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ABSTRACT

Differential Privacy (DP) provides a formal privacy guarantee preventing adver-
saries from inferring an individual record from populations. Differentially Private
Stochastic Gradient Descent (DPSGD), the widely used method to train a model
satisfying DP, inserts randomized noise to the gradients in each iteration but leads
to significant accuracy decline, particularly on large and deep models. Facing the
curse of dimensionality in differentially-private deep learning, we propose a Gra-
dient Index Pruning (GIP) mechanism, which prunes gradients by a novel index
perturbation scheme, to preserve important components of the gradients while
reducing their sizes. Our mechanism does not alter the model, but merely adds
a noisy top-k pruning step before the conventional gradients noise insertion in
DPSGD. It is proven that GIP satisfies DP, yet improves accuracy over DPSGD.
We also present theoretical analysis to show GIP indeed introduces less perturba-
tion to the training. Experiments on a variety of models and datasets have demon-
strated that GIP exceeds the state-of-the-art differentially-private deep learning
methods by around 1− 2% accuracy boost.

1 INTRODUCTION

Recent work has shown that trained neural networks may leak/memorize information of the train-
ing data, posing great threats to the sensitive training data. Differential Privacy (DP) serves both
as a measure to quantitatively describe the upper bound of the information leak, and mechanisms
to ensure any individual sample’s impact on the model is negligible. Differentially-private models
have shown to be defensive against multiple privacy attacks, such as membership inference attacks
(Rahman et al., 2018; Sablayrolles et al., 2019; Yu et al., 2021b), gradient matching attacks (Zhu
et al., 2019), input reconstruction attacks (Carlini et al., 2019), and data poisoning attacks (Ma et al.,
2019), etc.
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Figure 1: Cosine similarity between
the differentially-private gradient vec-
tors and their unperturbed counterparts
of varied lengths. The value quickly de-
creases to 0 with the dimension.

Differentially-private stochastic gradient descent
(DPSGD) has become a popular framework in
differentially-private deep learning. By inserting
randomized noise on clipped gradients, and composing
the privacy loss through iterations, DPSGD provides
DP guarantees for the private training dataset on the
output model. However, the conventional method suffers
significant accuracy loss due to overwhelming noise
perturbation, especially on deep and wide networks.
For example, training CIFAR10 with DPSGD on Wide-
ResNet 16-4 (2.7M parameters) merely reaches 56.8%
testing accuracy at (1, 10−5)-DP compared to 94.8%
without DP, by the most recent results in (De et al.,
2022).

Research on DPSGD has been seeking breakthroughs in
improving practical utility while maintaining theoretical
privacy guarantees. A series of works (Balle & Wang, 2018; Dong et al., 2021; Yang et al., 2022;
Xiang et al., 2019) focus on the sufficient conditions, or the necessary and sufficient conditions for
(ϵ, δ)-differential privacy, proposing stricter lower bounds for the noise variance. Another line of
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works investigates the accountant method (Abadi et al., 2016; Dong et al., 2021; Mironov et al.,
2019), i.e., composing DP over multiple iterations by tighter analyses on the higher moments of the
privacy loss variable, or on the tradeoff function of type I and type II errors. Papernot et al. (2021)
discovered a general family of bounded activation functions to bound the gradient sensitivity and
improve the model accuracy. Recently, De et al. (2022) reveal strong evidence that hyperparameters
such as batch size and learning rate are vital to DPSGD on large models. While works enhancing
DPSGD from perspectives of noise bounds, accountant methods, and training hyperparameters seem
to reach their limits, works of Tramèr & Boneh (2021); Yu et al. (2021b); Zhang et al. (2021) have
discussed the impact of gradients sizes, which is a more practical aspect of DPSGD, leaving much
room for improvement. Yu et al. (2021b; 2022); Tramèr & Boneh (2021) propose to replace the full
gradients with their low-rank approximation, or to update an incremental set of weights atop a fixed
pre-trained model. These methods indeed shrink the size of gradients but have to modify the original
model structure at accuracy losses.

It is our key observations that 1) Lin et al. (2018) found that compression can be done on gradi-
ents with almost no impact on accuracy in SGD, 2) the magnitude of the differentially-private noise
is mostly larger than that of the gradient itself, and 3) the larger the gradient size, the less likely
the noisy gradients would agree with the original descent direction. To verify 2), we reproduce the
experiment of training WRN16-4 on CIFAR10 in De et al. (2022), and calculate the ratio between
gradient norm and noise norm in each step. The ratio remains around 0.01 during the entire train-
ing process. We verify 3) by an experiment applying (ϵ, δ) = (1, 10−5)-differential privacy to the
gradient vectors (simulated by randomized noise sampled from N (0, 1)) of different lengths, and
show the cosine similarity between the differentially-private vectors and the unperturbed counter-
parts. The results in Fig. 1 show that as the gradient dimension grows, the cosine similarity value
rapidly declines, suggesting the ‘curse of dimensionality’ in DPSGD — deep models endure much
larger perturbation error at the same privacy guarantee.

Hence we are motivated to propose a new method for DPSGD with gradient pruning, requiring no
model change. The intuition is to have DP mechanisms alter the gradient descent direction in each
update as little as possible. We decouple the representation of the batch gradient into indices and
values so that suitable mechanisms can be applied for each. The state-of-the-art Gaussian DP is used
for values, while a novelly designed noisy top-k pruning method is for index perturbation. The top k
elements of the gradient are selected with differential privacy. The model update is the combination
result of the value distortion and index perturbation. Through theoretical analysis, we give evidence
that our gradient index perturbation method introduces less noise. Intuitively, this is explained by a
reduced noise dimension, and that the error brought by pruning is much smaller than by noise, since
the variance of the noise is typically larger than that of the gradient.

Highlights of our contributions are as follows. First, we propose a new DPSGD method with gra-
dient pruning, which effectively improves model utility while keeping the DP property. Second, a
novel index perturbation mechanism, in combination with the value distortion, gives much smaller
theoretical errors than previous works. Finally, experiments on a variety of models and datasets have
verified that our method improves the accuracy of DPSGD by 1− 2% compared to the state-of-the-
art.

