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Abstract

Adaptive optimization is critical in federated learning, where enabling adaptivity
on both the server and client sides has proven essential for achieving optimal
performance. However, the scalability of such jointly adaptive systems is often
hindered by resource limitations in communication and memory. In this paper, we
introduce a class of efficient adaptive algorithms, named FedAda2 and its enhanced
version FedAda2++, designed specifically for large-scale, cross-device federated
environments. FedAda2 optimizes communication efficiency by avoiding the
transfer of preconditioners between the server and clients. Additionally, FedAda2++
extends this approach by incorporating memory-efficient adaptive optimizers on
the client side, further reducing on-device memory usage. Theoretically, we
demonstrate that FedAda2 and FedAda2++ achieve the same convergence rates for
general, non-convex objectives as its more resource-intensive counterparts that
directly integrate joint adaptivity. Extensive empirical evaluations on image and text
datasets demonstrate both the advantages of joint adaptivity and the effectiveness
and efficiency of FedAda2/FedAda2++.

1 Introduction

Federated learning is a distributed learning paradigm which aims to train statistical models across
multiple clients while minimizing raw data exposure [1, 2, 3]. In vanilla federated learning, a
central server orchestrates the training process by distributing the global model to a subsample of
thousands or even millions of clients. These clients collaboratively perform local stochastic gradient
descent while drawing from their private data streams. After several epochs have elapsed, each client
communicates their aggregate updates to the server, which averages this information to make an
informed adjustment to the global model. This algorithm, using non-adaptive weight updates, is
called FedAvg [1]. A recent trend is to investigate utilizing adaptive optimizers to support federated
learning [4]. Adaptivity can be employed in either the server-side or the client-side, where joint
adaptivity (consisting of global and local adaptive updates) has been shown to play a pivotal role in
accelerating convergence and enhancing accuracy [5, 6].

Nevertheless, efficiency challenges remain for the successful deployment of jointly adaptive al-
gorithms in practice, especially in cross-device federated settings [7]. The server, which collects
pseudogradients pushed by participating clients, consolidates a global approximation of the precondi-
tioners for adaptive model updates. Typically, the server sends the preconditioners back to the clients
to precondition local adaptive updates. However, this can lead to significant communication overhead
that detracts from the advantages offered by adaptivity [8]. Furthermore, dynamically varying client
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resource limitations restrict the reliability of client-side adaptive optimizers in practice, especially
when additional memory is required for handling local preconditioners during each client model
update.

In this work, we propose a class of efficient jointly adaptive distributed training algorithms, called
FedAda2 and FedAda2++, to mitigate the aforementioned communication and memory restrictions
while retaining the benefits of adaptivity. FedAda2 maintains an identical communication complexity
as the vanilla FedAvg algorithm. Instead of transmitting global server-side preconditioners from the
server to the selected clients, we propose the simple strategy of allowing each client to initialize local
preconditioners from constants such as zero, without any extra communication of preconditioners2.
FedAda2++ expands on this approach by adopting existing memory-efficient optimizers that factorize
gradient statistics to reduced dimensions in order to save on-device memory when synthesizing
local updates. We prove that for the general, non-convex setting, FedAda2 and FedAda2++ achieve
the same convergence rate as prior adaptive federated optimizers (e.g., [4]). Conclusively, we aim
to demonstrate that jointly adaptive federated learning, as well as adaptive client-side optimiza-
tion, are practicable in real-world settings while sidestepping localized memory restrictions and
communication bottlenecks with minimal performance degradation.

Our contributions may be summarized as follows.
• Motivated by the importance of joint server- and client-side adaptivity, we propose FedAda2 and
FedAda2++ to avoid extra communication cost and reduce on-device memory while retaining the
benefits of joint adaptive optimization (Section 3).

• We provide convergence analyses for a class of FedAda2/FedAda2++ algorithms instantiated with
different server- and client-side adaptive methods and memory-efficient local optimizers (Section 4).

• Empirically, we show that FedAda2/FedAda2++, without transmitting preconditioners and em-
ploying on-device preconditioner compression, matches the performance of its more expensive
counterparts, and outperforms baselines without joint adaptivity on both image and text datasets
(Section 5).

2 Related Work

We now provide a brief overview of related work in adaptive federated learning and memory-efficient3
preconditioning.

Adaptive Federated Optimization. Adaptive optimization preconditions the gradients to enhance
optimization efficacy, dynamically adjusting the learning rate for each model parameter [e.g., 9, 10,
11]. Recent developments in federated learning have leveraged adaptive methods for server and
client model parameter updates. Frameworks such as FedAdam [4] and FederatedAGM [12] focus
primarily on server-side adaptivity while using a constant learning rate for client updates. Additionally,
FedCAMS [8] delves into communication-efficient adaptive optimization by implementing error
feedback compression to manage client updates while maintaining adaptivity solely on the server
side. Conversely, methodologies such as FedDA [13], FedLALR [14], Local AdaAlter [15], and
Local AMSGrad [16] have adopted client-side adaptivity exclusively and demonstrate benefits.
These approaches involve transmitting both client preconditioners and model parameters for global
aggregation in the server. Moreover, some frameworks have embraced joint adaptivity. Local
Adaptive FedOPT [5] implements joint adaptivity while incorporating an additional client correction
term. These terms, along with transmitted client pseudogradients, are aggregated on the server to
construct a global preconditioner used to synthesize the subsequent model update. Alternatively,
frameworks such as MIME [17, 18] transmit additional optimizer state information aggregated

2We note that this pragmatic strategy has briefly appeared in a prior work [5] before, but lacked formal
convergence guarantees and was not extensively studied via thorough empirical evaluations. We include a
detailed discussion in Appendix B

3There are various notions of ‘efficiency’ of adaptive methods in the context of the federated learning, two
of them being communication efficiency and client memory efficiency. Our contribution specifically targets
reducing communication and memory costs incurred by local preconditioners, which is complementary with
works that reduce communication by repeated local updates or model weight/pseudogradient compression (e.g.,
FedCAMS [8]) and may, in theory, even be combined. We note that such methods tend to study compression of
local models for server-only adaptive optimizers, whereas our contribution lies in minimizing communication of
preconditioners in jointly adaptive settings.
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in the server to mimic adaptive updates in centralized settings, while maintaining frozen-state
optimizers on the client-side. In contrast with all these approaches, FedAda2 avoids the transmission
of any local/global preconditioners and optimizer states entirely, maintaining precisely identical
communication complexity as vanilla FedAvg despite leveraging joint adaptivity. We include further
discussions in Appendix H.5.

Memory-Efficient Adaptive Optimizers. The implementation of local adaptive methods sub-
stantially increases client memory requirements, as it necessitates the maintenance of local precon-
ditioners. For some models, it has been noted that the gradients combined with optimizer states
consume significantly more memory than the actual model parameters themselves [19]. Memory-
efficient adaptive optimizers have been extensively studied in prior literature. Algorithms such as
Adafactor [20] address memory reduction by tracking moving averages of the reduction sums of
squared gradients along a singular tensor axis, attaining a low-rank projection of the exponentially
smoothed preconditioners. GaLore [21] targets the low-rank assumption of the gradient tensor, which
reduces memory of both gradients and preconditioners. Shampoo [22] collapses gradient statistics
into separate preconditioning matrices for each tensor dimension, which is extended via extreme
tensoring [23]. In this paper, we focus on SM3 [24] in our implementation and experiments due to its
empirical performance; however, our theoretical framework covers a broad class of memory-efficient
optimizers applied on the client-side (Section 4 and Appendix E).

3 FedAda2: Efficient Joint Server- and Client-Side Adaptivity

In federated learning, a typical server-side objective is formed by taking an average of all client
objectives Fi(x) for i ∈ [N ] and x ∈ Rd:

f(x) =
1

N

N∑
i=1

Fi(x). (1)

In the case of unbalanced client data sizes or sampling probabilities, the objective becomes∑N
i=1 piFi(x) on the right hand side where pi is proportional to the local data size of client i,

or the sampling probability. With a slight abuse of notation, we denote Fi(x) = Ez∼Di [Fi(x, z)]
where Fi(x, z) is the stochastically realized local objective and Di is the data distribution of client i.
The convergence analysis developed in Section 4 holds when Di is taken to be the local population
distribution, as well as when Di is the local empirical distribution.

A key characteristic of cross-device federated settings is that clients cannot store or maintain ‘states’
across communication rounds [7]. To facilitate joint adaptivity in stateless federated systems, a natural
baseline is to estimate pseudogradient statistics on the server (i.e., maintaining server-side or global
preconditioners), which are then transmitted to to all participating clients at each communication
round. Selected clients then perform local adaptive updates using preconditioners initialized from
the global values. While this allows clients to leverage global preconditioner information for local
model adjustments, transmitting global pseudogradient statistics, such as second moments, at every
round substantially increases communication costs. On the other hand, warm-starting from previously
stored preconditioners may not be beneficial, especially when the interval between consecutive
rounds involving the same client is large so that the preconditioners can be very stale. Additionally,
performing local adaptive updates induces client-side memory overhead. In the following, we discuss
two key techniques for efficient federated adaptive optimization with convergence guarantees.

Zero Local Preconditioner Initialization. To enhance the feasibility of jointly adaptive federated
learning in cross-device settings, we first address extra major communication bottlenecks brought by
transmitting global preconditioners from the server to a subset of clients. We propose a simple strategy
of uniformly initializing local preconditioners to zero (or some constant vector) at the beginning of
each training round, thus eliminating the need for preconditioner transmission.

To describe the process in more detail, assume Adagrad (with momentum) as the server-side op-
timizer [4] for illustration purposes. We have the following server update rule (SU) for −∆t

i the
accumulated pseudogradient from client i at step t,

∆t =
1

|St|
∑

i∈St ∆t
i, m̃t = β̃1m̃t−1 + (1− β̃1)∆t,

ṽt = ṽt−1 +∆2
t , xt = xt−1 + η m̃t√

ṽt+τ
. (SU)
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Here, ṽt is the sum of squared server-side pseudogradient −∆t, and β̃1 is the momentum coefficient
controlling the moving average m̃t of −∆t. The set St ⊂ [N ] gives the index of all participating
clients at round t, and τ is a constant. An extension to the case when Adam is selected as the server
optimizer is given in Appendix D.2. After obtaining an updated global preconditioner ṽt at each
communication round, in FedAda2, the server does not communicate ṽt to the participating clients.
Instead, each client only receives xt and initializes the local preconditioners from zero. Empirically,
we demonstrate this simple strategy does not degrade the performance relative to the alternative
of transmitting global preconditioners, while being significantly more communication efficient for
adaptive methods beyond AdaGrad (Section 5.1). In addition to communication reduction, this
approach enables the use of different optimizers on the server and clients, as the server and client can
maintain independent gradient statistic estimates. We further discuss the theoretical guarantees as
well as implications of this general framework in Section 4 and Appendix E.
Addressing Client-Side Resource Constraints. To accommodate local memory restrictions, we
further employ existing memory-efficient optimizers for all clients in FedAda2++. Our framework
allows any such optimizer to be used, including a heterogeneous mixture within each communication
round. We provide a convergence guarantee for a very broad class of optimizer strategies in Theo-
rem 4.1. We note that in order for convergence to be guaranteed, the memory-efficient optimizer
must satisfy the conditions of Theorem E.1, which are non-restrictive4. The FedAda2++ framework
is summarized in Algorithm 1 below, presented in a simplified form. Local statistics or global
statistics refer to those used to construct preconditioners (e.g., first or second moment), and selecting
a memory-efficient optimizer strategy gives FedAda2++.

Algorithm 1 FedAda2: Efficient Jointly Adaptive Optimization Framework (Simplified)

Require: Initial model x0, total number of clients N
1: for t = 1, . . . , T do
2: Sample client subset St ⊂ [N ]
3: for each client i ∈ St

l (in parallel) do
4: xti,0 ← xt−1

5: local_statistics← 0
6: for k = 1, . . . ,K do
7: Draw gradient gti,k ∼ Di,grad(x

t
i,k−1)

8: xti,k ← Adap_Opt.(xti,k−1, g
t
i,k, local_statistics)

9: (FedAda2++: memory-efficient Adap_Opt.)
10: end for
11: ∆t

i = xti,K − xt−1

12: end for
13: xt ← Adap_Opt.({∆t

i}i∈St
l
, global_statistics) (for example, Eq. (SU))

14: end for

During implementation, we have chosen to instantiate FedAda2++ with SM3 adaptations of Adam
and Adagrad as the memory-efficient local optimizers (Appendix C) due to its strong empirical
performance. Intuitively, SM3 exploits natural activation patterns observed in model gradients to
efficiently synthesize a low-rank approximation of the preconditioner. It maintains the statistics in the
granularity of parameter groups instead of individual coordinates. Our analyses in Section 4 hold for
a class of memory-efficient local optimizers. Due to the highly technical nature of its implementation
and the convergence analysis, specific algorithm design details and proofs have been relegated to
Appendix C, D for interested readers only. Our convergence analysis further accounts for the use of
delayed preconditioner updates, where clients update their second-moment gradient statistics after
every z minibatch backpropagations, introducing a z-step delay (see Algorithm 2, Appendix J.3).

4 Convergence Analyses

One of the challenges in proving the convergence bound for jointly adaptive systems lies in handling
client-side adaptivity with multiple local updates. The individual gradients may not be linearly sepa-

4It can easily be shown that Adam, AdaGrad, SGD, as well as their memory-efficient counterparts [24] for
the first two, all satisfy the optimizer conditions for guaranteed convergence.
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rable due to dependencies between historical client gradients in the local model updates. Furthermore,
the combination of server- and client-side adaptivity complicates analysis relative to prior works
focusing on only server-side or only client-side adaptivity. To address these issues, we assume access
to full batch client gradients, but allow for client partial participation.

Assumption 1 (L-Smoothness). The local objectives are L-smooth and satisfy ∥∇Fi(x)−
∇Fi(y)∥ ≤ L∥x− y∥ for all x, y ∈ X and i ∈ [N ].

Assumption 2 (Bounded Gradients). The full gradient of the local objective is bounded:∣∣∣[∇Fi(x)]j

∣∣∣ ≤ G for j ∈ [d], i ∈ [N ].

We note that although we assume a uniform upper bound on the full batch gradient (as opposed to
stochastic gradients) for the convergence results to hold. These assumptions are standard within
the literature and have been used in previous works [15, 25, 26]. In particular, this delineates an
L̃-Lipschitz family of objectives given that the arguments are ηℓεs-bounded away from each other,

∥∇Fi(x)−∇Fj(y)∥ ≤ L̃∥x− y∥ :=
2
√
dG

ηℓεs
∥x− y∥

for i, j ∈ [N ] and ∥x− y∥ ≥ ηℓεs. Here, εs is an epsilon smoothing term that activates on the client
side and ηl is the local learning rate. This quantity is used in a gradient clipping step in FedAda2 (full
version Algorithm 5), where if the local gradient update is negligibly small in magnitude, then the
gradient is autonomously clipped to 0. ηℓ > 0 is the local learning rate, and in particular, we note
that L̃ = Θ(η−1

ℓ ). By taking εs → 0, our algorithm recovers federated algorithms that do not utilize
local gradient clipping. The definition the clipping threshold εs is purely for analytical purposes; in
our experiments, we take εs to be a negligible value so that mk is not set to 0.

We now provide a convergence bound for the general, non-convex case under local gradient descent
and partial client participation. The full theorem statement is provided in Appendix E as Theorem E.1.
The SM3 instantiation of FedAda2++, as well as the generalization to the case where we use Adam as
the server/client optimizers are provided in Appendices D.1 and D.2. We note that the convergence
bounds are derived for the deterministic setting. Extending the analysis to stochastic regimes and
establishing analogous guarantees is a natural direction for future work.
Theorem 4.1 (Simplified). Under Assumptions 1 and 2 as well as some non-restrictive optimizer
update conditions (Theorem E.1), for any choice of initialization x0, Algorithm 1 satisfies

min
t∈[T ]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6

where asymptotically,

Ψ1 = Θ(1), Ψ2 = η2η2ℓT, Ψ3 = ηη2ℓT, Ψ4 = ηηℓ log(1 + Tη2ℓ ),

and

Ψ5 =

{
η3η3ℓT if O(ηℓ) ≤ O(1)
η3ηℓT if Θ(ηℓ) > Ω(1)

, Ψ6 =

{
ηηℓT if O(Tη2ℓ ) ≤ O(1)
η
√
T if Θ(Tη2ℓ ) > Ω(1)

.

We defer the detailed proofs and complete statement of the bounds to Appendix D and E. A key
theoretical insight in our work is that the benefits of joint adaptivity can be retained even without
transmitting preconditioners. The condition O(ηℓ) ≤ O(1) refers to learning rates that are asymptoti-
cally constant or decaying with T , e.g., ηℓ = 1/T , 1/T 2, etc. Our convergence allows for delayed
preconditioner updates. In Lemma D.1 in the appendix, we observe that a larger decay parameter z
can potentially slow down convergence. Empirically, the performance is robust to the choice of z
(Appendix J.3). We make no other assumptions on local or global learning rates (ηl and η) to extract
the most general use of Theorem 4.1. We have the following two corollaries.
Corollary 4.2. Any of the following conditions are sufficient to ensure convergence of Algorithm 1:

(A) : ηℓ ≤ O(T− 1
2 ) for Ω(T−1) < ηηℓ < O(1),

(B) : ηℓ = Θ(T− 49
100 ) for Ω(T− 1

2 ) < η < O(T 12
25 ).

