
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NATURAL IDENTIFIERS FOR PRIVACY AND DATA
AUDITS IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Assessing the privacy of large language models (LLMs) presents significant chal-
lenges. In particular, most existing methods for auditing differential privacy require
the insertion of specially crafted canary data during training, making them imprac-
tical for auditing already-trained models without costly retraining. Additionally,
dataset inference, which audits whether a suspect dataset was used to train a model,
is infeasible without access to a private non-member held-out dataset. Yet, such
held-out datasets are often unavailable or difficult to construct for real-world cases
since they have to be from the same distribution (IID) as the suspect data. These
limitations severely hinder the ability to conduct scalable, post-hoc audits. To
enable such audits, this work introduces natural identifiers (NIDs) as a novel
solution to the above-mentioned challenges. NIDs are structured random strings,
such as cryptographic hashes and shortened URLs, naturally occurring in common
LLM training datasets. Their format enables the generation of unlimited additional
random strings from the same distribution, which can act as alternative canaries for
audits and as same-distribution held-out data for dataset inference. Our evaluation
highlights that indeed, using NIDs, we can facilitate post-hoc differential privacy
auditing without any retraining and enable dataset inference for any suspect dataset
containing NIDs without the need for a private non-member held-out dataset.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly used in applications like chatbots and text genera-
tion, where they are often trained on sensitive data, such as private conversations. Since LLMs have
been shown to leak information about the training data (Carlini et al., 2019; 2021; Duan et al., 2024;
Mattern et al., 2023), we need auditing methods to evaluate and quantify their privacy risks, ensuring
safe deployment. Overall, there are two broad families of audits. Formal audits, e.g., (Jagielski et al.,
2020; Nasr et al., 2023; Panda et al., 2025; Steinke et al., 2023), aim to empirically verify claimed
theoretical privacy guarantees of models trained with differential privacy (DP) (Dwork et al., 2006).
Standard empirical privacy audits extend to models trained without privacy protection in mind and
aim to understand the general leakage of individual training data points (Carlini et al., 2022; Duan
et al., 2024; Shokri et al., 2017), or, in the case of dataset inference (DI) (Dziedzic et al., 2022; Maini
et al., 2021; 2024), ask the question whether an entire data subset was used to train the model.

Unfortunately, both types of audits experience significant limitations in LLMs. One key limitation of
the formal privacy auditing methods is that they require inserting canary data during training. As
a result, these methods are inapplicable to pretrained LLMs without retraining, which is typically
infeasible due to its high cost. Additionally, both types of audits rely internally on membership
inference attacks (MIAs) (Shokri et al., 2017), where an adversary attempts to determine whether a
particular data point was part of the model’s training set. To be successful, MIAs require non-member
held-out data from the exact same distribution as the member data used during training (Duan et al.,
2024; Maini et al., 2024; Mattern et al., 2023; Shi et al., 2024). In practice, this data is usually hard
to obtain, limiting the applicability of MIAs for audits. This limitation also equally affects DI, which
assumes access to a held-out validation set that matches the distribution of the training data. Currently,
the only widely used validation sets originate from the Pile (Gao et al., 2020), which is used in the
training of Pythia models (Biderman et al., 2023), and to a lesser extent, the Dolma dataset (Soldaini
et al., 2024), used in training the OLMo models (Groeneveld et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We identify natural identifiers (NIDs) as a solution to all the above-mentioned problems. NIDs are
structured random strings, generated according to some well-defined criteria, such as outputs from
secure hash algorithms (e.g., MD5 or SHA-1), shortened URLs, or cryptocurrency wallet addresses.
We observe that these strings are naturally included in datasets, such as discussion platforms (e.g.,
StackExchange) and code repositories (e.g., GitHub) that are used as part of the training corpora for
state-of-the-art LLMs.1 Especially code repositories are relevant for training powerful LLMs (Hui
et al., 2024; Roziere et al., 2023) as, beyond supporting code generation, they also strengthen broader
capabilities such as logical reasoning, problem solving, and world knowledge (Aryabumi et al., 2025;
Petty et al., 2025; Kim et al., 2024; Hayase et al., 2024) which are important for LLMs’ performance.
Our unique insight is that each of the popular NIDs has a known generation function that we
can leverage to generate an unlimited number of held-out (non-member) data points from the
same distribution as the NIDs, which are naturally included in real-world suspect sets.

Equipped with these insights, we show how to leverage NIDs to perform formal post-hoc privacy
auditing for LLMs. We build on the currently fastest single training run auditing approach (Steinke
et al., 2023), which needs to include dedicated canaries prior to training. We demonstrate that when
NIDs naturally occur in the training set, we can construct their corresponding auditing set post-hoc
from the same distribution and retroactively assess the privacy guarantees of any LLM without the
requirement of expensive retraining from scratch. Our privacy auditing with NIDs improves the lower
bounds on the privacy parameters of an algorithm compared to the auditing framework by Steinke
et al. (2023). It also significantly reduces the sample complexity, i.e., it requires fewer NID canaries.
Finally, in contrast to the one training run privacy auditing by Steinke et al. (2023), our method
enables truly zero-run (post-hoc) audits of already pretrained LLMs.

Beyond formal audits, NIDs also make DI practically applicable, as one only has to identify NID
types in the data subset that is suspected to be included in an LLM’s training data, generate a held-out
set consisting of NIDs of the same type, i.e., from the same distribution, and then to perform the DI
procedure (Maini et al., 2024). Thus, our fully post-hoc approach leverages NIDs to perform DI
without any modifications to the training data, which contrasts with the prior approach by Zhang
et al. (2024a) that requires injecting random canaries into the pretraining dataset. We empirically
validate our approach in a controlled environment, using open-source LLMs and their known training
data. Specifically, we use the Pythia suite of models with the Pile dataset and the OLMo model
with the Dolma dataset. Our results show that we can accurately infer training membership across
diverse data subsets without false positives, suggesting that our approach may be useful in real-world
litigations (Coulter, 2024).

In summary, we make the following contributions:

1. We propose NIDs as a practical and scalable solution to a key challenge in LLM privacy research:
conducting post-hoc privacy audits in real-world settings without requiring model retraining or
access to a dedicated held-out set.

2. We adapt the one-run DP auditing framework (Steinke et al., 2023) to leverage NIDs, enabling truly
post-hoc DP auditing of pretrained LLMs without modifying the training process and achieving
tighter lower bounds.

3. We make DI more practical by creating the necessary held-out set post-hoc using the NIDs present
in the suspect set and improving its efficiency by introducing a novel ranking-based test.

4. We conduct extensive empirical evaluations, demonstrating the effectiveness of our NIDs for
post-hoc privacy assessment over multiple LLM families and training datasets.

2 BACKGROUND

Differential Privacy (DP). DP (Dwork et al., 2006) is a framework that limits privacy leakage
by ensuring no individual’s data significantly alters the outcome of a computation. A randomized

1Indeed, we observe that the publicly available datasets used to train popular LLMs, such as the Pile (Gao
et al., 2020) or Dolma (Soldaini et al., 2024), contain 30637 and 23571 different types of NIDs, respectively—
showcasing the practical availability of NIDs. The large number of NID-types and new types constantly emerging
makes it impossible to omit them through the web crawlers, thus NIDs are less prone to being excluded from the
LLMs’ training set.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

mechanism M satisfies (ε, δ)-DP if, for any two inputs x and x′ differing by one record and any
measurable set S, the following holds, where ε bounds leakage and δ is the failure probability:

P [M(x) ∈ S] ≤ eεP [M(x′) ∈ S] + δ.

In this work we adopt the under replacement adjacency, where two datasets are considered neighbors
if they differ only in the replacement of one candidate element (rather than by addition or removal).

Auditing DP. The goal of DP audits is to empirically estimate a lower bound on the privacy parameters
ε and δ post-training. These audits help evaluate the tightness of the theoretical analysis (Jagielski
et al., 2020; Nasr et al., 2023) and can also reveal errors in the mathematical analysis or flaws in
the algorithm’s implementation (Tramer et al., 2022). Privacy auditing generally relies on retraining
models and inserting canaries during training (Jagielski et al., 2020; Nasr et al., 2023; Steinke et al.,
2023; Mahloujifar et al., 2025). While Steinke et al. (2023) reduce computational costs with a privacy
auditing technique that only requires a single training run, for LLMs with trillions of parameters,
even this can be prohibitively expensive. We build on their approach and leverage NIDs to remove
the need for retraining altogether.

Membership Inference Attacks (MIAs). MIAs (Shokri et al., 2017) aim to determine whether
a specific data point was included in a model’s training set. They have diverse applications, and
in this work, we focus on their use for privacy auditing (Steinke et al., 2023). While MIAs have
been extensively explored for small-scale models, MIAs for LLMs are a much more challenging
problem. The latest work (Duan et al., 2024; Maini et al., 2024; Zhang et al., 2024a) indicates that the
success reported by previous MIAs on LLMs (Mattern et al., 2023; Shi et al., 2024) is rather due to a
distribution shift than to the attacks’ ability to distinguish between the member and non-member data
points. A prominent example is the temporal distribution shift that occurs when data before a specific
cutoff date is selected as members and data after the point is treated as non-members, resulting in
differences in language, wording, or formatting styles. When evaluated in the correct setting without
distribution shift, Maini et al. (2024) showed that most attacks do not outperform random guessing.

Dataset Inference (DI). DI (Maini et al., 2021) aims to resolve whether a given suspect dataset
was used to train a model. While initially proposed for model ownership resolution (Maini et al.,
2024; Dziedzic et al., 2022), DI was recently extended to identify training data in LLMs (Maini et al.,
2024; Zhao et al., 2025). Beyond LLMs, DI has also been successfully applied to other types of
generative models, including Diffusion Models (Dubiński et al., 2025) and Image Autoregressive
Models (Kowalczuk et al., 2025). In general, DI extracts diverse training membership features for the
individual data points in the suspect set using various MIAs, aggregates them, and applies statistical
testing to reliably determine whether the suspect set was used to train the model.

Limitations of DI. DI’s major limitation is that the method relies on access to a private held-out set
from the same distribution as a suspect set. Prior work (Zhang et al., 2024a) argues that this makes DI
inapplicable for real-world use-cases where such data is usually not available. As a solution, Zhang
et al. (2024a) propose to inject random and meaningless canaries into the data and then test how the
LLM ranks the selected canary among all alternatives. Since they assume access to the generator of
the random canaries, they can provide the corresponding validation data points and avoid distribution
shifts. The approach’s reliance on inserted random strings reduces its practical applicability, as
content creators would have to artificially include such specialized strings in their datasets and
hide them from human readers. Additionally, web crawlers can be trained to omit such arbitrary
context-free strings when scraping the data from the internet, reducing the likelihood of this data
being included in LLMs’ training data. Finally, this solution does not work for existing LLMs that
were trained without the use of injected canaries. In contrast, our observation is that we can leverage
NIDs that are naturally included in LLMs’ training sets, mitigating the need to insert purely random
strings and enabling auditing of existing pretrained LLMs without retraining. As an alternative
solution to overcome DI’s reliance on an IID held-out set, Zhao et al. (2025) proposed generating
a synthetic held-out dataset by training a suffix-based generator on the suspect set, followed by a
post-hoc calibration to reduce the distributional gap between the real and synthetic data. However,
this approach is computationally expensive, requiring extensive training and calibration, and it still
results in a residual distributional shift between real and synthetic datasets. In contrast, our generated
held-out set based on NIDs is from the exact same distribution as the suspect set.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 NATURAL IDENTIFIERS (NIDS)

We introduce NIDs, explore their natural occurrence, and provide the intuition on how they address
key challenges in LLM privacy research. We then present the notation and formalization of NIDs,
which will serve as the foundation for the subsequent sections.

3.1 NIDS IN THE WILD

Conceptually, NIDs are structured random strings, generated according to some well-defined functions.
Prominent examples include outputs from secure hash algorithms (e.g., MD5 or SHA-1, SHA-256),
shortened URLs, or cryptocurrency wallet addresses. Additionally, new types of NIDs, e.g., produced
through novel URL shortening approaches, are emerging continuously. Such strings are omnipresent
on the internet, for example, in code repositories (e.g., GitHub) and discussion platforms (e.g.,
StackExchange). Since large parts of the data used to pretrain state-of-the-art LLMs are crawled from
the internet, these NIDs get naturally included in the LLMs’ training sets. We carefully extract the
NIDs, as described in Appendix C.

While LLM providers may attempt to filter out natural NIDs during data crawling, auditors hold a
structural advantage in this setting (Hönig et al., 2024; Radiya-Dixit et al.). Removing all natural
NIDs is exceptionally challenging: even corpora with aggressive regex-based cleaning, URL canoni-
calization, PII filtering, and multistage deduplication, such as Dolma, still contain tens of thousands
of distinct NID types, as detailed in Table 6 (Appendix D). For our approach, an auditor only needs
to identify a small subset of NIDs in the suspect set to conduct effective post-hoc audits. This makes
our approach robust even under strict data curation pipelines, thus making our solutions for LLM
privacy auditing widely applicable.