2 RELATED WORK

Differential privacy has been developed both as privacy guarantees and algorithms towards protect-
ing individual training data records in deep learning. Particularly, differentially-private stochastic
gradient descent (DPSGD) has been widely studied, and it often poses an acute problem in balanc-
ing the tradeoff between privacy and accuracy. Most works (Yu et al., 2021a;b; Tramèr & Boneh,
2021; Yu et al., 2022) point out that the high dimensions of the deep neural network is the culprit
— excessive amount of noise is inserted leading to performance failure. Representative solutions
typically reduce the size of the model updates (gradients) to alleviate the noise perturbation. For ex-
ample, instead of applying differential privacy to full gradients, Yu et al. (2021b)propose a low-rank
approximation to weight matrices, and perform differentially-private update in the projected sub-
space. Other works (Yu et al., 2022; Tramèr & Boneh, 2021) pre-train a large fraction of the model
on public datasets and merely fine-tunes an incremental set of weights by differential privacy.
Datalens (Wang et al., 2021) presents a similar idea of gradient pruning in training differentially-

2



Under review as a conference paper at ICLR 2023

private generative models. Zhang et al. (2021) propose pruning in NLP tasks for dimensionality
reduction by investigating model-specific sparsity. However, these works have their own drawbacks:

Low-rank approximation based methods rely on the public dataset or historical information to obtain
the subspace for decomposition. Yu et al. (2021a) decomposes the gradients into a low-dimensional
component as well as low-parity errors by the matrix projection. Yu et al. (2021b) divides the matrix
into two parts by SVD decomposition, and the directional matrix is obtained from the historical
gradient information. However, the approximation error of the directional matrix, whether being
obtained from external data or historical information, cannot be strictly controlled. Hence the method
would be invalid on standalone private datasets. Freezing the main body of a model and fine-tuning
the incremental set degrades the accuracy performance compared to fine-tuning the entire model
(Wang et al., 2021; De et al., 2022). Although Wang et al. (2021) prune the gradient of each sample,
it does not aim to reduce the dimension of the additive noise, and thus a large amount of noise is still
inserted. Zhang et al. (2021) is based on the property of gradient sparsity in NLP tasks, however,
such a property may not hold on other tasks, e.g., the computer vision tasks. In contrast, our method
does not rely on any auxiliary dataset, or any pre-training step to realize DPSGD. We bring down
the size of the additive noise to reduce its impact.

Other lines of works on DPSGD focus on the selection of hyperparameters and training techniques
(De et al., 2022) rather than the network size. We show that our method could improve the state-of-
the-art further by non-trivially applying gradients pruning on top of it.

3 PRELIMINARIES

We give a brief review of the concepts of differential privacy, DPSGD and Mallows model.
Definition 1 ((ε, δ)-Differential Privacy (Dwork et al., 2006)). A randomized mechanism M sat-
isfies (ε, δ)-differential privacy if for any neighboring datasets X and X ′ differing by at most one
unit, and for any possible output O,

Pr(M(X) ∈ O) ≤ eε Pr(M(X ′) ∈ O) + δ. (1)

In the special case of δ = 0, we callM ε-differentially private.

DPSGD. In a deep learning task, the sensitive training dataset X = [x1, x2, . . . , xN ] requires to be
protected in T iterations of stochastic gradient descent. In each iteration, a batch of data B of size
|B| will be randomly selected to compute the gradient for weights W : g = 1/|B|

∑
x∈B g(W,x),

where g(W,x) represents the gradient of the individual data x and the single g represents the average
gradient of the batch. Since DP requires that the sensitivity of the outcome is bounded, conventional
DPSGD conducts per-sample clipping on the gradients of each x:

ḡ(W,x) = g(W,x)/max(1,
∥g(W,x)∥2

C
), (2)

to ensure that the sensitivity of the gradient is C, and thus the batch gradient becomes ḡ =
1/|B|

∑
x∈B ḡ(W,x). DPSGD mechanismM inserts noise to the batch gradient:M(ḡ) = ḡ + Z,

where Z ∼ N(0, σ2C2E) has the same shape with ḡ. σ is a constant decided by the privacy budget
(ϵ, δ) and C is the sensitivity of the gradient, also the clipping value.

Mallows model (Mallows, 1958) is a popular probabilistic model for permutations. The permu-
tation of a set S is a bijection S 7→ S. The mode of the distribution is given by the reference
permutation I0, and the probability of a permutation increases as it is ‘closer’ to I0 as measured
by rank distance metrics (e.g., L1 distance). The dispersion parameter θ controls the shape of the
distribution.
Definition 2. For dispersion parameter θ, reference permutation Io ∈ S, and rank distance measure
d : S× S 7→ R,

Pθ,d (I : I0) =
1

ψ(θ,d)
e−θd(I,I0) (3)

is the Mallows model where ψ(θ,d) =
∑
I∈S e

−θd(I,I0) is a normalization term and I ∈ S.

Without specification, we use L1-norm distance as d throughout the paper.
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4 METHODOLOGY

In this section, we analyze the impact of DP noise to SGD and present our method GIP in improving
model utility for DPSGD. Considering the high-dimensional characteristics of gradients, we analyze
the influence of perturbation noise to gradients from the dimension perspective. By the clipping step
in DPSGD, the maximum L2 norm of the batch gradient ḡ is C. Meanwhile, the amount of additive
noise in expectation is EZ∥M(ḡ)− ḡ∥22 = σ2C2dwhere d is the dimension of the flattened ḡ. Hence
in each iteration, the perturbation error of DPSGD grows linearly with the dimension of the flattened
gradient. Given the fact that most gradients can be compressed with little impact on accuracy, we
are motivated to design an effective pruning step to shrink the gradient size, yet without altering the
descent direction too much.

