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Abstract

Supervised Fine-Tuning (SFT) and Preference001
Optimization (PO) are key processes for align-002
ing Language Models (LMs) with human pref-003
erences post pre-training. While SFT excels in004
efficiency and PO in effectiveness, they are of-005
ten combined sequentially without integrating006
their optimization objectives. This approach ig-007
nores the opportunities to bridge their paradigm008
gap and take the strengths from both. In this009
paper, we interpret SFT and PO with two sub-010
processes — Preference Estimation and Tran-011
sition Optimization — defined at token level012
within the Markov Decision Process (MDP).013
This modeling shows that SFT is only a special014
case of PO with inferior estimation and opti-015
mization. PO estimates the model’s preference016
by its entire generation, while SFT only scores017
model’s subsequent predicted tokens based on018
prior tokens from ground truth answer. These019
priors deviates from model’s distribution, hin-020
dering the preference estimation and transition021
optimization. Building on this view, we intro-022
duce Intuitive Fine-Tuning (IFT) to integrate023
SFT and PO into a single process. Through a024
temporal residual connection, IFT brings bet-025
ter estimation and optimization by capturing026
LMs’ intuitive sense of its entire answers. But027
it solely relies on a single policy and the same028
volume of non-preference-labeled data as SFT.029
Our experiments show that IFT performs com-030
parably or even superiorly to SFT and some031
typical PO methods across several tasks, partic-032
ularly those requires generation, reasoning, and033
fact-following abilities. An explainable Frozen034
Lake game further validates the effectiveness035
of IFT for getting competitive policy.036

1 Introduction037

Large Language Models (LLMs) have demon-038

strated remarkable powerful potential across vari-039

ous downstream tasks after pre-training on large-040

scale corpora (Brown et al., 2020; Achiam et al.,041

2023; Zhou and Ding, 2024). However, their042

Figure 1: Comparison of Alignment Methods. IFT con-
ducts alignment solely relying on positive samples and
a single policy, starting from a pre-trained base model.
IFT shows similar efficiency as SFT and effectiveness
as PO methods.

instruction-following skills and trustworthiness still 043

fall short of expectations (Bender et al., 2021; Bom- 044

masani et al., 2021; Li et al., 2022). Therefore, 045

algorithms such as Supervised Fine-Tuning (SFT) 046

and Reinforcement Learning from Human Feed- 047

back (RLHF) (Ziegler et al., 2019; Ouyang et al., 048

2022; Lee et al., 2023) are used to further enhance 049

LLMs’ abilities and align them better with human 050

preferences. 051

Considering the limited effectiveness of SFT and 052

the high cost of data construction and training com- 053

putation for RLHF, these two methods are often 054

combined to leverage their respective strengths. 055

Unfortunately, they are typically implemented as a 056

sequential recipe constrained by the paradigm gap 057

between SFT and early RLHF methods, stemming 058

from differences in loss functions, data formats, 059

and the requirement for auxiliary models. 060

Recently, a method named Direct Preference 061

Optimization (DPO) (Rafailov et al., 2024) was 062

proposed to integrate Reward Modeling and Pol- 063

icy Optimization into one single procedure using 064

a loss function derived from Proximal Policy Op- 065

timization (PPO) (Schulman et al., 2017). This 066

approach demonstrates the potential to unify SFT 067

and RLHF for the first time. Henceforth, many 068

extended methods have been tried to realize this ob- 069

jective by bridging the gap between SFT and DPO. 070
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Some of them (Ethayarajh et al., 2024; Hong et al.,071