We analyze a wide range of popular LLM training datasets, including Pile (Gao et al., 2020) and
Dolma (Soldaini et al., 2024), and identify that all of them contain multiple types of NIDs with
numerous examples per type. In Appendix D, we provide an overview of the analyzed subsets and
contained NIDs in Table 6. Notably, datasets that include code snippets, such as StackExchange
and GitHub, have a high number of NIDs. Additionally, large non-topic-specific corpora, such
as RefinedWeb and Pile Common Crawl, also contain a significant number of NIDs. SHA-1 and
MD5 are the most frequent types of NIDs overall. For some large subsets, such as RefinedWeb, we
have as many as 16989 NIDs. For instance, Pile’s entire validation and test set, which comprises
approximately 0.2% of the entire Pile dataset, contains 293 NIDs. Furthermore, as shown in Table 6,
even highly filtered and curated datasets such as Dolma (Soldaini et al., 2024) contain a substantial
number of NIDs. This makes our solutions for LLM privacy auditing widely applicable.

3.2 LEVERAGING NIDS

What makes NIDs special is their rigorously specified format in combination with a sequence of
random characters. Given that their format is known, it becomes possible to generate an infinite
number of other random strings that follow the same distribution. In the following, we present the
intuition on how this property contributes to solving the most pressing challenges in LLM privacy
research, namely, the lack of IID held-out data.

1) NIDs provide post-hoc DP audits. We can use NIDs to perform post-hoc auditing for LLMs
trained with DP. To do so, we build on the one-run privacy audit by Steinke et al. (2023). In their
method, they select a set of canary data points to be included or excluded during a training run. After
training, an auditor attempts to infer for each of these data points whether it was included or not. The
fraction of correct guesses provides a lower bound on the DP parameters. Using our NIDs, retraining
the model is no longer necessary. Instead, we generate random samples from the same distribution
as the NIDs seen during training. The NIDs as natural canaries can be ranked against the generated
ones, for auditing without any retraining, i.e., truly post-hoc. Section 4 outlines our approach to using
NIDs for post-hoc DP auditing.

2) NIDs enable DI. NIDs enable DI for suspect sets, i.e., a dataset for which we want to assess
whether it has been used to train a given LLM, without requiring a same-distribution private held-out
set. As detailed above, DI relies on a private held-out set from the same distribution as the suspect
set to perform its assessment—a requirement that is difficult to meet in practice. This is especially

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

due to the challenge of obtaining same-distribution data post-hoc (Zhang et al., 2024a), rendering
DI challenging or impractical. By generating large held-out sets from the same distribution, NIDs
address this issue, thus enabling DI to detect if an LLM was trained on a suspect set. If the suspect
set was part of the LLM’s training data, it will react differently to the NIDs included in that set and
their generated held-out counterparts. Otherwise, if it was not trained on the suspect set, its behavior
will be the same over both sets, as both NIDs and their generated counterparts, since to the LLM,
they will just be the same type of random strings. We detail the use of NIDs for DI in Section 5.

3.3 FORMALIZING NIDS

An identifier (ID) is produced by sampling randomness z from a known distribution and applying a
generator W , i.e., v = W (z). The set of all possible IDs from this generator is V = {W (z) : z ∈ Z}.
A Natural Identifier (NID) is simply an ID that actually appears in a real dataset. Given such an NID,
we can draw fresh random inputs z′ to generate additional IDs from the same distribution, which
we call Generated Identifiers (GIDs). Because the identifier space V is extremely large, a newly
generated GID is overwhelmingly unlikely to coincide with any existing NID in the data.

As a concrete example, consider Ethereum addresses. An Ethereum address is effectively a
160-bit identifier, obtained from a private key through a deterministic derivation process. Given
an NID corresponding to an Ethereum address, we can use the associated generation function
W (z) := ETH(z) to generate new GIDs. In this case, the set V is the set of all valid Ethereum
addresses (see Appendix A for details on the structure of NIDs and GIDs, and Appendix B for
examples). Additionally, the probability of generating a GID that exactly matches one of the NIDs in
the training data is negligible, since the address space has size 2160 ≈ 1.46× 1048.

The main property of NIDs is that a priori each ID v ∈ V is equally likely to be generated and
published because it only depends on the source of randomness. The second important property
of NIDs is that they allow easy sampling from the set V . In the suspect datasets Dsus, which we
are auditing, there are usually m NIDs, with the corresponding sets V1, . . . , Vm. Although the
underlying identifier space V is extremely large, for computational purposes we restrict attention
to a finite candidate set: for each detected NID v̂i, we sample c − 1 fresh GIDs and form Vi =
{v̂i} ∪ {c− 1 GIDs} with |Vi| = c. Furthermore, for each set Vi where i ∈ {1, . . . ,m}, we denote
the NID as v̂i ∈ Vi, and specifically, the NID that belongs to the suspect dataset as v̂i ∈ Dsus. Finally,
we define Σi as the set of all the permutations over Vi.

4 DP AUDITING WITH NATURAL IDENTIFIERS

Using our NIDs, we adapt the one-run DP auditing method proposed by Steinke et al. (2023) to
create a novel post-hoc DP auditing. Their technique considers m canary samples and uses coin
flips to randomly determine which samples should be included in the training set. Therefore, it is a
binary case of adding or removing a single sample (and selecting between two options) that requires
further retraining. Subsequent works (Panda et al., 2025; Liu et al., 2025) build upon the settings and
methods proposed in the original paper, thus requiring retraining. In our case, we differ from previous
approaches by eliminating the need to retrain the model to insert canaries, since NIDs are inherently
present in the data. Therefore, adding or removing multiple training examples independently is not
required. This is particularly important for LLMs, for which retraining is prohibitively expensive
and time-consuming. Furthermore, our method operates under more realistic assumptions compared
to Kazmi et al. (2024), who, although they relax the assumption of retraining, require training a
generative model that must then generate samples following the original training data distribution.
Additionally, we do not strengthen the canary signal for the audit by surrounding the canaries with
random tokens, as in Panda et al. (2025). Finally, compared with Mahloujifar et al. (2025), our
method can be viewed as a ranking-based generalization, where the task is to correctly identify the
true NID from a set of c candidates, by requiring it to appear among the top-r ranked positions, rather
than only identifying it as the single top-1 candidate.

We show in Figure 1 how to leverage the NIDs to audit DP post-hoc. By leveraging the NIDs, our
framework enables us to compute lower bounds on the privacy parameters of an algorithm without
any additional training run of that algorithm. We first identify the NIDs that were present in the
training data and denote their total number as m. For each NID i ∈ {1, · · · ,m}, we generate the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Train data
0

(𝜀, 𝛿)-DP

LLM

(𝜀, 𝛿)-DP

Natural Identifiers

(NIDs)

…

Generated Identifiers

(GIDs)

…

…
…

…

1

Suspect

set
2

3

(𝜀, 𝛿)-DP training Post-hoc privacy auditing with NIDs

…

…

…
…

…

…

…

…

…

Sets of

NIDs and GIDs
(𝜀, 𝛿)-DP

LLM

Auditor

4

Ranked top-𝑟𝑖

NIDs extraction & GIDs generation

𝑉1

𝑉2

𝑉3

𝑉𝑚

𝑣1
2 ො𝑣1

𝑗𝑣1
1 𝑣1

𝑐

Figure 1: Post-hoc DP auditing with NIDs and their corresponding GIDs. 0 We consider the
NIDs as the input to a training procedure M (also referred to as the mechanism), which may satisfy
(ε, δ)-DP. 1 Given a suspect dataset, we identify the NIDs. 2 We generate the new c− 1 GIDs for
each NID. 3 We form the candidate sets V1, · · · , Vm by combining the NIDs with corresponding
GIDs. 4 Given the resulting trained model and filtered NIDs with corresponding GIDs, an auditor
seeks to infer, for each set Vi, which sample was the NID. To do so, the auditor ranks the samples in
Vi from the most to the least likely NID-candidate. A prediction is considered correct if the true NID
appears among the top-ri ranked samples, where ri is a predefined threshold.

corresponding GIDs, and the corresponding set of IDs Vi = {v1i , v2i , . . . , v̂
j
i , . . . , v

c
i }, where we have

c − 1 GIDs and a single NID denoted as v̂ji . One of the main properties of NIDs is that, a priori,
any element in Vi could have been part of the training data in place of the NID. This enables us
to model privacy auditing analogously to the fixed-length dataset variant proposed by Steinke et al.
(2023). The key distinction in our approach is that, rather than selecting between two alternatives
prior to training, we consider the NIDs as inserted canaries with the GIDs as multiple left-out canary
possibilities for each set Vi. For this reason, the attacker’s goal is to predict which sample was the
NID by ranking the samples from the most likely to the least likely to be part of the training data.
This offers more flexibility by enabling the attacker to represent uncertainty through a ranked list,
rather than having to make a binary, top-1 inclusion decision.

Following the analysis of Theorem 5.2 by Steinke et al. (2023), we adapt their privacy auditing
procedure to our setting to audit (ε, δ)-DP mechanisms. We compare the rank of the real and
alternative samples. For simplicity and clarity, we state the ε-DP version of the theorem, and in
Appendix E, we show the complete theorem (Theorem 2) for the (ε, δ)-DP case.

Theorem 1 Let M : V1 × · · · × Vm −→ Σ1 × · · · × Σm be an ε-DP mechanism under replacement.
Let S ∈ V1× · · · × Vm be uniformly random, and define T = M(S) ∈ Σ1× · · · ×Σm. Then, for all
v ∈ R, all t ∈ Σ1 × · · · × Σm in the support of T , all r1, · · · , rm with ri ≤ |Vi|, and rie

ε

|Vi|−1+eε ≤ 1,

PS←V1×···×Vm,

T=M(S)
[

m∑
i=1

1[rank(ti, Si) ≤ ri] ≥ v|T = t]

≤ P
Ŝ←Bernoulli(

rie
ε

|Vi|−1+eε
)
m

i=1

[Ŝ ≥ v] := β(ε, v, t)

rank(a, b) returns the 1-based position of the element b in permutation a.

In our setting, Theorem 1 states that if the mechanism (also referred to as the training procedure)
is ε-DP, any attacker attempting to detect the NID is constrained. Concretely, the attacker ranks
the mechanism’s output on both the NID and its corresponding GIDs from most to least likely to
be part of the training data without knowing which one is the NID. Then, they count how many
NIDs appear in the top-r, where r is a predefined threshold. The theorem states that this count is
bounded by a Bernoulli distribution, whose probability depends on ε, r, and the number of GIDs.
Furthermore, compared to Theorem 5.2 by Steinke et al. (2023), Theorem 1 and Theorem 2 (presented
in Appendix E) leverage a key property of NIDs: the ability to generate an unlimited number of GIDs
(non-members).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Both theorems enable DP auditing through a hypothesis-testing framework. Moreover, in both
cases, we can construct a confidence interval for a lower bound on ε. The proofs of Theorem 1 and
Theorem 2 are provided in Appendix E.

101 102 103 104 105

Number of samples

0

2

4

6

8

Ideal 2 (Steinke et al.) 8 32

Figure 2: Randomized response with ε = 8 for
different cardinalities c = {2, 8, 32}.

An Example of Our Privacy Auditing for the
Randomized Response. To illustrate our auditing
framework, we use the classical randomized re-
sponse mechanism (Warner, 1965). In this setting,
each private value can either be revealed truth-
fully or replaced at random, with probabilities
chosen to ensure ε-DP (see Appendix G.1 for the
detailed description of the setting). The analogy to
our framework is straightforward: each true value
corresponds to an NID, and the alternative pos-
sibilities correspond to GIDs. The auditor ranks
possible values given the output, and without any
additional information, the best strategy is to place the observed output first. This yields a correct-
guess probability matching the theoretical bound in Theorem 1. Figure 2 shows the empirical behavior
of our auditor on randomized response for different set cardinalities c = |Vi|. We see that higher
cardinality (i.e., more generated GIDs) is especially beneficial at larger privacy budgets (ε ≥ 8),
which is the typical regime in LLM training with DP (Duan et al., 2023; Li et al., 2022; Rossi et al.,
2024; Hanke et al., 2024). This demonstrates how our framework scales naturally with the number of
GIDs. Additionally, in Appendix F, we analyze the relationship between the number of sample m
(i.e., number of NIDs) and c, as well as why a larger cardinality helps reduce the number of required
samples.

Post-hoc DP Auditing Without Retraining in LLMs. We verify that our proposed framework
applies to privacy auditing in LLMs by adapting the black-box procedures proposed by Steinke et al.
(2023) to the fixed-size dataset variant. The auditing process follows the algorithm described in
Appendix H.3. Due to the lack of open-source private pretrained LLMs, to show the capabilities of
our method, we finetune multiple Pythia models (70m, 160m, 410m, and 1b) using DP-SGD (Abadi
et al., 2016) We use all NIDs extracted from the Pile test set (Gao et al., 2020). All lower and upper
bounds are presented with 95% confidence intervals.

Setup. The training data consists m = 197 NIDs from the Github Pile test set, ensuring complete
coverage of our assumption. Then, for each NID, we generate c−1 GIDs. In this way, we have sets of
IDs V1, . . . , Vm. We set δ = 10−4 for various values of ε using the Privacy Random Variable (PRV)
accountant (Gopi et al., 2021), and finetune each model for 20 epochs using a maximum sequence
length of 64 tokens and a clipping norm of 0.1. To rank each set of ID from most to least likely to
be in the training data, we use Min-K% (Shi et al., 2024) and Loss (Yeom et al., 2018), and report
the best result. By default, we set the ranking threshold to ri = 1 (top-1) for all i ∈ {1, . . . ,m}. In
this setting, a prediction is counted as correct only when the attacker’s highest-scoring candidate
coincides with the true NID. Complementary results for additional models and for thresholds ri > 1
are reported in Appendix H.1.

