
Isnad AI at IslamicEval 2025: A Rule-Based System for Identifying
Islamic Citation in LLM Outputs

Fatimah Emad Eldin
Department of Computer and Information Sciences

Faculty of Graduate Studies for Statistical Research, Cairo University
12422024441586@pg.cu.edu.eg

Abstract

This paper presents the Isnad AI system de-
veloped for the IslamicEval 2025 Shared Task
1A, which focuses on identifying character-
level spans of Quranic verses (Ayahs) and
Prophetic sayings (Hadiths) within Large Lan-
guage Model (LLM) outputs. This task is
formulated as a token classification problem
using a fine-tuned AraBERTv2 model. The
primary contribution is a novel rule-based
data preprocessing and augmentation pipeline,
through which a large-scale, high-quality train-
ing corpus is systematically generated from
raw religious texts. Through comprehensive
ablation studies, it is demonstrated that the
controlled synthetic data generation approach
significantly outperforms traditional database
lookup methods and basic fine-tuning ap-
proaches. The system achieved an F1 score of
66.97% in the official test set, demonstrating
the effectiveness of principled synthetic data
generation for specialized religious text verifi-
cation tasks. To support reproducibility and fu-
ture research in Islamic citation detection, all
code, generated datasets, and experimental re-
sources are made publicly available on GitHub
and Hugging Face.

1 Introduction
The proliferation of Large Language Models
(LLMs) has created an urgent need for robust
mechanisms to verify factual accuracy (?Li et al.,
2024), particularly in specialized domains like Is-
lamic studies (Nagoudi et al., 2022; Antoun et al.,
2021). The IslamicEval 2025 Shared Task 1A ad-
dresses this by requiring systems to detect precise
character-level spans of religious citations within
Arabic LLM responses (Mubarak et al., 2025), rep-
resenting a foundational step for subsequent fact-
checking systems. The submitted system employs
a token classification method using a fine-tuned
AraBERTv2 model (Antoun et al., 2020).

Given the absence of large, manually annotated

corpora for this task. A rule-based process was de-
veloped to programmatically generate clean, con-
textualized training data, embedding authentic re-
ligious texts within varied templates to simulate
LLM citation patterns.

Ablation studies revealed that this rule-based
data generation methodology outperforms
database lookup, and basic fine-tuning. To foster
reproducibility and support future research in
Islamic religious citation, all experimental code,
dataset, and the final fine-tuned model are publicly
available on GitHub1 and Hugging Face2.

2 Background
This work addresses the IslamicEval 2025 Shared
Task 1A, which requires identifying character-level
spans of Quranic verses (Ayahs) and Prophetic say-
ings (Hadiths) within LLM-generated Arabic text
(Mubarak et al., 2025). For a given text containing
citations, the system must identify the exact start
and end character indices. The required submis-
sion format is detailed in the Appendix B.3 in Ta-
ble 4. This task is structured as a token classifica-
tion problem using the standard BIO schema to la-
bel the boundaries of religious citations (Ramshaw
and Marcus, 1995; Devlin et al., 2019).

2.1 Related Work
This work is situated within the broader field of
adapting language models for specialized religious
domains (Nagoudi et al., 2022). While there has
been progress in this area, this verification task
presents a unique challenge because existing re-
sources are not suitable for precise, character-level
span detection. Foundational datasets like the
Quranic Arabic Corpus (Dukes and Habash, 2010)
provide deep morphological analysis, and there are

1https://github.com/astral-fate/IslamicEval
2https://huggingface.co/

collections/FatimahEmadEldin/
isnad-ai-at-islamiceval-68a64677910651f034b9cdf4

https://github.com/astral-fate/IslamicEval
https://huggingface.co/collections/FatimahEmadEldin/isnad-ai-at-islamiceval-68a64677910651f034b9cdf4
https://huggingface.co/collections/FatimahEmadEldin/isnad-ai-at-islamiceval-68a64677910651f034b9cdf4
https://huggingface.co/collections/FatimahEmadEldin/isnad-ai-at-islamiceval-68a64677910651f034b9cdf4


Dataset Split Unique Texts Ayah Examples Hadith Examples Total Generated
Training Set 30,548 20,622 72,477 93,099
Validation Set 13,354 20,313 20,313 40,626

TOTAL 43,902 40,935 92,790 133,725

(a) Final generated splits with class breakdown.

Corpus Original Count
Quranic Verses (Ayahs) 6,236
Hadith Narrations 34,662

Total Unique Texts 40,898
(b) Original source data.