2024; Zhang et al., 2024) aim to transform the con-072

trastive loss of DPO into a SFT-like cross-entropy073

loss, learning positive samples similar to SFT while074

unlearning negative samples resort to Unlikelihood075

Training (Welleck et al., 2019). Some others get rid076

of the preference-labeling process before training,077

switching to collect samples and labels/rewards in078

an online manner (Liu et al., 2023a; Yuan et al.,079

2024; Guo et al., 2024a; Calandriello et al., 2024;080

Tajwar et al., 2024), or just treating the SFT targets081

and online policy generations as positive and nega-082

tive samples respectively (Xiong et al., 2023; Chen083

et al., 2024; Mitra et al., 2024; Liu et al., 2024).084

Nevertheless, preference-labeled pairwise data is085

still essential, and the need for reference model086

only becomes unnecessary in some cases. Thus the087

core differences between SFT and Preference Op-088

timization (PO) are not eliminated thoroughly. To089

address this challenging issue, a deeper and more090

unified understanding of them are needed.091

In this paper, we attempt to explain the similari-092

ties and differences between SFT and PO by defin-093

ing Preference Estimation and Transition Optimiza-094

tion in terms of state-action pairs within the Markov095

Decision Process (MDP) framework. Through this096

modeling, we demonstrate that SFT is simply a097

specialized case of PO with inferior estimation and098

optimization than other methods. To estimate the099

policy preference, PO collects sentence-level neg-100

ative samples from policy for each initial instruc-101

tion. However, SFT only samples subsequent token102

for each intermediate state of ground truth answer,103

which leads to a biased estimation of policy prefer-104

ence and an inferior alignment performance.105

Depending on this understanding, we introduce106

a unified alignment algorithm named Intuitive Fine-107

Tuning (IFT). Drawing inspiration from the hu-108

man ability to grasp a intuitive sense of an answer109

after hearing a question, IFT employs a Tempo-110

rary Residual Connection across tokens to approx-111

imate policy’s entire answer for each instruction.112

This approach helps IFT better estimate the pol-113

icy’s preference than SFT, achieving alignment114

performance comparable or even superior to the115

sequential recipe of SFT and Preference Optimiza-116

tion. Additionally, IFT requires only a single policy117

model, and the same volume and format of data as118

SFT, enjoying both data and computation efficiency.119

These characteristics of IFT are advantageous in120

domains where preference data is unavailable or121

expensive to collect.122

Our main contribution are three folds: 123

(1) Through defining Preference Estimation and 124

Transition Optimization using the MDP, we demon- 125

strate that SFT is only a special case of Preference 126

Optimization. The similarities and differences of 127

SFT, PPO and online/offline DPO are also com- 128

pared within this framework; 129

(2) We introduce Intuitive Fine-tuning (IFT), a 130

deeply unified version of SFT and Preference Opti- 131

mization. It utilizes temporary residual connections 132

to extract the model’s generation preference given 133

the initial instructions. IFT enjoys the similar effi- 134

ciency as SFT on negative sampling, but can better 135

estimate and optimize the policy preference. 136

(3) Through experiments on several benchmarks, 137

we validate that IFT performs comparably or supe- 138

riorly to SFT and various Preference Optimization 139

methods. An explainable toy-setting Frozen Lake 140

further demonstrates the effectiveness of IFT. 141

2 Preliminaries 142

2.1 MDP in Language Models 143

The MDP applied to LMs can be formally de- 144

scribed as a tupleM = (S,A, T , r, ρ0), where S 145

is the state space comprising ordered permutations 146

of vocabularies, A is the action space consisting 147

of vocabularies defined by the tokenizer, T is the 148

transition matrix indicating token generation prob- 149

abilities for given states, r represents rewards for 150

state-action pairs, and ρ0 is the initial state typically 151

based on given instructions. See more details in 152

Appendix A.1. 153

The primary objective of Language Modeling 154

is to train a policy πθ with Tθ to mimic a human 155

policy π∗ with T ∗, aiming for the two transition 156

matrices to become identical: 157

∀s ∈ S, a ∈ A : Tθ(a|s)→ T ∗(a|s) (1) 158

This process can also be expressed using another 159

state-state transition matrix T : 160

∀ s, s′ ∈ S : Tθ(s
′|s)→ T ∗(s′|s) (2) 161

where T is equivalence to T , but instead, indicating 162

the transition probability between states. 163

2.2 Preference Estimation 164

We define the preference P of policy π given an 165

initial instruction ρ0 as a mapping: 166

P(ρ0) : ρ0 → [π(ρ0), π(s1), π(s2), ...] (3) 167
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Figure 2: The Training Paradigm of Different Methods. Symbol ∗ and θ denote human and model respectively, with
a∗i = π∗(s∗i ) and s∗i+1 = [s∗i , a

∗
i ], similarly for θ. SFT uses priors deviating from model distribution, resulting in a

more biased estimation of model preferences compared to PPO and DPO. IFT achieves a better estimation than SFT
by Temporary Residual Connections across tokens. This approach passes the residual embedding from one token to
the next, creating a more accurate prior while maintaining the data and computational efficiency of SFT.

where si+1 = [si, ai] , ai = π(si) and s0 = ρ0.168

During alignment, the model preference gradu-169

ally approaches the human preference:170

Pθ(ρ0)→ P∗(ρ0) (4)171
172

Pθ(ρ0) : ρ0 → [πθ(ρ0), πθ(s
θ
1), πθ(s

θ
2), . . .]

P∗(ρ0) : ρ0 → [π∗(ρ0), π
∗(s∗1), π

∗(s∗2), . . .]
(5)173

As the truly preferences are difficult to obtain, align-174

ment is usually conducted based on the Preference175

Estimation of model and human, denoted as P̂θ176

and P̂∗ respectively. The estimations from some177

typical methods are listed in Table 1.178

To make preference optimizable, the policy’s179

preference can also be expressed as follows:180

P(ρ0) = {T (a|s)|∀a ∈ A, s ∈ Sρ0} (6)181

Here, Sρ0 denotes a conditional state space that182

constrained by the initial state ρ0, within which183

each state can only be initially derived from ρ0.184

Consequently, the model preference can be opti-185

mized through transition matrix, named Transition186

Optimization.187

2.3 Transition Optimization188

Ideally, we want to align the state-action transi-189

tion matrix between model and human in a ρ0-190

constrained state space:191

∀a ∈ A, s ∈ Sρ0 : Tθ(a, s)→ T ∗(a, s) (7)192

which is equivalent to the following format ex-193

pressed by state-state transition matrix:194

∀s ∈ Sρ0 : Tθ(s, ρ0)→ T ∗(s, ρ0) (8)195

However, considering the limited data, only ma-196

trix elements representing state-action/state-state197

pairs contained in the dataset D would be aligned. 198

Given a data sample with instruction ρ0 and tar- 199

get answer with length-N , the objective would be 200

∀a ∈ A, n ∈ [0, N ], ρ0 ∈ D, s∗n ∈ S∗ρ0 : 201

Tθ(a, s∗n)→ T ∗(a, s∗n) (9) 202

Or equivalent to ∀n ∈ [0, N ], ρ0 ∈ D, s∗n ∈ S∗ρ0 : 203

Tθ(s
∗
n, ρ0)→ T ∗(s∗n, ρ0) (10) 204

where s∗0 = ρ0, T ∗(ρ0|ρ0) = Tθ(ρ0|ρ0) = 1, and 205

s∗i denotes the intermediate state of target answer. 206

Consequently, the loss function can be derived 207

from the disparities of the transition matrices be- 208

tween model and human. Some typical loss func- 209

tion are listed in Appendix A.4. 210

3 From SFT to Preference Optimization 211

We reformulate SFT, PPO and DPO using the afore- 212

mentioned framework, detailed in Table 1 and Ap- 213

pendix A.4. A more comprehensible version is 214

presented in Figure 2. To compare the differences 215

between them, we begin by introducing a funda- 216

mental theorem and corollary: 217

Theorem Given a set of eventsZ , the probability 218

of any event z ∈ Z is between 0 and 1, i.e., ∀z ∈ 219

Z : 0 ≤ P (z) ≤ 1. If all events are mutually 220

independent, the sum of their probabilities equals 221

1, i.e., 1 =
∑

z∈Z P (z). The event z∗ with the 222

highest probability has a probability greater than 223

or equal to any other event, i.e., ∀z ∈ Z : 0 ≤ 224

P (z) ≤ P (z∗) ≤ 1. 225

Corollary LMs consistently assign higher prob- 226

abilities to their own greedy predictions than to 227

human preference: 228

∀s ∈ S : Tθ(π∗(s), s) ≤ Tθ(πθ(s), s) ≤ 1 (11) 229
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thus LMs tend to assign higher probabilities to230