5 10 100
real

10 1

100

101

es
tim

at
ed

2 (Steinke et al.) 8 32

(a) Pythia-1b

5 10 100
real

10 1

100

101

es
tim

at
ed

2 (Steinke et al.) 8 32

(b) Pythia-410m

Figure 3: Impact of cardinality (c = {2, 8, 32}) on ε estimation. Experiments conducted using
ε values of {5, 10, 100,∞}. The case c = 2 corresponds to the method proposed by Steinke et al.
(2023). The error bars represent a 95% confidence interval.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Higher Cardinality Improves Audits. As a reference, we use the auditing of fixed-length datasets
introduced by Steinke et al. (2023), which corresponds to a special case of our method where all
sets Vi have cardinality c = 2 and the corresponding threshold is ri = 1. The empirical analysis
in Figure 3 demonstrates that our method outperforms the baseline across multiple cardinality
parameters (c ∈ {8, 32}) in fixed-length dataset settings. See Appendix H.1 for the results of the
other models and for additional experiments with thresholds ri > 1. Although higher cardinality can
enhance the statistical power of the auditing procedure in the best-case scenario, meaning that fewer
samples are required, the ranking task becomes increasingly complex. Instead of merely comparing
two candidates, one must select from c = |Vi| options. For smaller privacy budgets (i.e., a more
challenging prediction task), smaller cardinalities are beneficial. In contrast, for larger ε, higher
cardinality tends to be advantageous and significantly outperforms the baseline. This trend aligns
with our insights for randomized response, where increasing cardinality makes the privacy auditing
more precise and tighter, particularly in less restrictive privacy settings.

5 DATASET INFERENCE WITH NIDS

Next, we turn to exploring the use of NIDs and our generated same-distribution GIDs for performing
DI (Maini et al., 2021). As discussed in Section 2, the strongest limitation of DI is its reliance on a
private held-out dataset from the same distribution as the suspect dataset, i.e., the dataset for which
we want to assess whether it was included in the training of the given model. Such datasets are often
not available in practical applications (Zhang et al., 2024a). We present how our NIDs can overcome
this limitation and enable successful DI for suspect datasets that contain NIDs. We experiment with
Pythia-2.8b, 6.9b, 12b (trained on the Pile), and OLMo-7B2 (trained on Dolma) to cover a range of
model sizes and families. For ethical reasons, we focus on open models with known training data
where we can verify the correctness our evaluation w.r.t. to the ground truth training sets, which is
impossible for proprietary models where we have no access to the true training data.

Table 1: MIAs on NIDs for Pythia-12b. The AUC for MIAs between the NIDs and the corresponding
GIDs on various subsets of the Pile dataset.

Full Pile GitHub StackExchange Average
MIA Train Test Train Test Train Test Train Test

Loss 58.6 50.3 71.8 51.1 50.3 50.9 60.2 50.8
Min-K% 57.6 51.0 68.4 50.6 50.7 51.2 58.9 50.9
Min-K%++ 56.9 51.4 71.2 50.3 50.8 51.9 59.6 51.2
ReCALL 53.5 50.2 50.6 50.3 50.0 51.1 51.4 50.5
ReCALL(Hinge) 51.3 50.1 53.3 50.4 50.4 51.4 51.7 50.6
Hinge 58.7 50.5 71.8 51.5 50.4 50.5 60.3 50.8

MIAs for DI. DI for LLMs (Maini et al., 2024) aggregates the outputs of multiple MIAs to extract a
strong signal from the suspect data. We follow this approach and extract the signal from the suspect
set’s NIDs as a form of natural canaries. Therefore, we use MIAs on NIDs as a stepping stone for
LLM DI. In this setting, the attacker aims to distinguish NIDs from their corresponding GIDs. For
the training set, NIDs are drawn from the training data, while for the test set, they are drawn from the
test data. In both cases, GIDs are constructed from data that was not used during training, serving
as held-out samples. For the test set evaluation, we expect the AUC to be close to random guessing.
This serves as a sanity check to confirm that the GIDs and NIDs come from the same distribution,
since neither is present in the training data. To mimic the DI setting, we generate c = 127 new
GIDs for each NID, balancing computational cost and distribution quality. Using our identified
NID suspect set and the respective generated GIDs held-out set, we analyze existing state-of-the-art
MIAs for LLMs, namely Loss (Yeom et al., 2018), Min-K% (Shi et al., 2024), Min-K%++ (Zhang
et al., 2024b), ReCaLL (Xie et al., 2024), and Hinge (Carlini et al., 2022) to obtain useful signals for
DI. For most MIAs, performance on the test set is close to random guessing, as expected, confirming
no distribution shift between the NID suspect set and the generated GID held-out set. Train-test
behavior is well-calibrated, with higher average AUC on the train set. Results for Pythia-12b appear
in Table 1; Appendix I reports additional models (Pythia, OLMo-7B) and TPR@1% FPR.

DI on NIDs. Given a suspect set Dsus, we first need to identify and extract all the NIDs in the dataset.
The extracted NIDs form the suspect subset D′sus, which we use to perform the DI. Then, for every real

2https://huggingface.co/allenai/OLMo-7B-0424-hf

8

https://huggingface.co/allenai/OLMo-7B-0424-hf

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

NID in D′sus, we generate 127 new GIDs with the same NID type and with the same structure to form
the held-out set from the same distribution as D′sus. With the signal from the MIAs above, following
Maini et al. (2024), we extract the features from the suspect set and D′sus and our generated held-out
set. Next, following the DI protocol, we need to learn the correlation between the features (the MIA
scores) and their membership status. To learn this correlation, we train a gradient boosting trees
classifier to distinguish between the two distributions. To use all the samples available, we train and
score the samples using K-Fold, and we ensure that the generated samples derived from a real sample
end up in the same fold. Finally, following Maini et al. (2024), we perform statistical testing and
compute the p-values. Under the null hypothesis, which assumes that the NIDs in the suspect set are
not part of the training data, the ranks of each NID relative to its corresponding GIDs should follow a
uniform distribution. This means that if we order the NIDs based on their association with GIDs, their
positions should be evenly distributed across the ranking scale. We apply the Kolmogorov-Smirnov
(KS) test to test this assumption. If the KS test detects a significant deviation from uniformity, we
reject the null hypothesis, suggesting that the NIDs may, in fact, be present in the training data. Small
p-values (< 0.01) indicate that we can reject the null hypothesis, i.e., we are confident that the model
was trained on the suspect set. Large p-values (>> 0.01) suggest inconclusiveness of the test, i.e.,
we are not confident whether the model was trained on the suspect set.

Practical DI with NIDs. Using our generated held-out set with GIDs and the suspect set D′sus with
NIDs, we perform DI on various models and data subsets. Our main results for DI are summarized
in Table 2 and Table 3. Compared with Maini et al. (2024), who used 1000 samples, we take much
smaller suspect sets D′sus with 100 real NIDs to simulate a realistic setup. For each subset, we
generate a held-out set using the NIDs, and perform DI. Our method shows that for the suspect sets
that were included in the training data, DI obtains low p-values (< 0.01) that allow us to reject the
null hypothesis. This highlights that the suspects are correctly identified as training data. At the
same time, for test data (denoted as Test), i.e., datasets that were not used to train the given LLM, we
observe high p-values that do not allow us to reject the null hypothesis. The sets are, hence, correctly
not marked as training data (p-values >> 0.01). We present further results on models of various
sizes and with varying numbers of NIDs in the suspect set in Figure 7 of Appendix J. The results
highlight that the more NIDs are available in D′sus, the more reliable the DI. Overall, using NIDs
and the generated held-out set, we observe no false positives, while correctly identifying all training
subsets (true positives). This highlights NIDs’ ability to enable practical DI.

Table 2: P-values for DI on the Pile Dataset at 100 samples in the suspect data. To reject the null
hypothesis, we use the threshold of 0.01 for the p-values. To reject the null hypothesis for all the
training subsets (p-values ≤ 0.01), and not reject it in the test set (p-value > 0.01). All the outcomes
from our method are correct (✓).

Model GH SE HN CC AX PM IRC Full GH (Test) Full (Test)

Pythia 12B 0.0031 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.8182 ✓ 0.2847 ✓
Pythia 6.9B 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0002 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.6139 ✓ 0.0811 ✓
Pythia 2.8B 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.0001 ✓ 0.9632 ✓ 0.0660 ✓

Notation: GH = GitHub, SE = StackExchange, HN = HackerNews, CC = Pile-CC, AX = ArXiv, PM = PubMedCentral, IRC = UbuntuIRC

Table 3: P-values for DI on the Dolma Dataset at 100 samples in the suspect data. To reject the
null hypothesis, we use the threshold of 0.01 for the p-values. To reject the null hypothesis for all the
training subsets (p-values ≤ 0.01), and not reject it in the test set (p-value > 0.01). All the outcomes
from our method are correct (✓).

Model OWM PeS2o RFW AStack MWika AX C4 PP2 (Test)

OLMo 7B 0.0001 ✓ 0.0001 ✓ 0.0003 ✓ 0.0001 ✓ 0.0002 ✓ 0.0001 ✓ 0.0001 ✓ 0.8961 ✓
Notation: OWM = OpenWebMath, RFW = RefinedWeb, AStack = Algebraic Stack, MWika = MegaWika, AX = ArXiv, PP2 = Proof Pile 2

Controlled Ablations. We also perform controlled ablations to characterize further how NID-based
DI behaves under different design choices. First, we compare our NIDs against standard injected
canaries, i.e.,, canaries that do not naturally occur in the training data but must be manually added.
Although injected canaries fall outside our post-hoc threat model, this controlled setting helps
contextualize the strength of the NID leakage relative to existing auditing methods. We detail the
choice and design of these canaries in Appendix K.1. Our results in Table 16 show that NIDs achieve
competitive DI performance, measured in p-values. Second, we evaluate the impact of the GIDs being

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

carefully sampled from the same distribution of the NIDs. Remember that DI critically depends on
the GID generator matching the NID distribution: misimplementations that change casing produce
strong signals for both members and nonmembers, thereby inflating false positives. To quantify this
impact, we design GID generations that mismatch the original NIDs to various degrees. We describe
our experimental setup in Appendix K.2. Our results show that deviations in distribution between
NIDs and GIDs lead to false positives, highlighting the importance of our approach to generating
GIDs exactly from the same distribution as NIDs. Third, we evaluate the impact of stronger MIAs on
DI performance. Specifically, we augment the baseline features with CAMIA (Chang et al., 2024) and
SURP (Zhang & Wu, 2024). See Appendix K.3 for details. Our results, shown in Table 18, indicate
that adding more powerful MIAs consistently improves DI results. These results suggest that ongoing
advances in MIA techniques further improve our framework’s results. Fourth, we quantify whether
the identifier structure matters. We construct a synthetic string that follows the format of each NIDs
to measure the impact of the identifier structure. In Appendix K.4, we detailed the experimental setup.
Our findings suggest that longer or more structured formats, such as SHA-512 and Java Serialization
strings, yield the strongest DI signals, although shorter formats, such as MD5, still produce highly
significant results, as shown in Table 19. Finally, we assess the impact of increasing the number
of NIDs on the results of DI in Appendix K.5. Our results in Table 20 suggest that increasing the
number of NIDs in the suspect set monotonically decreases the p-value in DI, illustrating the expected
gains in statistical power.

Task-Specific NIDs. In some smaller, task-specific datasets, standard NIDs might be less common.
To address this constraint and make DI practical for these datasets, new task-specific NIDs can be
discovered. As a case study, we consider the GSM8K dataset (Cobbe et al., 2021), which consists of
math word problems that do not inherently include standard NIDs. To generate valid, coherent, and
indistinguishable GIDs for DI, we create task-specific NIDs by treating each problem as a numeric
template: for example, in “Natalia sold 48/2 = «48/2=24»24 clips in May. Natalia sold 48+24
= «48+24=72»72 clips altogether in April and May. #### 72.”, we replace 48 and all dependent
quantities (such as 24 and 72) with variables, resample consistent numbers to obtain a new problem,
and use these as NIDs and GIDs. In Appendix B, we provide some practical examples of NIDs and
the corresponding GIDs. See Appendix K.6 for details on the experimental setup. To assess whether
the resulting NIDs and GIDs are suitable for our framework, we finetune Pythia-1b on 100 such NIDs,
and run DI. The results in Table 4 show that this new task-specific type of NIDs produces statistically
significant evidence for DI, confirming its effectiveness in various settings.

Table 4: P-values for DI on GSM8K. P-values obtained by our DI test on the GSM8K dataset,
illustrating the effectiveness of task-specific NIDs.