Corollary 4.3. Algorithm 1 converges at rate O(T−1/2).
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Discussions of Convergence Bound. There have been several recent works exploring adaptivity
and communication efficiency in federated learning. The convergence rate in Corollary 4.3 matches
the state-of-the-art for federated non-convex optimization methods [4, 8, 12, 14, 15, 16]. However,
to the best of our knowledge, there are no known convergence results of jointly adaptive federated
optimization that explicitly support several popular methods including Adam and AdaGrad.

Importance of Adaptivity Parameters. The ε-smoothing term (i.e., adaptivity parameter) is
crucial for maintaining stability and ensuring convergence in adaptive optimizers. For example,
PyTorch’s implementation of Adam adopts ε = 10−8 as its default value. In our convergence bounds
(c.f., Theorem E.1, full version), the smoothing term explicitly appears in the denominator on the
right-hand side of the convergence result via L̃ and τ . Setting ε = 0 or τ = 0 causes the right-hand
side of the convergence bounds to diverge, thereby undermining convergence. To address this, we
ensure τ, ε > 0 in our algorithm and impose the smoothing condition ml > 0 in Theorem D.6 (the
full version of Theorem 4.1).

Extension of FedAda2: Blended Optimization. The gradient descent setting used in the analysis
of Theorem 4.1 is conceptually equivalent to accessing oracle client workers capable of drawing
their entire localized empirical data stream. While this constraint is a limitation of our theory, it
enables us to derive stronger results and induce additional adaptive frameworks for which our analysis
generalizes. For instance, our bound deterministically guarantees asymptotic stabilization of the
minimum gradient, regardless of initialization or client subsampling procedure. In Appendix E, we
extend the FedAda2 framework to a even more general framework of federated blended optimization.

Blended optimization distributes local optimizer strategies during the subsampling process, which
are formalized as functions that take as input the availability of client resources and outputs hyperpa-
rameters such as delay step size z or choice of optimizer (Adam, AdaGrad, SGD, etc). These may
be chosen to streamline model training based on a variety of factors, such as straggler mitigation or
low availability of local resources. In particular, this framework permits the deployment of different
adaptive optimizers per device for each round, enhancing the utility of communication-efficient
frameworks that do not retain preconditioners between clients or between the server and client. This
flexibility is especially beneficial in scenarios where there is non-uniformity between server and
client adaptive optimizer choices, or between client-side optimizers.

5 Empirical Evaluation

In this section, we empirically demonstrate the performance of FedAda2/FedAda2++ compared
with several baselines that are either non-adaptive or adaptive but inefficient. We first present
our main results by comparing different instantiations of FedAda2 with more expensive jointly
adaptive baselines and non-jointly adaptive methods in Section 5.1. We then investigate the effects
of hyperparameters in more detail in Section 5.2. We repeat every run for 20 times under different
random seeds for statistical significance, and report 95% confidence intervals as shaded error regions
in all plots. Our experiments are designed to reflect memory- and communication-constrained
scenarios, and we thoroughly demonstrate that our algorithms retain strong convergence behavior in
such environments.

Evaluation Setup. We explore the impact of adaptivity on both text and image datasets, i.e.,
StackOverflow [27], CIFAR-100 [28], FEMNIST [29], and GLD-23K [30]. In StackOverflow,
each client is a single user posting on the StackOverflow website. For images, we explore vision
transformer models (ViT-S [31]) which are pretrained on ImageNet-21K [32], and finetune them the
Google Landmarks dataset [30]. This represents a domain shift onto natural user-split pictorial data.
We use the same model on the CIFAR-100 dataset [28], where we partition the data using LDA [33]
with α = 0.001, a non-IID statistical topic modeling algorithm. To assess the performance of all
algorithms in an additional realistic heterogeneous federated learning scenario, we further utilize
FEMNIST [29] where each client is an individual writer. This setup evaluates federated learning
algorithms under non-IID conditions, highlighting challenges such as personalization and robustness
to client heterogeneity. Details for federated dataset statistics, learning tasks, and hyperparameter
tuning are provided in Appendix I.

Description of Baselines. Throughout this section, we compare with the following baselines.
FedAvg is the vanilla FL algorithm introduced in McMahan et al. [1], without any additional
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momentum for the server-side aggregation. FedAdaGrad or FedAdam are two examples of server-
only adaptive federated optimization methods [4], where the server-side model updates are performed
by an adaptive optimizer (e.g., AdaGrad/Adam) instead of vanilla averaging. ‘Costly Joint Adaptivity’
(named Costly Joint Adap. in the captions) indicates a jointly adaptive training regimen, where
server-side preconditioners are transmitted to clients at every communication round. For instance, we
may denote one such setup as ‘AdaGrad-AdaGrad’, where server-side AdaGrad preconditioners are
distributed to the client-side AdaGrad optimizers for local preconditioner initialization. Removing
server-side preconditioner transmission and using zero initialization of client-side preconditioners
naturally results in a corresponding instantiation of FedAda2, which is communication-efficient.
Further compressing the local preconditioners using SM3 [24] to account for client memory resource
limitations gives FedAda2++. Therefore, the baselines and FedAda2/FedAda2++ may be viewed as
natural and well-motivated variations via the addition of jointly adaptive updates and memory-efficient
optimizers.

5.1 Empirical Performance of FedAda2 and FedAda2++
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Figure 1: (Top) Test accuracies on CIFAR-100, GLD-23K, and FEMNIST datasets. If not otherwise
specified, CIFAR-100 and GLD-23K use Adam for adaptivity. We see that jointly adaptive algorithms
demonstrate improved performance over FedAvg and server-only adaptive systems. Furthermore,
curtailing global preconditioner transmission in FedAda2/FedAda2++ does not degrade performance,
and preserves the benefits of joint adaptivity while maintaining efficiency. (Bottom) Corresponding
test losses resultant from model training on the three datasets.

FedAda2 and FedAda2++ for Training Transformers. We investigate the performance of finetuning
vision transformer models (ViT-S [31]) on image data. For all runs on the CIFAR-100, FEMNIST,
and GLD-23K datasets, we select Adam as the adaptive optimizer instantiation, except for the
FedAdaGrad baseline. For CIFAR-100 (Figure 1, leftmost column), jointly adaptive and server-only
adaptive methods (FedAdaGrad and FedAdam) converge faster and achieve higher accuracy than
FedAvg. Methods utilizing joint adaptivity, including FedAda2, show slightly faster convergence
than FedAdam. While ‘Costly Joint Adap.’ attains similar performance to FedAda2++, the latter
is much more memory and communication efficient. Similar trends are observed on GLD-23K
(middle column). The superior performance of jointly adaptive methods are especially pronounced
for FEMNIST (rightmost column), where a significant gap can be observed between non-adaptive
FedAvg, server-only adaptive FedAdam/FedAdaGrad, and the jointly adaptive FedAda2/FedAda2++,
respectively. Additionally, in Appendix C, we incorporate the technique of delayed local precon-
ditioner updates [22] to further mollify the computation burden on the clients, and verify that
FedAda2/FedAda2++ are robust to the said delayed updates (Appendix J.3).

Effectiveness under Additional Adaptive Optimizers. Algorithm 1 provides a general framework,
and in Figure 1, we focus on symmetric server-client optimizer configurations (e.g., Adam-Adam,
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Figure 2: Test accuracies against actual communication cost (total transmitted bits normalized to
that of FedAvg) of all algorithms under the same settings as in Figure 1. When controlling for
communication complexity, FedAda2/FedAda2++ attain the fastest convergence over all baselines.
That is, the improvement is even more significant when measured in actual communication cost,
where FedAda2/FedAda2++ achieve faster convergence with fewer bits transmitted than even costly
joint adaptivity.

AdaGrad-AdaGrad). Appendix J contains ablations on the delay parameter z, including what happens
when there is a mismatch between the client and server adaptive optimizers (e.g., server-side Adam
preconditioners communicated to client-side AdaGrad). That is, in Appendix J.2, Figure 10, we
examine the performance of asymmetric server-client adaptivity setups under both jointly adaptive
baselines and FedAda2/FedAda2++. Surprisingly, our results show that in the Costly Joint Adap-
tivity baseline, employing an unbalanced preconditioner (e.g., transmitting the server-side Adam
preconditioner to client-side AdaGrad), does not significantly impact performance across a hyperpa-
rameter sweep. Additionally, FedAda2 as well as FedAda2++ demonstrates robust training dynamics
across various adaptivity instantiations with non-existent performance degradation, highlighting its
effectiveness in enabling efficient jointly adaptive optimization.

Reduced Communication and Memory. As discussed in Section 1, while joint adaptivity has
been shown to substantially improve performance, its scalability and practical deployment are sig-
nificantly hindered by communication and memory complexity in real-world settings. To mitigate
this bottleneck, FedAda2 forcibly matches the communication efficiency of FedAvg while retaining
the advantages of joint adaptivity, while FedAda2++ further compresses client memory with conver-
gence guarantees (Theorem 4.1). In Figure 2, when evaluating convergence in terms of the actual
communicated bits (communication rounds times number of bits per round), FedAda2/FedAda2++
significantly outperforms costly joint adaptivity, saving significant communication bandwidth. For
instance, in the case of ViT, when FedAda2++ is instantiated via SM3, storing second-moment
estimates for preconditioning requires only 0.48% additional memory, compared to an 1× increase
otherwise. This corresponds to a 99% reduction in the extra client memory required for deploying
joint adaptivity, making it far more practical for large-scale applications. In Table 1, we summarize the
communication complexity and memory efficiency of FedAda2/FedAda2++ and baselines, compared
to alternative adaptive frameworks such as MIME or MIMELite [17, 34]. Communication is the two-
way (server-to-client and client-to-server) cost including both model parameters and preconditioners,
and computation is the number of gradient calls per local iteration. Client-side memory cost includes
the cost to maintain both gradients and potentially gradient statistics.

Method Joint
Adaptivity?

Communi-
cation

Computation
(#grad. calls)

Memory
(client)

FedAvg N 2d 1 d
FedAdaGrad N 2d 1 d
FedAdam N 2d 1 d
MIME N 5d 3 4d
MIMELite N 4d 2 3d
Costly Joint Adap. Y 3d 1 2d
FedAda2 Y 2d 1 2d
FedAda2++ Y 2d 1 ∼ d

Table 1: Comparison of various algorithms (assuming
AdaGrad as the adaptive optimizer). d denotes the
model dimension.

0 100 200 300 400 500

Communication Rounds

0.16

0.18

0.20

0.22

T
es

t
A

cc
ur

ac
y

DP StackOverflow

FedAvg

FedAdaGrad

Costly Joint Adap.

FedAda2

FedAda2
++

Figure 3: Performance of training Stack-
Overflow in the private setting.
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Improvements in Private Settings. Another critical constraint for federated learning is user privacy,
and federated learning itself may not offer formal privacy guarantees [35]. Hence, additional privacy
mechanisms are critical to provably protect user information. We focus on the statistical framework
of differential privacy [36] where it guarantees that any third-party attacker cannot infer if any user
participates in training or not [37]. We apply the popular subsampled Gaussian mechanism [38]
to privatize all the methods, using noise multiplier σ = 1, which provides a privacy budget of
(ε, δ) = (13.1, 0.0025) with optimal Rényi-Differential Privacy (RDP) [39] order 2.0. On the
StackOverflow dataset with a logistic regression model (Figure 3), we observe that FedAda2 and
FedAda2++ again outperform other baselines by a large margin with privacy constraints.

5.2 Effects of Varying Configurations
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(a) Single Local Epoch
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(b) 5 Local Epochs
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(c) 20 Local Epochs

Figure 4: Algorithm testing performance comparison under varying client resource limitations (i.e.,
number of local epochs). When resources are constrained, FedAda2++ converges the fastest, followed
closely by FedAdam. Interestingly, the relative performance advantage of FedAda2++ becomes less
significant as the number of local epochs increases.

Dynamics of FedAda2 under a Varying Number of Local Epochs. In Figure 4, we study the
transfer learning setting of a vision model under a highly constrained, moderate, and sufficient client
computation budget, corresponding to running 1, 5, and 20 local epochs on the clients. We see that
when the number of epochs is low (Figure 4 (a)), FedAda2++ achieves the best performance, closely
followed by FedAdam. Interestingly, as the clients’ computational budget increases, the relative
performance advantage of FedAda2++ diminishes. In such scenarios, jointly adaptive optimization
outperforms FedAdam, although the margin is not substantial.

Sensitivity to Hyperparameters. In Figure 9 in the appendix, we plot test accuracies over the
hyperparameter sweeps (all hyperparameters in Appendix I) for all algorithms, on the StackOverflow
dataset. Server-only adaptivity stabilizes the performance of FedAvg, and costly joint adaptivity
further enhances the stabilized accuracies. However, eliminating server preconditioner transmission
in FedAda2 destabilizes the accuracy, resulting in significantly poorer performance for the worst
losses while retaining the best performing losses. We see that there is a wide range of hyperparameter
under which FedAda2 and FedAda2++ have superior performance compared with the baselines. In
particular, approximating the preconditioners in a memory-efficient manner using SM3 in FedAda2++
is rather robust to hyperparameters, which we hypothesize is due to the denoising effect of projections
during SM3 compression, previously unreported within the literature.

Summary. Across all datasets, we empirically demonstrate the benefits of joint server- and client-
side adaptivity. However, vanilla implementation of joint adaptivity with transmitted global pre-
conditioners can be expensive. We consistently find that initializing local preconditioners from
zero (FedAda2) does not underperform (yet sometimes outperforms) costly joint adaptivity with full
server-side preconditioner transmission, while being much more efficient (Table 1). In general, we
observe that FedAda2 and FedAda2++ algorithms retain the competitive advantage of joint adap-
tivity while being communication- and memory-efficient under a variety of optimizers, datasets,
and model architectures. Across our experiments, we consistently find that adaptive methods (e.g.,
FedAdam, FedAdaGrad) outperform FedAvg, while jointly adaptive methods (FedAda2/FedAda2++)
consistently outperform server-only adaptive baselines.
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6 Conclusion and Future Work

In this work, we introduce FedAda2 and FedAda2++, a class of jointly adaptive algorithms designed
to enhance scalability and performance in large-scale, cross-device federated environments. By miti-
gating the transfer of costly preconditioners in jointly adaptive methods, FedAda2-class algorithms
significantly reduce the communication overhead and extra on-device memory cost without degrading
model performance. Our theoretical convergence guarantees and empirical results demonstrate
the practical benefits of FedAda2 in real-world federated learning scenarios. In Appendix A, we
further extend our work by providing a novel regret-based theoretical analysis of how leveraging
client-side adaptivity improves distributed learning for interested readers. In particular, we study the
heavy-tailed regime, which sheds light on how client-side adaptivity mitigates the propagation of
noisy updates–particularly relevant in transformer-based training. A promising future direction would
be investigating how diverse client optimizer selections could combine their respective advantages in
aggregate performance. Additionally, researchers could explore adapting various optimizer strategies
across different timescales in blended optimization to better accommodate dynamically varying client
resource constraints.
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paper’s contributions and scope?
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tions 3, 4, 5 and the Appendix.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that
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For example, a facial recognition algorithm may perform poorly when image resolution
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14



Answer: [Yes]
Justification: All results are followed by full proofs in the Appendix, and the assumptions
are clearly stated in the main text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
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plan to release the code to reproduce our experiments.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
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dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
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(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Justification: We provide a very detailed explanation of the setup in Appendix H and I, and
release the code to reproduce our experiments.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a very detailed explanation of the setup in Appendix H and I which
includes hyperparameter settings and optimizer choices.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report confidence intervals as shaded regions in all relevant plots, averaged
across 20 random seeds for high statistical significance and convergence.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).
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• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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error rates).
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they were calculated and reference the corresponding figures or tables in the text.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our contribution primarily address efficient distributed optimization. Therefore,
we do not foresee any direct societal consequences of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide extensive citations for all datasets and models in our evaluation.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We provide the code to reproduce the experiments, but do not release an API.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Importance of Client-Side Adaptivity

In this section, we motivate our work by providing a theoretical description of how leveraging client-
side adaptivity improves distributed learning, which is validated in experiments (Section 5). Our
analyses are motivated by prior works that uncover critical conditions under which centralized SGD
can diverge, specifically in settings involving heavy-tailed gradient noise [40]. After analyzing the
importance of client-side adaptivity, we propose efficient FL frameworks to mitigate the heightened
resources induced by adaptive local optimizers in Section 3, which is FedAda2/FedAda2++. We
begin by providing a definition of heavy-tailed noise following previous literature.

Definition A.1. A random variable ξ ∼ D follows a heavy-tailed distribution if the α-moment
is infinite for α ≥ 2. In other words, we say that the stochastic gradient noise g(x) − ∇f(x) is
heavy-tailed if E [∥g(x)−∇f(x)∥α] is bounded for α ∈ (0, 2) and unbounded for α ≥ 2, where
g(x) is the stochastic gradient under some model parameter x, and ∇f(x) the full gradient.

We may now present the following proposition.

Proposition A.2. There exists a federated learning problem with heavy-tailed client-side gradient
noise such that the following arguments hold:

(i) For vanilla FedAvg, given any client sampling strategy, if the probability pti of client i with heavy-
tailed gradient noise being sampled at communication round t is non-zero, then E∥∇f(xt+1)∥2 =∞
for any nontrivial learning rate schedule ηtℓ > 0 and global parameter xt+1.

(ii) Under an appropriate learning rate schedule, FedAvg with local adaptivity (i.e., via client-side
AdaGrad) bounds the error in expectation as

lim
t→∞

E∥xt − x∗∥ ≤
2
√
3

1− ε̂
for some ε̂ ≈ 0,

where x∗ is the global optimum.