its own generation than to target answer given231

the same initial instruction ∀n ∈ [0, N ], s∗n ∈232

S∗ρ0 , s
θ
n ∈ Sθρ0:233

Tθ(s
∗
n, ρ0) ≤ Tθ(s

θ
n, ρ0) ≤ 1 (12)234

where N represents the length when the generation235

reaches the EOS token or the truncation length.236

SFT provides an unbiased estimation of human237

preference, but a biased estimation for model:238

P̂θ(ρ0) : ρ0 → [πθ(ρ0), πθ(s
∗
1), πθ(s

∗
2), . . .] (13)239

which is caused by wrong prior state when pre-240

dicting each subsequent token. Consequently, the241

Transition Optimization objective of SFT:242

Tθ(s
∗
n, s

∗
n−1)→ T ∗(s∗n, s

∗
n−1) (14)243

secretly sets Tθ(s
∗
n−1, ρ0) = 1 during aligning244

Tθ(s
∗
n, ρ0) with T ∗(s∗n, ρ0). This makes an overes-245

timation of the transition probabilities and prefer-246

ence of model, leading to an inferior optimization247

progress in SFT. Thus Preference Optimization is248

needed for further preference alignment.249

PPO shows an unbiased estimation of model250

preference, while employing a progressively unbi-251

ased estimation of human preference:252

P̂∗(ρ0) : ρ0 → [π∗(ρ0), π
∗(sθ1), π

∗(sθ2), . . .]
(15)253

Initially biased, this estimation gradually becomes254

unbiased as the model aligns with human prefer-255

ence over time. As Tθ(s
θ
n, ρ0) is consistently closer256

to 1 than Tθ(s
∗
n−1, ρ0), PPO provides an closer ap-257

proximation than SFT to the actual circumstances258

of model in Transition Optimization:259

Tθ(ŝ∗n, sn−1)→ T ∗(ŝ∗n, sn−1) (16)260

which sets Tθ(s
θ
n, ρ0) = 1 and ŝ∗n = π∗(sθn−1).261

However, estimating π∗(sθn−1) is at the expense of262

preference-labeling, reward modeling and online263

sampling.264

DPO theoretically achieves the best estimation265

across all scenarios, even without reward modeling.266

However, obtaining pairwise preference data on-267

line is costly, as it requires real-time negative sam-268

pling from model and preference labeling by hu-269

man. Thus, mainstream implementations often rely270

on off-policy negative samples out-of-distribution271

from the optimized model, which may yield unsta-272

ble and sub-optimal results due to biased preference273

estimation and inferior transition optimization.274

Method Preference Estimation Transition Optimization
ŝ∗n in P̂∗ ŝθn in P̂θ

Truly s∗n sθn Tθ(s
∗
n, ρ0)→ T ∗(s∗n, ρ0)

SFT s∗n s∗n Tθ(s
∗
n, s

∗
n−1)→ T ∗(s∗n, s

∗
n−1)

PPO sθn sθn Tθ(ŝ∗n, s
θ
n−1)→ T ∗(ŝ∗n, s

θ
n−1)

DPO
online s∗n sθn Tθ(s

∗
n, ρ0)→ T ∗(s∗n, ρ0)

offline s∗n sθ
−

n T̂θ(s
∗
n, ρ0)→ T ∗(s∗n, ρ0)

Table 1: Reformulation of SFT, PPO and DPO

4 Method 275

While SFT is data and computation-efficient, it has 276

an inferior approximation for both Preference Esti- 277

mation and Transition Optimization. On the other 278

side, Preference Optimization (represented by PPO 279

and DPO) enjoys better approximation at the ex- 280

pense of preference data construction. We hope to 281

make good use of their strength, using solely target 282

data as SFT but having a similar approximation 283

as Preference Optimization. See pseudo code in 284

Appendix B.3. 285

4.1 Intuitive Preference Estimation 286

A key distinction between SFT and Preference Opti- 287

mization is whether the full distribution of model’s 288

preference for each initial instruction is sampled. 289

Preference Optimization samples the policy’s en- 290

tire answer to estimate its preference, ensuring each 291

generation relies on the prior adheres to the model’s 292

distribution. But SFT only samples subsequent to- 293

kens the intermediate state of the target answer, the 294

used prior may be far away from the model prefer- 295

ence, leading to inferior preference estimation for 296

model. 297

To obtain a prior state estimation ŝθi closer to 298

model distribution, we introduce a model-based 299

distribution disturbance function δθ for the biased 300

prior state: 301

ŝθi = δθ(s
∗
i ) = (1− λ)s∗i + λπθ(s

∗
i−1) (17) 302

which can also be interpreted as a temporal resid- 303

ual connection that passes the residual embedding 304

from one token to the next. Through this approach, 305

model can predict not only the next token from 306

intermediate state of target answer, but also de- 307

velop an intuitive sense to the entire answer genera- 308

tion solely based on the initial instruction, deriving 309

more unbiased prior and accurate Preference Esti- 310

mation for model: 311

P̂θ(ρ0) = [(1− λ)Pθsft + λPθtruly](ρ0) (18) 312
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With improved Preference Estimation, we achieve313

a Transition Optimization process closer to the orig-314

inal objective ∀n ∈ [0, N ], ρ0 ∈ D, s∗n ∈ S∗ρ0 :315

T̂θ(s
∗
n, ρ0)→ T ∗(s∗n, ρ0) (19)316

where s∗0 = ρ0 and T̂θ(s
∗
n, ρ0) =

n−1∏
i=0

Tθ(s
∗
i+1, ŝ

θ
i ).317

This objective can be optimized by the following318

loss function, which quantifies the disparities of319

transition between model and human:320

L(Tθ, δθ) = E

[
−

N∑
n=0

log Tθ(a∗i , δθ(s∗i ))