Number of NIDs 50 60 70 80 90 100
P-Value 8.43× 10−4 9.56× 10−5 3.35× 10−4 1.63× 10−5 2.12× 10−6 1.60× 10−6

6 DISCUSSION AND CONCLUSIONS

We introduce the concept of natural identifiers (NIDs) as a practical and scalable solution to a central
challenge in LLM privacy research: enabling truly post-hoc privacy auditing, i.e., auditing models
after training without requiring retraining or access to dedicated held-out data. This directly addresses
a key limitation of most existing approaches, which rely on costly retraining procedures or artificially
constructed held-out sets. While we focus on leveraging NIDs within the language domain for models
trained on datasets containing such identifiers, our analysis shows that NIDs are pervasively present
in standard LLM pretraining corpora. Their structured and reproducible nature enables the generation
of an unlimited number of non-member samples from the same distribution, which we use to construct
effective post-hoc auditing sets. Building on the one-run auditing framework, we demonstrate that
NIDs yield tighter DP bounds with reduced sample complexity. By extending the task from binary
classification to ranking-based inference, our approach further improves the flexibility and statistical
power of privacy attacks. Beyond formal auditing, NIDs also make DI practically feasible using
only the suspect data, without requiring access to held-out sets. Our empirical evaluations on open-
source LLMs validate the effectiveness and practicality of this approach. In summary, NIDs offer a
principled, both practical and efficient foundation for real-world post-hoc privacy auditing, advancing
the feasibility of scalable and responsible privacy assessments for modern language models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work develops post-hoc auditing methods for LLMs using NIDs, which raises dual-use concerns:
the same techniques that help auditors and regulators assess training-data usage and privacy guarantees
could, in principle, be misused to better locate training artifacts or strengthen reconstruction attempts
against weakly protected models. We acknowledge this risk, and believe such tools should be
deployed only in controlled settings. At the same time, we view this kind of research as necessary:
without realistic auditing techniques, it is difficult to verify privacy claims, detect misuse of training
data, or incentivize stronger protections such as robust DP training.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Viraat Aryabumi, Yixuan Su, Raymond Ma, Adrien Morisot, Ivan Zhang, Acyr Locatelli, Marzieh
Fadaee, Ahmet Üstün, and Sara Hooker. To code or not to code? exploring impact of code in
pre-training. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=zSfeN1uAcx.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security
Symposium (USENIX Security 19), pp. 267–284, Santa Clara, CA, August 2019. USENIX As-
sociation. ISBN 978-1-939133-06-9. URL https://www.usenix.org/conference/
usenixsecurity19/presentation/carlini.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
Membership inference attacks from first principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pp. 1897–1914. IEEE, 2022.

Hongyan Chang, Ali Shahin Shamsabadi, Kleomenis Katevas, Hamed Haddadi, and Reza Shokri.
Context-aware membership inference attacks against pre-trained large language models. arXiv
preprint arXiv:2409.13745, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Matthew Coulter. Aiming for fairness: an exploration into getty images v. stability ai and its
importance in the landscape of modern copyright law. DePaul J. Art Tech. & Intell. Prop. L, 34:
124, 2024.

Debeshee Das, Jie Zhang, and Florian Tramèr. Blind baselines beat membership inference attacks for
foundation models. arXiv preprint arXiv:2406.16201, 2024.

Haonan Duan, Adam Dziedzic, Nicolas Papernot, and Franziska Boenisch. Flocks of stochastic
parrots: Differentially private prompt learning for large language models. Advances in Neural
Information Processing Systems, 36:76852–76871, 2023.

11

https://openreview.net/forum?id=zSfeN1uAcx
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer,
Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do membership inference
attacks work on large language models? In Conference on Language Modeling (COLM), 2024.

Jan Dubiński, Antoni Kowalczuk, Franziska Boenisch, and Adam Dziedzic. Cdi: Copyrighted data
identification in diffusion models. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 18674–18684, 2025.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Adam Dziedzic, Haonan Duan, Muhammad Ahmad Kaleem, Nikita Dhawan, Jonas Guan, Yannis
Cattan, Franziska Boenisch, and Nicolas Papernot. Dataset inference for self-supervised models.
In NeurIPS (Neural Information Processing Systems), 2022.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
Advances in Neural Information Processing Systems, 34:11631–11642, 2021.

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell
Authur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel,
Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal
Nam, Matthew Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh
Shah, William Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi,
Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini,
Noah Smith, and Hannaneh Hajishirzi. OLMo: Accelerating the science of language models. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15789–15809,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.841. URL https://aclanthology.org/2024.acl-long.841/.

Vincent Hanke, Tom Blanchard, Franziska Boenisch, Iyiola Emmanuel Olatunji, Michael Backes,
and Adam Dziedzic. Open llms are necessary for current private adaptations and outperform
their closed alternatives. In Thirty-Eighth Conference on Neural Information Processing Systems
(NeurIPS), 2024.

Jonathan Hayase, Alisa Liu, Yejin Choi, Sewoong Oh, and Noah A Smith. Data mixture inference at-
tack: Bpe tokenizers reveal training data compositions. Advances in Neural Information Processing
Systems, 37:8956–8983, 2024.

Robert Hönig, Javier Rando, Nicholas Carlini, and Florian Tramèr. Adversarial perturbations cannot
reliably protect artists from generative ai. arXiv preprint arXiv:2406.12027, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private machine
learning: How private is private sgd? Advances in Neural Information Processing Systems, 33:
22205–22216, 2020.

Mishaal Kazmi, Hadrien Lautraite, Alireza Akbari, Qiaoyue Tang, Mauricio Soroco, Tao Wang,
Sébastien Gambs, and Mathias Lécuyer. PANORAMIA: Privacy auditing of machine learning
models without retraining. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=5atraF1tbg.

Najoung Kim, Sebastian Schuster, and Shubham Toshniwal. Code pretraining improves entity
tracking abilities of language models. arXiv preprint arXiv:2405.21068, 2024.

12

https://aclanthology.org/2024.acl-long.841/
https://openreview.net/forum?id=5atraF1tbg

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Antoni Kowalczuk, Jan Dubiński, Franziska Boenisch, and Adam Dziedzic. Privacy attacks on image
autoregressive models. In Forty-second International Conference on Machine Learning, 2025.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. In International Conference on Learning Representations,
2022.

Terrance Liu, Matteo Boglioni, Yiwei Fu, Shengyuan Hu, Pratiksha Thaker, and Zhiwei Steven Wu.
Enhancing one-run privacy auditing with quantile regression-based membership inference. arXiv
preprint arXiv:2506.15349, 2025.

Saeed Mahloujifar, Luca Melis, and Kamalika Chaudhuri. Auditing f -differential privacy in one run.
In Forty-second International Conference on Machine Learning, 2025.

Pratyush Maini, Mohammad Yaghini, and Nicolas Papernot. Dataset inference: Ownership resolution
in machine learning. arXiv preprint arXiv:2104.10706, 2021.

Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. LLM dataset inference: Did you
train on my dataset? In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=Fr9d1UMc37.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schoelkopf, Mrinmaya Sachan,
and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neigh-
bourhood comparison. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings
of the Association for Computational Linguistics: ACL 2023, pp. 11330–11343, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.719.
URL https://aclanthology.org/2023.findings-acl.719.

Milad Nasr, Jamie Hayes, Thomas Steinke, Borja Balle, Florian Tramèr, Matthew Jagielski, Nicholas
Carlini, and Andreas Terzis. Tight auditing of differentially private machine learning. In 32nd
USENIX Security Symposium (USENIX Security 23), pp. 1631–1648, 2023.

Ashwinee Panda, Xinyu Tang, Christopher A. Choquette-Choo, Milad Nasr, and Prateek Mittal.
Privacy auditing of large language models. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=60Vd7QOXlM.

Jackson Petty, Sjoerd van Steenkiste, and Tal Linzen. How does code pretraining affect language
model task performance? Transactions on Machine Learning Research, 2025. ISSN 2835-8856.
URL https://openreview.net/forum?id=pxxmUKKgel.

Evani Radiya-Dixit, Sanghyun Hong, Nicholas Carlini, and Florian Tramer. Data poisoning won’t
save you from facial recognition. In International Conference on Learning Representations.

Lorenzo Rossi, Bartłomiej Marek, Vincent Hanke, Xun Wang, Michael Backes, Adam Dziedzic, and
Franziska Boenisch. Auditing empirical privacy protection of private llm adaptations. In Neurips
Safe Generative AI Workshop 2024, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen,
and Luke Zettlemoyer. Detecting pretraining data from large language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=zWqr3MQuNs.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18, Los Alamitos,
CA, USA, may 2017. IEEE Computer Society. doi: 10.1109/SP.2017.41. URL https://doi.
ieeecomputersociety.org/10.1109/SP.2017.41.

13

https://openreview.net/forum?id=Fr9d1UMc37
https://aclanthology.org/2023.findings-acl.719
https://openreview.net/forum?id=60Vd7QOXlM
https://openreview.net/forum?id=pxxmUKKgel
https://openreview.net/forum?id=zWqr3MQuNs
https://openreview.net/forum?id=zWqr3MQuNs
https://doi.ieeecomputersociety.org/10.1109/SP.2017.41
https://doi.ieeecomputersociety.org/10.1109/SP.2017.41

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh
Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining
Research. arXiv preprint, 2024.

Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy auditing with one (1) training run.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=f38EY21lBw.

Florian Tramer, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, and Nicholas
Carlini. Debugging differential privacy: A case study for privacy auditing. arXiv preprint
arXiv:2202.12219, 2022.

Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer bias.
Journal of the American statistical association, 60(309):63–69, 1965.

Roy Xie, Junlin Wang, Ruomin Huang, Minxing Zhang, Rong Ge, Jian Pei, Neil Zhenqiang Gong,
and Bhuwan Dhingra. Recall: Membership inference via relative conditional log-likelihoods, 2024.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning:
Analyzing the connection to overfitting. In 2018 IEEE 31st computer security foundations
symposium (CSF), pp. 268–282. IEEE, 2018.

Anqi Zhang and Chaofeng Wu. Adaptive pre-training data detection for large language models via
surprising tokens. arXiv preprint arXiv:2407.21248, 2024.

Jie Zhang, Debeshee Das, Gautam Kamath, and Florian Tramèr. Membership inference attacks
cannot prove that a model was trained on your data. arXiv preprint arXiv:2409.19798, 2024a.

Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Frank Yang,
and Hai Li. Min-k%++: Improved baseline for detecting pre-training data from large language
models. arXiv preprint arXiv:2404.02936, 2024b.

Bihe Zhao, Pratyush Maini, Franziska Boenisch, and Adam Dziedzic. Unlocking post-hoc dataset
inference with synthetic data. In Forty-second International Conference on Machine Learning,
2025. URL https://openreview.net/forum?id=a5Kgv47d2e.

A STRUCTURE OF NIDS AND GIDS

To extract the MIA signal, we use NIDs and their corresponding GIDs together with the surrounding
textual context. Examples are provided in Appendix B. For each NID and its context, we generate
a GID by replacing the NID with a randomly generated string that matches the original format,
including structural features and casing patterns. This ensures that there is no distribution shift
between the NID and its generated GIDs by construction. Each resulting string, whether it contains
a NID or a GID, is limited to a maximum of 256 tokens. This includes both the identifier and its
surrounding context. Within this limit, the final 64 tokens are reserved as a fixed suffix, and the
remaining tokens are used for the prefix and the identifier itself. We ensure that both NIDs and
GIDs are included in full and never partially truncated. All MIA signals are computed using these
context-augmented strings. We include surrounding context to enhance the MIA signal, as prior
work (Shi et al., 2024; Zhang et al., 2024b; Xie et al., 2024) has shown that longer input sequences
can improve attack effectiveness.

B EXAMPLES OF NIDS AND GIDS

In this section, we show a series of examples to represent common appearances of the NIDs. We
bold the parts that differ between the NIDs and GIDs. As shown in these examples, to create a new

14

https://openreview.net/forum?id=f38EY21lBw
https://openreview.net/forum?id=f38EY21lBw
https://openreview.net/forum?id=a5Kgv47d2e

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

held-out sample, we only replace the NID with a GID. From the boxes below, we observe that a
priori both the NID and the corresponding GID are equally likely to be part of the training data.

NID for MD5 from RefinedWeb Dolma (NID: 34d42a69a258fa51222a2e94b4563007)

For a future birthday party – fairy party favors. But I want to figure out a different fairy, not
Disney...
34d42a69a258fa51222a2e94b4563007.jpg 300×300 pixels
A quick, easy project for the kids: playful, pom-pom covered trees.
Carrot & Apple Cinnamon Streusel Muffins | a cup of mascarpone
Strawberry Banana Muffins recipe
PaperVine: Got Kids? Make your own Dinosaur Fossils!
Use modeling clay and some plastic dinosaurs to create dinosaur fossils. Made this last
night to test it out. Turned out pretty cool. Trying to see if this would work for a kids event
at work. I think it will! You only need 1 oz. of modeling clay per fossil.

GID for MD5 from RefinedWeb Dolma (GID: 9659875b92ba8fa639ba476aedbb73b9)

For a future birthday party – fairy party favors. But I want to figure out a different fairy, not
Disney...
9659875b92ba8fa639ba476aedbb73b9.jpg 300×300 pixels
A quick, easy project for the kids: playful, pom-pom covered trees.
Carrot & Apple Cinnamon Streusel Muffins | a cup of mascarpone
Strawberry Banana Muffins recipe
PaperVine: Got Kids? Make your own Dinosaur Fossils!
Use modeling clay and some plastic dinosaurs to create dinosaur fossils. Made this last
night to test it out. Turned out pretty cool. Trying to see if this would work for a kids event
at work. I think it will! You only need 1 oz. of modeling clay per fossil.