A detailed proof is given by construction on a quadratic objective in Appendix A.1. We show that even
a single client with heavy-tailed gradient noise is able to instantaneously propagate their volatility to
the global model, which severely destabilizes distributed learning in expectation. Unfortunately, recent
works have observed heavy-tailed gradient noise empirically, especially within model architectures
utilizing attention mechanisms, including transformer-based models [40, 41, 42, 31, 43, 44, 45].
Proposition A.2 (ii) suggests that client-side adaptivity has the potential to stabilize local model
updates pushed from diverse and large-scale distributed sources, if communication bottlenecks and
memory efficiency can be addressed.

The construction of the federated problem in Proposition A.2 draws gradient noise from the Student t-
distribution which is heavy-tailed depending on the parameter regime, whose moments are relatively
controlled nevertheless. We may exacerbate the severity of gradient stochasticity by inserting a
singular client with Cauchy-distributed noise, while enforcing all other clients to follow non-heavy-
tailed Gaussian gradient noise. We further detail this setting in Proposition A.3, Appendix A.1.

A.1 Constructions

Overview of Student’s t-distribution. For the convenience of the reader, we provide a brief
summary of basic properties of the Student’s t-distribution. Intuitively, the t-distribution can be
understood as an approximation of the Gaussian with heavier tails. The density is given by

fν(t) =
Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

) (1 + t2

ν

)−(ν+1)/2

where ν ∈ R>0 is the degree of freedom (or normality parameter), and Γ is the gamma function. We
recover the normalized Gaussian as the degree of freedom tends to infinity. The first moment is 0 for
ν > 1, and the second moment satisfies ν/(ν−2) for ν > 2 while being infinite for 1 < ν ≤ 2, where
the heavy-tails are most pronounced. Following the convention of [40], we refer to a distribution as
being heavy-tailed if the second moment is infinite.

The following proposition showcases the utility of local adaptivity in federated learning.
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Proposition A.3. There exists a federated optimization problem with heavy-tailed client noise which
satisfies the following under FedAvg (where appropriate learning rate schedules are chosen for
(ii-iv)):

(i) Given any client sampling strategy, if the probability pti of client i with heavy-tailed gradient
noise being sampled at step t is non-zero, then E∥∇f(xt+1)∥2 =∞ for any nontrivial learning rate
schedule ηtℓ > 0.

(ii) Local adaptivity via client-side AdaGrad bounds the error in expectation as

lim
t→∞

E∥xt − x∗∥ ≤
2
√
3

1− ε̂
for some ε̂ ≈ 0,

where x∗ is the global optimum.

(iii) Furthermore, local adaptivity implicitly constructs a critical Lyapunov stable region which
stabilizes the gradient variance via the following inequality which holds once any learned weight
enters the region:

min
t∈{1,...,T}

E∥∇f(xt)∥2 ≤ O
(
1

T

)
.

(iv) The global gradient variance of the federated problem with heavy-tailed client noise is fully
stabilized via

E[∥∇f(xt)∥2] ≤ 2∥x0∥2 + 2

(∫ ∞

1

1

x2
dx

)2

for ∀t ∈ {1, . . . , T}.

This proposition demonstrates that even a single client with heavy-tailed gradient noise is able to
instantaneously propagate their volatility to the global model, which destabilizes federated training in
expectation. However, recent work [40] has shown that heavy-tailed gradient distributions appear
frequently in language model applications, and more generally within model architectures utilizing
any kind of attention mechanism, including transformers. To our knowledge, this provable failure
mode of distributed training resultant from the unbiased, yet heavy-tailed noise of a singular client
has not previously been reported within the literature.

Proof of (i). Let the local stochastic objectives be given by Fi(x, ξi) = x2/2 + ξix where gradient
noise follows a t-distribution with i + 1 degrees of freedom, ξi ∼ ti+1 for ∀i ∈ {1, . . . , N}. This
construction is chosen to materialize the setting in which only a singular client suffers from heavy-
tailed noise (i = 1). Minibatches are sampled with replacement, which ensures that gradient noise in
each client epoch are independent amongst and in between any two (possibly identical) clients, and
further identically distributed conditional on the client ID i. Clearly, the global objective is

f(x) =
1

N

N∑
i=1

Eξi [fi(x, ξi)] =
1

N
E

[
N

2
x2 +

N∑
i=1

ξix

]
=

1

2
x2.

For global step t, we subsample clients St following any sampling strategy, where Ct is the collec-
tion of all possible multisets Str whose elements indicate (possibly repeated) client selection, with
associated probabilities ptC(r) > 0 of realization for r ∈ [|Ct|]. Assume that 1 ∈ Stm for some m.

Then, FedAvg updates may be written

xt+1 = xt −
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
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which gives the squared length of the global gradient under expectation as

Et∥∇f(xt+1)∥2 = Et

∥∥∥∥∥xt − ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

= Eξ|tESt|ξ,t

∥∥∥∥∥xt − ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

=

|Ct|∑
r=1

Eξ|tp
t
C(r)

∥∥∥∥∥∥xt − ηℓ
|Str|

∑
i∈St

r

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥∥
2

≥ ptC(m)Eξ|t

∥∥∥∥∥∥xt − ηℓ
|Stm|

∑
i∈St

m

K∑
ℓ=1

(
xti,ℓ−1 + ξti,ℓ−1

)∥∥∥∥∥∥
2

where in the second equality we have conditioned on local gradient noise ξ and stochastic realizations
up to timestep t, using the law of iterated expectations. Recursively unravelling xti,ℓ−1 in terms of
sampled noise and xti,0 = xt gives

xti,ℓ−1 = xti,ℓ−2 − ηℓgti,ℓ−2 = xti,0 − ηℓ
ℓ−2∑
p=0

gti,p

= xti,0 − ηℓ

(
ℓ−2∑
p=0

∇f(xti,p) + ξti,p

)

= xti,0 − ηℓ

(
ℓ−2∑
p=0

xti,p + ξti,p

)

= atxt −
ℓ−2∑
p=0

ati,pξ
t
i,p

where at, ati,p ∈ Q[ηℓ] are polynomial functions of the learning rate with rational coefficients.
Therefore, we have for bti,p ∈ Q[ηℓ]

ptC(m)Eξ|t

∥∥∥∥∥∥xt − ηℓ
|Stm|

∑
i∈St

m

K∑
ℓ=1

(
atxt −

ℓ−2∑
p=0

ati,pξ
t
i,p + ξti,ℓ−1

)∥∥∥∥∥∥
2

= ptC(m)Eξ|t

∥∥∥∥∥∥
1− ηℓ

|Stm|
∑
i∈St

m

K∑
ℓ=1

at

xt +
ηℓ
|Stm|

∑
i∈St

m

K∑
ℓ=1

(
ℓ−2∑
p=0

ati,pξ
t
i,p + ξti,ℓ−1

)∥∥∥∥∥∥
2

= ptC(m)Eξ|t

∥∥∥∥∥∥
1− ηℓ

|Stm|
∑
i∈St

m

K∑
ℓ=1

at

xt

∥∥∥∥∥∥
2

+
η2ℓp

t
C(m)

|Stm|2
Eξ|t

∥∥∥∥∥∥
∑
i∈St

m

(
K−2∑
p=0

bti,pξ
t
i,p + ξti,K−1

)∥∥∥∥∥∥
2

≥
η2ℓp

t
C(m)E

∥∥ξt1,K−1

∥∥2
|Stm|2

=∞,

where we have used that ξti,ℓ ∼ ti+1 independently with mean 0, for all permissible i, ℓ, and t.

Proof of (ii). We show that under client-side AdaGrad with normalized gradients, the expected
iterate norm converges to a noise-dependent constant at rateO(1/t), uniformly over client subsamples.
The key idea is a decomposition of the update into a contraction term and a noise-dependent residual,
showing the decay of the contraction under suitable ε and learning rate schedules. We specialize
to the setting with client-side AdaGrad with K = 1. Assume that clients St have been selected to
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participate in the round, which gives the update as

xt+1 = xt −
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

(2)

= xt −
ηℓ
|St|

∑
i∈St

∇f(xti,0) + ξti,1
∥∇f(xti,0) + ξti,1∥+ ε

= xt

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)
− ηℓ
|St|

∑
i∈St

ξi
∥xt + ξi∥+ ε

where we have gradually simplified notation. Noting that∫
1

∥xt + ξi∥+ ε
p(ξi) dξi ≤

1

ε
,

setting ηℓ ≤ ε gives

∥∇f(xt+1)∥ = ∥xt+1∥ ≤ ∥xt∥ ·

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)
+

ηℓ
|St|

∑
i∈St

∥ξi∥
∥xt + ξi∥+ ε

. (3)

Using Et to denote expectation conditional over realizations up to step t, we have

Et∥xt+1∥ ≤ ∥xt∥ ·

(
1− ηℓ
|St|

Et

[∑
i∈St

1

∥xt + ξi∥+ ε

])
+

ηℓ
|St|

∑
i∈St

Et

[
∥ξi∥

∥xt + ξi∥+ ε

]
.

To further bound the right hand side, consider the functional

Ii(ε) :=

∫
1

∥xt + ξi∥+ ε
pi+1(ξi) dξi,

where clearly

Ii(0) ≥
∫ −x+

t

−x−
t

1

∥xt + ξi∥
pi+1(ξi) dξi ≈

∫ 0+

0−

pi+1(−xt)
|x|

dx =∞

and Ii(1) < 1. By continuity and strict decay of Ii(ε), there exists 1≫ ε̂i > 0 and εi ∈ (0, 1] such
that for all i ∈ [N ], we have 1 > Ii(ε) ≥ 1 − ε̂i for ε ∈ [εi, 1]. Taking ε ∈ [maxi∈[N ] εi, 1] and
ε̂ := maxi∈[N ] ε̂i, we thus obtain

Et∥xt+1∥ ≤ ∥xt∥ · (1− ηℓ(1− ε̂)) +
ηℓ
|St|

∑
i∈St

Et

[
∥ξi∥

∥xt + ξi∥+ ε

]
. (4)

To bound the remaining term, it is easy to show that ∥ξi∥pi+1(ξi) is symmetric around the origin O,
and strictly increases from 0 to (3/2 + 2/(i+ 1))−1/2 while strictly decreasing afterwards. Defining
the even extension of

hi+1(ξi) =

−
x

(3/2+2/(i+1))−1/2 + supξi∈R ∥ξi∥pi+1(ξi) + ϵ for 0 ≤ ξi ≤
(

3
2 + 2

i+1

)− 1
2

,

∥ξi∥pi+1(ξi) for ξi >
(

3
2 + 2

i+1

)− 1
2

to be hi+1(ξi) for small 1 ≫ ϵ > 0, we note that 1/(∥xt + ξi∥ + ε) analogously is symmetric
around ξi = −xt while decaying with respect to the argument ∥xt + ξi∥. As hi+1(ξi) is symmetric
around O and decays moving to the left and right of O, by matching monotonicity and maxima with
1/(∥xt + ξi∥+ ε), we conclude that the left hand side of (5) is maximized for xt = 0:

Et

[
∥ξi∥

∥xt + ξi∥+ ε

]
≤
∫
hi+1(ξi)

∥ξi∥+ ε
dξi = Bi. (5)

Asymptotically as ξi →∞, we have

hi+1(ξi)

∥ξi∥+ ε
≲ pi+1(ξi),
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which gives that Bi < ∞. Letting B := maxi∈[N ]Bi and scheduling the learning rate ηtℓ =
1/((t + t0)(1 − ε̂)) where t0 is the smallest positive integer satisfying ηtℓ < ε for all t, we thus
conclude

E∥xt+1∥ ≤
t+ t0 − 1

t+ t0
E∥xt∥+

B

(t+ t0)(1− ε̂)

≤ t+ t0 − 2

t+ t0
E∥xt−1∥+

2B

(t+ t0)(1− ε̂)

≤ · · · ≤ t0 − 1

t+ t0
E∥x0∥+

(t+ 1)B

(t+ t0)(1− ε̂)

≤ O
(
1

t

)
+

B

1− ε̂
.

As this bound holds for any choice of client subsample St, we are done. It is easy to show by
straightforward integration that B < 2

√
3.

Proof of (iii). Our strategy is to locate a 1-shot stabilization regime of the gradient norm that is
formed via client adaptivity, which may be viewed as a Lyapunov stable region of the optimum x∗.
From (3) and Jensen,

∥xt+1∥2 ≤ 2∥xt∥2 ·

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)2

+
2η2ℓ
|St|2

(∑
i∈St

∥ξi∥
∥xt + ξi∥+ ε

)2

≤ 2∥xt∥2 ·

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)2

+
2η2ℓ
|St|

∑
i∈St

(
∥ξi∥

∥xt + ξi∥+ ε

)2

.

We now impose ηℓ ≤ 2ε, while letting ∥xt∥ < δ for some δ ∈ R>0. Taking expectations gives

Et∥xt+1∥2 ≤ 2∥xt∥2 +
2η2ℓ
|St|

∑
i∈St

Et

(
∥ξi∥

∥xt + ξi∥+ ε

)2

,

and by similar arguments to the proof of (ii), the summands of the second term are bounded uniformly
by B̃ which yields

E∥xt+1∥2 ≤ 2δ2 + 2η2ℓ B̃.

Setting δ, ηtℓ ≤ O(1/
√
T ) immediately gives the desired inequality.

Proof of (iv). An advantage of client-side adaptive optimization is the autonomous normalization
and clipping of the stochastic gradients. Let ηtℓ := 1/t2. Telescoping (2) gives

xT+1 = x0 −
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

,

which implies

∥xT+1 − x0∥ =

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
=⇒ |∥xT+1∥ − ∥x0∥| ≤

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
=⇒ ∥xT+1∥ ≤ ∥x0∥+

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
=⇒ E∥xT+1∥2 ≤ 2∥x0∥2 + 2E

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
2

.
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Substituting the learning rate schedule ηtℓ := 1/t2 above gives

E

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
2

≤ E

∥∥∥∥∥
T∑

t=1

Kηtℓ

∥∥∥∥∥
2

≤ E
∥∥∥∥K ∫ ∞

1

1

x2
dx

∥∥∥∥2 .
Therefore, we conclude that for any t,

E∥xt∥2 ≤ 2∥x0∥2 + 2K2

(∫ ∞

1

1

x2
dx

)2

.

A.2 Deep Remorse of FedAvg and SGD

So far, we have examined toy problems in which heavy-tailed gradient noise is guaranteed to
destabilize distributed training in expectation. We now prove that this is an instantiation of a
more general phenomenon in federated learning where a family of online µ-strongly convex global
objectives collapses to the identical failure mode. To our knowledge, this provable limitation of
distributed training resultant from the heavy-tailed noise of a singular client has not previously been
established within the literature. The proofs of all results are given in the appendix.
Definition A.4. A learning algorithm A is deeply remorseful if it incurs infinite or undefined regret
in expectation. If A is guaranteed to instantly incur such regret due to sampling even a single client
with a heavy-tailed gradient noise distribution, then we say A is resentful of heavy-tailed noise.
Theorem A.5. Let the global objectives ft(x) of a distributed training problem satisfy µ-strong
convexity for t = 1, . . . , T . Assume that the participation probability of a client with a heavy-
tailed stochastic gradient noise distribution is non-zero. Then, FedAvg becomes a deeply remorseful
algorithm and is resentful of heavy-tailed noise. Furthermore, if the probability of the heavy-tailed
client being sampled at step t is nontrivial, then the variance of the global objective at t+ 1 satisfies
E∥ft+1(xt+1)∥2 =∞.

In federated learning, we typically have ft(x) ≡ f(x) for all t = 1, . . . , T (i.e., the objective
functions are the same across all rounds). Proposition A.2 intuits that inserting local adaptivity
successfully breaks the generality of remorse and heavy-tailed resent for FedAvg. A high-level
overview is that client-side AdaGrad clips the local updates of each iteration, which mollifies the
impact of stochasticity in perturbing the weight updates. This gives Proposition A.6, which is
formulated loosely without utilizing any advantages provided by local adaptivity except for clipping.
Given that adaptive methods inherently include an implicit soft clipping mechanism due to the effects
of preconditioning, we consider them to be preferable to clipped SGD for large-scale applications
as they also offer the benefits of adaptivity. This preference holds, provided that the memory and
computational constraints of the clients can be adequately managed.
Proposition A.6. Introducing client-side adaptivity via AdaGrad for the setting in Theorem A.5
produces a non-remorseful and a non-resentful algorithm.

The benefits of client-side adaptivity have also been shown in previous works (e.g., [46, 5]). We
note that Proposition A.6 can be straightforwardly extended to jointly adaptive methods as well
as for ft ∈ C(Rd) not necessarily convex. An advantage of federated learning is that when done
tactfully, the large supply of clients enable the trainer to draw from a virtually unlimited stream
of computational power. The downside is that the global model may be strongly influenced by
the various gradient distributions induced by the private client data shards. In this paper, we focus
specifically on joint adaptive optimization as a countermeasure to stabilize learning. For this reason,
we propose FedAda2/FedAda2++ in Section 3, which utilizes joint adaptivity in an efficient and
scalable manner for distributed or federated training.

B Additional Related Works

Due to space restrictions, we include a brief additional discussion of some recent related works here.
Mukherjee [47] propose FedSPS, a locally adaptive method using stochastic Polyak step sizes to
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dynamically scale updates per client, achieving theoretical convergence under heterogeneous data. Li
et al. [13] develop FedDA, a restarted dual averaging framework in which clients receive adaptive
preconditioners and gradient estimates from the server and return dual states, enabling matching
to standard non-adaptive gradient complexities for non-convex optimization. While these methods
enhance local adaptivity, they often involve costly communication of dual states [13] or are not jointly
adaptive [47]. By contrast, our approach maintains minimal communication and state, enabling
efficient deployment while retaining joint adaptivity.