]
(20)321

where a∗i = π∗(δ∗(s∗i )) = π∗(s∗i ). See Appendix322

A.2 for complete derivation.323

4.2 Dynamic Relation Propagation324

The Intuitive Preference Estimation implicitly325

performs Dynamic Relation Propagation, during326

which the generation of future tokens will be influ-327

enced by the prediction accuracy of current token.328

However, limited by the parallel computing329

mode, the gradient map could only be built on the330

same time-step. Thus, the current generated tokens331

is unable to obtain gradient feedback from the fu-332

ture generated tokens. Therefore, we reformulate333

the loss function by a differentiable cumulative-334

summation to get around this limitation:335

LIFT = E

[
−

N∑
n=0

N∑
i=n

log Tθ(a∗i , δθ(s∗i ))

]
(21)336

This reformulation implicitly satisfies the Bell-337

man Equation for each state, which guarantees the338

optimization enjoys both of the effectiveness as339

RLHF and efficiency as SFT:340

Vθ(ŝθn) = exp

(
− L

(
T̂θ(s

∗
n, ρ0)

))
(22)341

The derivation is in Appendix A.3. Additionally,342

a decay factor can be incorporated to ensure ef-343

fectiveness in long trajectories, as in the typical344

Bellman Equation.345

5 Experiments346

We conduct experiments mainly on NLP setting.347

Considering the absence of an optimal policy of348

human language generation, we also utilize the349

Frozen Lake environment for further validation.350

5.1 Settings for NLP 351

Datasets. We select UltraChat-200k (Ding et al., 352

2023) and UltraFeedback-60k (Cui et al., 2023) as 353

single-target and pair-wise dataset respectively. 354

Models. We conduct experiments on Mistral- 355

7B-v0.1 (Jiang et al., 2023) and Mistral-7B-sft-beta 356

(Tunstall et al., 2023), with the former as the base 357

model and the latter fine-tuned on UltraChat-200k. 358

Scenarios. We consider two different train- 359

ing scenarios, one using Preference Optimization 360

exclusively, and the other employing sequential 361

recipe of SFT and Preference Optimization. In 362

the first scenario, alignment is conducted directly 363

from base model Mistral-7B-v0.1 using UltraFeed- 364

back. In order to ensure balanced data volume 365

between different method, we randomly sample 366

60k data from UltraChat as supplementary for SFT 367

and IFT, for only the target data are utilized in these 368

two methods. The second scenario is commonly 369

seen, where SFT and Preference Optimization is 370

employed sequentially. For this scenario, we use 371

Mistral-7B-sft-beta as start-point, which has been 372

fine-tuned with UltraChat using SFT. Then we fine- 373

tune it further with UltraFeedback using Preference 374

Optimization. 375

Baselines. SFT and DPO (Rafailov et al., 2024) 376

are our main baselines, and we exclude PPO due to 377

computational limitations. We also incorporate 378

three improved versions of DPO: TDPO (Zeng 379

et al., 2024), ORPO (Hong et al., 2024), and SimPO 380

(Meng et al., 2024). TDPO transformers the DPO 381

loss into token-level to make its objective closer 382

to SFT. SimPO adds on a length-normalization 383

term to replace the regularization from reference 384

model. ORPO adds the SFT loss and a DPO-like 385

loss together, achieving alignment directly without 386

SFT and reference model. In addition to repro- 387

ducing the algorithms mentioned above, we also 388

consider Zephyr-7B-beta (Tunstall et al., 2023) and 389

Mistral-ORPO-alpha (Hong et al., 2024), two open- 390

source checkpoints that utilize sequential and direct 391

recipes respectively. Both of them used start-point 392

models and datasets similar to ours. 393

Benchmarks. We consider two types of bench- 394

marks. One is from the widely used Open-LLM 395

LeaderBoard, which contains ARC-Challenge(25- 396

shot) (Clark et al., 2018), MMLU(5-shot) (Chung 397

et al., 2024), TruthfulQA(0-shot) (Lin et al., 2021), 398

WinoGrande(5-shot) (Sakaguchi et al., 2021), and 399

GSM8K(5-shot) (Cobbe et al., 2021). The other is 400

LM-based evaluation, including TL;DR (Völske 401
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Method Reference Data ARC ARC-Gen MMLU TruthfulQA WinoGrande GSM8K Avg.
pairwise volume

Mistral-7B – – – 53.07 73.04 59.14 45.29 77.58 38.89 54.79

fine-tuning with UltraFeedback-60k

+ SFT % % 120k 56.49 74.00 60.44 55.57 77.90 42.84 58.65
+ DPO ! ! 120k 61.86 73.54 61.02 47.98 76.64 43.89 58.28
+ TDPO ! ! 120k 56.06 73.72 60.23 43.94 77.03 41.70 55.79
+ ORPO % ! 120k 56.66 73.98 60.57 51.77 77.19 42.30 57.70
+ SimPO % ! 120k 59.90 73.55 52.61 47.25 78.30 37.53 55.15
+ IFT % % 120k 56.74 74.15 60.49 57.65 78.45 44.73 59.61

Mistral-ORPO-α % ! 120k 57.25 73.72 58.74 60.59 73.72 46.78 59.41

fine-tuning with Ultrachat-200k + UltraFeedback-60k sequentially

+ SFT % % 200k 57.68 72.87 58.25 45.78 77.19 40.94 55.97
+ SFT + SFT % % 260k 58.10 72.61 58.40 48.59 76.80 43.06 56.99
+ SFT + DPO ! ! 320k 63.91 73.98 59.75 46.39 76.06 41.47 57.52
+ SFT + TDPO ! ! 320k 59.13 73.72 58.92 46.63 76.32 44.58 57.12
+ SFT + ORPO % ! 320k 58.45 73.21 58.80 50.31 76.45 42.76 57.35
+ SFT + SimPO % ! 320k 60.83 73.63 59.01 49.45 76.95 38.44 56.94
+ SFT + IFT % % 260k 58.36 73.38 58.45 52.39 78.06 43.82 58.22