4.1 GRADIENT INDEX PRUNING

We propose a gradient pruning method based on indices selection. Conventionally, gradients can
be approximated by its low-rank component, or its most prominent set of elements. By applying
differentially-private update using the approximation rather than the full gradients, the expected
amount of noise is reduced while the steepest descent direction of the loss is unavoidably affected.
Moreover, the factorization and the prominent set selection are privacy-leaking, and thus would
consume additional privacy budget.

Top-k pruning. We choose to preserve the top k (k ∈ (0, 1]) elements of the gradient under the
DP constraint. It means to retain the largest k elements of the gradient arranged by the absolute
values. Under the same pruning amount, the compressed gradient by top-k pruning is most likely
to keep the descent direction unaltered. Unfortunately, the pruning criterion suggests the use of the
private gradient data, which poses a source of privacy leakage. Hence the pruning step should be
differentially-private. We propose to decouple indices from values in gradients so that different DP
operators can be adopted for the two. For the kept values after pruning, the state-of-the-art Rényi
DP (RDP) (Mironov, 2017; Mironov et al., 2019) is used whereas the indices are perturbed by our
designed gradient index pruning method.

A key observation is that most of the gradients can be compressed without compromising accuracy.
Hence we represent the gradients by indices I ∈ {0, 1}d and the actual values. Index 1 denotes the
corresponding value is non-zero and 0 suggests otherwise. The index representation is a sequence of
1s and 0s denoting the positions of non-zero values. To compose its DP scheme, we first introduce
index sensitivity:
Definition 3. The sensitivity of the index sequence I ∈ S is defined as

s1(I) = sup
d(X,X′)=1

∥I(g)− I(g′)∥1,

where ∥ · ∥1 is the L1 norm and g, g′ are the gradients caculated from neighboring input datasets
X and X ′, respectively.

Corresponding to top-k pruning, we denote the subset of Is where k (percentage) of 1s are retained
in each sequence as Sk, and the index sequence obtained from top-k method as I0 ∈ Sk. It is
a non-trivial design of Sk as without top k, the index sensitivity could be as large as the full
length of the gradient, leading to an almost random perturbation. Within Sk, the index sensitivity
is min{2kd, 2d− 2kd} at most. Our index perturbation mechanism is defined as:
Definition 4. Given an index sequence I0 ∈ Sk, a random mechansimMp : Sk 7→ Sk is defined as

Mp(I0) = I, with Pθ,d (I : I0) =
1

ψ(θ,d)
e−θd(I,I0). (4)

The random variable I follows the Mallows model with parameters θ and distance metric d(·, ·).

Given the index perturbation mechanismMp, we have the following theorem:
Theorem 1 (Index privacy). Given an index sequence of gradient g : I(g) ∈ Sk pruned by
top-k method and Mp(I(g)) = I, where I follows the Mallows model Pθ,d (I : I(g)). Mp is ϵ-
differentially-private if and only if θ ≤ ϵ

s1(I)
.

The proof is provided in Appendix A.1.
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Figure 2: Overview of differentially-private SGD with gradients index pruning.

Algorithm 1 Noisy Top-k Pruning

Input: (a) flattened gradient vector g of dimension d, (b) pruning ratio k, (c) group size ℓ.
Ensure: Perturbed index sequence I .

1: Divide the gradient g into groups g(i) of equal length ℓ.
2: for g(i) in all groups of g do
3: Get ti as the 100k-th percentile of the elements in {|g(i)

j |}
4: for j ∈ [ℓ] do

5: I(g(i))j =

{
1, if |g(i)

j | > ti,

0, if |g(i)
j | ≤ ti.

6: end for
7: Sample I(i) from Pθ(i),d

(
I : I(g(i))

)
.

8: Reinstall all I(i) in the original position to obtain I .
9: end for

10: return I

4.2 DIFFERENTIALLY-PRIVATE SGD WITH PRUNING

We present differentially-private SGD with gradients index pruning in this section. The overall
framework is shown in Fig. 2. Per-example gradients are computed in each iteration, and they are
clipped individually before being summed up over a batch. The resulting batch gradients are de-
coupled into values and indices. Gaussian differential privacy mechanism is applied to the values,
whereas the indices are perturbed by our noisy top-k pruning method. The private gradients are
computed by multiplying the results of the two parts, and are used for model update.

The noisy top-k pruning is given in Alg. 1. We sample an index sequence following Mallows model
given the original top-k gradients. However, in practice, due to the computational constraints, we
cannot directly use Mallows model in the high-dimensional case. Hence we split the gradients into
groups {g(i)} of smaller scales by their original order in the gradients, and select the top k elements
in each g(i) by the absolute values. For example, |g(i)

j | denotes the absolute value of the j-th element
of gradient g(i). In step 7 I(i) will be sampled from Pθ(i),d

(
I : I(g(i))

)
and we present the sampling

algorithm in AppendixA.2. The perturbation results I(i) are put together to obtain the index sequence
I . Accordingly, the differential privacy budget is split up for each group. The parameter θ(i) of
Mallows model of each group should satisfy θ(i) ≤ ϵ(i)2 /s1(I) for the resulting I to be ϵ2 =

∑
i ϵ

(i)
2 -

differentially-private.
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Now we illustrate the overall DPSGD algorithm in Alg. 2 which follows the general framework in
Abadi et al. (2016). The gradients of each example are clipped and summed up in line 8. Perturbed
index I is obtained by calling Alg. 1. We follow the privacy accountant method in De et al. (2022) to
compose DP over iterations by RDP and convert it to (ϵ, δ)-DP by Theorem 21 in Balle et al. (2020).

Lemma 1 (Privacy accountant). Given training iterations T , batch sampling ratio q and standard
deviation σ for Gaussian noise, DPSGD satisfies (ϵ1(T, q, σ), δ(T, q, σ))-differential privacy.

With the lemma, we can prove the following theorem.