Corpus Preprocessed Count
Total Unique Ayahs 13,456
Total Unique Hadiths 30,446

Total Unique Texts 43,902
(c) After preprocessing.

Table 1: Corrected dataset statistics at each stage. Table (a) shows the final splits and total generated examples based
on the actual output files. Table (b) shows the initial counts from source files. Table (c) shows the total number of
unique texts available for splitting after all processing and augmentation.

models fine-tuned for Islamic question-answering
(Ellbendis, 2024; Justdeen, 2024).

However, these resources were not designed for
the specific purpose of identifying exact citation
boundaries within a larger text.

This creates a significant data scarcity problem
for this particular task. To address this gap, the
primary contribution of this work is a novel rule-
based data generation pipeline. This approach was
developed to create a suitable, large-scale train-
ing corpus, directly overcoming the lack of an-
notated data for this specialized verification task
(Hedderich et al., 2021).

3 System Overview

3.1 Core Model
The foundation of the system is a fine-tuned imple-
mentation of AraBERTv2 (Antoun et al., 2020), a
powerful transformer-based model pre-trained on a
large corpus of Arabic text. For this task, the model
was adapted for token classification and fine-tuned
to predict labels according to the standard BIO
schema: B-Ayah, I-Ayah, B-Hadith, I-Hadith,
or O (Outside). Through this approach, the system
can effectively identify the precise boundaries of
religious citations at a granular level within LLM-
generated text. The model was trained exclusively
on the synthetically generated dataset, which is de-
tailed in section 4.

3.2 Training Data Generation
The central methodological contribution is the pro-
grammatic generation of a large-scale training cor-

pus. This approach was developed to overcome the
lack of manually annotated data by creating high-
quality, contextualized examples to simulate how
they appear as in-context citations within LLM out-
puts. The process is detailed in section 4.3.

4 Data and Preprocessing Pipeline

The entire training and validation dataset was syn-
thetically generated from raw Islamic texts using a
multi-stage pipeline designed to create diverse and
realistic training examples.

4.1 Data Sources

Two foundational datasets of sacred Islamic texts
were utilized for this paper. These datasets, pro-
vided in a pre-processed format by the task orga-
nizers, consist of the following:

• The Holy Quran (KFG, 2025): The com-
plete text of the Holy Quran, presented in a
JSON file where each entry corresponds to a
specific verse (ayah) 3.

• The Hadith: A collection of prophetic tradi-
tions (narrations) from the Six Major Books
of Hadith, provided in a JSON file 4.

For model fine-tuning, only Hadith entries contain-
ing a non-empty ’Matn’ (the core narrative text
of the prophetic tradition) were used. The initial

3https://github.com/qcri/
IslamicEval-2025-Subtask-1/blob/main/Quran/
quranic_verses.json

4https://github.com/qcri/
IslamicEval-2025-Subtask-1/blob/main/Hadith/
six_hadith_books.json

https://github.com/qcri/IslamicEval-2025-Subtask-1/blob/main/Quran/quranic_verses.json
https://github.com/qcri/IslamicEval-2025-Subtask-1/blob/main/Quran/quranic_verses.json
https://github.com/qcri/IslamicEval-2025-Subtask-1/blob/main/Quran/quranic_verses.json
https://github.com/qcri/IslamicEval-2025-Subtask-1/blob/main/Hadith/six_hadith_books.json
https://github.com/qcri/IslamicEval-2025-Subtask-1/blob/main/Hadith/six_hadith_books.json
https://github.com/qcri/IslamicEval-2025-Subtask-1/blob/main/Hadith/six_hadith_books.json


distribution of these datasets is summarized in Ta-
ble 1b.

4.2 Data Preprocessing and Augmentation
Pipeline

The preprocessing pipeline systematically trans-
forms raw Islamic texts into a comprehensive train-
ing corpus through five interconnected stages (de-
tailed methodology in Appendix D). The process
begins with systematic text segmentation and Ara-
bic script normalization, followed by template-
based contextual generation that embeds authen-
tic religious texts within realistic citation patterns.
The complete pipeline workflow is illustrated in
Figure 1, Figure 2 and Figure 3.

1. Text Splitting: Quranic verses were analyzed
using the AraBERTv2 tokenizer. Any verse
exceeding a 25-token length was split into two
smaller, more manageable segments. This
process increased the total number of Ayah
from 6,236 to 6,910.