Zephyr-7B-β ! ! 320k 67.41 72.61 58.74 53.37 74.11 33.89 57.50

Table 2: Evaluation on Open-LLM Leaderboard with chat template. When fine-tuning with the same recipe, IFT
achieves the highest average score across all methods. Directly conducting alignment using IFT showcases the best
performance in all recipes with the least data and computation.

et al., 2017), Alpaca-Eval, and Alpaca-Eval-2402

(Dubois et al., 2024). As for TL;DR, we keep the403

same setting as (Rafailov et al., 2024), using GPT-4404

to judge the win-rate between model’s generation405

and ground truth answer. We utilize chat template406

for all benchmarks to obtain a more accurate evalu-407

ation for chat models.408

5.2 Main Results in NLP Tasks409

Effectiveness on Sequential Recipe. In this410

scenario, IFT demonstrates good performance411

across benchmarks having standard answers or412

not, see more details in Table 2 and 3. On Open-413

LLM Leaderboard, IFT showcases the best av-414

erage capabilities across all tasks, excelling par-415

ticularly in tasks requiring generation, reasoning416

and fact-following abilities, such as TruthfulQA417

and GSM8K. However, IFT has a relatively large418

gap between DPO in multi-choice tasks like ARC-419

Challenge and MMLU. When evaluated for conver-420

sation and summarization judged by GPT-4, IFT’s421

performance is comparable to that of the chosen422

baselines. Remarkably, IFT achieves these results423

using the least amount of data and computational424

resources among all the methods tested.425

Effectiveness of Preference Optimization426

Alone. IFT not only maintains the performance427

advantages compared with other baselines in this428

setting, as seen in the sequential scenario. But 429

also, IFT performs comparably or even superi- 430

orly to many method in sequential recipe. While 431

DPO, SimPO and TDPO tend to fail under this set- 432

ting, ORPO remains competitive in its open-source 433

model. However, when constrained in the same 434

experiment setting, the performance of ORPO be- 435

comes worse than IFT. Additionally, the reliance on 436

preference data makes ORPO more costly in terms 437

of negative sampling, preference labeling, and GPU 438

memory consumption. Consequently, IFT stands 439

out as a more efficient and cost-effective alternative 440

in this context. 441

Multi-Choice vs. Generation. IFT performs 442

better on generation tasks but struggles with multi- 443

choice, whereas DPO exhibits the opposite per- 444

formance. This may due to differences in evalua- 445

tion metrics and training objectives (Zheng et al., 446

2023; Plaut et al., 2024; Tsvilodub et al., 2024). 447

Multi-choice tasks evaluate log-likelihood for en- 448

tire answers, while generation tasks require token- 449

by-token construction for causality and reason- 450

ing. DPO aligns the mapping between instruc- 451

tions and complete answers, while IFT emphasizes 452

token-level causal relationships. As a result, DPO 453

tends to excel in multi-choice tasks, while IFT per- 454

forms better in token-by-token exploration tasks. In 455

an ARC-Challenge adaptation to generation tasks, 456
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Method Alpaca-Eval Alpaca-Eval-2 TL;DR
win-rate lc win-rate win-rate lc win-rate win-rate

Mistral-7B 24.72 11.57 1.25 0.35 92.03

fine-tuning with UltraFeedback-60k

+ SFT 82.56 78.32 7.09 8.67 84.22
+ DPO 74.00 73.12 9.73 8.58 77.25
+ TDPO 65.74 51.41 4.99 3.47 70.82
+ ORPO 85.14 76.60 8.82 12.34 89.24
+ SimPO 83.08 64.30 24.47 20.31 59.13
+ IFT 85.18 78.78 9.95 13.27 92.63

Mistral-ORPO-α 87.92 – – 11.33 –

fine-tuning with UltraChat-200k + UltraFeedback-60k sequentially

+ SFT 86.69 77.96 4.08 6.43 98.11
+ SFT + SFT 86.34 76.98 4.55 7.14 97.79
+ SFT + DPO 91.62 81.54 10.08 13.72 99.18
+ SFT + TDPO 89.80 76.44 9.25 14.15 98.89
+ SFT + ORPO 86.26 79.67 7.40 12.27 97.92
+ SFT + SimPO 88.79 68.88 19.62 23.94 98.23
+ SFT + IFT 88.37 81.29 10.26 14.34 98.57

Zephyr-7B-β 90.60 – – 10.99 –

Table 3: Evaluation on LLM-based Benchmarks. IFT
secures top two rankings in nearly all tasks, including
conversation and summarization. When fine-tuned on
limited data from UltraFeedback, IFT demonstrates a
significant lead in TL;DR.

IFT demonstrates superiority without changing the457

benchmark’s distribution. Overall, IFT showcases458

its balanced performance across diverse tasks and459

achieving the highest average score.460

Objective Trade-off between SFT and Prefer-461

ence Optimization. Traditional Preference Opti-462

mization methods deliver excellent alignment per-463

formance, particularly in enhancing the instruction-464

following ability of language models, as showed465

in Table 3. However, fitting the different objec-466

tives of SFT and Preference Optimization involves467

trade-offs (Tunstall et al., 2023). Even slight over-468

fitting on SFT may result in reduced effectiveness469

of Preference Optimization. This phenomenon is470

also observed in Table 2, where the models trained471

by sequential recipe of SFT and other Preference472

Optimization methods showcase obvious inferior473

results on Open-LLM Leaderboard even worse than474

SFT alone. Avoiding this trade-off, ORPO and IFT475

can achieve better and more stable performance by476

directly conducting alignment on the base model.477

Efficiency and Scaling Potential of IFT. Al-478

though IFT achieves comparable or superior per-479

formance to other methods, it also boasts high ef-480

ficiency in many aspects. IFT does not require a481

reference model, which conserves GPU memory482

and computational resources. Most importantly,483

IFT and SFT are the only methods that conduct484

alignment without preference data, offering signifi-485

cant benefits as follows. Firstly, this characteristic486

Figure 3: The Frozen Lake Game. Considering the MSE
distance between transition matrices of the trained and
optimal policy, IFT performs much better than SFT and
ORPO, but slightly worse than DPO.

