6 61.6 51.6 50.5 53.0 51.8
Min-K%++ 50.3 52.3 58.2 50.6 50.9 50.1 50.2 50.2 50.3 73.6 52.8 51.4 54.2 51.0
ReCALL 53.7 51.1 64.4 52.2 50.1 50.1 50.2 50.8 50.5 58.0 50.2 51.1 53.2 51.2
ReCALL (Hinge) 50.9 50.6 50.9 50.8 50.5 50.7 50.9 52.3 50.2 51.3 50.2 50.1 50.8 50.7
Hinge 53.0 50.4 58.9 51.1 50.3 50.3 50.2 50.2 50.5 59.9 50.7 50.4 52.7 50.6

Table 12: MIAs on NIDs for Pythia-12b. The TPR @ 1% FPR for MIAs between the NIDs and the
corresponding GIDs on various subsets of the Pile dataset.

Full Pile Github StackExchange UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Average
MIA Train Test Train Test Train Test Train Train Train Train Train Train Train Test

Loss 1.2 0.0 1.9 0.0 1.0 0.1 0.0 0.1 0.5 0.1 0.9 0.3 0.7 0.0
Min-K% 1.1 0.0 1.6 0.0 1.0 1.8 0.3 0.9 1.0 0.2 0.9 0.6 0.9 0.6
Min-K%++ 1.3 1.1 2.0 1.1 0.8 1.3 0.4 0.9 1.9 0.8 1.3 0.4 1.1 1.2
ReCALL 1.2 0.2 1.5 0.0 1.0 1.5 1.4 0.7 0.8 0.9 1.9 1.0 1.1 0.5
ReCALL (Hinge) 1.1 1.2 1.9 1.5 0.6 1.3 0.5 1.0 0.1 1.5 1.3 2.8 1.2 1.3
Hinge 0.0 0.4 0.0 0.5 0.9 1.5 0.5 0.5 2.1 1.1 0.9 1.3 0.8 0.8

Table 13: MIAs on NIDs for Pythia-6.9b. The TPR @ 1% FPR for MIAs between the NIDs and the
corresponding GIDs on various subsets of the Pile dataset.

Full Pile Github StackExchange UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Average
MIA Train Test Train Test Train Test Train Train Train Train Train Train Train Test

Loss 1.2 0.1 1.9 0.0 1.0 1.3 0.4 0.0 0.3 0.3 0.5 1.0 0.7 0.5
Min-K% 1.1 0.1 1.6 0.0 1.3 0.7 0.5 1.0 0.9 0.3 1.0 1.3 1.0 0.3
Min-K%++ 0.9 0.7 1.0 0.6 1.2 1.4 0.4 1.3 0.9 0.9 0.4 1.1 0.9 0.9
ReCALL 1.0 0.2 1.5 0.0 1.2 1.3 1.1 0.6 1.2 1.2 1.2 2.1 1.2 0.5
ReCALL (Hinge) 1.3 1.4 2.0 1.5 0.5 2.6 0.6 2.3 1.8 3.3 1.2 1.8 1.6 1.9
Hinge 0.0 0.3 0.0 0.5 0.8 1.2 0.7 0.3 1.2 1.0 0.7 0.9 0.6 0.7

K CONTROLLED ABLATION OF DI

In this section, we investigate how the main design choices affect the behavior of our method. To
carry out this controlled analysis, it is necessary to train a model for each configuration under study.
Fully training a large model for every variation is computationally infeasible, and therefore, following
the procedure described in Section 4, we finetune a smaller model that serves as a practical proxy for
evaluating the influence of individual components. This controlled setup enables us to enforce the
formatting rules of task-specific NIDs with precision, ensuring that the experiments isolate structural
properties rather than reflecting irregularities present in real-world data. The following subsections
present the corresponding evaluations conducted within this framework.

K.1 COMPARISON WITH INJECTED CANARIES

In this subsection, we compare the performance of NIDs and commonly used injected canaries.
Although injected canaries fall outside our post-hoc threat model, this controlled setting helps
contextualize the strength of the NID leakage relative to existing auditing methods. In particular,
we consider four types of canaries: (1) random alphabetic strings of length 32, (2) the NIDs (from
the GitHub subset of the Pile test set), (3) fully IID strings (in-distribution text from the Pile test
set), and (4) random hexadecimal strings of length 32. For each type, we inject 100 canaries into
the training data and run DI. The resulting p-values for each canary type are reported in Table 16.
Overall, we find that NIDs perform competitively with other injected canaries. They capture privacy
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Table 14: MIAs on NIDs for Pythia-2.8b. The TPR @ 1% FPR for MIAs between the NIDs and the
corresponding GIDs on various subsets of the Pile dataset.