Comparing with Wang et al. [5]. We note that Wang et al. [5] employs a similar strategy of
initializing local preconditioners to zero. However, this work does not provide convergence guar-
antees for this efficient algorithm with vanishing errors, and it does not systematically evaluate it
empirically. Instead, it proposes another adaptive optimization framework with extra communication
overheads. Although the theoretical results establish upper bounds, crucially, in their Theorem 1, the
terms involving hi, qi cannot be computed in closed form for adaptive optimizers (only estimated
numerically), limiting interpretability and practical applicability. To the best of our knowledge, our
work is the first to provide rigorous convergence guarantees for FedAda2/FedAda2++ without leaving
any residual terms that are not analytically characterized.

C Detailed FedAda2 Algorithm Description

In the main text, we have opted to describe the intuitions behind SM3, due to its technical implemen-
tation. In this appendix section, we give a more through walk-through of our algorithm details for
any interested readers wishing to reproduce our proof strategies or implementations.

Algorithm 2 Adaptive server and client-side ADAGRAD with SM3 (FedAda2++)

Require: A full cover {S1, . . . , Sq} ⊂ P([d]) where
⋃q

b=1 Sb = {1, . . . , d}
Update delay step size z ∈ Z≥1, initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0
Local epsilon smoothing terms εs, ε > 0, global smoothing term τ > 0

Global decay parameter β̃1 ∈ [0, 1)
1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N ] of clients using any sampling scheme
3: for each client i ∈ St (in parallel) do
4: Initialize v0 ≥ 0 (default value v0 ← 0), xti,0 ← xt−1

5: for k = 1, . . . ,K do
6: Draw stochastic gradient gti,k ∼ Di,grad(x

t
i,k−1) with mean ∇Fi(x

t
i,k−1) ∈ Rd

7: mk ← gti,k, µk(b)← 0 for ∀b ∈ {1, . . . , q}
8: for j = 1, . . . , d do
9: Approximate Preconditioner (SM3)

10: end for
11: if 0 < ∥mk/(

√
vk + ε)∥ < εs, do mk ← 0

12: xti,k ← xti,k−1 − ηℓ ·mk/(
√
vk + ε)

13: end for
14: ∆t

i = xti,K − xt−1

15: end for
16: Server Update (SU)
17: end for

Addressing Client-Side Resource Constraints. In this paper, we specifically focus on SM3 [24]
adaptations of Adam and Adagrad. Intuitively, SM3 exploits natural activation patterns observed
in model gradients to accumulate approximate parameter-wise statistics for preconditioning. More
precisely, the gradient information in each coordinate element {1, . . . , d} is blanketed by a cover
{S1, . . . , Sq} satisfying

⋃q
b=1 Sb = {1, . . . , d} for which an auxiliary µk(b) is assigned for each

b ∈ [q]. The µk(b) then act to form vk as a coordinate ascent upper bound to the squared gradient
sum

∑k
ℓ=1(g

t
i,ℓ)

2 as SM3 iterates over each j ∈ [d].

As an optional add-on, utilizing the staleness of gradients to construct preconditioners has previously
been suggested as a strategy to accelerate adaptive optimization without hurting the performance [22,
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48]. Therefore, we may optionally further mollify the burden of client-side adaptive optimizers by
enforcing delayed preconditioner updates (Appendix J.3). This is given by the following SM3 update
rule (SM3) which incorporates delay step z,

SM3 Update:


vk(j)← minb:Sb∋j µk−1(b) +

(
gti,k(j)

)2
µk(b)← max{µk(b), vk(j)}, for ∀b : Sb ∋ j

for k−1
z ∈ Z

vk(j)← vk−1(j) otherwise

(SM3)

where k is the index of local iteration (starting from 1). These methodologies are consolidated into
FedAda2, Algorithm 2. For simplicity, we describe the variant in which both the client and server
employ AdaGrad as the adaptive optimizers. However, we present other instantiations of FedAda2
with different adaptive methods in Appendix E and J.2.

We now present a description of SM3-I/II with delayed preconditioner updates as Algorithms 3
and 4. SM3-II capitalizes on a tighter approximation of the second moment, and empirically
demonstrates better results. We have opted to implement a smoothing term ε instead of treating any
zero denominator as zero as done in the original work. In this paper, we provide the analysis for
SM3-II which generalizes the analysis for SM3-I.

Algorithm 3 Delayed preconditioner SM3-I

Require: Client learning rate ηℓ, step delay z ∈ Z≥1, and ε-smoothing term ε > 0

Require: A full cover {S1, . . . , Sk} ⊂ P([d]) where
⋃k

ℓ=1 Sℓ = {1, . . . , d}
1: Initialize: x1 = 0 and µ0(r) = 0 for ∀r ∈ {1, . . . , k}
2: for t = 1, . . . ,K do
3: gt ← ∇ℓ(xt)
4: if (t− 1)/z ∈ Z then
5: for r = 1, . . . , k do
6: µt(r)← µt−1(r) + maxj∈Sr g

2
t (j)

7: end for
8: end if
9: for j = 1, . . . , d do

10: νt(j)← minr:Sr∋j µt(r) (minimum taken over all r such that j ∈ Sr)
11: xt+1(j)← xt(j)− ηℓgt(j)√

νt(j)+ε

12: end for
13: end for

D Detailed Proofs

To enhance clarity, we present several lemmas before giving the proof of Theorem D.6. Note that
Lemma D.1 is written in broadcasting notation, where the scalars in the right hand side have 1 ∈ Rd

implicitly multiplied and the inequality holds coordinatewise. For notational convenience, we will
view ΦK

1 , ΦK
2 as vectors.

Lemma D.1. Under Algorithm 2, |∆t
i| is bounded by

|∆t
i| ≤ ΦK

1 := ηℓ

(√⌈
K

z

⌉
· log

1
2

(
1 +

⌈
K
z

⌉
G2

ε2

)
+
ηℓ(K −

⌈
K
z

⌉
)G

√
v0 + ε

)
.

Proof. Forming a bound for the pseudogradients is not trivial due to delayed preconditioner updates.
We begin by noting that delayed gradient updates are initiated at local timesteps k = nz + 1 for
n ∈ Z≥0. We now split cases k/z /∈ Z and k/z ∈ Z. In the first case, there exists n ∈ Z≥0 such that
nz + 1 ≤ k < (n + 1)z, and the latest preconditioner update by client step k is given at timestep
(⌈k/z⌉ − 1)z + 1 = ⌊k/z⌋z + 1. In the second case, if z ̸= 1, then step k is just one step shy of
a preconditioner update. The latest update is therefore held at step (⌈k/z⌉ − 1)z + 1 which is no
longer identical to ⌊k/z⌋z + 1.
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Algorithm 4 Delayed preconditioner SM3-II

Require: Client learning rate ηℓ, step delay z ∈ Z≥1, and ε-smoothing term ε > 0

Require: A full cover {S1, . . . , Sk} ⊂ P([d]) where
⋃k

ℓ=1 Sℓ = {1, . . . , d}
1: Initialize: x1 = 0 and µ′

0(r) = 0 for ∀r ∈ {1, . . . , k}
2: for t = 1, . . . ,K do
3: gt ← ∇ℓ(xt)
4: µ′

t(r)← 0 for ∀r ∈ [k]
5: for j = 1, . . . , d do
6: if (t− 1)/z ∈ Z then
7: ν′t(j)← minr:Sr∋j µ

′
t−1(r) + g2t (j)

8: for all r : Sr ∋ j do
9: set µ′

t(r)← max{µ′
t(r), ν

′
t(j)}

10: end for
11: else
12: ν′t(j)← ν′t−1(j)
13: end if
14: xt+1(j)← xt(j)− ηℓgt(j)√

ν′
t(j)+ε

15: end for
16: end for

With this observation, it is easy to show by induction that

vk(j) ≥ v0(j) +
⌈ k
z ⌉∑

ℓ=1

(
gti,(ℓ−1)z+1(j)

)2
for j ∈ {1, . . . , d} and k ∈ {1, . . . ,K}.

Recall that ∆t = 1/|St|
∑

i∈St ∆t
i and ∆t

i = xti,K − xti,0. By telescoping for K local steps and the
definition of gradient updates in AdaSquare-SM3, we obtain

|∆t
i| =

∣∣∣∣∣
K∑

p=1

ηℓ
mp√
vp + ε

∣∣∣∣∣ ≤ ηℓ
K∑

p=1

|gti,p|√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

For F = {0, 1, . . . , ⌈K/z⌉ − 1}z + 1, we thus have that

|∆t
i| ≤ ηℓ

∑
p∈F

|gti,p|√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

+ ηℓ
∑

p∈[K]\F

|gti,p|√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε
.

To obtain a deterministic bound, we cannot ignore the worst-case stochastic realization that
gti,(r−1)z+1 = 0 for ∀r ∈ [⌈pz ⌉], p ∈ [K] \ F . Therefore, we form the upper bound (where∑0

1 := 0 by definition)

∣∣∆t
i

∣∣ ≤ ηℓ ∑
p∈F

|gti,p|√
v0 + |gti,p|2 +

∑⌈ p
z ⌉−1

r=1 (gti,(r−1)z+1)
2 + ε︸ ︷︷ ︸

T1

+
ηℓ√
v0 + ε

 ∑
p∈[K]\F

∣∣gti,p∣∣
 (6)

≤ ηℓT1 +
ηℓ(K −

⌈
K
z

⌉
)G

√
v0 + ε

.
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As 0 is trivially bounded by any non-negative upper bound, we may without loss of generality assume
that gti,(r−1)z+1 ̸= 0 for at least one r ∈ [⌈pz ⌉]. We further bound T1 as follows:

T1 ≤
∑
p∈F

|gti,p|√
|gti,p|2 +

∑⌈ p
z ⌉−1

r=1 (gti,(r−1)z+1)
2 + ε

≤
∑
p∈F

√
|gti,p|2

ε2 +
∑

r∈[p]∩F |gti,r|2

≤
√
|F|

√√√√√
∑

p∈F

|gti,p|2

ε2 +
∑

r∈[p]∩F |gti,r|2


≤

√⌈
K

z

⌉
· log

1
2

1 +
∑
p∈F

|gti,p|2

ε2


Note the use of Cauchy Schwartz in the third inequality. A detailed proof of the log inequality used
in the third line may be found as part of the proof of Theorem D.6, equation (11) which uses similar
techniques. By Assumption 2, we are done.

The server-side pseudogradient updates may also be bounded as follows.
Lemma D.2. Under Algorithm 2, each server step size is bounded in absolute value by

ΦK
2 := min

{
η

√
(1− β̃1)(1− β̃2t

1 ),
η

τ
ΦK

1

}
.

Proof. Without loss of generality, we may let τ = 0 when forming the first upper bound for expository
purposes.

η
|m̃t|√
ṽt + τ

≤
η(1− β̃1)

∑t
ℓ=1 β̃

t−ℓ
1 |∆ℓ|√∑t

ℓ=1 ∆
2
ℓ + τ2 + τ

≤
η(1− β̃1)

(∑t
ℓ=1 β̃

t−ℓ
1 |∆ℓ|

)√∑t
ℓ=1 β̃

2t−2ℓ
1√∑t

ℓ=1 ∆
2
ℓ

√∑t
ℓ=1 β̃

2t−2ℓ
1

≤ η
√

1− β̃1
√

1− β̃2
1

√√√√ t∑
ℓ=1

β̃2t−2ℓ
1

= η

√
1− β̃1

√
1− β̃2t

1 .

Note that the final inequality is obtained using Cauchy-Schwartz, while the second bound in the
lemma statement follows from the first inequality and Lemma D.1.

Finally, we form a loose upper bound for the gradient variance.
Lemma D.3. For k ∈ {1, . . . ,K}, the uncentered variance estimate vk as well as µk in Algorithm 2
are bounded by

(B1) : 0 ≤ µk(b) ≤ dkG2 for and b ∈ {1, . . . , q},
(B2) : 0 ≤ vk(j) ≤ dkG2 for j ∈ {1, . . . , d}.

Proof. Non-negativity of the variance estimates vk is trivial and implies the non-negativity of µk,
thus we focus on the upper bound for which we use dual induction. The case k = 1 is satisfied by
zero initialization. Assuming the inequality holds for k ← k − 1, we have for each j

vk(j) = min
b:Sb∋j

µk−1(b) +
(
gti,k(j)

)2 ≤ d(k − 1)G2 +G2 ≤ dkG2.

Now, µk is initialized to zero at the start of each step k and its entries are increased while broadcasting
over each coordinate j ∈ {1, . . . , d} by

µk(b)← max{µk(b), vk(j)} for ∀b : j ∈ Sb.
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For j = 1, it is clear that

µk(b)← vk(j) ≤ dkG2 for ∀b ∈ {1, . . . , q}.

For j ≥ 2, inductively, we have

µk(b)← max{µk(b), vk(j)} ≤ dkG2

as both arguments of the maximum function are upper bounded by dkG2. This completes the
proof.

D.1 Precompact Convergence Analysis

We aim to analyze the convergence of learning algorithms under the general, non-convex setting.
However, extremely popular and well known adaptive optimizers such as Adam whose efficacy
is strongly supported by empirical evidence have been shown to fail to converge even for convex
settings [11]. Therefore, recent works have investigated the asymptotic stabilization of gradients,
instead of requiring strict convergence to local or global optima of the objective [4, 8, 12, 14, 15, 16,
40]. Such convergence bounds are of the form mint ∥∇f(xt)∥ ≤ O(T−α), and are interpreted via
the following lemma:

Lemma D.4. For xt the t-step parameters of any objective f(x) learned by an algorithm, let
min1≤t≤T ∥∇f(xt)∥ ≤ O(T−α) for α > 0. Then, there exists a learning algorithm which outputs
parameters {x̃1, x̃2, . . .} such that ∥∇f(x̃t)∥ → 0 as t→∞.

Proof. Assuming otherwise gives that ∥∇f(xt)∥ is ε-bounded away from 0 for some ε > 0, for
any parameter xt realized by the algorithm. Clearly, min1≤t≤T ∥∇F (xt)∥ → 0 as T → ∞ gives
a contradiction. More constructively, note that ∀ε > 0, ∃ T̃ (ε) ∈ N such that T ≥ T̃ (ε) =⇒
min1≤t≤T ∥∇f(xt)∥ < ε. Letting ε = 1/n for n ∈ N and Tn := T̃ (1/n), we have that there
exists tn ∈ [Tn] such that ∥∇f(xtn)∥ < 1/n. Letting x̃i := xti extracts the desired parameter
sequence.

This notion of convergence can be formalized as precompact convergence which is consistent with
sequence properties of precompact normed sets. In this paper, we explicitly formalize the conventions
used in prior works, and take the term convergence to mean precompact convergence unless stated
otherwise.

Definition D.5 (Precompact convergence). A sequence {yn}n∈N in a normed space Y is said to
converge precompactly to y ∈ Y if there exists φ : N→ N such that yφ(n) → y.

Our goal is to develop principled federated algorithms whose global gradients are guaranteed to
converge precompactly to 0 regardless of parameter initialization, in the general, non-convex setting.
Note that precompact convergence must allow for convergence to each element yn of the sequence.
Now, we are ready to present Theorem D.6.

We note that prior work, such as FedNAR [49] and FedOPT [4], primarily analyzes either server-
side or client-side adaptivity in isolation. In contrast, our algorithms incorporate joint adaptivity–
combining client- and server-level adaptive updates–even without explicit preconditioner transmission,
necessitating a distinct convergence analysis. Intuitively, the proof relies on the L-smoothness
property and a careful decomposition of the inner product between the gradient and the adaptive
update. A key challenge is handling the time-varying preconditioner

(√
ṽt
)
, which is addressed

by splitting the analysis into a term capturing the change in the preconditioner and a main descent
term. The descent term is analyzed using auxiliary variables γr, αr and Young’s inequality, which
isolates the sufficient descent (negative definite term) from the client drift error (discrepancy between
global and local gradients). After telescoping the inequalities over T iterations, the proof employs
specialized techniques to bound the resulting summations. For instance, an inductive argument
(Lemma D.8) yields a logarithmic bound for errors related to preconditioner updates, while the
accumulated client drift is rigorously controlled by demonstrating that the exponential decay of the
momentum parameter dominates the polynomial growth of the drift (Lemma D.7). Rearranging these
bounds provides the final convergence rate.

32



Theorem D.6. In Algorithm 2, we have that

min
t∈[T ]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6
,

where

Ψ1 = f(x0)− f(x∗),

Ψ2 =
η2LTd∥ΦK

1 ∥2

τ2
,

Ψ3 =
(1− β̃T

1 )ηηℓKL̃T∥ΦK
1 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ4 =
(1− β̃1)ηηℓKLTc(β̃1)∥ΦK

2 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ5 =
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

,

Ψ6 =
3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) .
Here, the constant c is defined with respect to β̃1 as

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx for ũ0(β̃1) = inf{u ∈ N : β̃v

1v
2 <

1

v2
for ∀v ≥ u}

and the intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
K√

v0 + dKG2 + ε
, α̃1 :=

1

2
√
v0 + dKG2 + 2ε

.