eliminates the need for synchronous storage and 487

computation of pairwise data on the GPU, thereby 488

reducing memory consumption and training dura- 489

tion. Secondly, negative sampling from models 490

and human preference-labeling are no longer nec- 491

essary, eliminating the highest cost associated with 492

alignment, which has been a discarded but funda- 493

mental challenge in research so far. Furthermore, 494

using only the target answer brings the potential 495

for scaling in alignment or even in pre-training. 496

5.3 Further Validation in Frozen-Lake 497

Environment 498

As scores on Open-LLM Leaderboard only par- 499

tially reflect models’ performance, and GPT-4 inad- 500

equately models human language generation, fur- 501

ther comparison to a truly optimal policy is neces- 502

sary. Given the difficulty of obtaining an optimal 503

policy representing human language, we validate 504

our algorithm in a simplified setting called Frozen 505

Lake (Farama, 2023). In this environment, an agent 506

attempts to find a gift on a nearly frozen lake with 507

several holes, terminating the game upon finding 508

the gift or falling into a hole. The limited number 509

of states and actions in this game allows the opti- 510

mal policy to be easily derived using classical RL 511

methods. 512

To simulate parameterized policy alignment, we 513

employ a two-layer fully connected neural network 514

and design the environment with one optimal and 515

one sub-optimal trajectory. The optimal parameter- 516

ized policy is trained using the previously obtained 517

optimal state-action transition matrix, and various 518

fine-tuning methods from LMs are compared. We 519

evaluate performance by measuring the MSE dis- 520

tance between the transition matrices of the optimal 521

and trained policy. We didn’t count in TDPO and 522

SimPO, as their objectives are similar as DPO in 523

Frozen Lake Game. 524
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In this setting, IFT achieves a significantly better525