NID for SHA-1 from the training set of Dolma PeS2o (NID:
fac437a7d35ecfd53600ff4dc667563dfb251d25)

Data availability
COPRO-Seq and INSeq datasets are deposited at the European Nucleotide Archive
(ENA) under study accession: PRJEB38095. Proteomic data are available in the Mas-
sIVE database under project number: MSV000085341. COPRO-Seq analysis software
can be accessed at https://gitlab.com/hibberdm/COPRO-Seq and INSeq analysis soft-
ware at https://github.com/mengwu1002/Multi-taxon_ analysis_pipeline; a copy has been
archived at swh:1:rev: fac437a7d35ecfd53600ff4dc667563dfb251d25.
Additional information Competing interests Jeffrey I Gordon: Co-founder of Matatu, Inc.,
a company characterizing the role of diet-by-microbiota interactions in animal health. A
provisional patent on the MFAB technology has been submitted (Washington University,
assignee; PCT Application PCT/US2020/042678). The other authors declare that no
competing interests exist.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

GID for SHA-1 from Dolma PeS2o (GID: 95dfcf6dfc09c310e64c6540ad0b10e86394b006)

Data availability
COPRO-Seq and INSeq datasets are deposited at the European Nucleotide Archive
(ENA) under study accession: PRJEB38095. Proteomic data are available in the Mas-
sIVE database under project number: MSV000085341. COPRO-Seq analysis software
can be accessed at https://gitlab.com/hibberdm/COPRO-Seq and INSeq analysis soft-
ware at https://github.com/mengwu1002/Multi-taxon_ analysis_pipeline; a copy has been
archived at swh:1:rev: 95dfcf6dfc09c310e64c6540ad0b10e86394b006.
Additional information Competing interests Jeffrey I Gordon: Co-founder of Matatu, Inc.,
a company characterizing the role of diet-by-microbiota interactions in animal health. A
provisional patent on the MFAB technology has been submitted (Washington University,
assignee; PCT Application PCT/US2020/042678). The other authors declare that no
competing interests exist.

NID for GSM8K

Question
Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April and May?
Answer
Natalia sold 48/2 = «48/2=24»24 clips in May.
Natalia sold 48+24 = «48+24=72»72 clips altogether in April and May.
72

GID for GSM8K

Question
Natalia sold clips to 46 of her friends in April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April and May?
Answer
Natalia sold 46/2 = «46/2=23»23 clips in May.
Natalia sold 46+23 = «46+23=69»69 clips altogether in April and May.
69

C POST-HOC EXTRACTION OF NIDS

We describe how to extract natural identifiers (NIDs) robustly. First, we select a series of regular
expressions to identify potential natural identifiers. Depending on the type of secret, there might be a
high number of false positives, therefore, we need to further remove invalid samples. We achieve that
by first removing duplicates and then running a blind baseline (Das et al., 2024; Zhang et al., 2024a)
using the n-grams as features and different types of tabular classifiers, such as Naive Bayes classifier,
Gradient Boosting Trees, and Logistic Regression. Via K-Fold, we compute the MIA score of each
sample, then we compare the rank of the real sample with respect to the generated ones. If the rank
of the generated sample is too low or too high, we discard that sample.

We follow this procedure to robustly filter invalid natural identifiers. For instance, strings with
"0123456789" are unlikely to be random strings and are most likely false positives. Finally, we check
that the final blind baseline performance at the end of the filtering procedure is close to random
guessing.

Table 5 summarizes the NID format, structure, and entropy. Additionally, for each type of NID, we
have a specific way to generate them to closely resemble the original sample.
MD5. We generate the samples uniformly using this condition [a-fA-F0-9]{32} following the
sample casing.
SHA-1. We generate the samples uniformly using this condition [a-fA-F0-9]{40} following
the same casing of the original sample.
SHA-256. We generate the samples uniformly using this condition [a-fA-F0-9]{64} following
the same casing of the original sample.
SHA-512. We generate the samples uniformly using this condition [a-fA-F0-9]{128}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

following the same casing of the original sample.
Ethereum Address. We generate the samples uniformly using this condition
0x[a-fA-F0-9]{40}. We select and generate only samples using case sensitivity as a
checksum (EIP-55: Mixed-case checksum address encoding).
Java serialization. All serializable Java classes have the serialVersionUID attribute,
which is often equal to a random number, for instance, private static final long
serialVersionUID = 6146619729108124872L.

Table 5: Summary of NID formats, alphabets, and entropy in bits.

NID Type Length Alphabet Entropy
MD5 32 hex [0-9a-fA-F] 128
SHA-1 40 hex [0-9a-fA-F] 160
SHA-256 64 hex [0-9a-fA-F] 256
SHA-512 128 hex [0-9a-fA-F] 512
Ethereum Address 40 hex [0-9a-fA-F] 160
Java Serialization ~20 digits [0-9] 64

Although the overall computational cost for processing trillions of tokens is not negligible—
approximately one week of processing on a 128-core server—several considerations are important.
First, the current implementation has not been optimized, and substantial acceleration could be
achieved with relatively modest engineering improvements. Second, the cost of computing each NID
is only on the order of tens of milliseconds, making the per-instance evaluation highly efficient. Most
importantly, this approach is considerably less expensive than retraining large models from scratch.
For example, a single training run of Pythia-12b with a highly optimized implementation requires
approximately 72,300 hours of GPU computation. In contrast, our method avoids this prohibitive
expense while still providing meaningful insights. Finally, it is not necessary to process the entire
dataset; robust estimates can be obtained by sampling a substantially smaller subset, which further
reduces the computational burden.

Once the NIDs are extracted, the GPU cost is relatively small, as it consists of running the model
inference once or twice, depending on the MIA used, for each identifier. All the GPU experiments
were conducted on a Linux server equipped with NVIDIA A100 GPUs.

D DISTRIBUTION OF NATURAL IDENTIFIERS

Table 6 shows for each subset and type of NID the number of NIDs. We highlight that large subsets,
such as Dolma RefinedWeb, have a significant number of NIDs.

E FURTHER THEORY AND PROOFS

First, we state a useful definition and Lemma by Steinke et al. (2023), and then use them to prove
Theorem 1.

Definition 1 (Stochastic Dominance) [Definition 4.8, Steinke et al. (2023)] Let X,Y ∈ R be ran-
dom variables. We say X is stochastically dominated by Y if P[X > t] ≤ P[Y > t] for all
t ∈ R.

Lemma 1 [Lemma 4.9, Steinke et al. (2023)] Suppose X1 is stochastically dominated by Y1. Suppose
that, for all x ∈ R, the conditional distribution X2|X1 = x is stochastically dominated by Y2. Assume
that Y1 and Y2 are independent. Then, X1 +X2 is stochastically dominated by Y1 + Y2.

Here, we have the proof of Theorem 1.

Proof: Our analysis is similar to Proposition 5.1 by Steinke et al. (2023).
Fix some t ∈ Σ1 × · · · × Σm, and i ∈ {1, . . . ,m}, a ∈ Vi, and s<i ∈ V1 × · · · × Vi. Using Bayes’

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Natural Identifiers in Different Datasets. We present the number of various natural
identifiers (here: SHA-1, MD5, SHA-256, Java Serialization, SHA-512, and Ethereum Address) in
the analyzed datasets. The Total Number denotes the total number of natural identifiers in a given
dataset.

Dataset Total Number SHA-1 MD5 SHA-256 Java Serialization SHA-512 Ethereum Address

dolma RefinedWeb 16989 8098 6192 2130 42 110 417
pile train github 13182 5389 1938 4158 819 701 177
pile train stackexchange 9862 4850 3235 1200 348 121 108
pile train pile cc 3422 1078 2008 274 1 8 53
dolma algebraic stack train 2384 1264 464 612 1 28 15
pile train hackernews 2268 1340 821 93 0 7 7
dolma openwebmath train 2207 1212 727 221 1 20 26
pile train ubuntuirc 1056 618 340 88 0 9 1
dolma c4 791 408 301 63 0 4 15
dolma PeS2o 435 235 174 11 0 1 14
dolma MegaWika 383 115 200 62 0 2 4
dolma ArXiv 332 239 58 21 0 2 12
Pile test (all subsets) 293 130 69 62 13 14 5
pile train pubmedcentral 225 66 152 7 0 0 0
pile train ArXiv 207 75 122 7 0 0 3
pile test github 197 80 36 52 13 12 4
pile train wikipediaen 85 15 66 3 0 1 0
pile test stackexchange 58 34 16 6 0 2 0
openwebmath test 46 19 20 6 0 1 0
algebraic stack test 39 28 4 7 0 0 0
dolma wiki 38 11 22 3 0 2 0
pile test pile cc 18 6 8 3 0 0 1
pile train philpapers 16 1 15 0 0 0 0
pile train freelaw 15 1 14 0 0 0 0
pile test hackernews 13 7 6 0 0 0 0
dolma tulu flan 10 0 9 1 0 0 0
pile test ubuntuirc 5 3 2 0 0 0 0
pile train enronemails 4 0 4 0 0 0 0
pile test wikipediaen 2 0 1 1 0 0 0
dolma books 2 0 2 0 0 0 0
pile train gutenbergpg 19 1 0 1 0 0 0 0
pile train pubmedabstracts 1 0 1 0 0 0 0

law and ε-DP, we have

P[Si = a|M(S) = t, S<i = s<i]

=
P[M(S) = t|Si = a, S<i = s<i]P[Si = a]

P[M(S) = t|S<i = s<i]

=
P[M(S) = t|Si = a, S<i = s<i]

1
|Vi|∑|Vi|

j=1 P[M(S) = t|Si = Vi,j , S<i = s<i]P[Si = Vi,j]

=
P[M(S) = t|Si = a, S<i = s<i]

1
|Vi|∑|Vi|

j=1 P[M(S) = t|Si = Vi,j , S<i = s<i]
1
|Vi|

=
1

1 +
∑|Vi|

j=1,Vi,j ̸=a
P[M(S)=t|Si=Vi,j ,S<i=s<i]

P[M(S)=t|Si=a,S<i=s<i]

∈
[

1

1 + (|Vi| − 1)eε
,

eε

|Vi| − 1 + eε

]

Additionally, we can observe that for all i ∈ {1, . . . ,m}, we have that P[rank(ti, Si) ≤ ri] =∑ri
j=1 P[Si = ti,j]. Therefore, we can bound

P[rank(ti, Si) ≤ ri] =

ri∑
j=1

P[Si = ti,j |M(S) = t, S<i = s<i]

1

1 + (|Vi| − 1)eε
≤ P[Si = ti, j |M(S) = t, S<i = s<i] ≤ ·

eε

|Vi| − 1 + eε

ri
1 + (|Vi| − 1)eε

≤ P[rank(ti, Si) ≤ ri |M(S) = t, S<i = s<i] ≤
rie

ε

|Vi| − 1 + eε

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

P[rank(ti, Si) ≤ ri|M(S) = t, S<i = s<i] ∈
[

ri
1 + (|Vi| − 1)eε

,
rie

ε

|Vi| − 1 + eε

]
Thus, P[rank(ti, Si) ≤ ri|M(S) = t, S<i = s<i] ≤ rie

ε

eε+|Vi|−1 . With that, we can prove the result

by induction. We inductively assume that Wm−1 :=
∑m−1

i=1 1[rank(ti, Si) ≤ ri] is stochastically
dominated by Ŵ which is Bernoulli(rie

ε

|Vi|−1+eε)
m−1. As above, 1[rank(ti, Si) ≤ ri] is stochastically

dominated by Bernoulli(rmeε

eε+|Vm|−1). By Lemma 4.9 by Steinke et al. (2023), Wm = Wm−1 +

1[rank(tm, Sm) ≤ rm] is stochastically dominated by Bernoulli(rie
ε

|Vi|−1+eε)
m

i=1
. □

To show the case (ε, δ)-DP, we will first state Lemma 5.6 by Steinke et al. (2023). Then following
the analysis of Proposition 5.7 and Theorem 5.2 by Steinke et al. (2023), we prove Theorem 2.

Lemma 2 [Lemma 5.6, Steinke et al. (2023)] Let P and Q be probability distributions over Y . Fix
ε, δ ≥ 0. Suppose that, for all measurable S ⊆ Y , we have

P (S) ≤ eε ·Q(S) + δ and Q(S) ≤ eε · P (S) + δ.

Then there exists a randomized function EP,Q : Y → {0, 1} with the following properties.

Fix p ∈ [0, 1] and suppose X ∼ Bernoulli(p). If X = 1, sample Y ∼ P ; and, if X = 0, sample
Y ∼ Q. Then, for all y ∈ Y , we have

PX∼Bernoulli(p), Y∼XP+(1−X)Q

[
X = 1 ∧ EP,Q(Y) = 1 | Y = y

]
≤ p

p+ (1− p)e−ε
.

Furthermore,
EY∼P [EP,Q(Y)] ≥ 1− δ and EY∼Q[EP,Q(Y)] ≤ δ.

Theorem 2 Let M : V1×· · ·×Vm −→ Σ1×· · ·×Σm be an (ε, δ)-DP mechanism under replacement.
Let S ∈ V1 × · · · × Vm be uniformly random. Let T = M(S) ∈ Σ1 × · · · ×Σm. Then, for all v ∈ R,
all t ∈ Σ1 × · · · × Σm in the support of T , all r1, . . . , rm with ri ≤ |Vi|, and rie

ε

|Vi|−1+eε ≤ 1,

PS←V1×···×Vm,T=M(S)[

m∑
i=1

1[rank(ti, Si) ≤ ri] ≥ v|T = t]

≤ β + αδ

m∑
i=1

|Vi|

where

β = PŜ [Ŝ ≥ v],

α = max (
1

i
PŜ [Ŝ ≥ v − i] : i ∈ {1, . . . ,m}),

Ŝ ← Bernoulli

(
rie

ε

|Vi| − 1 + eε

)m

i=1

.