Proof. To enhance readability, we use both coordinatewise and broadcasting notation, where a [·]j
subscript is attached for the j-th coordinate. In particular, the arguments are detailed mostly in the
latter notation as it significantly clarifies the intuitions behind the proof. By L-smoothness, we have

f(xt) ≤ f(xt−1) + ⟨∇f(xt−1), xt − xt−1⟩+
L

2
∥xt − xt−1∥2

= f(xt−1) + η

〈
∇f(xt−1),

β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

〉
+
η2L

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

= f(xt−1) + ηT0,0 + (1− β̃1)η
t∑

r=1

T0,r +
η2L

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

(7)

where for r ∈ [t],

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

〉
and T0,0 =

〈
∇f(xt−1),

β̃t
1m̃0√
ṽt + τ

〉
. (8)

Note that T0,0 can only decay exponentially as training progresses, as
√
ṽt is monotonically increasing

with respect to t and∇f(xt−1) is coordinatewise bounded by G. We decompose T0,r further by

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

− ∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T1,r

+ β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T2,r

.
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A bound for T1,r can be obtained as:

T1,r = β̃t−r
1

〈
∇f(xt−1),

∆r(
√
ṽt−1 −

√
ṽt)

(
√
ṽt + τ)(

√
ṽt−1 + τ)

〉

= β̃t−r
1

〈
∇f(xt−1),

−∆r∆
2
t

(
√
ṽt + τ)(

√
ṽt−1 + τ)(

√
ṽt−1 +

√
ṽt)

〉

≤ β̃t−r
1

〈
|∇f(xt−1)| ,

|∆r|∆2
t

(ṽt + τ2)(
√
ṽt−1 + τ)

〉

≤ β̃t−r
1

d∑
j=1

G

[
|∆r|∆2

t

(ṽt + τ2)(
√
ṽt−1 + τ)

]
j

≤ ∥Φ
K
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

.

Lemma G.2 is used to obtain the final inequality. For T2,r, we apply a further decomposition for
γr > 0 allowed to be arbitrary within a compact interval ϵηℓ-bounded away from 0,

T2,r = β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉
︸ ︷︷ ︸

T 1
2,r

−γrβ̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

.

For expository purposes, we present the case in which local gradient clipping is not triggered. The
analysis directly generalizes to the setting where clipping activates, where we assume that not all
gradients are clipped to 0 for the algorithm to proceed. Unraveling the definition of ∆r gives

∆r =
−ηℓ
|Sr|

∑
i∈Sr

K∑
p=1

gri,p√
vri,p + ε

,

which intuits the following value

γr :=
ηℓ
|Sr|

∑
i∈Sr

K∑
p=1

1√
vri,p + ε

.

We have by Assumption 2 and Lemma D.3 that

γr ∈ [γ̃1, γ̃2] :=

[
ηℓ

K∑
p=1

1√
v0 + dKG2 + ε

,
ηℓK√
v0 + ε

]
.
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Expanding T 1
2,r for αr > 0 to be fixed,

β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉

=
β̃t−r
1

|Sr|
∑
i∈Sr

K∑
p=1

〈
∇f(xt−1)√
ṽt−1 + τ

,
ηℓ
(
∇f(xt−1)− gri,p

)
√
vp + ε

〉

≤ ηℓβ̃
t−r
1 αrK

2|Sr|
∑
i∈Sr

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1

2|Sr|αr

∑
i∈Sr

K∑
p=1

∥∥∥∥∥∥
(
∇f(xt−1)−∇Fi(x

r
i,p−1)

)√√
ṽt−1 + τ

(√
vp + ε

)
∥∥∥∥∥∥
2

≤ ηℓβ̃
t−r
1 αrK

2

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1

2|Sr|αrτ(
√
v0 + ε)2

∑
i∈Sr

K∑
p=1

∥∥∇f(xt−1)−∇Fi(x
r
i,p−1)

∥∥2 .
where in the first inequality we drew the deterministic gradient instead of accessing the stochastic
sample via full gradient descent. The first term is controlled by setting

αr =
γr

2ηℓK
∈ [α̃1, α̃2] :=

[
1

2
√
v0 + dKG2 + 2ε

,
1

2
√
v0 + 2ε

]
.

We aim to bound the second term via majorization and telescoping arguments. We have by L-
smoothness, Lemmas D.1, D.2, and Assumption 2 that∥∥∇f(xt−1)−∇Fi(x

r
i,p−1)

∥∥2 ≤ 1

N

∑
i′∈[N ]

∥∥(∇Fi′(xt−1)−∇Fi(x
r
i,p−1)

)∥∥2
=

1

N

∑
i′∈[N ]

∥∥(∇Fi′(xt−1)−∇Fi′(xr−1) +∇Fi′(xr−1)−∇Fi(x
r
i,p−1)

)∥∥2
≤ 2

N

∑
i′∈[N ]

(
∥∇Fi′(xt−1)−∇Fi′(xr−1)∥2 +

∥∥∇Fi′(xr−1)−∇Fi(x
r
i,p−1)

∥∥2)

≤ 2L

N

∑
i′∈[N ]

∥xt−1 − xr−1∥2 +
2L̃

N

∑
i′∈[N ]

∥xri,p−1 − xri,0∥2

= 2L ∥xt−1 − xr−1∥2 + 2L̃
∥∥xri,p−1 − xri,0

∥∥2
≤ 2L(t− r)

t−1∑
o=r

∥xo − xo−1∥2 + 2L̃∥Φp
1∥2

≤ 2L(t− r)2∥ΦK
2 ∥2 + 2L̃∥ΦK

1 ∥2.
Note that the first inequality was obtained by Jensen, while the third inequality uses that the client
weights xri,0 are synchronized to the global weights xr−1 for ∀i ∈ [N ] at the start of training. Now,
we have

ηℓβ̃
t−r
1

2|Sr|αrτ(
√
v0 + ε)2

∑
i∈Sr

K∑
p=1

(
2L(t− r)2∥ΦK

2 ∥2 + 2L̃∥ΦK
1 ∥2

)
≤ ηℓβ̃

t−r
1 KL(t− r)2∥ΦK

2 ∥2

αrτ(
√
v0 + ε)2

+
ηℓβ̃

t−r
1 L̃K∥ΦK

1 ∥2

αrτ(
√
v0 + ε)2

.
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Collecting terms gathered thus far gives

(1− β̃1)η
t∑

r=1

T0,r ≤ (1− β̃1)η
t∑

r=1

∥ΦK
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

− 3γrβ̃
t−r
1

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2


+ (1− β̃1)η
t∑

r=1

(
ηℓβ̃

t−r
1 KL(t− r)2∥ΦK

2 ∥2

αrτ(
√
v0 + ε)2

+
ηℓβ̃

t−r
1 L̃K∥ΦK

1 ∥2

αrτ(
√
v0 + ε)2

)
.

Now, let us bound the final term in equation (7),∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ (1− β̃1)
∑t

r=1 β̃
t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ (1− β̃1)
∑t

r=1 β̃
t−r
1 maxr∈[t] |∆r|√

ṽt + τ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ (1− β̃t
1)√

ṽt + τ

∥∥∥∥∥
2

∥ΦK
1 ∥2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2d
∥ΦK

1 ∥2

τ2
.

Substituting into equation (7) gives that

f(xt) ≤ f(xt−1) + ηT0,0 + η2L

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+
η2Ld∥ΦK

1 ∥2

τ2
+ (1− β̃1)η

t∑
r=1

∥ΦK
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j


+ (1− β̃1)η

t∑
r=1

(
ηℓβ̃

t−r
1 KL(t− r)2∥ΦK

2 ∥2

αrτ(
√
v0 + ε)2

+
ηℓβ̃

t−r
1 L̃K∥ΦK

1 ∥2

αrτ(
√
v0 + ε)2

)

+ (1− β̃1)η
t∑

r=1

−3γrβ̃
t−r
1

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2
 . (9)

Note that the exponential decay caused by β̃1 in the third term will expectedly dominate the effect of
first order moment initialization m̃0 as training progresses, and summation over t ∈ [T ] gives O(1).
We initialize m̃0 ← 0 to further simplify the equations. We also further exacerbate the upper bound
by substituting γ̃1, α̃1 into γr, αr respectively, which achieves independence from r. Telescoping
equation (9) then gives

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≤ f(x0)− f(x∗) +
(1− β̃1)η||ΦK

1 ||G
τ

T∑
t=1

t∑
r=1

d∑
j=1

β̃t−r
1

[
∆2

t

ṽt

]
j

+
η2LTd∥ΦK

1 ∥2

τ2
+

(1− β̃1)ηηℓK
α̃1τ(

√
v0 + ε)2

T∑
t=1

t∑
r=1

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)
. (10)

To complete the proof, we aim to ease a logarithm out from the third term on the right hand side. For
this purpose, we induce a recursion with a log bound

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤
T∑

t=1

(1− β̃t
1)

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤ aT + cT log (1 + bT ) . (11)

Setting T = 1 gives

(1− β̃1)
∆2

1,j

∆2
1,j + τ2

≤ a1 + c1 log(1 + b1),
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and setting aT = 1− β̃1 satisfies this inequality (among other choices). Assuming formula (11) holds
for T , let us explore the induction condition for T + 1, which is

T∑
t=1

(1− β̃t
1)

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

+ (1− β̃T+1
1 )

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

≤ aT+1 + cT+1 log (1 + bT+1) .

For simplicity, we impose that ct is a monotonically increasing non-negative sequence of t. We intend
to contain the increase in the left hand side as T grows in the log argument only, in the right hand
side. Therefore, we select aT+1 = aT . For a suitable choice of bT+1 satisfying strong induction, it is
enough to resolve

(1− β̃T+1
1 )

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

≤ cT+1 log

(
1 + bT+1

1 + bT

)
= cT+1 log

(
1 +

bT+1 − bT
1 + bT

)
.

Here, we used monotonicity of ct. Noting that log(1 + x) ≥ x/(1 + x), it is again enough to resolve

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

≤ cT+1(bT+1 − bT )
bT+1 + 1

⇐⇒
∆2

T+1,j∑T+1
ℓ=1 ∆2

ℓ,j + τ2
+ cT+1bT ≤

(
cT+1 −

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

)
bT+1.

By positivity of bt for t > 1, a necessary condition is therefore that

cT+1 ≥
∆2

T+1,j∑T+1
ℓ=1 ∆2

ℓ,j + τ2

In order to enhance the tightness of our bound, we choose the minimal permissible value ct = 1
uniformly, which is attained as a suprema. In this setting, we are left with a recursion

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

=
bT+1 − bT
bT+1 + 1

,

and collecting the terms in the form bT+1 = bTω1(∆) + ω2(∆) would provide an optimal recursive
bound given our simplifying assumptions, starting with b1 = 0. A less optimal but simpler bound can
be formed by selecting bT+1 = bT +∆2

T+1,j/τ
2 for b1 = ∆2

1,j/τ
2. Therefore, we arrive at

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤ 1− β̃1 + log

(
1 +

T∑
ℓ=1

(
∆ℓ,j

τ

)2
)

≤ 1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

)
. (12)

The remaining term to be bounded in equation (10) is given

(1− β̃1)ηηℓKL
α̃1τ(

√
v0 + ε)2

T∑
t=1

t∑
r=1

(
β̃t−r
1 (t− r)2∥ΦK

2 ∥2
)
.

The trick is to notice that the explosion of the series caused by double summation is culled selectively
in reverse chronological order by the exponential, rendering the tail end asymptotically vacuous. Note
that (1− β̃1) stabilizes the divergence as β̃1 → 1− in the limit. By a change of variable u = t− r,

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1 (t− r)2 = (1− β̃1)

T−1∑
u=0

β̃u
1 u

2(T − u).

Defining

ũ0(β̃1) = inf{u ∈ N : β̃v
1v

2 <
1

v2
for ∀v ≥ u},
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let

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx.

Then, we claim that

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1 (t− r)2 ≤ (1− β̃1)c(β̃1)T.

We prove this by induction. The case T = 1 is trivial. Now, assume the desired inequality holds until
T . For T + 1, we want to show

(1− β̃1)
T∑

u=0

β̃u
1 u

2(T − u+ 1) ≤ (1− β̃1)c(β̃1)(T + 1)

⇐⇒ (1− β̃1)
T−1∑
u=0

β̃u
1 u

2(T − u) + (1− β̃1)
T∑

u=0

β̃u
1 u

2 ≤ (1− β̃1)c(β̃1)(T + 1)

and thus by the inductive hypothesis it is enough to show
T∑

u=0

β̃u
1 u

2 ≤ c(β̃1).

However, this is trivial by the definition of c(β̃1). Upon substitution into equation (10) and noting
that

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≥ 3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T ]

∥∇f(xt−1)∥2

we simplify as

3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T ]

∥∇f(xt−1)∥2 ≤ f(x0)− f(x∗) +
η2LTd∥ΦK

1 ∥2

τ2

+
(1− β̃T

1 )ηηℓKTL̃∥ΦK
1 ∥2

α̃1τ(v0 + ε)2
+

(1− β̃1)ηηℓKTLc(β̃1)∥ΦK
2 ∥2

α̃1τ(v0 + ε)2
(13)

+
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

Therefore, we immediately conclude that

min
t∈[T ]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6
,

where
Ψ1 = f(x0)− f(x∗),

Ψ2 =
η2LTd∥ΦK

1 ∥2

τ2
,

Ψ3 =
(1− β̃T

1 )ηηℓKL̃T∥ΦK
1 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ4 =
(1− β̃1)ηηℓKLTc(β̃1)∥ΦK

2 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ5 =
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

,

Ψ6 =
3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) .
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Here, the constant c is defined with respect to β̃1 as

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx for ũ0(β̃1) = inf{u ∈ N : β̃v

1v
2 <

1

v2
for ∀v ≥ u}

and the intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
K√

v0 + dKG2 + ε
, α̃1 :=

1

2
√
v0 + dKG2 + 2ε

.

This concludes the proof.

Note that we have also shown the following two useful lemmas:

Lemma D.7. For β̃1 ∈ [0, 1) and T ∈ Z≥0, let

ũ0(β̃1) = inf{u ∈ N : β̃v
1v

2 <
1

v2
for ∀v ≥ u},

and

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx.

Then, we have that
T∑

t=1

t∑
r=1

β̃t−r
1 (t− r)2 ≤ c(β̃1)T.

Lemma D.8. Let ∆ℓ,j ∈ R, β̃1 ∈ [0, 1), and T ∈ Z≥0. Then,

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤ 1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

)
.

We present the following corollary.

Corollary D.9. Any of the following conditions are sufficient to ensure convergence of Algorithm 2:

(A) : ηℓ ≤ O(T−1/2) for Ω(T−1) < ηηℓ < O(1),

(B) : ηℓ = Θ(T− 49
100 ) for Ω(T− 1

2 ) < η < O(T 12
25 ).

Proof. The proof is formed by comparing orders of T . Recall that γ̃1 = Θ(ηℓ) and L̃ = Θ(η−1
ℓ ). As

ΦK
1 = Θ(ηℓ) and ΦK

2 = Θ(min {η, ηηℓ}), we have for η = Θ(T p1) and ηℓ = Θ(T p2),

ψ1 = Θ(1)

ψ2 = η2η2ℓT

ψ3 = ηη2ℓT

ψ4 =

{
η3η3ℓT if O(ηℓ) ≤ O(1)
η3ηℓT if Θ(ηℓ) > Ω(1)

ψ5 = ηηℓ log(1 + Tη2ℓ )

ψ6 =

{
ηηℓT if O(Tη2ℓ ) ≤ O(1)
η
√
T if Θ(Tη2ℓ ) > Ω(1)

.
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If O(Tη2ℓ ) ≤ O(1), then O(ηℓ) ≤ O(1) which implies

ψ1

ψ6
: (ηηℓT )

−1 = Θ
(
T−(p1+p2+1)

)
ψ2

ψ6
: ηηℓ = Θ

(
T p1+p2

)
ψ3

ψ6
: ηℓ = Θ(T p2)

ψ4

ψ6
: η2η2ℓ = Θ

(
T 2p1+2p2

)
ψ5

ψ6
:
log(1 + Tη2ℓ )

T
= O(T−1)

This implies that we must have that p2 ≤ −1/2 and −1 < p1 + p2 < 0 for guaranteed convergence.
Thus, ηℓ ≤ O(T−1/2) such that Ω(T−1) < ηηℓ < O(1) is a sufficient condition. For instance, let
ηℓ = Θ(T−1/2) and Ω(T−1/2) < η < O(T 1/2).

Now, assume Θ(Tη2ℓ ) > Ω(1). If Θ(ηℓ) > Ω(1), Ψ3/Ψ6 diverges. Therefore, let ηℓ ≤ O(1). We
have

ψ1

ψ6
: (η
√
T )−1 = Θ(T−p1− 1

2 )

ψ2

ψ6
: ηη2ℓ

√
T = Θ(T p1+2p2+

1
2 )

ψ3

ψ6
: η2ℓ
√
T = Θ(T 2p2+

1
2 )

ψ4

ψ6
: η2η3ℓ

√
T = Θ(T 2p1+3p2+

1
2 )

ψ5

ψ6
:
ηℓ log(1 + Tη2ℓ )√

T
< O(T− 1

2+p2)

Therefore, it suffices to satisfy

−1

2
< p2 ≤ −

1

4
, −1

2
< p1, p1 + 2p2 < −

1

2
, 2p1 + 3p2 < −

1

2
.

An example satisfying these conditions are

ηℓ = Θ(T− 49
100 ), Ω(T− 1

2 ) < η < O(T 12
25 ).

Note that for all cases, ηℓ must decay to establish convergence. However, striking a balance between
local and global learning rates provably allows for greater than Ω(T 1/3) divergence in the server
learning rate without nullifying desirable convergence properties. This theoretically demonstrates
the enhanced robustness properties of adaptive client-side federated learning algorithms to mitigate
suboptimal choices of server learning rates.

Corollary D.10. Algorithm 2 converges at rate O(T−1/2).