policy than SFT and ORPO, although it performs526

slightly worse than DPO. This is partly because,527

in terms of comparing how closely the explored528

grid aligns with the agent’s preference, the order529

is DPO > IFT > ORPO > SFT. Although ORPO530

also considers the negative trajectories sampled531

from policy, its direct incorporation of SFT loss532

with a fusion coefficient deviates its preference533

estimation, partially diminishing its effectiveness.534

Additionally, DPO, ORPO and IFT explore more535

grids than SFT, which helps the agent develop a536

better understanding of the environment.537

6 Related Work538

Classical Reinforcement learning (RL) has539

demonstrated strong performance in various se-540

quential decision-making and optimal control do-541

mains, including robotics (Levine et al., 2018),542

computer games (Vinyals et al., 2019) and others543

(Guan et al., 2021). There are two main categories544

of RL algorithms: value-based and policy-based,545

depending on whether they learn a parameterized546

policy. Value-based RL aims to fit an value func-547

tion defined by Bellman Equation, containing meth-548

ods such as Monte-Carlo (MC) Learning (Lazaric549

et al., 2007) and Temporal Difference Learning550

(Sutton, 1988; Seijen and Sutton, 2014). How-551

ever, value-based methods struggle in continuous or552

large discrete space for its greedy objective. Thus,553

policy-based methods were introduced to model554

the decision-making process using a parameterized555

policy. As one of its best-known algorithms, Prox-556

imal Policy Optimization (PPO) (Schulman et al.,557

2017) is widely used in various domains, including558

Natural Language Processing (NLP).559

Alignment for LMs has emerged as a crucial560

task these years, which adjusts the LMs’ genera-561

tion distribution in line with human preferences562

(Bradley and Terry, 1952; Ziegler et al., 2019;563

Ouyang et al., 2022; Lee et al., 2023). While PPO564

remains the primary algorithm for alignment, its565

high demands for computation and memory hin-566

ders its broader use. Consequently, many improved567

methods have been proposed (Dong et al., 2023;568

Yuan et al., 2023; Zhao et al., 2023). Among them,569

DPO (Rafailov et al., 2024) unifies reward mod-570

eling and policy optimization by utilizing a loss571

function derived from PPO, training a single model572

to serve as both a policy model and a reward model.573

Without sacrificing performance, DPO decrease the574

costly consumption of PPO through directly value 575

iteration similar to a preference-based format of 576

MC instead of TD. However, it still relies on an 577

expensive preference-labeling process and requires 578

an SFT-based warm-up stage, which may introduce 579

trade-offs when aligning the objectives of SFT and 580

Preference Optimization. 581

Improved Versions of DPO come out one after 582

another. Efforts such as (Liu et al., 2023b; Khaki 583

et al., 2024; Yin et al., 2024; Guo et al., 2024b; 584

Bansal et al., 2024; Liu et al., 2024) try to en- 585

hance the contrastive learning by utilizing better 586

ranking strategies, more informative data, or more 587

number of negative samples. Except for using of- 588

fline data, (Liu et al., 2023a; Yuan et al., 2024; 589

Guo et al., 2024a; Calandriello et al., 2024; Chen 590

et al., 2024; Mitra et al., 2024) focus on online 591

sampling and automated label/reward collection, 592

reducing the manual cost required for alignment. 593

Methods like (Ethayarajh et al., 2024; Hong et al., 594

2024) aim to reduce DPO’s dependency on SFT 595

warm-up by transforming its loss functions and 596

data format into a SFT manner. These algorithms 597

handle positive and negative samples using SFT ob- 598

jective and Unlikelihood Training (Welleck et al., 599

2019), respectively. Recently, (Zeng et al., 2024; 600

Meng et al., 2024) improved the integration of the 601

SFT and DPO by introducing various regulariza- 602

tion terms. These terms prevent the policy model 603

from overfitting DPO objective and deviating from 604

SFT objective. However, the actual volume of train- 605

ing data is not decreased in these methods. Also, 606

GPU-memory-consuming pair-wise data is still re- 607

quired, while the need for a reference model and 608

preference-labeling for the entire answer trajectory 609

is only eliminated in limited cases. 610

7 Conclusion 611

In this paper, we first interpret SFT and typical 612

Preference Optimization methods into a unified 613

framework using Preference Estimation and Tran- 614

sition Optimization. Through this modeling, we 615

found the biased prior used in SFT is one of the 616

main reasons why SFT performs worse than other 617

Preference Optimization methods. Then, we intro- 618

duce an efficient and effective method called Intu- 619

itive Fine-Tuning (IFT), which achieves alignment 620

directly from the base model using non-preference- 621

labeled data. Finally, experiments on widely used 622

NLP benchmarks and Frozen Lake environment 623

demonstrate the competitive performance of IFT. 624
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8 Limitations625

Our validation of IFT is limited to the fine-tuning626

setting, where data volume is constrained, leaving627

the scalability of IFT unexplored. Additionally, we628

primarily use Mistral-7B for baseline testing, and629

the generalization of IFT to larger and more diverse630

models requires exploration in the future.631
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A Theoretical Details 895

A.1 MDP In LMs 896

M = (S,A, T , r, ρ0): 897

• A, the concrete action space, consisting of NA 898

vocabularies as defined by the tokenizer. 899

• S, the concrete state space, comprising NS = 900

(NA)
N elements related to sequence length N . 901

Each state represents a ordered permutation 902

of vocabularies. 903

• ρ0, the initial state of each generation, typi- 904

cally refers to the given instruction; 905

• T ∈ RNS×NA , the state-action transition ma- 906

trix of a given policy, indicating the probabil- 907

ity of generating each token given different 908

states; 909

• r, the reward assigned to a particular state- 910

action pair. 911

A.2 Loss Function of IFT 912

The disparities of transition between model and 913

human can be formalized as follows: 914

L(T̂θ;T
∗) = Eρ0∼DEs∗n∼S∗

ρ0[
−

N∑
n=0

log
T̂θ(s

∗
n, ρ0)

T ∗(s∗n, ρ0)

]
(23) 915

We make the same hypothesis as SFT that the 916

optimization objective of each target intermedi- 917

ate state has a probability equal to 1, so that 918

∀n ∈ [0, N ], ρ0 ∈ D, s∗n ∈ S∗ρ0 : 919

T ∗(s∗n, ρ0) = 1 = T ∗(s∗N , ρ0) (24) 920

Thus, the objective of IFT can be represented di- 921

rectly by the following loss function: 922

L(T̂θ) = Eρ0∼DEs∗i∼S∗
ρ0[

−
N∑

n=0

log Tθ (π∗ (δ∗(s∗i )) , δθ(s
∗
i ))

]
(25) 923

As the optimal policy enjoys the optimal transition: 924

s∗i = [s∗i−1, a
∗
i ] = [s∗i−1, π

∗(s∗i−1)] = Π∗(s∗i−1)
(26) 925

Therefore, the disturbed optimal state keeps similar 926

with the original optimal state: 927

δ∗(s∗i ) = (1− λ)s∗i + λΠ∗(s∗i−1) = s∗i (27) 928

11



Then, the final loss function can be presented as:929

L(Tθ, δθ) = Eρ0∼DEs∗i∼S∗
ρ0[

−
N∑

n=0

log Tθ(a∗i , δθ(s∗i ))

]
(28)930

A.3 Proof for Bellman Equation931

Considering only one sampled state s∗n constrained932

by ρ0 in the datasets, we have:933

exp
(
− L(T̂θ(s

∗
n, ρ0))

)
= Tθ(a∗n, δθ(s∗n))

( N∑
n+1

Tθ(a∗i , δθ(s∗i ))
)

= max
a

[
Tθ(a, s∗n)

(
r + γV ( ˆsθn+1)

)]
= Vθ(ŝθn)

(29)934

where r = (1− γ)V ( ˆsθn+1). This reward function935

implicitly accounts for the influence of the current936

prediction on future generations.937

A.4 Reformulation of Typical Methods938

We reformulate the loss function of some methods939

using the disparities of transition matrices as:940

SFT941

LSFT = Eρ0∼DEs∗i∼S∗
ρ0

[
−

N∑
i=0

log Tθ(π∗(s∗i ), s
∗
i )

]
(30)942

where the human’s preference is unbiasedly esti-943

mated, but the model’s preference is inaccurately944

represented by s∗i .945

PPO946

LPPO = Eρ0∼DEs∗i∼S∗
ρ0

[
−

N∑
i=0

R(πθ(sθi ), sθi )

]
(31)947

where R ∈ (−∞, 0] denotes the degree of close-948

ness between human preferences and the state-949

action pairs chosen by model. The reward and loss950

will be zero only if the state-action pairs perfectly951

align with human preferences. Thus, PPO implic-952

itly models the human policy π∗ through reward953

modeling, which can be formulated as follows:954

R = πR ← min
π
LR (32)955

956
LR = Eρ0∼DEs+i ∼S+

ρ0
,s−i ∼S−

ρ0[
− log σ

( N∑
i=0

log TR(π+(s+i )|s
+
i )

−
N∑
i=0

log TR(π−(s−i )|s
−
i )

)]
(33) 957

DPO-Online 958

LDPO = Eρ0∼DEs∗i∼S∗
ρ0

,sθi∼Sθ
ρ0[

− log σ

( N∑
i=0

log Tθ(π∗(s∗i ), s
∗
i )