Full Pile Github StackExchange UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Average
MIA Train Test Train Test Train Test Train Train Train Train Train Train Train Test

Loss 1.1 0.0 1.4 0.0 0.9 1.3 0.4 0.0 0.8 0.1 0.6 1.0 0.7 0.4
Min-K% 1.1 0.0 1.2 0.0 1.1 1.4 0.4 1.1 1.1 0.3 0.7 0.7 0.8 0.5
Min-K%++ 0.9 0.6 1.3 0.5 0.8 1.5 0.3 1.0 2.3 0.8 1.0 0.3 1.0 0.9
ReCALL 0.1 0.0 0.5 0.0 1.0 0.1 1.5 0.1 0.9 0.7 1.0 1.7 0.8 0.0
ReCALL (Hinge) 1.3 0.7 1.6 1.0 0.7 0.1 1.7 0.4 0.1 2.4 0.8 1.1 1.1 0.6
Hinge 0.1 0.4 0.1 0.4 0.8 1.5 0.4 0.2 1.5 1.2 0.9 0.9 0.7 0.8

Table 15: MIAs on NIDs for OLMo 7B. The TPR @ 1% FPR for MIAs between the NIDs and the
corresponding GIDs on various subsets of the Dolma dataset.

Dolma Average
MIA C4 PeS2o MegaWika ArXiv RefinedWeb algebraic stack openwebmath Proof Pile 2 (Test) Train

Loss 0.4 0.9 0.4 1.2 0.8 0.9 0.3 0.0 0.7
Min-K% 0.7 0.5 1.5 0.3 0.9 0.5 0.4 0.0 0.7
Min-K%++ 1.1 0.8 0.2 0.8 2.0 0.3 0.9 0.0 0.9
ReCALL 0.7 0.6 0.6 0.7 0.7 0.9 0.6 0.0 0.7
ReCALL (Hinge) 0.7 0.3 1.1 0.2 0.2 1.1 2.2 0.0 0.8
Hinge 0.9 1.0 1.0 0.6 1.1 1.1 0.9 0.0 0.9

leakage more effectively than IID canaries and outperform random hexadecimal canaries, though
some carefully crafted canaries, such as alphabetic strings, exhibit slightly stronger signals.

Table 16: P-values for DI on Injected Canaries. P-values obtained for each injected canary type.

Canary Type P-Value
Alphabetic < 1.00× 10−300

NIDs (All subsets) 4.17× 10−211

NIDs (GitHub subset) 3.31× 10−156

IID 4.55× 10−100

Hex 7.00× 10−23

K.2 MISIMPLEMENTED GENERATOR

To study the benefits of our method for operating on held-out data from the same distribution, we
analyze scenarios in which the held-out data are generated from a distribution that differs from the
distribution of the suspect set data. We evaluate the impact of an incorrectly implemented generator.
If the GID generator is not implemented properly, this induces a distributional shift between NIDs and
GIDs. Starting from the correct generator, we construct three misimplemented variants that (1) flip
the casing of alphabetic characters, (2) produce identifiers whose length is off by one, and (3) produce
identifiers whose length is off by two. We then run DI on models finetuned on correct NIDs, but
evaluated using imperfect GIDs, using the same protocol as in previous subsections. Table 17 reports
the resulting p-values for member and non-member datasets. The results show that DI is sensitive to
certain generator failures: for example, incorrect casing yields strong signals for both members and
non-members, substantially inflating false positives. In contrast, modest length mismatches have a
smaller impact on non-member p-values, likely because Min-K% and Min-K%++ only depend on
the top-k tokens and are therefore relatively insensitive to appending or removing a small number of
additional tokens. This analysis complements our microanalysis of NID formats and highlights that
both structural differences and shifts in the identifier-generation distribution can meaningfully affect
DI outcomes.

Table 17: Misimplemented Generator. P-values for DI on member and non-member datasets under
different GID generator failures compared to the correct generator.

Generator Failure P-Value Members P-Value Non-Members
Wrong Case < 1.00× 10−300 1.16× 10−54

Length Off By 2 3.64× 10−99 5.39× 10−02

Length Off By 1 < 1.00× 10−300 3.40× 10−01

Correct Generator 3.31× 10−156 9.83× 10−01
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Figure 7: The p-value for different Pythia models and OLMo on subsets of the Pile or Dolma datasets,
respectively. We show results for different numbers of samples in the suspect set. For the Pythia
models, the solid lines show the training subsets, while the dashed lines are for test subsets (not
included in training). The Proof Pile 2 (Test) subset has fewer than 100 NIDs. Hence, their lines are
plotted only until the highest number of samples is available. We observe that for training sets, the
p-values overall decrease with the number of samples, enabling the detection of the private data in
the model’s training set. The test set’s p-values are constant, suggesting that no false positives are
achieved.