2. Normalization and Augmentation: To im-
prove the model’s robustness against varia-
tions in Arabic script, a data augmentation
technique was applied. For every Ayah (both
original and segmented), a duplicate version
was created with all diacritics (Tashkeel) re-
moved.

3. Template-Based Generation: The core of
the pipeline involves embedding the pro-
cessed religious texts into contextual tem-
plates. A set of common prefixes and suffixes
were manually curated for both Ayahs and Ha-
diths based on a qualitative analysis of com-
mon citation patterns in contemporary Arabic
writing. The lists in Table 13 provide the com-
prehensive examples of suffix and prefix of
the rule-based templates.

The data distribution after these preprocessing
and augmentation is shown in Table 1c.

4.3 Dataset Splits
The synthetic data generation pipeline produced a
corpus from 43,902 unique religious texts. This
corpus was split into the internal training and vali-
dation sets to fine-tune the AraBERTv2 model. A
70/30 split was employed, allocating 70% of the
unique source texts for the training set and 30%
for the internal validation set. The template-based

Methodology Dev F1 Test F1
Rule-Based Model 65.08% 66.97%
Ablation Baselines:
Database Lookup 52.00% 34.80%
Basic Fine-Tuning 33.00% 44.70%

Table 2: Comprehensive results across development
and test sets compared to ablation baselines.

generation process was then applied to these parti-
tioned texts, resulting in the final example counts
shown in Table 1a. For final evaluation, the offi-
cial datasets provided by the shared task organizers
was used. The model’s performance on the devel-
opment set (referred to as ”Dev F1” in Table 2) was
measured against the organizers’ manually anno-
tated ‘dev SubtaskA‘ files, containing 210 records.
The final competition score (referred to as ”Test
F1”) was evaluated on the official blind test set of
190 records. The internal validation set was used
exclusively for hyperparameter tuning and to pre-
vent overfitting during the fine-tuning phase.

5 Experimental Setup
5.1 Evaluation Metric
The official evaluation metric for the task is the
Macro-Averaged F1 Score computed at the char-
acter level (Mubarak et al., 2025). Unlike span-
based evaluation, this metric treats each character
of the response string as an independent classifi-
cation unit, assigning it one of three labels: Ayah,
Hadith, or Neither. The F1 score is then computed
as the harmonic mean of Precision (P) and Recall
(R). The macro-averaged F1 score computes the
F1 score for each class independently and then av-
erages them, giving equal weight to each class re-
gardless of its frequency. This character-level eval-
uation ensures the system is assessed on its abil-
ity to precisely identify the boundaries of religious
texts at the finest granularity, making it more strin-
gent than span-based metrics (Tjong Kim Sang and
De Meulder, 2003).

6 Results
6.1 Ablation Study Analysis
Comprehensive ablation studies were conducted
to evaluate the proposed rule-based synthetic data
generation approach against two baseline method-
ologies: database lookup and basic fine-tuning
without synthetic augmentation. The experimen-
tal results demonstrate substantial superiority of



the rule-based model across both evaluation sets.
As presented in Table 2, the rule-based approach
achieved macro F1 scores of 65.08% on the de-
velopment set and 66.97% on the official test set.
The baseline models performed significantly worse
on the development set, with the database lookup
method achieving an F1 score of 52% and the basic
fine-tuning approach achieving 33%. While both
baselines showed limitations, the results validate
the effectiveness of principled synthetic data gener-
ation, demonstrating a performance improvement
of 22.27% over basic fine-tuning on the official test
set.

7 Error Analysis
The error analysis was conducted on the develop-
ment set, detailed in Appendix F, as the ground
truth for the final blind test set was not provided
by the shared task organizers.

7.1 Impact of Class Imbalance
A significant class imbalance exists, with the ’Nei-
ther’ class comprising 67.8% of characters, while
’Ayah’ and ’Hadith’ account for only 20.2% and
12.0%, respectively (see Appendix C). This class
imbalance is reflected in the F1-scores: 0.90 for
the majority ’Neither’ class, 0.67 for ’Ayah’, and
a significantly lower 0.39 for the ’Hadith’ class.
The primary weakness is identifying Hadith, a chal-
lenge compounded by their narrative style and sig-
nificant textual variance across different Hadith
books, making them harder to distinguish, in com-
parison to Quranic verses.

7.2 Span-Level Error Patterns
A span-level analysis reveals the model produced
more False Negatives (101 missed spans) than True
Positives (78 correct spans). Missed spans were
comparable in length to correctly identified ones,
suggesting the model tends to miss entire citations.
Conversely, False Positives were predominantly
short fragments, indicating a tendency to misclas-
sify small, unrelated phrases.