Proof. If O(Tη2ℓ ) ≤ O(1), then we juxtapose ψ1/ψ6 and ψ2/ψ6. It is clear that the minimax value
of the respective powers are attained at p1 + p2 = −1/2, realized by p2 = −1/2 and p1 = 0. In this
case, clearly Θ(ψi/ψ6) ≤ O(T−1/2) for 1 ≤ i ≤ 5. If Θ(Tη2ℓ ) > Ω(1), then our strategy should
be to minimize p2 due to positive coefficients in the powers ψi/ψ6. Thus, let p2 = −1/2 + ε for
1≫ ε > 0. Then, the order of decay in ψ2/ψ6 is p1−1/2+2ε, which is once again matched against
−p1 − 1/2, the power of ψ1/ψ6. Taking the limit ε→ 0+, minimax{p1 − 1/2,−p1 − 1/2} for the
range −1/2 < p1 is attained at p1 = 0. This sets the maximal decay rate to O(T−1/2) for the second
case.
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D.2 Extension to Adam

The extension to the case where Adam is selected as the optimizer for the server, or for both the
server and client is straightforward. We present the latter as it generalizes the former analysis. As in
Lemma D.1, we have the following bound for the compressed SM3 estimates of the second moment,

vk(j) ≥ v0(j) +
⌈ k
z ⌉∑

ℓ=1

(
gti,(ℓ−1)z+1(j)

)2
for j ∈ {1, . . . , d} and k ∈ {1, . . . ,K},

which allows bounds to be established for the local and global pseudogradients following analogous
logic as Lemmas D.2, F.2. As before, we arrive at equation (8) where due to exponential moving
averaging on the server side, we have

ṽt = β̃t
2ṽ0 + (1− β̃2)

t∑
ℓ=1

β̃t−r
2 ∆ℓ.

Now, decompose T0,r as

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

− ∆r√
β̃2ṽt−1 + τ

〉
︸ ︷︷ ︸

T1,r

+ β̃t−r
1

〈
∇f(xt−1),

∆r√
β̃2ṽt−1 + τ

〉
︸ ︷︷ ︸

T2,r

,

where T1,r may be bounded via

T1,r = β̃t−r
1

〈
∇f(xt−1),

∆r(

√
β̃2ṽt−1 −

√
ṽt)

(
√
ṽt + τ)(

√
β̃2ṽt−1 + τ)

〉

= β̃t−r
1

〈
∇f(xt−1),

−∆r∆
2
t (1− β̃2)

(
√
ṽt + τ)(

√
β̃2ṽt−1 + τ)(

√
β̃2ṽt−1 +

√
ṽt)

〉

≤ ∥Φ
K
1 ∥Gβ̃t−r

1 (1− β̃2)
τ

d∑
j=1

[
∆2

t

ṽt

]
j

.

Due to the exponential decay parameter in the first pseudogradient moment, we have

η

T∑
t=1

t∑
r=1

∥ΦK
1 ∥Gβ̃t−r

1 (1− β̃2)
τ

d∑
j=1

[
∆2

t

ṽt

]
j

≤ η
T∑

t=1

t∑
r=1

∥ΦK
1 ∥3Gβ̃t−r

1 (1− β̃2)
τ2

≤ η∥ΦK
1 ∥3GT (1− β̃2)

τ2
.

An analogue of the arguments made in the proof of Theorem 4.1 with appropriate modifications, e.g.,

γr :=
ηℓ
|Sr|

∑
i∈Sr

K∑
p=1

(1− β1)
∑p

ℓ=1 β
p−ℓ
1√

(1− β2)
∑⌈ p

z ⌉
ℓ=1 β

⌈ p
z ⌉−ℓ

2 (gri,(ℓ−1)z+1)
2 + ε

,

gives the main change as the asymptotic behavior of Ψ5, which now satisfies

Ψ5 = Θ
(
ηη3ℓT

)
.

The convergence rate is still dominated by Ψ1, Ψ2 as in Corollary D.10, which gives O(T−1/2).

E Federated Blended Optimization

In federated blended optimization, we distribute local optimizer strategies during the subsampling
process which may be formalized as functions that take as input the availability of client resources,

41



Algorithm 5 Server-side ADAGRAD and client-side optimizer mixture (FedAda2)

Require: Local optimizer strategies O1, . . . , OOp (e.g. Adam, AdaGrad, SGD...)
Require: Initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0

Require: Global decay parameter β̃1 ∈ [0, 1)
1: for t = 1, . . . , T do
2: Sample participating client multiset St

l for each optimizer strategy l ∈ [Op]
3: for each sampled client collection l ∈ [Op] (in parallel) do
4: for each client i ∈ St

l (in parallel) do
5: xt,li,0 ← xt−1

6: xt,l
i,K(Oi

l )
← Optimize(Ol, i, x

t,l
i,0, Clip = True)

7: ∆t,l
i = w(Ol)

(
xt,l
i,K(Oi

l )
− xt−1

)
8: end for
9: end for

10: S ←
∑

l∈[Op] |St
l |

11: ∆t =
1
S

∑
l∈[Op]

∑
i∈St

l
∆t,l

i

12: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

13: ṽt = ṽt−1 +∆2
t

14: xt = xt−1 + η m̃t√
ṽt+τ

15: end for

and outputs the number of local epochs, K(Oi
l), as well as additional hyperparameters such as delay

step size z or preconditioner initialization. These may be chosen to streamline model training based
on a variety of factors, such as straggler mitigation or dynamically restricted availability of local
resources.

In the general formulation of FedAda2, blended optimization allows the trainer to utilize the unique
strengths of each individual optimizer, balancing resource constraints and client noise. Each client
has the option to run different optimizer strategies as the training rounds progress, depending on
varying individual resource constraints or distribution shift in the local data stream. This faithfully
corresponds to real-world settings where the availability of local resources are actively dynamic.
Future work will provide empirical results on the performance of blended optimization, including
identifying the settings in which mixing optimizer strategies are advantageous for distributed learning.
The following theorem shows that under certain non-restrictive conditions, blended optimization
still allows for convergence of the global gradient objective. We first present a paragraph on the key
intuitions and insights behind the proof to improve accessibility.

Intuitions. The convergence guarantee for Federated Blended Optimization is obtained by treating
each client’s local optimizer (e.g., SGD, AdaGrad, Adam, or SM3) as a black-box whose per-step
preconditioner and scaling factors are uniformly bounded. First, one shows that no single client
update can blow up, i.e., its total local drift ∥∆i∥ is bounded by ΦK

1 , and similarly the server-
side pseudo-gradient remains bounded by ΦK

2 . Smoothness of the global objective then lets us
decompose the inner product between the true gradient and the aggregated update into two parts:
a small “denominator-drift” term that is absorbed into the variance, and a main descent term that,
after introducing an auxiliary pivot γr and choosing appropriate weights αr, yields a guaranteed
reduction in gradient norm. Telescoping the resulting inequality with geometric-series weights
recovers the same O(1/

√
T ) nonconvex rate as in SM3-FedAda2++. In this way, federating over

multiple heterogeneous optimizers requires only uniform bounds on their preconditioners and step-
sizes, and no change in the high-level convergence rate, provided each strategy respects these minimal
stability conditions.

Theorem E.1. Let Assumptions 1, 2 hold. Given client i ∈ [N ], strategy l ∈ [Op], global timestep r,
and local timestep p, assume that the optimizer strategies satisfy the parameter update rule

xr,li,p = xr,li,p−1 − ηℓ
p∑

ℓ=1

ar,li,ℓg
r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)
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where
0 < ml ≤ ϑr,li,ℓ(g

r,l
i,1, . . . , g

r,l
i,ℓ) ≤Ml and 0 < al ≤ ar,li,ℓ ≤ Al

for all possible values of i, ℓ, r, l. If 1 ≤ K(Oi
l) ≤ K and 0 < Ξ− < w(Oi

l) < Ξ+, then Algorithm 5
admits an identical convergence bound as Theorem D.6, with Ψ3, Ψ4 replaced by

Ψ3 = (1− β̃T
1 )ηηℓCTL̃∥ΦK

1 ∥2,

Ψ4 = (1− β̃1)ηηℓCTLc(β̃1)∥ΦK
2 ∥2,

C =
(Ξ+)2K(K + 1)(maxl∈[Op]A

2
l )

2α̃1τ minl∈[Op]m
2
l

.

The intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
Ξ− minl∈[Op] al

maxl∈[Op]Ml
, α̃1 :=

Ξ− minl∈[Op] al

K(K + 1)maxl∈[Op]Ml
.

We have opted to provide a looser bound for expository purposes, and the proof straightforwardly
generalizes to finer bounds that depend on the individual characteristics of the optimizer strategy (e.g.
ml,Ml, Al, etc). The extension to server-side Adam updates follows analogous steps to Section D.2.

It is easy to show that under the bounded gradient assumption (Assumption 4), Adam, AdaGrad,
and SGD (including under SM3 for the former two) all satisfy the optimizer condition depicted in
Theorem E.1. In Appendix F and G, we materialize two realizations of this framework as additional
examples, using client-side Adam and AdaGrad with delayed preconditioner updates. Note that
delayed updates require the debiasing term in Adam to be adjusted accordingly. To prove Theorem E.1,
we begin with the following lemma.

Lemma E.2. Under Algorithm 5, |∆t,l
i | is bounded by

ΦK
1 := ηℓΞ

+K(K + 1)maxl∈[Op]AlG

2minl∈[Op]ml
,

and the server-side pseudogradient is bounded in absolute value by

ΦK
2 := min

{
η

√
(1− β̃1)(1− β̃2t

1 ),
η

τ
ΦK

1

}
.

Proof. Unraveling the definition of ∆t,l
i , we have

∆t,l
i := −ηℓw(Ol)

K(Oi
l )∑

p=1

p∑
ℓ=1

ar,li,ℓg
r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

 ,

which immediately gives

|∆t,l
i | ≤ ηℓΞ

+

(
K∑

p=1

p∑
ℓ=1

AlG

ml

)
= ηℓΞ

+K(K + 1)AlG

2ml
.

For the server bound, the proof is identical to Lemma D.2.

We are now ready to prove Theorem E.1.

Proof. As the proof follows a similar structure to Theorem 4.1, we provide only an outline for
repetitive steps while focusing on differing aspects. As before, L-smoothness gives that

f(xt) ≤ f(xt−1) + ηT0,0 + (1− β̃1)η
t∑

r=1

T0,r +
η2L

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

(14)
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where for r ∈ [t],

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

〉
and T0,0 =

〈
∇f(xt−1),

β̃t
1m̃0√
ṽt + τ

〉
.

Decomposing T0,r as

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

− ∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T1,r

+ β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T2,r

,

T1,r is bounded by

T1,r ≤
∥ΦK

1 ∥Gβ̃t−r
1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

.

For T2,r, we aim to apply a further decomposition for γr > 0,

T2,r = β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉
︸ ︷︷ ︸

T 1
2,r

−γrβ̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

.

Unraveling the definition of ∆r gives

∆r =
1∑

l∈[Op] |Sr
l |
∑

l∈[Op]

∑
i∈Sr

l

∆r,l
i =

−ηℓ∑
l∈[Op] |Sr

l |
∑

l∈[Op]

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

w(Ol)a
r,l
i,ℓg

r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

,

which induces the following value

γr :=
ηℓ∑

l∈[Op] |St
l |
∑

l∈[Op]

∑
i∈St

l

K(Oi
l )∑

p=1

p∑
ℓ=1

w(Ol)a
r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

=
∑

l∈[Op]

γlr.

For the purposes of the proof, we shall consider a local device to have been dropped and unsampled
if any runs less than 1 epoch. Then, we have

γr ∈ [γ̃1, γ̃2] :=

[
ηℓ

Ξ− minl∈[Op] al

maxl∈[Op]Ml
, ηℓ

Ξ+K(K + 1)maxl∈[Op] al

2minl∈[Op]Ml

]
.
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Expanding T 1
2,r for αl

r > 0 to be fixed,

β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉

=
β̃t−r
1∑

l∈[Op] |Sr
l |
∑

l∈[Op]

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

〈
∇f(xt−1)√
ṽt−1 + τ

,
ηℓw(Ol)a

r,l
i,ℓ(∇f(xt−1)− gr,li,ℓ)

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

〉

≤ ηℓβ̃
t−r
1

4
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

αl
r

∑
i∈Sr

l

K(Oi
l)(K(Oi

l) + 1)

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1

2
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

1

αl
r

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

∥∥∥∥∥∥
w(Ol)a

r,l
i,ℓ

(
∇f(xt−1)−∇Fi(x

r,l
i,ℓ−1)

)
ϑr,li,ℓ(g

r,l
i,1, . . . , g

r,l
i,ℓ)
√√

ṽt−1 + τ

∥∥∥∥∥∥
2

≤
ηℓβ̃

t−r
1 maxl∈[Op] α

l
rK(K + 1)

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1 (Ξ+)2

2τ
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

A2
l

αl
rm

2
l

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

∥∥∥∇f(xt−1)−∇Fi(x
r,l
i,ℓ−1)

∥∥∥2

We aim to control the first term by setting for all l ∈ [Op]

αl
r =

γr
ηℓK(K + 1)

∈ [α̃1, α̃2] :=

[
Ξ− minl∈[Op] al

K(K + 1)maxl∈[Op]Ml
,
Ξ+K(K + 1)maxl∈[Op] al

2K(K + 1)minl∈[Op]Ml

]
.

Via gradient clipping as before, we have∥∥∥∇f(xt−1)−∇Fi(x
r,l
i,ℓ−1)

∥∥∥2 ≤ 2L(t− r)2∥ΦK
2 ∥2 + 2L̃∥ΦK

1 ∥2.

Noting that

ηℓβ̃
t−r
1 (Ξ+)2

2τ
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

A2
l

αl
rm

2
l

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

∥∥∥∇f(xt−1)−∇Fi(x
r,l
i,ℓ−1)

∥∥∥2
≤
ηℓ(Ξ

+)2K(K + 1)(maxl∈[Op]A
2
l )

2α̃1τ minl∈[Op]m
2
l

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)
,

collecting terms into equation (14) gives that

f(xt) ≤ f(xt−1) + ηT0,0 + η2L

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+
η2Ld∥ΦK

1 ∥2

τ2
+ (1− β̃1)η

t∑
r=1

∥ΦK
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j


+ (1− β̃1)ηηℓ

t∑
r=1

(Ξ+)2K(K + 1)(maxl∈[Op]A
2
l )

2α̃1τ minl∈[Op]m
2
l︸ ︷︷ ︸

C

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)

+ (1− β̃1)η
t∑

r=1

−3γrβ̃
t−r
1

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2
 . (15)
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By initializing m̃0 ← 0 and enhancing the upper bound by substituting γ̃1 into γr, telescoping gives

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≤ f(x0)− f(x∗) +
(1− β̃1)η||ΦK

1 ||G
τ

T∑
t=1

t∑
r=1

d∑
j=1

β̃t−r
1

[
∆2

t

ṽt

]
j

+
η2LTd∥ΦK

1 ∥2

τ2
+ (1− β̃1)ηηℓC

T∑
t=1

t∑
r=1

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)
. (16)

Again by noting that

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≥ 3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T ]

∥∇f(xt−1)∥2 ,

Lemmas D.7 and D.8 give that

3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T ]

∥∇f(xt−1)∥2 ≤ f(x0)− f(x∗) +
η2LTd∥ΦK

1 ∥2

τ2

+ (1− β̃T
1 )ηηℓCTL̃∥ΦK

1 ∥2 + (1− β̃1)ηηℓCTLc(β̃1)∥ΦK
2 ∥2

+
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

.

This implies that

min
t∈[T ]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6
,

where

Ψ1 = f(x0)− f(x∗),

Ψ2 =
η2LTd∥ΦK

1 ∥2

τ2
,

Ψ3 = (1− β̃T
1 )ηηℓCTL̃∥ΦK

1 ∥2,

Ψ4 = (1− β̃1)ηηℓCTLc(β̃1)∥ΦK
2 ∥2,

Ψ5 =
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

,

Ψ6 =
3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) ,
C =

(Ξ+)2K(K + 1)(maxl∈[Op]A
2
l )

2α̃1τ minl∈[Op]m
2
l

.

The intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
Ξ− minl∈[Op] al

maxl∈[Op]Ml
, α̃1 :=

Ξ− minl∈[Op] al

K(K + 1)maxl∈[Op]Ml
.