Theorem 2. Given the clipping value C, the index sensitivity s1(I), and T, q, σ defined in Lemma 1,
if θ(i) ≤ ϵ

(i)
2 /s1(I), ϵ = ϵ1(T, q, σ) + T

∑
i ϵ

(i)
2 > 0, and δ = δ(T, q, σ) ∈ (0, 1), Alg. 2 is (ϵ, δ)-

differentially private.

Proof. The Gaussian mechanism applied to values satisfies (ϵ1(T, q, σ), δ(T, q, σ))-differential pri-
vacy by Lemma 1. The noisy top-k pruning meets ϵ2-differential privacy according to Thm. 1, where
we compose privacy budget for all I(i) ∈ I over T iterations as T

∑
i ϵ

(i)
2 . Thm. 2 is straightforward

by taking basic composition from Dwork et al. (2014) of the two mechanisms.

It is worth noting that line 9 of Alg. 2 can be replaced by any index pruning methods. To show the
power of our design, we give a naive random-k pruning mechanism which does not consume any
privacy budget. In random-k pruning, k of the gradient elements are randomly selected as the index
sequence I . Since it does not rely on any private knowledge, this step is privacy-free. However, the
gradient descent direction is altered by random sampling. In latter sections, we will compare our
top-k pruning method against baselines including this naive one. It is obvious to have the following
privacy guarantee held:

Proposition 1 (Differentially-private random-k pruning). By replacing line 9 of Alg. 2 with random-
k pruning, Alg. 2 satisfies (ϵ1(T, q, σ), δ(T, q, σ))-differential privacy.

The proof is straightforward and thus is omitted.

Algorithm 2 Differentially-Private SGD with Pruning

Input: (a) privacy parameters ϵ, δ, (b) training samples {x1, x2, . . . , xN}, (c) model weights W ,
loss function L(W ) = 1/N

∑
i L(W,xi), (d) hyperparameters: learning rate ηt, noise scale σ,

batch size |B|, clipping value C, (e) pruning ratio k and the pruning methodMp(·, k) with ratio
k.

1: Initialize W0 randomly
2: for t ∈ [T ] do
3: Take a random sample Lt with sampling probability |B|/N
4: for i ∈ [Lt] do
5: Compute gt (xi)← ∇WtL (Wt, xi)

6: gt(xi)← gt(xi)/max
(
1,

∥gt(xi)∥2

C

)
7: end for
8: Accumulate the clipped gradients over a batch gt =

∑|B|
i gt(xi)

9: Sample index sequence I fromMp(gt, k) by Alg. 1
10: Add noise g̃t =

1
|B| [gt + Z]⊙ I , where Z ∼ N (0, σ2C2) and ⊙ is the Hadamard product.

11: end for
12: Wt+1 ←Wt − ηtg̃t
13: return WT

5 ANALYSIS AND COMPARISON

This section presents the analysis of the perturbation errors in our method and makes comparison
with other works. We analyze the Mean Square Error(MSE) introduced in a single iteration by
DPSGD with pruning. As gradient descent is taken in each iteration, we consider the less error
included, the less the update deviates from the original descent direction, which leads to a smaller
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accumulated error in the end. As the mechanism design relies on the gradient distribution (imagine
how would random-k and top-k perform at all 1s gradient vector), the perturbation analysis has to
take into account the gradient distribution. We further observed from Chen et al. (2020) that, the
gradient distribution gradually becomes more symmetric throughout the training process of MNIST
and CIFAR10, and its center is at 0 in both. Hence, we made the following assumption to facilitate
the analysis:

Assumption 1. The batch gradient g =
∑
xi∈B g(W,xi) ∈ Rd in DPSGD follows N (0, σ2

g).

Under Assumption 1, we have Eg∥g∥2 = dσ2
g , meaning that the expected L2 norm of the gradient

is bounded. We define MSE as:

MSE = E ∥[g + Z]⊙ I − g∥22 = E∥g ⊙ I − g∥22︸ ︷︷ ︸
Pruning MSE

+E∥Z ⊙ I∥22︸ ︷︷ ︸
Noise MSE

,
(5)

given the additive noise Z ∼ N (0, σ2C2), and the perturbed index sequence I . The error can be
divided into the pruning error and the noise error, and one can easily see if the same pruning amount
is applied, the noise error is the same:

Noise MSE = E∥Z ⊙ I∥22 = σ2C2kd (6)

where k ∈ (0, 1] is the pruning ratio. Therefore, we could compare the pruning error for different
pruning methods.

Proposition 2. Let g ∈ Rd denote the batch gradient, Ir and It be the resulting index sequence of
random-k and top-k pruning. Under Assumption 1, the pruning MSEs are:

MSEr = Eg,Ir∥g − g ⊙ Ir∥22 = (d− k · d)σ2
g;

MSEt = (d− k · d)σ2
g

[
1− k −

√
2√
π
a exp

(
−a

2

2

)]
︸ ︷︷ ︸

MSEt0

+σ2
g

[
1 +

2a

k
√
2π

exp

(
−a

2

2

)]
F (θ)︸ ︷︷ ︸

index perturbation error

,

(7)

where a = Φ−1(1 − k
2 ), F (θ) = 1

ψ(θ,d)

∑kd
i=0

(
kd
i

)(
(1−k)d

i

)
ie−θ2i and Φ denotes the standard

normal CDF. Further we have MSEt ≤MSEr.

We reuse the denotations in Def. 2 above. Please see Appendix A.3 for the proof. In fact, MSEt
contains two parts: the error introduced by top-k selection MSEt0 and the index perturbation error.
The former could be regarded as a lower bound for MSEt. Obviously, we have MSEt > MSEt0
and the index perturbation error is the sacrifice for the differential privacy guarantee of indices. To
show our advantage over DPSGD, we also list the MSE of DPSGD, which contains Noise MSE
only: MSEd = σ2C2d.