8 Discussion
The experimental results highlight the critical role
of data quality in training models for specialized
verification tasks. Several approaches were eval-
uated, including a database lookup method and
basic fine-tuning. A generative synthetic data ap-
proach using AraGPT2 (Antoun et al., 2021) was

evaluated; however, the generative synthetic data
proved inappropriate. Using the prompt templates
shown in Table 14, the model produced signifi-
cant noise. As detailed in Appendix G and ex-
emplified in Table 15, the outputs included non-
sensical fragments and contextual hallucinations,
creating misleading training data. These results
validate that the structured, rule-based approach
to synthetic data generation was the most effective
strategy for this task. The system’s primary chal-
lenge remained in Hadith identification, where per-
formance was hindered by significant textual vari-
ation in narrations across the six major books of
Hadith. This high degree of narrative variation, un-
like the uniformity of Quranic verses, poses a sig-
nificant modeling challenge.

9 Conclusion

This paper presented the Isnad AI system for iden-
tifying religious citations in LLM outputs using
fine-tuned AraBERTv2 with a novel rule-based
synthetic data generation pipeline. The system
achieved 66.97% F1 on the test set, significantly
outperforming database lookup (34.80%) and ba-
sic fine-tuning (44.70%), validating the effective-
ness of principled synthetic data generation for spe-
cialized verification tasks. The primary limitation
was Hadith identification (F1: 0.39 vs. Quranic
verses: 0.67), attributed to the textual variation of
the Matn across different narrators. Future work
should confine training to a single Hadith book,
such as Sahih al-Bukhari (al Bukhari, 1871), ex-
plore class-balanced sampling, and develop tech-
niques for detecting corrupted or paraphrased ci-
tations. The latter could be achieved by enhanc-
ing the lookup baseline with fuzzy matching algo-
rithms or by augmenting the training data with syn-
thetically generated textual variations to improve
the deep learning model’s robustness.

Acknowledgments

The organizers of IslamicEval 2025 Shared Task
are gratefully acknowledged for their efforts in
creating this important benchmark for Arabic reli-
gious text processing.

References
2025. Al-Qur’an al-Karim (Mushaf al-Madinah an-

Nabawiyyah). King Fahd Complex for the Printing
of the Holy Qur’an, Medina, Saudi Arabia. Arabic



text based on the Uthmanic ��� (script), in the narra-
tion of Hafs from Asim. Corresponds to Hijri year
1446-1447 AH.

Muhammad Ismail al Bukhari. 1871. Sahih al-Bukhari.
King Fahd National Library - Riyadh.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
AraBERT: Transformer-based model for Arabic lan-
guage understanding. In Proceedings of the 4th
Workshop on Open-Source Arabic Corpora and Pro-
cessing Tools, with a Shared Task on Offensive Lan-
guage Detection, pages 9–15, Marseille, France. Eu-
ropean Language Resource Association.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2021.
AraGPT2: Pre-trained transformer for Arabic lan-
guage generation. In Proceedings of the Sixth Arabic
Natural Language Processing Workshop, pages 196–
207, Kyiv, Ukraine (Virtual). Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Kais Dukes and Nizar Habash. 2010. Morphological
annotation of Quranic Arabic. In Proceedings of the
Seventh International Conference on Language Re-
sources and Evaluation (LREC’10), Valletta, Malta.
European Language Resources Association (ELRA).

Ellbendis. 2024. Qwen3-4b-quran-lora-fine-
tuned. https://huggingface.co/Ellbendls/
Qwen3-4b-Quran-LoRA-Fine-Tuned. Accessed:
2025-08-16.

Michael A. Hedderich, Lukas Lange, Heike Adel, Jan-
nik Strötgen, and Dietrich Klakow. 2021. A survey
on recent approaches for natural language process-
ing in low-resource scenarios. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 2545–2568, On-
line. Association for Computational Linguistics.

Justdeen. 2024. Quranplus. https://huggingface.co/
justdeen/QuranPlus. Accessed: 2025-08-16.

Siheng Li, Cheng Yang, Taiqiang Wu, Chufan Shi,
Yuji Zhang, Xinyu Zhu, Zesen Cheng, Deng Cai,
Mo Yu, Lemao Liu, Jie Zhou, Yujiu Yang, Ngai
Wong, Xixin Wu, and Wai Lam. 2024. A survey on
the honesty of large language models. arXiv preprint
arXiv:2409.18786.