F Adam with Delayed Updates (ADMU)

Considering client-side resource constraints in the federated setting, we propose an adapted version of
Adam with delayed precondtioner updates aimed at relieving the cost of moment estimate computation
in Algorithm 6 which we call ADMU.
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Algorithm 6 Adam with Delayed Moment Updates (ADMU)

Require: ηℓ: Step size
Require: z ∈ Z≥1: Step delay for second moment estimate updates (where z = 1 gives no delay)
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(x): Stochastic objective function with parameters x
Require: x0: Initial parameter vector
Require: ε > 0: Smoothing term

1: Initialize m0 ← 0 (1st moment vector)
2: Initialize v0 ← 0 (2nd moment vector)
3: Initialize t← 0 (Timestep)
4: while not converged do
5: t← t+ 1
6: gt ← ∇xft(xt−1)
7: mt ← β1 ·mt−1 + (1− β1) · gt
8: m̂t ← mt/(1− βt

1)
9: if (t− 1)/z ∈ Z then

10: vt ← β2 · vt−1 + (1− β2) · g2t
11: v̂t ← vt/(1− β

⌊ t−1
z ⌋+1

2 )
12: else
13: v̂t ← v̂t−1

14: end if
15: xt ← xt−1 − ηℓ · m̂t/(

√
v̂t + ε)

16: end while
17: return xt

Following [10], we provide an intuitive justification for the initialization bias correction employed
in ADMU. Recall that the motivation for adaptive step-size in ADAM is updating the parameters
via empirical estimates of the pseudo-gradient E[g]/

√
E[g2], which allows for both momentum and

autonomous annealing near steady states. The square root is taken in the denominator to homogenize
the degree of the gradient. Bias correction for ADMU adheres to the same principle, while requiring
an additional assumption of gradient stabilization during the z-step preconditioner update delay. An
equivalent formulation of the moment estimates in Algorithm 6 for general t is given

mt = m0β
t
1 + (1− β1)

t∑
r=1

βt−r
1 · gr,

vt = v0β
⌊ t−1

z ⌋+1
2 + (1− β2)

t∑
r=1

β
⌊ t−1

z ⌋+1−⌈ r
z ⌉

2 · g⌈ r
z ⌉z−z+1 ⊙ g⌈ r

z ⌉z−z+1 · χ{ r−1
z ∈Z≥0}

= v0β
⌊ t−1

z ⌋+1
2 + (1− β2)

⌈ t
z ⌉∑

r=1

β
⌈ t
z ⌉−r

2 g(r−1)z+1 ⊙ g(r−1)z+1. (17)

We work with vt as the proof for mt is analogous with z = 1. Assume that the gradients g1, . . . , gt
are drawn from a latent gradient distribution gi ∼ D̃(gi). We aim to extract a relation between the
expected delayed exponential moving average of the second moment E[vt] and the true gradient
expectation E[g2t ]. Taking expectation of both sides in equation (17),

E[vt] = v0β
⌊ t−1

z ⌋+1

1 + (1− β2)
⌈ t
z ⌉∑

r=1

β
⌈ t
z ⌉−r

2 E
[
g2(r−1)z+1

]

≈ ζ + (1− β2)E
[
g2t
] ⌈ t

z ⌉∑
r=1

β
⌈ t
z ⌉−r

2

≈ E[g2t ]
(
1− β⌊

t−1
z ⌋+1

1

)
.
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Here, we have used zero initialization for the first moment estimate, while accumulating any error
terms in ζ. Several assumptions can lead to small ζ. As in [10], we assume that β1 is chosen small
enough that the exponential moving average decay undermines the influence of non-recent gradients
gi for i <

⌈
t
z

⌉
z − z + 1. A second assumption is that the latent gradient distribution remains stable

during the z-step delay as training progresses, allowing the approximation E[gt] ≈ E[g⌈ t
z ⌉z−z+1].

This leaves the residual scaling of the true gradient second moment of the form 1 − βφ, which is
caused by (zero) initialization as setting v0 = E[g2t ] eliminates βφ. Therefore, bias correction is
enforced by scaling the empirical vt estimate by the inverse. We note that v0 need not be initialized

to 0, in which case we should additionally translate vt by −v0β
⌊ t−1

z ⌋+1

1 prior to the inverse scaling.

F.1 Non-convex convergence analysis

Algorithm 7 Adaptive server-side ADAGRAD and client-side ADAM (FedAdaAdam)

Require: Update delay step size z ∈ Z≥1, initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0

Require: Global and local decay parameters β̃1, β̃2, β1, β2 ∈ [0, 1)

Require: Pseudogradient weighting schedule Ξ1×· · ·×ΞT ∈ R|S1|×· · ·×R|ST | for ∥Ξt∥∞ ≤ B
Require: Client epoch schedule K

1 × · · · ×KT ∈ Z|S1|
≥1 × · · · × Z|ST |

≥1 for ∥Kt∥∞ ≤ K, ∀t ∈ [T ]
Require: Local epsilon smoothing term εs > 0

1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N ] of clients
3: for each client i ∈ St (in parallel) do
4: xti,0 ← xt−1

5: Initialize m0, v0 ≥ 0 with default values m0, v0 ← 0

6: for k = 1, . . . ,K
t

i do
7: Draw stochastic gradient gti,k ∼ D(xti,k−1) with mean∇Fi(x

t
i,k−1) ∈ Rd

8: mk ← β1 ·mk−1 + (1− β1) · gti,k
9: m̂k ← mk/(1− βk

1 )
10: if (k − 1)/z ∈ Z then
11: vk ← β2 · vk−1 + (1− β2) · gti,k ⊙ gti,k
12: v̂k ← vk/(1− β

⌊ k−1
z ⌋+1

2 )
13: else
14: vk ← vk−1

15: end if
16: if 0 < ∥m̂k/(

√
v̂k + ϵ)∥ < εs then

17: mk ← 0
18: end if
19: xti,k ← xti,k−1 − ηℓ · m̂k/(

√
v̂k + ϵ)

20: end for
21: ∆t

i = Ξt
i

(
xt
i,K

t
i

− xt−1

)
22: end for
23: ∆t =

1
|St|

∑
i∈St ∆t

i

24: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

25: ṽt = ṽt−1 +∆2
t

26: xt = xt−1 + η m̃t√
ṽt+τ

27: end for

A description of FedAdaAdam is given as Algorithm 7. A few remarks are in order. Firstly, to allow
for straggler mitigation, we allow the number of client i epochs K

t

i at timestep t to vary among the
clients i ∈ Si. Although Algorithm 7 sets a schedule for client epochs and pseudogradient weights
for clarity of exposition, dynamic allocation still allows the convergence proof to go through, as long
as the schedule weights are bounded. By default, we set K

t
= K and Ξt = B = 1 to avoid tuning a
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large number of hyperparameters or having to sample from a client epoch count distribution for the
client subsampling case.

Secondly, for the purposes of the proof we shall consider a local device to have been dropped and
unsampled if any runs less than 1 epoch. We also enforce that pseudogradient weights are bounded
positively from below, i.e. Ξt

i > εw > 0. We now provide a convergence bound for the general,
non-convex case which holds for both full and partial client participation.

Corollary F.1. For Algorithm 7, we have an identical bound to Theorem 4.1 with Ψ3,Ψ4 replaced by

Ψ3 =
(1− β̃T

1 )ηηℓ(1− β2K
1 )KL̃B2T∥ΦK

1 ∥2

2α̃1τε2
,

Ψ4 =
(1− β̃1)ηηℓ(1− β2K

1 )KLTB2c(β̃1)∥ΦK
2 ∥2

2α̃1τε2
.

Here, the intermediary γ̃1, α̃1 values are defined for K− := mini,tK
t

i ≥ 1 as

γ̃1 := ηℓεw

K−∑
p=1

1− βp
1

G

√
1− β⌈ p

z ⌉
2 + ε

, α̃1 :=

K−∑
p=1

εw (1− βp
1)(

G

√
1− β⌈ p

z ⌉
2 + ε

)
(K + 1)2

.

The proof is subsumed by or analogous to Theorems 4.1 and E.1, with changes summarized in the
following lemma.

Lemma F.2. Under Algorithm 7, |∆t
i| is bounded by

|∆t
i| ≤ Φ

K
t
i

1 := |Ξt
i| ·

ηℓKt

i

√√√√√√
⌈Kt

i
z ⌉∑

r=1

β
2⌈Kt

i
z ⌉−2r

1

β
⌈Kt

i
z ⌉−r

2

+Φ
K

t
i

0


where

Φ
K

t
i

0 :=
K

t

iGηℓ(1− β
K

t
i

1 )

ε
.

Proof. Recall that ∆t = 1/|St|
∑

i∈St ∆t
i and ∆t

i = Ξt
i

(
xt
i,K

t
i

− xti,0
)

. By telescoping for K
t

i

local steps and the definition of gradient updates in ADMU, we obtain

∆t
i =

K
t
i∑

p=1

−ηℓΞt
i

m̂p√
v̂p + ε

= −ηℓΞt
i

K
t
i∑

p=1

m0β
p
1 + (1− β1)

∑p
r=1 β

p−r
1 · gti,r√

v0β
⌊ p−1

z ⌋+1
2 + (1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

We assume m0, v0 ← 0 for expository purposes, although v0 > 0 also suffices for the analysis

(ending in a slightly different ΦK
t
i

1 ). This gives that

∆t
i = −ηℓΞt

i

K
t
i∑

p=1

(1− β1)
∑p

r=1 β
p−r
1 · gti,r√

(1− β2)
∑⌈ p

z ⌉
r=1 β

⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

= −ηℓΞt
i

K
t
i∑

p=1

(1− β1)
∑⌈ p

z ⌉
r=1 β

⌈ p
z ⌉−r

1 · gti,(r−1)z+1√
(1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

− ηℓΞt
i

K
t
i∑

p=1

(1− β1)
∑p

r=1 β
p−r
1 · gti,r · χ{ p−1

z /∈Z}√
(1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

.
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To obtain a deterministic bound, we cannot ignore the worst-case stochastic realization that
gti,(r−1)z+1 = 0 for ∀r ∈ [⌈pz ⌉]. Therefore, we form the intermediary upper bound

∣∣∆t
i

∣∣ ≤ ηℓ|Ξt
i|

K
t
i∑

p=1

(1− β1)
∑⌈ p

z ⌉
r=1 β

⌈ p
z ⌉−r

1 ·
∣∣∣gti,(r−1)z+1

∣∣∣√
(1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

+
ηℓ|Ξt

i|(1− β1)
ε

K
t
i∑

p=1

p∑
r=1

βp−r
1 ·

∣∣gti,r∣∣ · χ{ p−1
z /∈Z}

 . (18)

Note that the first term is 0 in the worst-case scenario above, which implies that any non-negative
upper bound is trivially satisfied. Therefore, we may assume without loss of generality that at least
one sampled gradient gti,(r−1)z+1 is nontrivial and remove ε from the denominator to obtain an upper
bound. By Cauchy-Schwartz, we have⌈ p

z ⌉∑
r=1

β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2

⌈ p
z ⌉∑

r=1

β
2⌈ p

z ⌉−2r
1

β
⌈ p
z ⌉−r

2

 ≥
⌈ p

z ⌉∑
r=1

β
⌈ p
z ⌉−r

1 ·
∣∣∣gti,(r−1)z+1

∣∣∣
2

which implies

∣∣∆t
i

∣∣ ≤ ηℓ|Ξt
i|

K
t
i∑

p=1

√√√√√
⌈ p

z ⌉∑
r=1

β
2⌈ p

z ⌉−2r
1

β
⌈ p
z ⌉−r

2

+
ηℓ|Ξt

i|(1− β1)
ε

K
t
i∑

p=1

p∑
r=1

βp−r
1 ·

∣∣gti,r∣∣ · χ{ p−1
z /∈Z}



≤ ηℓ|Ξt
i|

K
t
i∑

p=1

√√√√√
⌈ p

z ⌉∑
r=1

β
2⌈ p

z ⌉−2r
1

β
⌈ p
z ⌉−r

2

+
K

t

iGηℓ|Ξt
i|(1− β1)
ε

· (1− β
K

t
i

1 )

(1− β1)

≤ ηℓ|Ξt
i|K

t

i

√√√√√√
⌈Kt

i
z ⌉∑

r=1

β
2⌈Kt

i
z ⌉−2r

1

β
⌈Kt

i
z ⌉−r

2

+
K

t

iGηℓ|Ξt
i|(1− β

K
t
i

1 )

ε
.

It can be shown that case of no update delay z = 1 allows for ΦK
t
i

0 = 0, following a similar proof to

the one given above. Note that ΦK
t
i

0 handles the superfluous gradient terms cemented by delaying
preconditioner updates for the second moment, while moving averaging is performed for the first
moment estimate. It also follows that ∆t is also upper bounded by the identical bound scaled by
maxt ∥Ξt∥∞ ≤ B, as the average of the ∆t

i.

G AdaGrad with Delayed Updates (AGDU)

We present AdaGrad with delayed preconditioner as Algorithm 8 for completeness.

Note that due to delayed updates, local gradient updates are not necessarily elementwise bounded in
absolute value by ηℓ. We may expand the delayed updates for vt as

vt = v0 +

⌈ t
z ⌉∑

r=1

g(r−1)z+1 ⊙ g(r−1)z+1.

We have the following convergence bound.

Corollary G.1. Let K− := mini,tK
t

i ≥ 1 and

γ̃1 := ηℓεw

K−∑
p=1

1√
v0 + ⌈Kz ⌉G2 + ε

, α̃1 :=
εwK

−

2K
(√

v0 + ⌈Kz ⌉G2 + ε
) .

Then Algorithm 9 has an identical convergence bound to Theorem 4.1.
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Algorithm 8 AdaGrad with Delayed Updates (AGDU)

Require: ηℓ: Step size
Require: z ∈ Z≥1: Step delay for second moment estimate updates (where z = 1 gives no delay)
Require: f(x): Stochastic objective function with parameters x
Require: x0: Initial parameter vector
Require: ε > 0: Smoothing term

1: Initialize v0 ← 0 (2nd moment vector)
2: Initialize t← 0 (Timestep)
3: while not converged do
4: t← t+ 1
5: gt ← ∇xft(xt−1)
6: if (t− 1)/z ∈ Z then
7: vt ← vt−1 + g2t
8: else
9: vt ← vt−1

10: end if
11: xt ← xt−1 − ηℓ · gt/(

√
vt + ε)

12: end while
13: return xt

Algorithm 9 Adaptive server and client-side ADAGRAD (FedAdaAdagrad)

Require: Update delay step size z ∈ Z≥1, initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0

Require: Global decay parameter β̃1 ∈ [0, 1)

Require: Pseudogradient weighting schedule Ξ1×· · ·×ΞT ∈ R|S1|×· · ·×R|ST | for ∥Ξt∥∞ ≤ B
Require: Client epoch schedule K

1 × · · · ×KT ∈ Z|S1|
≥1 × · · · × Z|ST |

≥1 for ∥Kt∥∞ ≤ K, ∀t ∈ [T ]
Require: Local epsilon smoothing term εs > 0, global smoothing term τ > 0

1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N ] of clients
3: for each client i ∈ St (in parallel) do
4: xti,0 ← xt−1

5: Initialize v0 ≥ 0 with default value v0 ← 0

6: for k = 1, . . . ,K
t

i do
7: Draw stochastic gradient gti,k ∼ D(xti,k−1) with mean∇Fi(x

t
i,k−1) ∈ Rd

8: mk ← gti,k
9: if (k − 1)/z ∈ Z then

10: vk ← vk−1 + gti,k ⊙ gti,k
11: else
12: vk ← vk−1

13: end if
14: if 0 < ∥mk/(

√
vk + ϵ)∥ < εs then

15: mk ← 0
16: end if
17: xti,k ← xti,k−1 − ηℓ ·mk/(

√
vk + ϵ)

18: end for
19: ∆t

i = Ξt
i

(
xt
i,K

t
i

− xt−1

)
20: end for
21: ∆t =

1
|St|

∑
i∈St ∆t

i

22: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

23: ṽt = ṽt−1 +∆2
t

24: xt = xt−1 + η m̃t√
ṽt+τ

25: end for
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Similar to delayed Adam, the proof is analogous to Theorem 4.1 with changes summarized in the
following lemma.
Lemma G.2. Under Algorithm 9, |∆t

i| is bounded by

|∆t
i| ≤ ΦK

1 := ηℓB

(⌊
K − 1

z

⌋
+ 1 +

KG
√
v0 + ε

)
.

Proof. Recall that ∆t = 1/|St|
∑

i∈St ∆t
i and ∆t

i = Ξt
i

(
xt
i,K

t
i

− xti,0
)

. By telescoping for K
t

i

local steps and the definition of gradient updates in FedAdaAdagrad, we obtain

∆t
i =

K
t
i∑

p=1

−ηℓΞt
i

mp√
vp + ε

= −ηℓΞt
i

K
t
i∑

p=1

gti,p√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

For F = {0, 1, . . . , ⌊(Kt

i − 1)/z⌋}z + 1, we thus have that

∆t
i = −ηℓΞt

i

∑
p∈F

gti,p√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

− ηℓΞt
i

∑
p∈[K

t
i]\F

gti,p√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε
.

To obtain a deterministic bound, we cannot ignore the worst-case stochastic realization that
gti,(r−1)z+1 = 0 for ∀r ∈ [⌈pz ⌉]. Therefore, we form the upper bound

∣∣∆t
i

∣∣ ≤ ηℓ|Ξt
i|
∑
p∈F

|gti,p|√
v0 + |gti,p|2 +

∑⌈ p
z ⌉−1

r=1 (gti,(r−1)z+1)
2 + ε

+
ηℓ|Ξt

i|√
v0 + ε

 ∑
p∈[K

t
i]\F

∣∣gti,p∣∣
 (19)

≤ ηℓ|Ξt
i|
(⌊

K − 1

z

⌋
+ 1

)
+
ηℓ|Ξt

i|KG√
v0 + ε

where the last line uses that the local epoch schedules are upper bounded by K. Noting that
∥Ξt

i∥∞ ≤ B, we are done.

H Datasets, Models, and Baselines

Below, we summarize the dataset statistics and provide a more in-depth description.