K.3 IMPACT OF MIA STRENGTH

We next investigate how the strength of the underlying membership inference attack affects DI
performance with NIDs and, consequently, DP auditing. While our framework treats the MIA as a
plug-in component, a stronger MIA signal should intuitively translate into more powerful DI tests.
To validate this, we follow the controlled setup: we finetune Pythia-1b on 100 NIDs from the GitHub
test set and run DI with four MIA feature configurations. Specifically, we use (1) the original MIA
feature set, (2) the original features augmented with CAMIA (Chang et al., 2024), (3) the original
features augmented with SURP (Zhang & Wu, 2024), and (4) the combination of original features,
CAMIA, and SURP. Table 18 reports the resulting p-values. We observe that incorporating stronger
MIAs, particularly CAMIA, substantially improves DI effectiveness, as indicated by lower p-values,
and that the trend is consistent: the richer the MIA feature set, the stronger the DI signal.
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Table 18: MIA Strength. P-values for DI when using different combinations of MIA feature sets,
illustrating how stronger MIAs improve the DI signal.

MIA Signal P-Value
Original Features + CAMIA < 1.00× 10−300

Original Features + CAMIA + SURP < 1.00× 10−300

Original Features + SURP 4.17× 10−211

Original Features 3.31× 10−156

K.4 COMPARING DIFFERENT TYPES OF NIDS

We also study how the structure of an identifier affects DI risk in a controlled experiment (see Table 5
for the exact formats). For each NID format (Java serialization strings, SHA-512, SHA-256, SHA-1,
MD5, and Ethereum addresses), we generate a set of identifiers that follow the corresponding pattern,
finetune Pythia-1b on 100 instances of that type, and then run DI. Table 19 reports the resulting
member p-values. Longer and more structurally complex identifiers, such as SHA-512 hashes, tend
to yield stronger DI signals, whereas shorter formats such as MD5 hashes produce weaker but still
highly significant results. Beyond length, the character composition also matters: Java serialization
strings, which only contains digits, produce a stronger DI signal than SHA-512 despite being shorter.
Overall, these results indicate that our framework is robust across a range of realistic NID structures,
with DI performance improving as identifiers become more informative and distinctive.

Table 19: NID Structures. P-values for DI for different NID formats, showing how identifier length
and structure influence the strength of the leakage signal.

NID Structure P-Value
Java Serialization 4.17× 10−211

SHA512 1.67× 10−175

SHA1 / Ethereum Address 1.95× 10−88

SHA256 8.89× 10−44

MD5 7.00× 10−23

K.5 NUMBER OF NIDS

The number of NIDs significantly affects the statistical power of the DI test. To study this effect,
we finetune Pythia-1b on 100 NIDs from the GitHub test set, and then run DI using only subsets
of size k ∈ {50, 60, 70, 80, 90, 100} of these NIDs. Table 20 shows the resulting member p-values.
As expected, the p-values decrease monotonically as the number of NIDs increases, illustrating the
sample-complexity benefit of having more identifiers available in the suspect dataset.

Table 20: Number of NIDs. P-values for DI as a function of the number of NIDs used, demonstrating
the sample-complexity benefit of having more identifiers.

Number of NIDs P-Value
50 1.01× 10−66

60 7.92× 10−84

70 2.07× 10−101

80 2.23× 10−119

90 1.16× 10−137

100 3.31× 10−156

K.6 TASK-SPECIFIC NIDS

In this subsection, we detail our case study on constructing task-specific NIDs for GSM8K, which
consists of grade-school math word problems that require multi-step numerical reasoning. For each
selected GSM8K problem, we use GPT-5.1 to rewrite the problem as a numeric template by replacing
every concrete number in the statement and solution with a variable; for example, the original solution
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fragment “Natalia sold 48/2 = «48/2=24»24 clips in May. Natalia sold 48+24 = «48+24=72»72 clips
altogether in April and May. #### 72” is rewritten as the template “Natalia sold n/2 clips in May.
Natalia sold n + n/2 = 3n/2 clips altogether in April and May.”, where n stands for the original
48 and all derived quantities become functions of n. We then sample new values for these variables,
update the problem text and solution accordingly, and have GPT-5.1 verify that each instantiated
problem–solution pair is logically correct and self-consistent. In our DI setting, we treat one instance
per template as the task-specific NID in the suspect set and the remaining instantiated variants as the
corresponding GIDs drawn from the same task-specific distribution. To validate this approach, we
finetune Pythia-1b on 100 such GSM8K-derived NIDs and run DI on the resulting suspect sets; as
shown in Table 4 in the main paper, these task-specific NIDs enable statistically significant DI on
GSM8K. Moreover, the p-values decrease as the number of NIDs increases, reflecting the expected
strengthening of the DI signal with additional identifiers.