Hamdy Mubarak, Rana Malhas, Watheq Mansour,
Abubakr Mohamed, Mahmoud Fawzi, Majd
Hawasly, Tamer Elsayed, Kareem Darwish, and
Walid Magdy. 2025. IslamicEval 2025: The First

Shared Task of Capturing LLMs Hallucination
in Islamic Content. In Proceedings of the Third
Arabic Natural Language Processing Conference
(ArabicNLP 2025), Suzhou, China. Association
for Computational Linguistics. Co-located with
EMNLP 2025, November 5–9.

El Moatez Billah Nagoudi, AbdelRahim Elmadany, and
Muhammad Abdul-Mageed. 2022. AraT5: Text-to-
text transformers for Arabic language generation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 628–647, Dublin, Ireland. As-
sociation for Computational Linguistics.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

A Experimental Configuration

Table 3 provides the hyperparameter settings used
for fine-tuning the AraBERTv2 model (Antoun
et al., 2020).

Parameter Value
Model aubmindlab/bert-base-

arabertv2
Max Epochs 10 (with early stopping)

Learning Rate 2× 10−5

Batch Size (per device) 4
Gradient Accumulation

Steps
4

Effective Batch Size 16
Optimizer AdamW

Weight Decay 0.01
Warmup Steps 500

Mixed Precision fp16 enabled
Max Sequence Length 512 tokens

Early Stopping Patience 3 epochs

Table 3: Complete hyperparameter configuration for
model training.

Question_ID Span_Start Span_End Span_Type
A-Q001 11 25 Ayah
A-Q001 34 52 Ayah
A-Q001 67 87 Hadith

Table 4: Example submission file format.

https://aclanthology.org/2020.osact-1.2/
https://aclanthology.org/2020.osact-1.2/
https://aclanthology.org/2021.wanlp-1.21/
https://aclanthology.org/2021.wanlp-1.21/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/L10-1190/
https://aclanthology.org/L10-1190/
https://huggingface.co/Ellbendls/Qwen3-4b-Quran-LoRA-Fine-Tuned
https://huggingface.co/Ellbendls/Qwen3-4b-Quran-LoRA-Fine-Tuned
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://huggingface.co/justdeen/QuranPlus
https://huggingface.co/justdeen/QuranPlus
https://doi.org/10.48550/arXiv.2409.18786
https://doi.org/10.48550/arXiv.2409.18786
https://doi.org/10.18653/v1/2022.acl-long.47
https://doi.org/10.18653/v1/2022.acl-long.47
https://aclanthology.org/W95-0107/
https://aclanthology.org/W95-0107/
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/


B Data Structures and Format
Specifications

This appendix provides detailed specifications of
the data structures used throughout the system, in-
cluding source data formats and submission re-
quirements.

B.1 Source Data Structures

Quranic Verses The Quranic data is structured
as a JSON array, in which each object corresponds
to a single verse.

{
”surah_id”: 1,
”surah_name”: ”۰ොູ؇اܳڰ”,
”ayah_id”: 1,
”ayah_text”: ۋِࡗࡲِ” ّ֟ ීෂٱ ِ݆ ٰ َ ᆇᅵْ ّ֟ ීෂٱ ِ Մ ّ֟ ՃՂٱ ྾ِْ๎ِื”

},

Hadith The Hadith data was structured as a
JSON array, with each object representing a Ha-
dith.

{
”hadithID”: 5,
”BookID”: 1.0,
”title”: ”...”,
”hadithTxt”: ”...”,
”Matn”: ؇تِ...” ّ֟ ࿓ِ؇ܳٷ٭ِّ ᆇْᅦَ؇لُ ᕚ৙৑ا ؇َஓ ّ֟ ஁֣إ”

},

B.2 Test Data Format

The test data is in XML format, with each <Ques-
tion> block containing the LLM’s response.

<Question>
<ID>A-Q001</ID>
<Model>Model-6</Model>
<Text>لܝިن أن ஓ୷ܝ݆ ۱ܭ

<Text/>اఈఃਐಸ৖৑ء...
<Response>

اఈఃਐಸ৖৑ء... لܝިن أن ஓ୷ܝ݆ َأܾ،
</Response>

</Question>

B.3 Submission Format

The required submission is a Tab-Separated Val-
ues (TSV) file with the columns: Question_ID,
Span_Start, Span_End, and Span_Type. An
example is shown in Table 4.