−
N∑
i=0

log Tθ(πθ(sθi ), sθi )
)]
(34) 959

Ideally, this loss function increases the probabili- 960

ties of state-action pairs preferred by humans and 961

decreases the probabilities of those chosen by the 962

model. It unbiasedly estimate both the human’s 963

and model’s preference. 964

DPO-Offline 965

LDPO = Eρ0∼DEs+i ∼S+
ρ0

,s−i ∼S−
ρ0[

− log σ

( N∑
i=0

log Tθ(π+(s+i ), s
+
i )

−
N∑
i=0

log Tθ(π−(s−i ), s
−
i )

)]
(35) 966

In the offline circumstance, the positive samples 967

can still represent the human preference correctly, 968

as s+ is usually similar to s∗. However, this 969

is not the case for negative samples.As training 970

progresses, s− becomes more and more out-of- 971

distributions compared to the model’s preferred 972

state sθ, leading to biased estimations. 973

IFT 974

LIFT = Eρ0∼DEs∗i∼S∗
ρ0[

−
N∑

n=0

N∑
i=n

log Tθ(a∗i , δθ(s∗i ))

]
(36) 975

976
δθ(s

∗
i ) = (1− λ)s∗i + λπθ(s

∗
i−1) (37) 977

By using a model-based disturbance function, IFT 978

constructs a residual connection in the temporal 979

dimension, providing a better estimation for the 980

model than SFT. Through this approach, IFT im- 981

plicitly implements a Relation Propagation in the 982
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Transition Optimization stage, which considers the983

influence of current predictions on future outcomes.984

This propagation also reduces the influence of bias985

introduced by inaccurate estimations in earlier po-986

sitions.987

B Implementation Details988

B.1 NLP Settings989

For the coefficient β in DPO, TDPO, ORPO and990

SimPO, we use 0.1, 0.1, 0.25 and 2.0 respectively,991

as presented in their original papers. For the co-992

efficient γ/β ration in SimPO, we use 0.8 to keep993

the same setting in its original papers. For IFT, we994

choose 0.2 for λ and incorporate a decay factor of995

0.95 to fitting better with the Bellman Equation.996

We save checkpoints every 20k steps and select997

the results from the checkpoint with the best aver-998

age score to demonstrate the performance of each999

method.1000

Name Value

epoch 3
mini batch size 8

gradient accumulation step 64
warmup ratio 0.1

scheduler cosine
learning rate 5e-7

optimizer RMSprop
precision bfloat16

Table 4: Hyper-Parameters in NLP Setting

We implement our main experiments on four1001

NVIDIA A6000 GPUs. When using 60k single-1002

target data, the entire training process for SFT and1003

IFT takes approximately 20 hours, with each epoch1004

lasting 7 hours. When using 60k pair-wise data, the1005

training process for DPO and ORPO takes around1006

40 hours and 30 hours respectively, due to the dif-1007

ferences in requirements for a reference model.1008

B.2 Frozen Lake Setting1009

We keep the similar hyper-parameters as in NLP1010

setting for Frozen Lake game, running this environ-1011

ment on CPUs. Since our designed environment1012

includes an optimal and a sub-optimal trajectory,1013

we select the optimal trajectory as the target for1014

SFT and IFT. For DPO and ORPO, the optimal and1015

sub-optimal trajectories are used as positive and1016

negative samples, respectively.1017

B.3 Pseudo-code of IFT1018

Algorithm 1 Intuitive Fine-Tuning

1: Input:
Initial instruction ρ0

Ground truth s∗ with N tokens:
s∗[1], . . . , s∗[N ]

2: Step 1: Inference One Step Ahead
3: for t in [1, N ] do
4: Predict the probability distribution of the

t-th token: P ′
t = πθ(s

∗[0 : t− 1])
5: Sample the predicted token: sθ[t] =

argmaxP ′
t

6: end for

7: Step 2: Intuitive Preference Estimation
8: Encode s∗ and sθ using the Embedding Layer

E
9: Compute the fused embedding:

e = (1− λ)E(s∗) + λE(sθ)
10: for t in [1, N ] do
11: Predict the probability distribution of the

t-th token: P ′′
t = (πθ/E)(e[0 : t− 1])

12: Compute the token-level loss: Lt =
log(P ′′

t , s
∗[t])

13: end for

14: Step 3: Dynamic Relation Propagation
15: for t in [1, N ] do
16: Compute the cumsum weight similar to Bell-

man Equation: wt =
N∑
i=t

αN−tLi
17: end for

18: Output: Final loss LIFT = w · L
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Method Reference Data Alpaca-Eval Alpaca-Eval-2
pairwise volume win-rate lc win-rate win-rate lc win-rate

Gemma-2B – – – – – – –

+ SFT % % 120k 36.53 30.28 0.99 0.57
+ DPO ! ! 120k 3.13 1.18 0.13 0.23
+ TDPO ! ! 120k 2.14 0.70 0.25 0.10
+ ORPO % ! 120k 36.62 34.23 1.12 0.59
+ SimPO % ! 120k 4.48 2.42 0.13 0.15
+ IFT % % 120k 36.74 39.33 1.61 1.23

Table 5: Evaluation on LLM-based Benchmarks when fine-tuning with UltraFeedback-60k.

Method ARC ARC-Gen MMLU TruthfulQA WinoGrande GSM8K Avg.

Gemma-2B 42.75 43.17 35.68 35.25 66.46 16.98 39.42

+ SFT 42.74 42.66 36.23 51.65 65.90 20.66 43.44
+ DPO 41.38 40.96 35.84 31.82 65.11 19.26 38.68
+ TDPO 41.12 42.06 35.86 33.05 65.19 18.80 38.80
+ ORPO 42.66 42.24 36.10 52.08 66.46 20.55 43.57
+ SimPO 42.32 40.78 35.81 29.50 65.59 19.26 38.50
+ IFT 43.26 42.41 35.80 51.16 66.53 23.05 43.96

Table 6: Evaluation on Open-LLM Leaderboard when fine-tuning with UltraFeedback-60k.
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