Corollary 1. Under Assumption 1, if σ2
g ≤ β(C, k, d, θ)σ2, where β(C, k, d, θ) =

C2(1−k)d
(1−k)d

[
1−k−

√
2√
π
a exp

(
− a2

2

)]
+
[
1+ 2a

k
√

2π
exp

(
− a2

2

)]
F (θ)

, we have MSEd > MSEt.

We will give a more specific example. Given the parameter setting of training WRN-16-4 on CI-
FAR10 with (1, 10−5)-DP in the following section, we get β(C, k, d, θ) = 0.9913, suggesting the
condition of Corollary 1 is easy to meet since σ is usually much larger than σg. And we present
how the value of β(C, k, d, θ) changes with k and d in Appendix B. Hence in most cases, we have
MSEd > MSEt. We also compare GIP with other index perturbation methods, e.g., PrivKV (Ye
et al., 2019) and FedSel (Liu et al., 2020), in Appendix A.4.

6 EVALUATIONS

We conduct experiments in a variety of settings to demonstrate the performance of our method and
baselines. Experiments are run on NVIDIA RTX3090 GPUs, and results are reported by averaging
over five runs.
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(a) (b) (c) (d)

Figure 3: Comparison of GIP and other baselines over different datasets and models. Legends are
shared.

6.1 SETUP

Datasets and models. We choose the common image classification tasks on CIFAR-10 (Krizhevsky
et al., 2009), SVHN (Netzer et al., 2011) and 1k-class ImageNet (Deng et al., 2009). The datasets
of CIFAR-10, SVHN, ImageNet are divided into (45K, 5K), (68K, 5K), (1.27M, 10K) for (train set,
test set), respectively. All training data is considered private. On CIFAR-10, we train Wide-ResNet
(WRN)-16-4 and ResNet18 from scratch, and fine-tune the entire WRN-28-10 which has been pre-
trained on the public ImageNet (De et al., 2022). On SVHN, we train WRN-16-4 from scratch.
On ImageNet, a Normalizer-Free ResNet-50 (NF-ResNet-50) (Brock et al., 2021) is trained from
scratch.

Baselines and metrics. We select the state-of-the-art DPSGD baselines including RGP (Yu et al.,
2021b), DataLens (Wang et al., 2021) and Jax-privacy (De et al., 2022). RGP applies the low-
rank approximation to the gradient in each iteration of DPSGD. DataLens prunes the gradients to
reduce the clipping value, which also decreases the variance of the additive noise. JAX-privacy is
the most recent work suggesting suitable DPSGD hyperparameters for deep models. We reproduce
each baseline in the same setting as with their original paper which we believe is the optimal for
their methods, and compare with GIP under the same privacy budget (ϵ, δ).

Hyperparameters. Our implementation is built on Jax and we adopt the training hyperparameters
as that of Jax-Privacy (De et al., 2022). Clipping value is set to C = 1 by default. We fix the
privacy parameter δ = 10−5 on CIFAR-10 and SVHN, δ = 8 × 10−7 on ImageNet. We allocate
the privacy budget for index perturbation in proportion to ϵ: ϵ2 = 0.01ϵ in all experiments. And
we set the batch size, learning rate, augmentation multiplicity and training steps the same for Jax-
Privacy, Random-k, GIP and DataLens following De et al. (2022) and the specific values are listed
in Tab. 4,3 in Appendix B. Note that since the privacy budget used by GIP for Gaussian Mechanism
is ϵ1 = 0.99ϵ, which is smaller than ϵ used by Jax-Privacy and Random-k, and hence our GIP injects
a larger amount of noise for the same number of update steps. For RGP, we follow the settings in
Yu et al. (2021b) which are listed in Appendix B. In our experiments, if we set the pruning ratio to
a fixed value, the performance is suboptimal since the gradients vary greatly, particularly at the start
of the training, according to Sec. 5 from Chen et al. (2020). Therefore, it is not reasonable to get rid
of most gradients at the beginning of the training. Hence we apply an exponential decay as well as a
linear decay schedule for the pruning ratio k. For the group size ℓ in Alg. 1, we set ℓ = 256, and the
privacy budget is combined over groups.

6.2 RESULTS

Comparison with baselines. We depict the accuracies of each model trained over different privacy
budgets in Fig. 3. For GIP, we set the pruning ratio schedule as a linear decay from k = 1.0 to 0.1.
Since the same pruning ratio leads to inferior results on Random-k, we select an optimal schedule
particularly for the method: an exponential decay from k = 1.0 to 0.5. As RGP requires to re-define
the convolutional layers, we adopt its original adaptation to WRNs in experiments.

Among all baselines, Jax-Privacy has the best performance as it is trained with carefully-tuned hy-
perparameters. Nevertheless, GIP improves Jax-Privacy by 2− 3% for models trained from scratch,
and has a comparable performance in the pre-training case. Most notably, at (0.5, 10−5)-DP, GIP
enhances accuracy by 5% (from 59.20% to 64.55%) from Jax-Privacy on WRN-16-4, SVHN. At
low privacy budgets, i.e., smaller ϵs, the improvement is more significant, mostly because a large σ
is used in DPSGD at a small ϵ, which leads to a bigger gap between MSEt and MSEd by Corol-
lary 1. DataLens and Random-k showed close performance to Jax-Privacy, deviating by at most 1%.

8
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RGP performs poorly on CIFAR-10, WRN-16-4 and ResNet18, but has a performance close to Jax-
Privacy on WRN-16-4, SVHN when ϵ ≥ 1. We consider RGP significantly reduces model size by
the low-rank method (e.g., from 2.732M to 0.032M on WRN-16-4), but unfortunately fails to handle
deep models on relatively complex datasets, or in high privacy regime. The improvement of GIP on
pre-trained models are limited as shown in Fig. 3(d), since all methods including Jax-privacy and
random-k have performance close to the non-private version, leaving little room for improvement.
More numerical results are presented in Appendix B.