C Development Set: Exploratory Data
Analysis

To better understand the composition of the dataset
used for evaluation, an exploratory data analy-
sis (EDA) was performed on the development set.
This set consists of 50 questions and their corre-
sponding responses, containing a total of 210 man-
ually annotated spans of text. The analysis was
conducted at the character level to align with the
official scoring methodology. The primary find-
ing is a significant class imbalance within the data,
as detailed in Table 5a. The ’Neither’ class, rep-
resenting text that is not part of a religious quota-
tion, constitutes over two-thirds of the total char-
acters. The ’Ayah’ class is the most represented
quotation type, accounting for 20.2% of the char-
acters, while the ’Hadith’ class is the least rep-
resented at 12.0%. Further analysis of the anno-
tated spans, summarized in Table 5b, reveals ad-
ditional insights. There are more distinct ’Ayah’
spans (118) than ’Hadith’ spans (76). A notable
characteristic is the high variance in the length of
these spans. For both classes, the standard devia-
tion is nearly as large as the mean, and the lengths
range from very short fragments to extensive pas-
sages of over 600 characters. This indicates that the
model must be capable of identifying quotations of
highly variable lengths.

D Comprehensive Data Preprocessing
Pipeline

This appendix details the rule-based data prepro-
cessing pipeline designed to transform raw Islamic
texts into a high-quality training corpus for token
classification. The architecture is composed of five
sequential stages: (1) Data Acquisition and Valida-
tion, (2) Text Preprocessing and Augmentation, (3)
Template-Based Data Generation, (4) Dataset Par-
titioning, and (5) Tokenization with Label Assign-
ment.

D.1 Stage 1: Data Acquisition and Validation
The initial corpus was established from two pri-
mary sources provided by the shared task or-
ganizers: the Quranic corpus, containing 6,236
verses (Ayahs), and a Hadith collection of 34,662
prophetic narrations. During acquisition, tex-
tual content was extracted from designated fields
within the source JSON files: ‘ayah text‘ for the
Quran and ‘Matn‘ (the core narrative) for the Ha-
dith. To ensure corpus integrity and manage com-



Class Count Pct.
Neither 44,273 67.8%
Ayah 13,173 20.2%
Hadith 7,864 12.0%

Total 65,310 100.0%

(a) Character-level class distribution.

Class Spans Mean Std. Min Max
Ayah 118 111.6 105.1 6 678
Hadith 76 103.5 93.0 8 690

(b) Descriptive statistics for annotated spans.

Table 5: Summary of the development set’s class distribution by character count (a) and annotated span statistics
(b).

putational resources, two validation measures were
implemented:

• Length Threshold: A maximum text length
of 1,500 characters was imposed to prevent
memory overflow, while retaining the vast
majority of authentic texts.

• Encoding Validation: All texts were vali-
dated for proper UTF-8 encoding to ensure
correct handling of the Arabic script.

D.2 Stage 2: Text Preprocessing and
Augmentation

This stage addresses linguistic and tokenizer-
specific challenges through text segmentation and
script normalization.

D.2.1 Text Segmentation
To accommodate the processing limitations of the
AraBERTv2 tokenizer, texts exceeding a 25-token
threshold were systematically segmented. The
segmentation algorithm identifies the approximate
midpoint of a text and performs a backward search
for the nearest word boundary (whitespace). This
content-aware strategy prevents splitting words,
thus preserving semantic coherence. This pro-
cess expanded the initial 6,236 Quranic verses into
6,910 processable text segments. While some
Quranic verses remained long even after bisection,
the split was limited to two parts to minimize the
risk of excessive fragmentation and loss of contex-
tual meaning; multi-part splitting strategies are re-
served for future work.

D.2.2 Arabic Script Normalization
To enhance model robustness against script varia-
tions, a data augmentation strategy involving dia-
critic removal was applied. For each Ayah (origi-
nal and segmented), a normalized variant was gen-
erated by removing all diacritical marks (Tashkeel)
and the Tatweel character, which correspond to
the Unicode range [\u064B-\u0652\u0640]. This

technique effectively doubled the unique Ayah cor-
pus to 13,456, ensuring the model can recognize
verses regardless of their vocalization.

D.3 Stage 3: Template-Based Contextual
Generation

This stage is the core of the synthetic data gener-
ation pipeline, designed to programmatically cre-
ate a large-scale, high-quality training corpus. The
primary objective is to embed the clean, prepro-
cessed religious texts from the previous stage into
varied contextual templates, thereby simulating
the patterns commonly observed when Large Lan-
guage Models (LLMs) cite religious sources. The
generation process is algorithmic and designed to
produce multiple unique examples from a single
source text, significantly augmenting the dataset.
For each source text (either a Quranic Ayah or a
Hadith), the system executes the following steps,
as illustrated in the workflow diagram in Figure 2
3:

1. Template Component Selection: Based on
the text’s label (Ayah or Hadith), the sys-
tem randomly selects a corresponding pre-
fix and suffix from a manually curated list.
These lists, detailed in the paper’s Table 13,
contain common introductory and concluding
phrases used in contemporary Arabic writing
to cite religious texts.