K.7 COMPARISON WITH EXISTING DI METHODS

To compare the effectiveness of our method, we not only compare the effectiveness of the individual
canaries, but also the performance of the DI methods. For each DI method, we finetune Pythia-1b
with the corresponding canaries and apply the corresponding statistical test. Following Maini et al.
(2024), we use IID samples and their corresponding statistical test. For Zhang et al. (2024a), we use
the Hex and Alphabetic random strings of length 32 and apply our statistical test, as their method
lacks one. For Zhao et al. (2025), we still use the entire subset during the generation phase. While this
gives an unfair advantage to the method by Zhao et al. (2025), it is necessary to prevent an even larger
distribution shift in the resulting generated held-out set. Additionally, the reported time includes both
generation and calibration. The generation time is measured in the pre-training setting, on four A100
GPUs, whereas all other experiments use a single A100 GPU.

In Table 21, we report the results from the GitHub subset. We observe that for the member subsets,
our method shows strong performance, with lower p-values than Maini et al. (2024) and Zhao
et al. (2025). For the non-member subsets, the p-values for all methods are close to 1.0. Notably,
the execution time of our approach (21.52 minutes) is close to that of Maini et al. (2024) and the
implementation of the approach proposed by Zhang et al. (2024a), yet substantially more efficient
than Zhao et al. (2025).

Additionally, in Table 22, we conduct a further evaluation using the whole Pile dataset. In this setting,
we are unable to include Zhao et al. (2025), as the method relies on low distributional variability to
function effectively. The results show a similar trend to that in the GitHub subset.

Table 21: DI Comparison (GitHub Subset). Comparison of DI methods including members/non-
members p-values and execution time (in minutes) on the GitHub subset.

DI Method P-Value Members P-Value Non-Members Time
LLM DI (Maini et al. (2024)) 9.79× 10−122 1.05× 10−2 20.43
Unlock DI (Zhao et al. (2025)) 5.00× 10−5 1× 100 2122.37
Zhang et al. (2024a) (Hex) 7.00× 10−23 6.70× 10−2 21.18
Zhang et al. (2024a) (Alphabetic) < 1.00× 10−300 5.42× 10−1 20.83
NID DI (Ours) 3.31× 10−156 9.83× 10−1 21.52

Table 22: DI Comparison (All Subsets). Comparison of DI methods including members/non-
members p-values and execution time (in minutes) with samples from the Pile.

DI Method P-Value Members P-Value Non-Members Time
LLM DI (Maini et al. (2024)) 8.48× 10−46 5.85× 10−1 20.73
Zhang et al. (2024a) (Hex) 7.00× 10−23 6.70× 10−2 21.18
Zhang et al. (2024a) (Alphabetic) < 1.00× 10−300 5.42× 10−1 20.83
NID DI (Ours) 4.17× 10−211 3.76× 10−1 20.67
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L DIRECT COMPARISON WITH ZHAO ET AL. (2025)

To further validate our DI method, we compare against Zhao et al. (2025) in the pretrained settings.
For fairness, we replicate their experimental setup, including the number of samples reported in
Table A2 of (Zhao et al., 2025). We evaluate three subsets of the Pile dataset using the Pythia-6.9b
model to ensure coverage across various settings. As shown in Table 23, our method achieves
substantially better performance and efficiency, being more effective and orders of magnitude faster
than the method of Zhao et al. (2025).

Table 23: DI Comparison. Comparison of p-values and end-to-end execution time (in minutes) per
subset on Pythia-6.9b.

Subset P-Value (Zhao et al., 2025) P-Value (Ours) Time (Zhao et al., 2025) Time (Ours)
Pile-CC 5.64× 10−3 2.18× 10−34 1395.87 46.17
GitHub 8.50× 10−3 3.65× 10−14 2106.97 34.41
Ubuntu 4.23× 10−2 3.01× 10−14 805.22 21.33

M LIMITATIONS

Our method relies on datasets that contain NIDs. While we have demonstrated that they are
widespread, it is possible that not all types of NIDs have been identified; future work may un-
cover more, which would only enhance our results by increasing the number of real samples.

N LLM USAGE

We used LLMs solely to polish author-written text (grammar, clarity, concision). All suggestions
were reviewed by the authors, who take full responsibility.
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