Tab. 1 records the testing accuracy of training NF-ResNet-50 from scratch on ImageNet at different
privacy levels. The optimal pruning schedule is selected for each method. We choose a linear decay
and an exponential decay from k = 1.0 to 0.5 for GIP and random-k, respectively. On complicated
and large dataset as ImageNet-1k, we observe a mild 0.1 − 0.4% improvement of GIP over Jax-
Privacy. Random-k is not consistently better than Jax-Privacy, indicating that random pruning may
be harmful to the accuracy.

Running time. To find out the computational overhead of GIP, we compare its training time with
baselines in Tab. 2. GIP incurs mild additional overhead compared to Jax-Privacy and Random-k,
mainly due to its shuffling mechanism. DataLens is much slower while RGP is the fastest, since it is
the only method actually changing the model size.

Table 1: Top-1 and top-5 accuracies (%) of ImageNet trained from
scratch.

Jax-Privacy Random-k GIP

ϵ Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
0.25 0.99 3.84 1.01 3.59 1.13 4.02
0.5 2.39 7.97 2.52 8.20 2.47 8.34
0.75 4.20 12.75 3.98 12.52 4.44 13.22
0.8 4.76 13.95 4.54 13.45 4.96 13.88

Table 2: The training time on
WRN-16-4, SVHN over 875
steps. RDP over 100 epochs.

Method Total(h) Batch(s)

Jax-Privacy 6.68 12.6
Random-0.5 6.6 12.4

GIP 7.08 13.33
DataLens 14.18 26.34

RGP 0.92 -

(a) (b) (c) (d)

Figure 4: (a) Cosine similarity over training on CIFAR10, ResNet18. (b)(c) Ablation studies of
CIFAR-10, WRN-16-4 and ResNet18 under different ks. (d) Ablation study of CIFAR-10 on WRN-
16-4 under different budget allocations. ϵ2 = T

∑
i ϵ

(i)
2 is for indices and the rest for values.

Case studies. To verify the reason why GIP is superior in accuracy, we record the cosine simi-
larity between the DP gradient vectors and their unperturbed counterparts of different methods on
CIFAR10, ResNet18 with (1, 10−5)-DP. From Fig. 4(a), we can tell the cosine similarities follow
GIP > Jax-Privacy > Random-0.5 overall, which verifies that GIP effectively mitigates the varia-
tion in gradient descent direction. The overall decreasing trend of cosine similarity is due to that
the gradient norm of most examples decay over training, while the noise norm does not not change
over the course. Hence the direction of gradient does not agree any more in the latter phase of train-
ing. And the results agree with Fig. 3(b) where higher cosine similarity values correspond to higher
accuracies.

We study how the varying hyperparameters would affect GIP’s performance. First, we select dif-
ferent pruning ratio ks under (4, 10−5)-DP. The testing accuracies under different ks are shown
in Fig. 4(b)(c). Here we selected k ∈ {0.01, 0.05, 0.1, 0.5, 0.7}. On WRN-16-4, the results of GIP
mostly vary within 0.5% and the highest is at k = 0.05. The accuracy of random-k fluctuates greatly
across different ratios with the highest occurring at k = 0.5. On ResNet18, GIP’s accuracy peaks at
k = 0.1 while random-k has the worst performance at that ratio. Overall, random-k performs poorly
at low ratios (< 0.1), indicating that pruning alone would degrade accuracy at such ratios.

9
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We also display how accuracies vary across different proportions of privacy budgets assigned to
index perturbation in Fig. 4(d) under (1, 10−5)-DP. The trend is that, as that proportion of privacy
budget grows, the accuracy first increases and then decreases, peaking at 1%. With the proportion
going over 10%, the accuracy quickly decays, as the noise, rather than the indices selection, plays a
more important role to performance.

7 CONCLUSION

We propose a new method GIP to improve the accuracy performance of DPSGD in deep models.
The key is to prune the gradients to reduce the amount of additive noise, yet without altering the
gradient descent direction too much. By decomposing the gradients representation into indices and
values, GIP applies different DP mechanisms to the two components, and achieves an overall (ϵ, δ)-
DP. We not only theoretically prove but also experimentally verify that GIP improves the DPSGD
accuracy over the state-of-the-art.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep Learning with Differential Privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS), pp. 308–318. ACM, 2016.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy: An-
alytical calibration and optimal denoising. Proceedings of the 35th International Conference on
Machine Learning (ICML), 2018.

Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tetsuya Sato. Hypothesis testing in-
terpretations and renyi differential privacy. In International Conference on Artificial Intelligence
and Statistics, pp. 2496–2506. PMLR, 2020.

Andrew Brock, Soham De, and Samuel L. Smith. Characterizing signal propagation to close the
performance gap in unnormalized resnets. 2021.
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A THE PROOFS PART

A.1 PROOF OF THEOREM 1

Proof. Here we present the proof of the differential privacy for index perturbation mechanism. In
order to achieve equation 1, the privacy loss and privacy budget ϵ should satisfy

log
Pr(MI(I(g)) ∈ O)
Pr(MI(I(g′)) ∈ O)

≤ ϵ. (8)

Substituting the probability density function expression into it, we can get

log
e−θd(I,I(g))

e−θd(I,I(g′))
≤ ϵ⇔ θ [d(I, I(g′))− d(I, I(g))] ≤ ϵ. (9)

By the triangular inequality of distance, we can get

θ [d(I, I(g′))− d(I, I(g))] ≤ θd(I(g′), I(g)) ≤ θC1(I) (10)

Therefore, if the mechanism MI satisfies ϵ-differential privacy, then θ must satisfies θ ≤ ϵ
C1(I)

.