2. Contextual Enrichment: To enhance the re-
alism of the generated examples, a neutral
or transitional sentence is added with a 30%
probability. This sentence is randomly se-
lected from a predefined list and is inserted
either before or after the religious text to break
simplistic patterns and better mimic the flow
of natural language.

3. Concatenation and Normalization: The se-
lected components are combined in one of the
following structures:



• suffix + source_text + prefix
• + source_text + neutral_context + prefix

suffix
• + neutral_context + source_text + prefix

suffix
The resulting string is then normalized to en-
sure consistent spacing.

4. Span Detection and Labeling: The exact
start and end character indices of the orig-
inal source_text are programmatically lo-
cated within the final concatenated string
(full_text). This step is critical for creat-
ing the precise character-level annotations re-
quired for training.

This automated process was applied to the par-
titioned source texts, ultimately generating 93,099
examples for the training set and 40,626 for the val-
idation set. The final output is a structured dataset
where each entry contains the original text, the
newly generated contextual sentence, and the pre-
cise citation boundaries. An example of the final
generated data structure is shown in Table 6.

D.4 Stage 4: Dataset Partitioning
A systematic partitioning strategy was applied at
the source text level to create distinct training and
validation sets. The corpus of unique source texts
was split using a 70-30 ratio, allocating 30,548
texts for training and 13,354 for internal validation.
This split was performed using stratified sampling
to preserve the original distribution of Ayah and
Hadith texts in both partitions. A fixed random
seed (42) was used to ensure the reproducibility of
the splits.

D.5 Stage 5: Tokenization and Label
Assignment

The final stage converts the generated examples
into a format suitable for model training.

• BIO Schema: A five-class BIO (Beginning-
Inside-Outside) tagging schema was em-
ployed: O (Outside), B-Ayah, I-Ayah, B-
Hadith, and I-Hadith. This schema allows
the model to learn the precise boundaries of
each citation type.

• Tokenization and Alignment: Each exam-
ple was tokenized using the AraBERTv2 to-
kenizer with a maximum sequence length of
512 tokens. The character-level span indices

were mapped to their corresponding token in-
dices. The first token of a span was assigned
the ’B’ label, subsequent tokens within the
span received the ’I’ label, and all other to-
kens were labeled ’O’. To handle subword to-
kenization, continuation tokens within a word
were assigned an ignore index of -100, ensur-
ing that the loss function only considers the
primary token of each word.

D.5.1 Validation Framework
A multi-tiered validation approach was used for
comprehensive performance assessment.

• Internal Validation Set: Created from the
30% partition of the original source texts.
This set, containing approximately 40,626
synthetically generated examples, was used
exclusively for hyperparameter optimization
and model selection during development. To
test generalization, the templates used to gen-
erate these examples differed from those used
for the training set.

• Official Development Set: A set of 210 man-
ually annotated examples provided by the task
organizers. This set was used to evaluate the
model’s ability to generalize from synthetic
data to authentic LLM-generated content.

• Official Test Set: A blind set of 190 exam-
ples used for the final competitive evaluation.
Performance on this set determined the final
reported scores.

D.5.2 Quality Control
Several measures were implemented to ensure the
integrity of the generated dataset:

• Failure Tracking: Generation failures, such
as span detection errors, were tracked, and
only successfully generated examples were in-
cluded in the final corpus.

• Data Validation: Routine checks were per-
formed to verify character encodings, label
consistency, and the integrity of tokenizer
outputs.