Theorem 2 shows the analogous result of Theorem 1 using (ε, δ)-DP.

Now, we show the proof of Theorem 2.

Proof: Our analysis follows Proposition 5.7 and Theorem 5.2 by Steinke et al. (2023).

For i ∈ {0, . . . ,m} and s≤i ∈ V1 × · · · × Vi, let M(s≤i) denote the distribution on Σ1 × · · · × Σm

obtained by conditioning M(S) on S≤i = s≤i. We can express this as a convex combination:

M(s≤i) =
∑

s>i∈Vi×···×Vm

M(s≤i, s>i) · PS>i←Vi×···×Vm
[S>i = s>i].

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Additionally, for all i ∈ {1, . . . ,m}, and a ∈ Vi, we define M̂(s≤i, a) as the distribution on
Σ1 × · · · × Σm obtained by conditioning on S≤i = s≤i and Si+1 ̸= a, as follows:

M̂(s≤i, a) =
∑

b∈Vi,a̸=b

1

|Vi| − 1
M(s≤i, b).

We define S ← V1 × · · · × Vm to represent uniform sampling over V1 × · · · × Vm. For all i ∈
{1, . . . ,m}, we have that the distributions P and Q on Σ1, . . . ,Σm, and let EP,Q : Σ1, . . . ,Σm →
{0, 1} be the randomized function given by Lemma 2 (using p = 1

|Vi|). Specifically, all s≤i ∈
V1 × · · · × Vi, all t ∈ Σ1 × · · · × Σm, and all a ∈ Vi, we have

PS←V1×···×Vm,T←M(S),E [Si = a ∧ EM(s<i,a),M̂(s<i,a)
(T) = 1|S≤i = s≤i, T = t] ≤ eε

|Vi| − 1 + eε
,

ES←V1×···×Vm,T←M(S),E [EM(s<i,a),M̂(s<i,a)
(T)|S≤i = (s<i, a)] ≥ 1− δ.

For simplicity, for all i ∈ {1, . . . ,m}, we define EM(s<i,Vi)(y) :=
∏

a∈Vi
EM(S<i,a),M̂(S<i,a)

(y)

and, for b ∈ Vi, we have

ES←V1×···×Vm,T←M(S),E [EM(s<i,Vi)(T)|S≤i = (s<i, b)] ≥ 1− |Vi|δ.

For all a ∈ Vi, let j := rank(ti, a), where we use 1-based ranks: rank 1 corresponds to the
highest-scoring element, rank 2 to the next, and so on. So we can rewrite

PS←V1×···×Vm,T←M(S),E [Si = a ∧ EM(s<i,Vi)(T) = 1|S≤i = s≤i, T = t]

= PS←V1×···×Vm,T←M(S),E [rank(ti, Si) = j] ∧ EM(s<i,Vi)(T) = 1|S≤i = s≤i, T = t].

Note that there is a bijective relationship between a and j. Therefore, we have that

PS←V1×···×Vm,T←M(S),E [rank(ti, Si) ≤ ri ∧ EM(s<i,Vi)(T) = 1|S≤i = s≤i, T = t] ≤ rie
ε

|Vi| − 1 + eε
.

For j ∈ {1, . . . ,m}, s ∈ Vi × · · · × Vm, and t ∈ Σ1 × · · · × Σm, define

W̃j(s, t) :=
∑
i<j

1[rank(ti, Si) ≤ ri] · EM(s<i,Vi)(t) =
∑
i<j

1[rank(ti, Si) ≤ ri ∧ EM(s<i,Vi)(t) = 1]

Ŵj(t) =
∑
i∈[j]

Si(t),

where, for each i ∈ {1, . . . ,m} independently, S(t)i ← Bernoulli
(

rie
ε

|Vi|−1+eε

)
By induction and Lemma 1, for any j ∈ {1, . . . ,m} and t ∈ Σ1 × · · · × Σm, the conditional
distribution (W̃m(S, t)|M(S) = t) where S ← V1 × · · · × Vm is stochastically dominated by
Ŵm(t).

For s ∈ V1 × · · · × Vm and t ∈ Σ1 × · · · × Σm, define

F (s, t) :=

m∑
i=1

1
[
EM(s<i,Vi)(t) = 0

]
,

so that

Wm(s, t) :=

m∑
i=1

1[rank(ti, Si) ≤ ri] ≤ Ŵm(s, t) + F (s, t).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Since the conditional distribution (Wm(S, t)|M(S) = t), where S ← V1×· · ·×Vm is stochastically
dominated by Wm(t), Wm is stochastically dominated by the convolution Ŵm(T)+F (S, T). Finally,
F (s, t) is supported on {0, 1, . . . ,m} and

E[F (s, t)] =

m∑
i=1

P[EM(s<i,a),M̂(s<i,a)
(T) = 0] ≤ δ

m∑
i=1

|Vi|.

Since Ŵm(T) does not depend on S, the input S does not contribute to the dependence between
F (S, T) and Wm(T), so we can elide this input in the statement, that is, F (T) = F (S, T) for S
drawn from an appropriate distribution.

Given these constraints, we can formulate finding the optimal distribution F (t) for a given t ∈
Σ1 × · · · × Σm and v ∈ R as a linear program:

maximize PW̌ ,F [W̌ (t) + F (t) ≥ v]−
m∑
i=0

P[F (t) = i] · P[W̌ (t) ≥ v − i]

subject to EF [F (t)] =

m∑
i=0

PF [F (t) = i] · i ≤ δ

m∑
i=1

|Vi|,

m∑
i=0

PF [F (t) = i] = 1, and

PF [F (t) = i] ≥ 0 ∀i ∈ {0, 1, . . . ,m},

where W̌ (t) :=
∑m

i=1 1[rank(ti, Si) ≤ ri] for Si ← Bernoulli
(

rie
ε

|Vi|−1+eε

)m

.

By strong duality, the linear program above has the same value as its dual:

minimize α · δ
m∑
i=1

|Vi|+ β

subject to α · i+ β ≥ PW̌ [W̌ (t) ≥ v − i] ∀i ∈ {0, 1, . . . ,m},
α ≥ 0.

Any feasible solution to the dual gives an upper bound on the primal. So, in particular, we can use the
solution provided by

β = PW̌∗ [W̌
∗ ≥ v],

α = max

(
{0} ∪

{
1

i

(
PW̌∗ [W̌

∗ ≥ v − i]− β
)
: i ∈ {1, 2, . . . ,m}

})
,

where W̌ ∗ is a distribution on R that satisfies PW̌∗ [W̌
∗ ≥ v − i] ≥ PW̌ [W̌ (t) ≥ v − i] for all

i ∈ {0, 1, . . . ,m} and all t in the support of T . □

F SAMPLE COMPLEXITY ANALYSIS ON THE CARDINALITY

A natural question is what advantage arises from increasing the cardinality c = |Vi| (for simplicity we
assume that all sets Vi have the same cardinality). By Theorem 1, the probability that a mechanism
produces a correct guess within the top-r elements is stochastically dominated by a Bernoulli random
variable with success probability

p =
reε

c− 1 + eε
, with p ≤ 1.

Thus, if we consider m independent guesses, the total number of correct guesses is stochastically
dominated by a Binomial(m, p) random variable.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Applying the Bernstein inequality to this binomial distribution yields the following tail bound: for
any β ∈ (0, 1),

P

[
Ŝ

m
≥ p +

1

3m
log

(
1
β

)
+

√
1

9m log2
(

1
β

)
+

2p(1− p)

m
log

(
1
β

)]
≤ β,

where Ŝ ∼ Binomial(m, p) and Ŝ/m represents the empirical accuracy (i.e., the observed fraction
of correct guesses).

On the right-hand side of this inequality, the first term p corresponds to the expected accuracy, while
the remaining terms form the concentration margin. Among these, the dominant contribution for
large m and c is √

2p(1− p)

m
log

(
1
β

)
.

To understand the scaling, observe that for fixed r and ε, we have

p = Θ
(
1
c

)
, p(1− p) = Θ

(
1
c

)
.

Consequently, the concentration margin decays as

Θ

(√
1
mc

)
.

This shows that the accuracy concentrates faster as the cardinality c increases: compared to the binary
case (c = 2), the deviation shrinks by a factor of

√
2/c. In other words, larger cardinalities yield

tighter accuracy concentration bounds, providing a clear sample complexity improvement over the
1-out-of-2 setting.

G RANDOMIZED RESPONSE ANALYSIS

In the following subsections, we analyze in detail our novel auditing method using randomized
response.

G.1 RANDOMIZED RESPONSE FORMALIZATION

We now provide the complete derivation of the auditing bound for randomized response in our setting.
Formally, we are given m samples, each corresponding to a private integer vi ∈ {1, . . . , c}. The
randomized response mechanism releases

yi =

{
vi with probability 1

c + γ,

a with probability 1
c −

γ
c−1 , ∀a ̸= vi,

where γ = eε−1

c

(
1+

eε

c−1

) ensures ε-DP.

The auditor ranks the c possible values from most to least likely. Since yi is always the most likely
input to produce itself, the optimal strategy is to rank yi first and order the remaining values randomly.
The probability of a correct guess is therefore

P[correct] = eε

c−1+eε ,

which exactly matches the bound of Theorem 1.

G.2 ADDITIONAL RANDOMIZED RESPONSE EXPERIMENTS FOR r > 1

Figure 4a and Figure 4b show additional results for the randomized response setting. We highlight
that our method is tight for rank threshold r = 1, and the higher the ε, the larger the improvement
given by a larger cardinality c.

In the specific case of randomized response, r > 1 is not tight, as there is no further information
to exploit, as the attacker’s best response is to give the mechanism response as the first choice and

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

101 102 103 104 105

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Ideal
Steinke et al. (2, 1)

(4, 1)
(4, 2)

(128, 1)
(128, 8)

(128, 64)

(a) ε = 1

101 102 103 104 105

Number of samples

0

2

4

6

8

Ideal
Steinke et al. (2, 1)

(4, 1)
(4, 2)

(128, 1)
(128, 8)

(128, 64)

(b) ε = 8

Figure 4: Randomized response mechanism with ε = {1, 8}. The red dashed line indicates the real
ε of the mechanism, while other ones indicate the estimated lower bound of ε with 99% confidence
for different choices of cardinality c, and rank threshold r. The (2,1) case corresponds to the method
proposed by Steinke et al. (2023). Each label is written as (cardinality c, rank threshold r).

the other ones in random order. The randomized response mechanism returns a random value with
a small bias towards the private one. From the auditor’s point of view, the best attack returns the
privatized value as the first option and the others in a random permutation. This means that the
first value has some information about the private value, while the other ones have no information.
Specifically, the probability of the first sample being the private sample is eε

c−1+eε , while for the
other ones it is 1

c−1+eε (these results come from the randomized response output distribution). If
we consider a certain threshold r, Theorem 1 roughly states that the probability of being correct is
bounded by reε

c−1+eε . However, based on our attack, the probability that the correct value is in the
top-r is eε

c−1+eε + r−1
c−1+eε . For r = 1, we can observe that the two results match, while for r > 1,

the attacker’s probability is always strictly smaller than the ideal one (except for ε = 0). Theorem 1
and Theorem 2 give this additional flexibility of selecting the top-r threshold; however, depending on
the setting, this might be more or less useful.

H DP-SGD AUDITING

In the following subsections, we show additional experiments for DP-SGD auditing and the pseu-
docode of the auditing procedure.

H.1 FURTHER EXPERIMENTS ON DP-SGD AUDITING

Figure 5 shows results for experiments conducted following settings described in Section 4 for other
Pythia models (70m and 160m) (Biderman et al., 2023). The experiments substantiate observa-
tions from larger models, and the proposed framework constantly outperforms the baseline method
proposed by Steinke et al. (2023).

5 10 100
real

10 1

100

101

es
tim

at
ed

2 (Steinke et al.) 8 32

(a) Pythia-160m

5 10 100
real

10 1

100

101

es
tim

at
ed

2 (Steinke et al.) 8 32

(b) Pythia-70m

Figure 5: Impact of cardinality (c = {2, 8, 32}) on ε estimation for other Pythia models.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Moreover, we explore different values of the r parameter to estimate the lower bound of ε. The
results shown in Figure 6 confirm our choice of parameter r = 1, thus providing the tightest and most
reliable outcomes for our post-hoc DP auditing framework with NIDs.

5.0 10.0 100.0

100

101

es
tim

at
ed

r = 1 r = 2 r = 4

(a) c = 32

5.0 10.0 100.0

100

101

es
tim

at
ed

r = 1 r = 2 r = 4

(b) c = 8

Figure 6: Impact of rank r = {1, 2, 4} on ε estimation for Pythia-1b.

H.2 CONFIDENCE INTERVALS ACROSS 4 RANDOM SEEDS FOR DP AUDITING

Table 7 shows the confidence interval across 4 random seeds using Pythia-1b. The results show a low
standard deviation across all of the settings.