A.2 SAMPLING ALGORITHM OF MALLOWS MODEL

Sampling Algorithm of Mallows Model is demonstrated in Alg. 1. Although the Probability Den-
sity Function(PDF) of Mallows model has been shown in Definition 2, it is not easy to generate an
index sample I that follows the distribution in the definition. Instead, we sample from a subspace of
all d-dimensional permutations. We first sample a distance variable d(I, It), of which PDF is shown
in equation 11. Here we set Sk(It, i) = {I|d(I, It) = 2i, I ∈ Sk}.∑

I∈Sk

1

ψ(θ,d)
e−θd(I,It) =

1

ψ(θ,d)

kd∑
i=0

∑
I∈Sk(It,i)

e−θd(I,It)

=

kd∑
i=0

1

ψ(θ,d)

(
kd

i

)(
(1− k)d

i

)
e−θ2i =

kd∑
i=0

P [d(I, It) = 2i]

(11)

Let d(I, It) in the first step be i. In the second step, index sequence It is perturbed by randomly
flipping i 1s to 0s and i 0s to 1s. The resulting sequence is the sampled I .

A.3 PROOF OF PROPOSITION 2

Proof. First, we calculate the MSEr of random-k pruning method:

MSEr = Eg,Ir∥g − g ⊙ Ir∥22 = Eg

∑
I
(i)
r =0

g2
i (12)

Since the random-k method does not have any effect on the gradient g, each element gi still follows
the Gaussian distribution N (0, σ2

g). Therefore, the MSE is the sum of all the expectation of g2
i :

MSEr = (d− k · d)σ2
g. (13)

Second, for top-k pruning method, the pruning index It is calculated by g without perturbation. As
we adopt gradient pruning, It should be recomputed. However, direct calculation is problematic due
to the sorting problem involved in gradients. We thus use an alternative approach, where we treat
each dimension of the gradient as the same random variable being sampled d times, and split these
samples into two parts by the k quantiles of the absolute value. Therefore, in the distribution, one
part has a weight of k, and the other part is 1− k. From this, we can get the k quantiles a as∫ a

−a

1√
2π

exp

(
−x

2

2

)
dx = 1− k (14)
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As N (0, σ2
g) = σgN (0, 1), we unify the quantiles for gradients on the standard normal distribution

and compare |gi| and aσg in the algorithms. We can then calculate a as∫ a

−a

1√
2π

exp

(
−x

2

2

)
dx = 2Φ(a)− 1⇐⇒ a = Φ−1(1− k

2
) (15)

Next, we calculate that the value of MSE of d− k · d gradients gi/σg ∈ (−a, a) as

Eg∥g − g ⊙ It∥22 = (d− k · d)σ2
g

∫ a

−a

x2√
2π

exp

(
−x

2

2

)
dx

=
dσ2

g(1− k)√
2π

[
−x exp

(
−x

2

2

) ∣∣∣∣a
−a

+

∫ a

−a
exp

(
−x

2

2

)
dx

]

= dσ2
g(1− k)

[
− 2a√

2π
exp

(
−a

2

2

)
+ 1− k

]
,

(16)

By definition, the MSE in the algorithm after perturbation by Mallows Model is

MSEt =
∑
I∈Sk

∥g − g ⊙ I∥22Pθ,d(I, It) (17)

We can divide all Is into different sets according to the distance between I and It. For I in the same
set, we find that their probabilities are all equal. We split the index into two sets, C0(I) and C1(I),
which represent the set with index 0 and the set with index 1 respectively. Then we have

C0(I) = {j|Ij = 0}, C1(I) = {j|Ij = 1}
|C0(I)| = |C0(It)| = k · d, |C1(I)| = |C1(It)| = (1− k) · d (18)

where | · | denotes the number of elements in the set. Therefore, the number of index differences
between C1(I) and C1(It) is equal to the number of index differences in C0(I) and C0(It).

(1− k) · d− |C0(I) ∩ C0(It)| = k · d− |C1(I) ∩ C1(It)| (19)

We then set the number of index differences in C0(I) and C0(It) as i and its range of variation is
0 ≤ i ≤ k · d. Therefore, we can denote the distance d(I, It) and MSE by i:

d(I, It) = d− |C0(I) ∩ C0(It)| − |C1(I) ∩ C1(It)| = 2i

MSEt =

k·d∑
i=0

∥g − g ⊙ I∥22
1

ψ(θ,d)
e−θ2i · |{I|d(I, It) = 2i}|

(20)

The difference between I and It can be regarded as randomly selecting i elements from C0 to be 1
and i elements from C1 to be 0. Hence the number of |Sk(It, i) = {I|d(I, It) = 2i, I ∈ Sk}| is

|Sk(It, i)| =
(
kd

i

)(
(1− k)d

i

)
(21)

For I ∈ Sk(It, i),

Eg∥g − g ⊙ I∥22 =
∑

j∈C0(I)

g2j =
∑

j∈C0(I)∩C0(It)

g2j +
∑

j∈C0(I)∩C1(It)

g2j (22)

Since I ∈ Sk(It, i) has equal probability, the gradient index of the random sample in C0(I)∩C0(It)
and C0(I) ∩ C1(It) follow the uniform distribution.

Eg

∑
j∈C0(I)∩C0(It)

g2j +
∑

j∈C0(I)∩C1(It)

g2j

=MSEIt ·
(1− k)d− i
(1− k)d

+ (dσ2
g −MSEIt) ·

i

kd

=σ2
g [(1− k)d− i] [1− ζ] + σ2

g(k + ζ − kζ) i
k

=σ2
g

[
(1− k)(1− ζ)d+ ζi

k

]
=MSEIt + σ2

g

ζi

k
,

(23)
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where we set MSEIt = Eg∥g − g ⊙ It∥22, and ζ = 2a√
2π

exp
(
−a

2

2

)
+ k for short. Finally,

MSEt =

k·d∑
i=0

[
MSEIt + σ2

g

ζi

k

]
1

ψ(θ,d)
e−θ2i|Sk(It, i)| =MSEIt +

k·d∑
i=0

σ2
g

ζi

k

1

ψ(θ,d)
e−θ2i|Sk(It, i)|

=MSEIt + σ2
g

[
1 +

2a

k
√
2π

exp

(
−a

2

2

)]
1

ψ(θ,d)

kd∑
i=0

(
kd

i

)(
(1− k)d

i

)
ie−θ2i,

(24)
where we substitue the sum in the last equation with equation 21.