Table 2: Summary of datasets and models.
Datasets # Devices Non-IID Partition Model Tasks

StackOverflow [27] 400 Natural Logistic Regression 500-Class Tag Classification
CIFAR-100 [28] 1000 LDA ViT-S 100-Class Image Classification
GLD-23K [30] 233 Natural ViT-S 203-Class Image Classification
FEMNIST [29] 500 Natural ViT-S 62-Class Image Classification

H.1 StackOverflow Dataset

The StackOverflow dataset [27] is a language dataset composed of questions and answers extracted
from the StackOverflow online community. Each data entry includes associated metadata such as
tags (e.g., “python"), the time the post was created, the title of the question, the score assigned to the
question, and the type of post (question or answer). The dataset is partitioned by users, with each
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client representing an individual user and their collection of posts. This dataset exhibits significant
imbalance, with some users contributing only a few posts while others have a much larger number of
entries. In this paper, we work with a randomly selected 400-client subset of the full StackOverflow
Dataset, with a client participation fraction of 0.1.
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Figure 5: Identical setting as Figure 1, except that 1 local epoch is taken instead of 5. Additionally, the
adaptive baseline algorithms employ the Adam optimizer instead of AdaGrad. We observe that jointly
adaptive methods significantly outperform server-only adaptive methods, which in turn outperform
non-adaptive FedAvg. The setting studies the noise multiplier σ = 1, with a privacy budget of
(ε, δ) = (13.1, 0.0025) with optimal Rényi-Differential Privacy (RDP) [39] order 2.0.

H.2 GLD-23K Dataset

The GLD-23K dataset is a subset of the GLD-160k dataset introduced in [30]. It contains 23,080
training images, 203 landmark labels, and 233 clients. Compared to CIFAR-10/100, the landmarks
dataset consists of images of far higher quality and resolution, and therefore represents a more
challenging learning task. The client participation fraction for all GLD-23K experiments are set to
0.01.
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Figure 6: (Top) Additional results for the experiments in Figure 4 (b), where clients train over
5 epochs. (Bottom) Analogous experiments for full fine-tuning, where the entire net is unfrozen
after replacing the classification layer. All adaptive optimizers are instantiated with Adam, with the
exception of FedAdaGrad where the server-side adaptive optimizer is AdaGrad.

H.3 CIFAR-100 Dataset

The CIFAR-10/100 datasets [28] consist of 32 × 32 × 3 images. In the smaller variant CIFAR-10,
there are 10 labels, with 50,000 training images and 10,000 test images. The 10 classes represent
common objects: airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks.
CIFAR-100 is meant to be an extension of CIFAR-10, consisting of 60,000 color images, but with 100
classes instead of 10. Each class in CIFAR-100 contains 600 images, and the dataset is similarly split
into 50,000 training images and 10,000 test images. Unlike CIFAR-10, every class in CIFAR-100
is subsumed by one of 20 superclasses, and each image is provided a fine label and a coarse label
that represents the former and latter (super-)class. In this paper, we train and evaluate all algorithms
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against the fine label. In Figure 7, we show the convergence of FedAda2 as compared to all other
adaptive or non-adaptive benchmarks using CIFAR-100.
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Figure 7: Training and testing accuracies of optimal hyperparameters for CIFAR-100. At each logging
step, train/test accuracy and loss evaluation is done over all of training and testing data, disjointly,
resulting in robust and similar-looking curves. Averaged over 20 random seeds for better convergence.
Adaptive optimizer instantiation conventions are identical with Figure 6. Though minimal, jointly
adaptive baselines (Costly Joint Adaptivity, FedAda2, FedAda2++) outperform server-only adaptive
baselines (FedAdam, FedAdaGrad) and non-adaptive FedAvg.

H.4 FEMNIST Dataset

The FEMNIST dataset [29] extends the MNIST dataset [50] to include both digits and letters,
comprising 62 unbalanced classes and a total of 805,263 data points. It is specifically designed
for federated learning research, featuring a natural, non-IID partitioning of data. Each user in the
dataset corresponds to a distinct writer who contributed to the original EMNIST dataset, capturing the
individuality of handwriting styles. This user-level segmentation provides a realistic federated learning
setting, simulating scenarios where data is distributed heterogeneously across clients. FEMNIST
serves as a benchmark for evaluating the performance of federated learning algorithms under non-IID
conditions, emphasizing challenges such as personalization and robustness to client heterogeneity.
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Figure 8: Training and testing accuracies of optimal hyperparameters for FEMNIST, with 0.5%
participation (2 clients per round). Averaged over 20 random seeds for clearer convergence. Adaptive
optimizer instantiation conventions are identical with Figure 6, where jointly adaptive optimizing
paradigms use Adam due to better performance. We see that FedAvg is the least robust, both in terms
of stability (i.e., confidence interval region) and final performance. By contrast, adding server-side
adaptivity greatly strengthens the performance, and introducing client-side adaptive optimization
further enhances the speed of convergence as well as test-time accuracy. We see that removing
preconditioner transmission, and compressing client-side gradient statistics to save on-device memory
as in FedAda2, does not detract from the performance of joint adaptivity. The top row displays the
results when each client takes 5 local epochs prior to server synchronization, where the gap between
the jointly adaptive and non-adaptive baselines is more pronounced. The bottom row gives the results
for 1 local epoch.
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H.5 Descriptions of Baselines

In the original FedAvg algorithm introduced by [1], the server-side aggregation is performed without
any additional momentum, relying solely on simple averaging. On the other hand, algorithms like
FedAdaGrad and FedAdam represent examples of server-only adaptive approaches [4], where the
server employs adaptive optimizers such as AdaGrad or Adam instead of vanilla averaging. We
note that server-only adaptive frameworks such as FedAdam and FedAdaGrad are optimizer-specific
instantiations of FedOpt [4], a competitive framework that has been utilized in recent works to develop
leading applications (e.g., by Google Deepmind to develop DiLoCo [51, 52, 53]). The concept of
‘Costly Joint Adaptivity’ (Costly Joint Adap.) refers to a training paradigm where the server’s adaptive
preconditioners are shared with clients during each communication round. An example of this is the
AdaGrad-AdaGrad setup used as a differential privacy baseline in the StackOverflow task, where the
server-side AdaGrad preconditioners are applied to client-side AdaGrad optimizers, guiding client
model updates.

Alternatively, by eliminating the transmission of server-side preconditioners and initializing client-
side preconditioners to zero, we derive the ’Joint Adaptivity without Preconditioner Communication’
(Joint Adap. w/o Precond. Commu.) baseline, which is more communication-efficient. Further,
compressing local preconditioners to align with client memory constraints leads to the development of
FedAda2. Thus, FedAda2 and the various baselines can be viewed as logically motivated extensions,
incorporating adaptive updates and memory-efficient strategies. We provide comprehensive evalua-
tions of all 15 algorithms (including 12 jointly adaptive methods tailored to each adaptive optimizer,
2 server-only adaptive methods, and 1 non-adaptive method) in Section 5 and in the Appendix H, J.

For the ViT model for instance, we require just 0.48% memory to store the second moment EMA
compared to the full gradient statistic during preconditioning when using SM3.

I Hyperparameter Selection

I.1 Hyperparameters for DP StackOverflow

We use a subsampling rate of 0.1, for a total of 400 clients and 500 communication rounds. We
investigate the setting of noise multiplier σ = 1, which provides a privacy budget of (ε, δ) =
(13.1, 0.0025) with optimal Rényi-Differential Privacy (RDP) order 2.0. We sweep over the following
hyperparameters:

c ∈ {0.1, 0.5, 1} ,
ηl ∈ {0.001, 0.01, 0.1, 0.5, 1} ,
ηs ∈ {0.001, 0.01, 0.1, 0.5, 1} ,
τl ∈

{
10−7, 10−5, 10−3

}
,

τs ∈
{
10−7, 10−5, 10−3

}
,

where c is the gradient clip value. Here, ηl, ηs indicates the client and server learning rates, while
τl, τs represents their respective adaptivity parameters. In the case of singular adaptivity, we ignore
the irrelevant terms (i.e. client adaptivity parameter for FedAdaGrad). For FedAvg only, we select
best hyperparameters using the expanded local learning rate grid

ηl ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 20, 40, 80, 160} .

The optimal hyperparameters are summarized in Table 3, which were chosen based on optimal test
accuracy over a running average of the last 10 logged datapoints. In Figure 4 (bottom), we see
that adaptive optimization on either the client or server induces varying model training dynamics.
Notably, we see in our experiments that for this privacy budget, removing preconditioners from jointly
adaptive systems supercedes the performance of costly joint adaptivity. Compressing client adaptive
preconditioning (FedAda2) reduces the performance slightly, but still performs the best among all
other baselines.
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Table 3: Best performing hyperparameters for DP StackOverflow with σ = 1

FedAvg FedAdaGrad Costly Joint Adap. Joint Adap. w/o Precond. Commu. FedAda2

c 1.0 0.1 0.5 0.5 0.1
ηs N/A 1.0 1.0 1.0 1.0
ηl 20.0 1.0 1.0 0.1 0.1
τs N/A 1e-3 1e-3 1e-5 1e-5
τl N/A N/A 1e-3 1e-3 1e-3

I.2 Hyperparameters for Image Datasets

For all ViT experiments, images were resized to 224 × 224 pixels, and the client optimizer employed
a linear learning rate warm-up, increasing from 0 to the final value over the first 10 local backpropaga-
tion steps. The local batch size was consistently set to 32 across all datasets used in this paper. Due to
better empirical performance, Adam was selected as the main optimizer strategy for ViT fine-tuning
against the image datasets. We utilized prior work [4] as well as small-scale experiments regarding
server-only adaptivity to guide the selection of the momentum parameters β1 = 0.9, β2 = 0.999 for
server Adam. The identical parameters were selected for client Adam, and better choices may exist
for either the server or client. In order to determine suitable learning rates and adaptivity parameters,
we conduct extensive hyperparameter sweeps using a two-step procedure.

(Step 1) The first step involved a symmetric sweep over the values
ηl ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 20} ,
ηs ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 20} ,
τl ∈

{
10−9, 10−7, 10−5, 10−3

}
,

τs ∈
{
10−9, 10−7, 10−5, 10−3

}
.

Similar to the StackOverflow case, ηl, ηs indicates the client and server learning rates, while τl, τs
represents their respective adaptivity parameters. For FedAvg only, we probe over the expanded grid

ηl ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 20, 40, 80, 160, 320} .

(Step 2) Based on the sweep results over all 10 algorithm and dataset combinations, a second
asymmetric search was launched over the most promising hyperparameter regions, which probed
over the following:

ηl ∈
{
10−6, 10−5, 10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−7, 10−6, 10−5, 10−4, 10−3, 10−2

}
,

τl ∈
{
10−7, 10−5, 10−3, 10−1, 1

}
,

τs ∈
{
10−12, 10−11, 10−10, 10−9, 10−5

}
.

Afterwards, the best performing hyperparameters were selected. For FedAvg only, the final grid
increased additively by 10−3 from 10−3 to 10−2, then by 10−2 onward until the largest value 10−1.
That is, we sweep over the following:

ηl ∈ {0.001, 0.002, 0.003, . . . , 0.009, 0.01, 0.02, . . . , 0.09, 0.1} .
For server-only adaptivity or FedAvg, any irrelevant hyperparameters were ignored during the sweep.
In Tables 4 and 5, we summarize the best performing learning rates and adaptivity parameters. In this
subsection, any notion of adaptivity in jointly adaptive systems refers to the Adam optimizer, and 5
local epochs were taken prior to server synchronization. Full fine-tuning indicates that the entire net
was unfrozen after replacement of the linear classification layer. For FedAdaGrad, full fine-tuning,
Step 2 utilized an expanded hyperparameter grid search due to poor performance.

Table 4: Server/Client Learning Rates ηs/ηl
FedAvg FedAdaGrad FedAdam Costly Joint Adap. Joint Adap. w/o Precond. Commu. FedAda2

FEMNIST N/A / 8e-3 1e-4 / 1e-3 1e-4 / 1e-3 1e-3 / 1e-3 1e-3 / 1e-3 1e-3 / 1e-3
CIFAR-100 N/A / 1e-1 1e-2 / 1e-5 1e-3 / 1e-3 1e-3 / 1e-2 1e-3 / 1e-2 1e-3 / 1e-2
GLD-23K N/A / 0.04 1e-2 / 1e-2 1e-3 / 1e-2 1e-3 / 1e-2 1e-3 / 1e-2 1e-3 / 1e-2
GLD-23K (Full) N/A / 0.02 1e-4 / 1e-2 1e-4 / 1e-2 1e-4 / 1e-4 1e-4 / 1e-2 1e-4 / 1e-4
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Table 5: Server/Client Adaptivity Parameters τs/τl
FedAvg FedAdaGrad FedAdam Costly Joint Adap. Joint Adap. w/o Precond. Commu. FedAda2

FEMNIST N/A / N/A 1e-7 / N/A 1e-7 / N/A 1e-5 / 1e-7 1e-5 / 1e-7 1e-5 / 1e-7
CIFAR-100 N/A / N/A 1e-10 / N/A 1e-5 / N/A 1e-5 / 1.0 1e-5 / 1.0 1e-5 / 1.0
GLD-23K N/A / N/A 1e-5 / N/A 1e-5 / N/A 1e-5 / 0.1 1e-5 / 0.1 1e-5 / 0.1
GLD-23K (Full) N/A / N/A 1e-2 / N/A 1e-5 / N/A 1e-5 / 1e-3 1e-5 / 1 1e-5 / 1e-3

Hyperparameter Sweep for FEMNIST. The setup was almost analogous to above. The only
difference is that due to limited resources in (Steps 1-2), we swept over the grid

ηl ∈
{
10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−4, 10−3, 10−2, 10−1

}
,

τl ∈
{
10−7, 10−5, 10−3

}
,

τs ∈
{
10−7, 10−5, 10−3

}
.

For FedAvg only, we utilized the expanded learning rate grid

ηl ∈ {0.001, 0.002, 0.003, . . . , 0.009, 0.01, 0.02, . . . , 0.09, 0.1} .

Hyperparameters for varying client resources, GLD-23K. Analogous sweeps as in (Step 1)
above for the limited and sufficient client resource settings (locally training over 1, 20 local epochs
prior to server synchronization) were taken. For the constrained setting, there were no changes to the
(Step 2) grid. In the abundant setting, the modified final search space for adaptive methods was

ηl ∈
{
10−6, 10−5, 10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−3, 10−2, 10−1, 1, 4, 16, 32

}
,

τl ∈
{
10−7, 10−5, 10−3, 10−1, 1

}
,

τs ∈
{
10−12, 10−11, 10−10, 10−9, 10−5

}
,

and the optimal hyperparameters are summarized in Table 6.

Table 6: Hyperparameters for GLD-23K under restricted/sufficient client resource settings
FedAvg FedAdaGrad FedAdam Costly Joint Adap. Joint Adap. w/o Precond. Commu. FedAda2

ηs N/A / N/A 1e-2 / 1e-2 1e-3 / 1e-3 1e-3 / 1e-3 1e-3 / 1e-3 1e-3 / 1e-3
ηl 7e-2 / 1e-2 1e-2 / 1e-2 1e-1 / 1e-2 1e-2 / 1e-3 1e-2 / 1e-3 1e-1 / 1e-3
τs N/A / N/A 1e-9 / 1e-7 1e-5 / 1e-7 1e-5 / 1e-7 1e-5 / 1e-7 1e-5 / 1e-7
τl N/A / N/A N/A / N/A N/A / N/A 1e-3 / 1e-1 1e-3 / 1e-1 1e-1 / 1e-1

I.3 Compute Resources

Experiments were performed on a computing cluster managed by Slurm, consisting of nodes with
various configurations. The cluster includes nodes with multiple GPU types, including NVIDIA RTX
2080 Ti, A40, and H100 GPUs.

J Additional Experiments

J.1 Sensitivity to Hyperparameters

J.2 Dynamics of Heterogeneous Client-Server Adaptivity

In Figure 10, we display the effects of heterogeneous client-server adaptivity in the setting of ViT
fine-tuning over GLD-23K. All hyperparameter sweeps were done over the following grid:

ηl ∈
{
10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−4, 10−3, 10−2, 10−1

}
,

τl ∈
{
10−7, 10−5, 10−3, 10−1, 1

}
,

τs ∈
{
10−7, 10−5, 10−3, 10−1, 1

}
.

(20)
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Figure 9: We plot all test accuracies obtained during the hyperparameter sweeps detailed in Ap-
pendix I.1, with fixed client subsampling random seed. The runs are ranked hierarchically from
the lowest to the highest final test loss, with the colors transitioning from lighter to darker shades
accordingly.

J.3 Effect of Delayed Updates

Similar to Figure 10, we demonstrate the effects of delayed updates in Figure 11. Hyperparameter
configuration for delayed updates is identical to Figure 4 (b), except that client-side preconditioner
updates are delayed. Hyperparameter sweeps were done over the following grid:

ηl ∈
{
10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−4, 10−3, 10−2, 10−1

}
,

τl ∈
{
10−3, 10−1, 1

}
,

τs ∈
{
10−5, 10−3, 10−1

}
.

We see that delaying the computation of the preconditioners does not significantly degrade the
performance.
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Figure 10: Each test accuracy is color-coded and ranked based on the final test loss, and lighter colors
indicate lower loss. Algorithm title colors are also consistent with labels; green for Costly Joint
Adaptivity (top), magenta for Joint Adaptivity without Preconditioner Transmission (middle), and
red for FedAda2 (bottom). Title ordering indicates server- and client-side optimizers, respectively;
i.e. AdaGrad-Adam uses server AdaGrad and client Adam. In the case of Costly Joint Adaptivity
with heterogeneous client-server optimizers, we transmit the mismatched server-side preconditioner
to the client, which to our surprise demonstrates considerable performance. For FedAda2, we add
SM3 compression to the client-side optimizer after zero initialization of the local preconditioner.
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Figure 11: After updating preconditioners per every local backpropagation step for the first client
epoch, preconditioners are periodically frozen for the next 1 (middle), 3 (bottom) epochs, respectively,
for each communication round. Algorithms are consistent across columns, and the top row is identical
to the FedAda2 results in Figure 10 with hyperparameter sweep (20).
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