Table 7: DP auditing across 4 seeds. Mean estimated ε for Pythia-1b computed across 4 seeds.

cardinality ε Estimated ε
2 5 0.086± 0.021
2 ∞ 0.979± 0.028
2 10 0.106± 0.020
2 100 0.245± 0.023
8 5 0.720± 0.144
8 10 0.789± 0.144
8 100 1.094± 0.129
8 ∞ 2.329± 0.058
32 5 1.761± 0.226
32 10 1.830± 0.231
32 100 2.178± 0.218
32 ∞ 3.775± 0.067

H.3 PSEUDOCODE FOR DP-SGD AUDITING

Algorithm 1 summarizes our approach for auditing DP-SGD using the results given by Theorem 2.
We highlight that when for all i ∈ {1, . . . ,m}, we have |Vi| = 2 and ri = 1, the algorithm is
equivalent to the fixed-length dataset case proposed by Steinke et al. (2023).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 1: Adapted version of the black-box DP-SGD Auditor algorithm proposed by Steinke
et al. (2023) for fixed-length dataset with NIDs.
Input: Dataset D0, sets of canaries V = {V1, . . . , Vm}, the target ranks r1, . . . , rm, and the

DP-SGD settings
1: for i ∈ {1, . . . ,m} do
2: Si ← Unif{Vi}
3: end for
4: D1 := {Vi,Si : i ∈ {1, . . . ,m}}
5: D = D0 ∪D1

6: Run DP-SGD on D with given parameters, yielding {w0, w1, . . . , wℓ}
7: for i ∈ {1, . . . ,m} do
8: Yi,j ← SCORE(Vi,j ;w

ℓ) ∀j ∈ [|Vi|]
9: Ti ← argsort(Yi,j∀j ∈ [|Vi|])

10: end for
11: c← 0
12: for i ∈ {1, . . . ,m} do
13: if Ti,Si ≤ ri then
14: c← c+ 1
15: end if
16: end for
17: return Compute εlower using the formula given by Theorem 2

I ADDITIONAL EVALUATION OF MIAS PERFORMANCE

Table 8, Table 10 and Table 11 show the MIA performance of the individual MIAs on the subsets of
the Pile using the NIDs, where the goal is to distinguish the real from the generated ones. Furthermore,
for completeness, we have Table 12, Table 13, Table 14, and Table 15 that show the MIA performance
using TPR @ 1% FPR.

Table 8: MIAs on NIDs for Pythia-12b. The AUC for MIAs between the NIDs and the corresponding
GIDs on various subsets of the Pile dataset.

Stack Ubuntu Wiki- PubMed Hacker Pile
Full Pile Github Exchange IRC pedia(en) Central News CC ArXiv Average

MIA Train Test Train Test Train Test Train Train Train Train Train Train Train Test

Loss 58.6 50.3 71.8 51.1 50.3 50.9 50.3 50.6 50.6 60.5 51.1 50.4 54.9 50.7
Min-K% 57.6 51.0 68.4 50.6 50.7 51.2 51.1 50.6 50.7 60.5 52.3 51.0 54.8 50.9
Min-K%++ 56.9 51.4 71.2 50.3 50.8 51.9 51.1 51.3 51.1 69.7 53.2 50.9 56.2 51.2
ReCALL 53.5 50.2 50.6 50.3 50.0 51.1 50.3 51.3 50.2 57.8 50.1 50.2 51.6 50.5
ReCALL(Hinge) 51.3 50.1 53.3 50.4 50.4 51.4 50.5 51.9 50.8 50.3 50.4 50.0 51.0 50.6
Hinge 58.7 50.5 71.8 51.5 50.4 50.5 50.4 50.4 50.5 60.8 50.9 50.4 54.9 50.8

Table 9: MIAs on NIDs for OLMo-7B. The AUC for MIAs between the NIDs and the corresponding
GIDs on various subsets of the Dolma dataset. All but Proof Pile 2 (Test) are part of the training data
of Dolma.

Dolma Average
MIA C4 PeS2o MegaWika ArXiv RefinedWeb Algebraic Stack OpenWebMath Proof Pile 2 (Test) Train

Loss 50.1 50.2 50.2 51.2 50.1 50.0 50.9 50.6 50.4
Min-K% 50.1 50.2 50.5 51.3 50.1 50.5 51.7 51.3 50.6
Min-K%++ 50.4 50.2 50.0 50.7 50.1 50.2 50.8 51.0 50.3
ReCALL 50.2 50.9 51.0 50.7 50.1 50.4 51.0 51.0 50.6
ReCALL (Hinge) 50.3 51.4 50.2 51.9 50.2 50.7 50.2 51.0 50.7
Hinge 50.1 50.2 50.2 50.9 50.1 50.0 50.7 51.0 50.3

J FURTHER EXPERIMENTS ON DI

We evaluate DI on various models and data subsets. More concretely, we experiment with Pythia
models 12b, 6.9b, and 2.8b and OLMo-7B. Additionally, we investigate the impact of increasing the
number of samples in the suspect set. All results are summarized in Figure 7.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: MIAs on NIDs for Pythia-6.9b. The AUC for MIAs between the NIDs and the corre-
sponding GIDs on various subsets of the Pile dataset.

Full Pile Github StackExchange UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Average
MIA Train Test Train Test Train Test Train Train Train Train Train Train Train Test

Loss 57.6 50.4 69.9 51.1 50.3 50.6 50.3 50.7 50.7 61.7 50.8 50.6 54.7 50.7
Min-K% 56.0 51.0 65.7 50.5 50.8 51.4 50.9 50.6 50.9 63.2 51.8 50.7 54.5 51.0
Min-K%++ 55.1 51.3 69.3 50.5 51.3 50.4 51.4 51.8 51.6 74.5 52.8 51.8 56.6 50.7
ReCALL 52.4 51.4 55.9 51.1 50.1 51.0 50.1 50.5 50.4 60.3 50.3 50.7 52.3 51.2
ReCALL (Hinge) 51.2 50.6 53.2 51.2 50.1 50.1 51.0 50.9 50.1 52.6 50.0 50.0 51.0 50.6
Hinge 57.7 50.7 69.9 51.6 50.4 50.1 50.2 50.0 50.7 61.7 50.7 50.3 54.6 50.8

Table 11: MIAs on NIDs for Pythia-2.8b. The AUC for MIAs between the NIDs and the corre-
sponding GIDs on various subsets of the Pile dataset.

Full Pile Github StackExchange UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Average
MIA Train Test Train Test Train Test Train Train Train Train Train Train Train Test

Loss 52.8 50.0 58.9 50.4 50.2 50.2 50.1 50.5 50.5 60.3 50.8 50.6 52.8 50.2
Min-K% 52.1 52.4 59.5 52.9 50.6 50.3 50.2 50.1 50.6 61.6 51.6 50.5 53.0 51.8
Min-K%++ 50.3 52.3 58.2 50.6 50.9 50.1 50.2 50.2 50.3 73.6 52.8 51.4 54.2 51.0
ReCALL 53.7 51.1 64.4 52.2 50.1 50.1 50.2 50.8 50.5 58.0 50.2 51.1 53.2 51.2
ReCALL (Hinge) 50.9 50.6 50.9 50.8 50.5 50.7 50.9 52.3 50.2 51.3 50.2 50.1 50.8 50.7
Hinge 53.0 50.4 58.9 51.1 50.3 50.3 50.2 50.2 50.5 59.9 50.7 50.4 52.7 50.6

Table 12: MIAs on NIDs for Pythia-12b. The TPR @ 1% FPR for MIAs between the NIDs and the
corresponding GIDs on various subsets of the Pile dataset.

Full Pile Github StackExchange UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Average
MIA Train Test Train Test Train Test Train Train Train Train Train Train Train Test

Loss 1.2 0.0 1.9 0.0 1.0 0.1 0.0 0.1 0.5 0.1 0.9 0.3 0.7 0.0
Min-K% 1.1 0.0 1.6 0.0 1.0 1.8 0.3 0.9 1.0 0.2 0.9 0.6 0.9 0.6
Min-K%++ 1.3 1.1 2.0 1.1 0.8 1.3 0.4 0.9 1.9 0.8 1.3 0.4 1.1 1.2
ReCALL 1.2 0.2 1.5 0.0 1.0 1.5 1.4 0.7 0.8 0.9 1.9 1.0 1.1 0.5
ReCALL (Hinge) 1.1 1.2 1.9 1.5 0.6 1.3 0.5 1.0 0.1 1.5 1.3 2.8 1.2 1.3
Hinge 0.0 0.4 0.0 0.5 0.9 1.5 0.5 0.5 2.1 1.1 0.9 1.3 0.8 0.8

Table 13: MIAs on NIDs for Pythia-6.9b. The TPR @ 1% FPR for MIAs between the NIDs and the
corresponding GIDs on various subsets of the Pile dataset.

Full Pile Github StackExchange UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Average
MIA Train Test Train Test Train Test Train Train Train Train Train Train Train Test

Loss 1.2 0.1 1.9 0.0 1.0 1.3 0.4 0.0 0.3 0.3 0.5 1.0 0.7 0.5
Min-K% 1.1 0.1 1.6 0.0 1.3 0.7 0.5 1.0 0.9 0.3 1.0 1.3 1.0 0.3
Min-K%++ 0.9 0.7 1.0 0.6 1.2 1.4 0.4 1.3 0.9 0.9 0.4 1.1 0.9 0.9
ReCALL 1.0 0.2 1.5 0.0 1.2 1.3 1.1 0.6 1.2 1.2 1.2 2.1 1.2 0.5
ReCALL (Hinge) 1.3 1.4 2.0 1.5 0.5 2.6 0.6 2.3 1.8 3.3 1.2 1.8 1.6 1.9
Hinge 0.0 0.3 0.0 0.5 0.8 1.2 0.7 0.3 1.2 1.0 0.7 0.9 0.6 0.7

K CONTROLLED ABLATION OF DI

In this section, we investigate how the main design choices affect the behavior of our method. To
carry out this controlled analysis, it is necessary to train a model for each configuration under study.
Fully training a large model for every variation is computationally infeasible, and therefore, following
the procedure described in Section 4, we finetune a smaller model that serves as a practical proxy for
evaluating the influence of individual components. This controlled setup enables us to enforce the
formatting rules of task-specific NIDs with precision, ensuring that the experiments isolate structural
properties rather than reflecting irregularities present in real-world data. The following subsections
present the corresponding evaluations conducted within this framework.

K.1 COMPARISON WITH INJECTED CANARIES

In this subsection, we compare the performance of NIDs and commonly used injected canaries.
Although injected canaries fall outside our post-hoc threat model, this controlled setting helps
contextualize the strength of the NID leakage relative to existing auditing methods. In particular,
we consider four types of canaries: (1) random alphabetic strings of length 32, (2) the NIDs (from
the GitHub subset of the Pile test set), (3) fully IID strings (in-distribution text from the Pile test
set), and (4) random hexadecimal strings of length 32. For each type, we inject 100 canaries into
the training data and run DI. The resulting p-values for each canary type are reported in Table 16.
Overall, we find that NIDs perform competitively with other injected canaries. They capture privacy

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 14: MIAs on NIDs for Pythia-2.8b. The TPR @ 1% FPR for MIAs between the NIDs and the
corresponding GIDs on various subsets of the Pile dataset.

Full Pile Github StackExchange UbuntuIRC Wikipediaen PubMedCentral HackerNews Pile-CC ArXiv Average
MIA Train Test Train Test Train Test Train Train Train Train Train Train Train Test

Loss 1.1 0.0 1.4 0.0 0.9 1.3 0.4 0.0 0.8 0.1 0.6 1.0 0.7 0.4
Min-K% 1.1 0.0 1.2 0.0 1.1 1.4 0.4 1.1 1.1 0.3 0.7 0.7 0.8 0.5
Min-K%++ 0.9 0.6 1.3 0.5 0.8 1.5 0.3 1.0 2.3 0.8 1.0 0.3 1.0 0.9
ReCALL 0.1 0.0 0.5 0.0 1.0 0.1 1.5 0.1 0.9 0.7 1.0 1.7 0.8 0.0
ReCALL (Hinge) 1.3 0.7 1.6 1.0 0.7 0.1 1.7 0.4 0.1 2.4 0.8 1.1 1.1 0.6
Hinge 0.1 0.4 0.1 0.4 0.8 1.5 0.4 0.2 1.5 1.2 0.9 0.9 0.7 0.8

Table 15: MIAs on NIDs for OLMo 7B. The TPR @ 1% FPR for MIAs between the NIDs and the
corresponding GIDs on various subsets of the Dolma dataset.

Dolma Average
MIA C4 PeS2o MegaWika ArXiv RefinedWeb algebraic stack openwebmath Proof Pile 2 (Test) Train

Loss 0.4 0.9 0.4 1.2 0.8 0.9 0.3 0.0 0.7
Min-K% 0.7 0.5 1.5 0.3 0.9 0.5 0.4 0.0 0.7
Min-K%++ 1.1 0.8 0.2 0.8 2.0 0.3 0.9 0.0 0.9
ReCALL 0.7 0.6 0.6 0.7 0.7 0.9 0.6 0.0 0.7
ReCALL (Hinge) 0.7 0.3 1.1 0.2 0.2 1.1 2.2 0.0 0.8
Hinge 0.9 1.0 1.0 0.6 1.1 1.1 0.9 0.0 0.9

leakage more effectively than IID canaries and outperform random hexadecimal canaries, though
some carefully crafted canaries, such as alphabetic strings, exhibit slightly stronger signals.

Table 16: P-values for DI on Injected Canaries. P-values obtained for each injected canary type.