A.4 COMPARISON WITH OTHER WORKS

There are also some related works on privacy perturbation on gradient index, e.g. PrivKV(Ye et al.,
2019), FedSel(Liu et al., 2020) and DataLens(Wang et al., 2021). Therefore, here we mainly com-
pare the difference between the random response mechanism and the Mallows Model we employ.

The core idea of PrivKV and FedSel is to perturb the index by a random response mechanism, and
to make the mechanism satisfy differential privacy by controlling the probability of index flipping.
But both of these work in a distributed context with privacy guarantees using LDP. We found in our
study that if the random response mechanism needs to be made to satisfy differential privacy, then
poorer results will occur in the high-dimensional case.
Proposition 3. Let I0 ∈ Rd is the index of gradient. The random response mechanism defined as

I(j) =

{
I0(j) w.p. p
1− I0(j) w.p. 1− p (25)

will satisfy ϵ2-DP if

p ≤ e
ϵ2

C1(I)

1 + e
ϵ2

C1(I)

(26)

where C1(I) is the index sensitivty from Def. 3.

By this property, we can find that the random answering mechanism can also satisfy the requirement
of differential privacy. However, the index sensitivity tends to be very large in DP-SGD, causing
the random response mechanism does not work well. As an example, in Wide ResNet 16-4, d is
approximately 106. To limit the size of index sensitivity, we performed per example pruning, keeping
1% of index for each gradient, in this case, we calculated that C1(I) = 2 × 104, and bringing this
result into property 3, it is easy to conclude that e

ϵ2
C1(I) is close to 1 and the result is close to p ≤ 1

2 .
With such a flipping probability, the output of index is basically a random flipping with half being 0
and half being 1, which loses the meaning of pruning.

B EXPERIMENTS AND RESULTS

B.1 THE DISCUSSION ON COROLLARY 1

In Fig. 5, we illustrate how β varies with dimensionality d and pruning ratio k by Corollary 1. We
choose d ∈ [10, 200] as the max group size is selected to be 256 and k ∈ [0.1, 0.9]. We can see that
the value of β is dominantly determined by k. A larger k and a larger d most likely lead to a greater
β. We presented the value of log(β) in the figure, and the smallest β is 0.78 at (k, d) = (0.1, 10).
In the experiment in CIFAR-10, Wide ResNet 16-4, the value of σ2

g/σ
2 is basically around 0.0001,

which is much smaller than beta. Therefore, Corollary 1 holds in the majority of cases.

B.2 HYPERPARAMETERS

Here we present the detail information of hyperparameters in Tab. 3, 4. In implementing DataLens,
we select the ‘Top-k-Portion parameter’ defined in Wang et al. (2021) as 0.8 for all the DataLens
experiments. In implementing RGP, we select the low-rank approximation parameter to be rank =
16. The RGP experiments were done with reference to Yu et al. (2021b) without further tricks. We
set the learning rate as {2, 4, 2, 4} in Tab. 3 which correspond to the varied σ = {0.5, 1, 2, 4}.
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Figure 5: The value of β(C, k, d, θ) varies with k and d.

Table 3: Training hyperparameters.

Learning rate Batch size Augmentation multiplicity

WRN-16-4 2 4096 16
ResNet18 {2, 4, 2, 4} 4096 16

WRN-28-10 1 16384 16
ImageNet 4 16384 4

RGP 1 1000 -

B.3 ACCURACIES

In Tab. 5, we display the numerical results of accuracy in each experiment for a clearer comparison.
We highlight the data points in bold with the highest accuracy for each ϵ. We also provide comparison
with Papernot et al. (2021); Tramèr & Boneh (2021) in Tab. 6 on Wide ResNet 16-4, CIFAR10.

Table 4: Privacy budget settings.

WRN-16-4
ResNet 18

ϵ 0.5 1.0 2.0 4.0
σ 13.0 10.0 6.0 4.0

WRN-28-10
ϵ 0.25 0.5 1.0 2.0
σ 30.0 22.0 21.1 15.8

ImageNet
ϵ 0.2 0.4 0.6 0.8
σ 2.5 2.5 2.5 2.5

RGP
ϵ 0.5 1.0 2.0 4.0

epoch 30 100 150 200
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Table 5: The detailed results in Fig. 3 of different methods and ϵs.

Testing accuracy(%)

WRN-16-4 CIFAR-10

ϵ 0.5 1 2 4

Jax-Privacy 49.97 56.3 64.64 71.81

Random-0.5 50.12 57 64.45 72.05

GIP 52.22 58.67 66.07 72.58
DataLens 49.51 56.41 64.4 71.82

RGP 36.25 46.46 52.23 59.74

ResNet-18 CIFAR-10

ϵ 0.5 1 2 4

Jax-Privacy 40.23 49.1 59.18 67.43

Random-0.5 40.6 48.86 58.1 66.44

GIP 45.19 52.76 62.26 68.85
DataLens 40.62 48.44 59.85 67.51

RGP 35.99 43.54 48.01 53.26

WRN-16-4 SVHN

ϵ 0.5 1 2 4

Jax-Privacy 59.2 78.95 88.02 90.38

Random-0.5 55.46 80.53 87.22 90.36

GIP 64.55 81.23 88.61 91.32
DataLens 58.16 79.86 85.46 90.95

RGP 46.59 79.78 87.02 90.72

WRN-28-10 CIFAR-10

ϵ 0.25 0.5 1 2

Jax-Privacy 93.29 94.77 95.42 91.69

Random-0.5 93.39 94.74 95.32 91.55

GIP(k = 0.5) 93.1 94.81 95.63 91.8

Table 6: Comparison with baselines under the same ϵs on Wide ResNet 16-4, CIFAR10.

Method ϵ Accuracy

Tramèr & Boneh (2021)
1 60.00%
2 66.84%
3 69.30%

Papernot et al. (2021) 7.53 66.20%

GIP

1 59.01%
2 66.68%
3 70.87%

7.53 80.39%
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