Canary Type P-Value
Alphabetic < 1.00× 10−300

NIDs (All subsets) 4.17× 10−211

NIDs (GitHub subset) 3.31× 10−156

IID 4.55× 10−100

Hex 7.00× 10−23

K.2 MISIMPLEMENTED GENERATOR

To study the benefits of our method for operating on held-out data from the same distribution, we
analyze scenarios in which the held-out data are generated from a distribution that differs from the
distribution of the suspect set data. We evaluate the impact of an incorrectly implemented generator.
If the GID generator is not implemented properly, this induces a distributional shift between NIDs and
GIDs. Starting from the correct generator, we construct three misimplemented variants that (1) flip
the casing of alphabetic characters, (2) produce identifiers whose length is off by one, and (3) produce
identifiers whose length is off by two. We then run DI on models finetuned on correct NIDs, but
evaluated using imperfect GIDs, using the same protocol as in previous subsections. Table 17 reports
the resulting p-values for member and non-member datasets. The results show that DI is sensitive to
certain generator failures: for example, incorrect casing yields strong signals for both members and
non-members, substantially inflating false positives. In contrast, modest length mismatches have a
smaller impact on non-member p-values, likely because Min-K% and Min-K%++ only depend on
the top-k tokens and are therefore relatively insensitive to appending or removing a small number of
additional tokens. This analysis complements our microanalysis of NID formats and highlights that
both structural differences and shifts in the identifier-generation distribution can meaningfully affect
DI outcomes.

Table 17: Misimplemented Generator. P-values for DI on member and non-member datasets under
different GID generator failures compared to the correct generator.

Generator Failure P-Value Members P-Value Non-Members
Wrong Case < 1.00× 10−300 1.16× 10−54

Length Off By 2 3.64× 10−99 5.39× 10−02

Length Off By 1 < 1.00× 10−300 3.40× 10−01

Correct Generator 3.31× 10−156 9.83× 10−01

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

10 25 50 75 100
Number of samples

10 10

10 8

10 6

10 4

10 2

100

P-
va

lu
e

Pile (All subsets)
Pile ArXiv
Pile Github
Pile HackerNews

Pile-CC
Pile PubMedCentral
Pile StackExchange
Pile UbuntuIRC

(a) Pythia 12b

10 25 50 75 100
Number of samples

10 10

10 8

10 6

10 4

10 2

100

P-
va

lu
e

Pile (All subsets)
Pile ArXiv
Pile Github
Pile HackerNews

Pile-CC
Pile PubMedCentral
Pile StackExchange
Pile UbuntuIRC

(b) Pythia 6.9b

10 25 50 75 100
Number of samples

10 10

10 8

10 6

10 4

10 2

100

P-
va

lu
e

Pile (All subsets)
Pile ArXiv
Pile Github
Pile HackerNews

Pile-CC
Pile PubMedCentral
Pile StackExchange
Pile UbuntuIRC

(c) Pythia 2.8b

10 25 50 75 100
Number of samples

10 10

10 8

10 6

10 4

10 2

100

P-
va

lu
e

Dolma algebraic stack
Dolma arxiv
Dolma c4
Dolma refineweb

Dolma megawika
Dolma open web math
Dolma pes2o
Proof Test

(d) OLMo-7B

Figure 7: The p-value for different Pythia models and OLMo on subsets of the Pile or Dolma datasets,
respectively. We show results for different numbers of samples in the suspect set. For the Pythia
models, the solid lines show the training subsets, while the dashed lines are for test subsets (not
included in training). The Proof Pile 2 (Test) subset has fewer than 100 NIDs. Hence, their lines are
plotted only until the highest number of samples is available. We observe that for training sets, the
p-values overall decrease with the number of samples, enabling the detection of the private data in
the model’s training set. The test set’s p-values are constant, suggesting that no false positives are
achieved.

K.3 IMPACT OF MIA STRENGTH

We next investigate how the strength of the underlying membership inference attack affects DI
performance with NIDs and, consequently, DP auditing. While our framework treats the MIA as a
plug-in component, a stronger MIA signal should intuitively translate into more powerful DI tests.
To validate this, we follow the controlled setup: we finetune Pythia-1b on 100 NIDs from the GitHub
test set and run DI with four MIA feature configurations. Specifically, we use (1) the original MIA
feature set, (2) the original features augmented with CAMIA (Chang et al., 2024), (3) the original
features augmented with SURP (Zhang & Wu, 2024), and (4) the combination of original features,
CAMIA, and SURP. Table 18 reports the resulting p-values. We observe that incorporating stronger
MIAs, particularly CAMIA, substantially improves DI effectiveness, as indicated by lower p-values,
and that the trend is consistent: the richer the MIA feature set, the stronger the DI signal.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 18: MIA Strength. P-values for DI when using different combinations of MIA feature sets,
illustrating how stronger MIAs improve the DI signal.

MIA Signal P-Value
Original Features + CAMIA < 1.00× 10−300

Original Features + CAMIA + SURP < 1.00× 10−300

Original Features + SURP 4.17× 10−211

Original Features 3.31× 10−156

K.4 COMPARING DIFFERENT TYPES OF NIDS

We also study how the structure of an identifier affects DI risk in a controlled experiment (see Table 5
for the exact formats). For each NID format (Java serialization strings, SHA-512, SHA-256, SHA-1,
MD5, and Ethereum addresses), we generate a set of identifiers that follow the corresponding pattern,
finetune Pythia-1b on 100 instances of that type, and then run DI. Table 19 reports the resulting
member p-values. Longer and more structurally complex identifiers, such as SHA-512 hashes, tend
to yield stronger DI signals, whereas shorter formats such as MD5 hashes produce weaker but still
highly significant results. Beyond length, the character composition also matters: Java serialization
strings, which only contains digits, produce a stronger DI signal than SHA-512 despite being shorter.
Overall, these results indicate that our framework is robust across a range of realistic NID structures,
with DI performance improving as identifiers become more informative and distinctive.

Table 19: NID Structures. P-values for DI for different NID formats, showing how identifier length
and structure influence the strength of the leakage signal.

NID Structure P-Value
Java Serialization 4.17× 10−211

SHA512 1.67× 10−175

SHA1 / Ethereum Address 1.95× 10−88

SHA256 8.89× 10−44

MD5 7.00× 10−23

K.5 NUMBER OF NIDS

The number of NIDs significantly affects the statistical power of the DI test. To study this effect,
we finetune Pythia-1b on 100 NIDs from the GitHub test set, and then run DI using only subsets
of size k ∈ {50, 60, 70, 80, 90, 100} of these NIDs. Table 20 shows the resulting member p-values.
As expected, the p-values decrease monotonically as the number of NIDs increases, illustrating the
sample-complexity benefit of having more identifiers available in the suspect dataset.

Table 20: Number of NIDs. P-values for DI as a function of the number of NIDs used, demonstrating
the sample-complexity benefit of having more identifiers.

Number of NIDs P-Value
50 1.01× 10−66

60 7.92× 10−84

70 2.07× 10−101

80 2.23× 10−119

90 1.16× 10−137

100 3.31× 10−156

K.6 TASK-SPECIFIC NIDS

In this subsection, we detail our case study on constructing task-specific NIDs for GSM8K, which
consists of grade-school math word problems that require multi-step numerical reasoning. For each
selected GSM8K problem, we use GPT-5.1 to rewrite the problem as a numeric template by replacing
every concrete number in the statement and solution with a variable; for example, the original solution

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

fragment “Natalia sold 48/2 = «48/2=24»24 clips in May. Natalia sold 48+24 = «48+24=72»72 clips
altogether in April and May. #### 72” is rewritten as the template “Natalia sold n/2 clips in May.
Natalia sold n + n/2 = 3n/2 clips altogether in April and May.”, where n stands for the original
48 and all derived quantities become functions of n. We then sample new values for these variables,
update the problem text and solution accordingly, and have GPT-5.1 verify that each instantiated
problem–solution pair is logically correct and self-consistent. In our DI setting, we treat one instance
per template as the task-specific NID in the suspect set and the remaining instantiated variants as the
corresponding GIDs drawn from the same task-specific distribution. To validate this approach, we
finetune Pythia-1b on 100 such GSM8K-derived NIDs and run DI on the resulting suspect sets; as
shown in Table 4 in the main paper, these task-specific NIDs enable statistically significant DI on
GSM8K. Moreover, the p-values decrease as the number of NIDs increases, reflecting the expected
strengthening of the DI signal with additional identifiers.

K.7 COMPARISON WITH EXISTING DI METHODS

To compare the effectiveness of our method, we not only compare the effectiveness of the individual
canaries, but also the performance of the DI methods. For each DI method, we finetune Pythia-1b
with the corresponding canaries and apply the corresponding statistical test. Following Maini et al.
(2024), we use IID samples and their corresponding statistical test. For Zhang et al. (2024a), we use
the Hex and Alphabetic random strings of length 32 and apply our statistical test, as their method
lacks one. For Zhao et al. (2025), we still use the entire subset during the generation phase. While this
gives an unfair advantage to the method by Zhao et al. (2025), it is necessary to prevent an even larger
distribution shift in the resulting generated held-out set. Additionally, the reported time includes both
generation and calibration. The generation time is measured in the pre-training setting, on four A100
GPUs, whereas all other experiments use a single A100 GPU.

In Table 21, we report the results from the GitHub subset. We observe that for the member subsets,
our method shows strong performance, with lower p-values than Maini et al. (2024) and Zhao
et al. (2025). For the non-member subsets, the p-values for all methods are close to 1.0. Notably,
the execution time of our approach (21.52 minutes) is close to that of Maini et al. (2024) and the
implementation of the approach proposed by Zhang et al. (2024a), yet substantially more efficient
than Zhao et al. (2025).

Additionally, in Table 22, we conduct a further evaluation using the whole Pile dataset. In this setting,
we are unable to include Zhao et al. (2025), as the method relies on low distributional variability to
function effectively. The results show a similar trend to that in the GitHub subset.

Table 21: DI Comparison (GitHub Subset). Comparison of DI methods including members/non-
members p-values and execution time (in minutes) on the GitHub subset.

DI Method P-Value Members P-Value Non-Members Time
LLM DI (Maini et al. (2024)) 9.79× 10−122 1.05× 10−2 20.43
Unlock DI (Zhao et al. (2025)) 5.00× 10−5 1× 100 2122.37
Zhang et al. (2024a) (Hex) 7.00× 10−23 6.70× 10−2 21.18
Zhang et al. (2024a) (Alphabetic) < 1.00× 10−300 5.42× 10−1 20.83
NID DI (Ours) 3.31× 10−156 9.83× 10−1 21.52

Table 22: DI Comparison (All Subsets). Comparison of DI methods including members/non-
members p-values and execution time (in minutes) with samples from the Pile.

DI Method P-Value Members P-Value Non-Members Time
LLM DI (Maini et al. (2024)) 8.48× 10−46 5.85× 10−1 20.73
Zhang et al. (2024a) (Hex) 7.00× 10−23 6.70× 10−2 21.18
Zhang et al. (2024a) (Alphabetic) < 1.00× 10−300 5.42× 10−1 20.83
NID DI (Ours) 4.17× 10−211 3.76× 10−1 20.67

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

L DIRECT COMPARISON WITH ZHAO ET AL. (2025)

To further validate our DI method, we compare against Zhao et al. (2025) in the pretrained settings.
For fairness, we replicate their experimental setup, including the number of samples reported in
Table A2 of (Zhao et al., 2025). We evaluate three subsets of the Pile dataset using the Pythia-6.9b
model to ensure coverage across various settings. As shown in Table 23, our method achieves
substantially better performance and efficiency, being more effective and orders of magnitude faster
than the method of Zhao et al. (2025).

Table 23: DI Comparison. Comparison of p-values and end-to-end execution time (in minutes) per
subset on Pythia-6.9b.

Subset P-Value (Zhao et al., 2025) P-Value (Ours) Time (Zhao et al., 2025) Time (Ours)
Pile-CC 5.64× 10−3 2.18× 10−34 1395.87 46.17
GitHub 8.50× 10−3 3.65× 10−14 2106.97 34.41
Ubuntu 4.23× 10−2 3.01× 10−14 805.22 21.33

M LIMITATIONS

Our method relies on datasets that contain NIDs. While we have demonstrated that they are
widespread, it is possible that not all types of NIDs have been identified; future work may un-
cover more, which would only enhance our results by increasing the number of real samples.

N LLM USAGE

We used LLMs solely to polish author-written text (grammar, clarity, concision). All suggestions
were reviewed by the authors, who take full responsibility.

31

	Introduction
	Background
	Natural Identifiers (NIDs)
	NIDs in the Wild
	Leveraging NIDs
	Formalizing NIDs

	DP Auditing with Natural Identifiers
	Dataset Inference with NIDs
	Discussion and Conclusions
	Ethics Statement
	Structure of NIDs and GIDs
	Examples of NIDs and GIDs
	Post-hoc Extraction of NIDs
	Distribution of Natural Identifiers
	Further Theory and Proofs
	Sample Complexity Analysis on the Cardinality
	Randomized Response Analysis
	Randomized Response formalization
	Additional Randomized Response Experiments for r > 1

	DP-SGD Auditing
	Further Experiments on DP-SGD Auditing
	Confidence Intervals Across 4 Random Seeds for Dp Auditing
	Pseudocode for DP-SGD auditing

	Additional Evaluation of MIAs Performance
	Further Experiments on DI
	Controlled Ablation of DI
	Comparison with Injected Canaries
	Misimplemented Generator
	Impact of MIA Strength
	Comparing Different Types of NIDs
	Number of NIDs
	Task-Specific NIDs
	Comparison with existing DI methods

	Direct Comparison with zhao2025unlocking
	Limitations
	LLM Usage