• Statistical Monitoring: Statistics on the
class distribution and the ratio of source texts
to generated examples were monitored for
transparency.



or
ig
in
al
_t
ex
t

fu
ll_

te
xt

pr
efi

x
su
ffi
x

ch
ar
_s
ta
rt

ch
ar
_e
nd

la
be

l_
ty
pe

ta
rg
et
_s
pa

n
va
ria

tio
n_

nu
m
be

r
da

ta
se
t_
sp
lit

؇ᆙᆘܾ
੆وࠍ

۰۳៺
ًܾڰ؇

دَ؇۱
وأ݁ڎ

ዛውިن
૰૏

ܾ۱؇
݁ڎدَ

”وأ
.ඔ൹ٷ

గጻޝ݁
ዧ۰ال

۱ڎ
۱ڍا

ሒᇭو
:Մ៰Ղا

؇ت
݆آل

و݁
۰ஓ୷ா

ண۰
ن”آل

ިዛው૰
૏؇ᆙᆘ

ܾ੆ࠍ
۰۳و

៺؇ڰ
ً

:Մ៰Ղا
؇ت

݆آل
و݁

۰ஓ୷ா
ண۰

آل
40

72
Ay

ah
؇ᆙᆘܾ

੆وࠍ
۰۳៺

ًܾڰ؇
دَ؇۱

وأ݁ڎ
ዛውިن

૰૏
1

tra
in

in
g

ඔ൹ًᄔ
ჼగጻዧ

ި݁٪ڍ
ܭل

ڣިل
ଫଊ༟ة

ዻዧᄳ
ᄟو”

ඔ൹ًᄔ
ჼగጻዧ

ި݁٪ڍ
ܭل

”ڣިل
:Մ៰Ղا

؇ت
݆آل

و݁
દઊଫଊ

గጻዧأٺ
:Մ៰Ղا

؇ت
݆آل

و݁
દઊଫଊ

గጻዧأٺ
ଫଊ༟ة

ዻዧᄳ
ᄟو

16
35

Ay
ah

ඔ൹ًᄔ
ჼగጻዧ

ި݁٪ڍ
ܭل

ڣިل
2

tra
in

in
g

Ta
bl

e
6:

Ex
am

pl
e

of
Fi

na
lG

en
er

at
ed

D
at

a
St

ru
ct

ur
e



Figure 1: Data preprocessing pipeline transforming 40,898 raw Islamic texts into 133,725 training and validation
examples through filtering, augmentation, and template-based generation.



Figure 2: A high-level diagram of the data prepossessing pipeline



Figure 3: A high-level diagram of the rule-based data generation process.



(a) Character-Level Confusion Matrix (Rule-Based Model)
(b) Distribution of Span Lengths for TP, FP, and FN (Rule-
Based Model)

Figure 4: Span-Level Error Logging for the Rule-Based Model.

(a) Character-Level Confusion Matrix (Fine-tuned Model)
(b) Distribution of Span Lengths for TP, FP, and FN (Fine-
Tuned Model)

Figure 5: Performance by Span Length for the Basic Fine-Tuning Model.

(a) Character-Level Confusion Matrix (Lookup Method)
(b) Distribution of Span Lengths for TP, FP, and FN (Lookup
Method)

Figure 6: Performance by Span Length for the Lookup Method.



E Database Lookup Methodology

This appendix provides a detailed, step-by-step de-
scription of the database lookup method, which
was implemented as a key baseline in the ablation
study (see Table 2). This method relies on direct
string matching against an enhanced knowledge
base, serving as a non-neural benchmark to eval-
uate the performance of the fine-tuned model. The
entire process can be broken down into two main
stages: (1) Knowledge Base Enhancement and (2)
The Span Detection Algorithm.

E.1 Stage 1: Knowledge Base Construction
and Enhancement

The effectiveness of a lookup-based approach is
highly dependent on the comprehensiveness of its
knowledge base. To maximize the chances of find-
ing a match, the raw source texts were signifi-
cantly augmented through a multi-step enhance-
ment pipeline.

E.1.1 Initial Data Loading
The process begins by loading the complete set
of Quranic verses and Hadith narrations from
the source JSON files provided by the task orga-
nizers (quran.json and six_hadith_books.json).
The core textual content is extracted from the
ayah_text field for Quranic verses and the Matn
field for Hadiths. These texts form the initial, un-
processed knowledge base.

E.1.2 Arabic Script Normalization
To handle variations in Arabic script and vocaliza-
tion, a normalization function was applied to every
text in the knowledge base. This function removes
all Arabic diacritics (Tashkeel) and the Tatweel
character by targeting the Unicode range [\u064B-
\u0652\u0640]. This step is crucial because LLM
outputs may not include the same diacritics as
the canonical source texts, and this normalization
makes the matching process robust against such
differences.

E.1.3 Text Segmentation for Partial Matching
LLMs often cite partial verses or fragmented Ha-
diths. To account for this, a text segmentation strat-
egy was implemented. Any text (both original and
normalized) is split into smaller, overlapping seg-
ments. The algorithm generates segments ranging
from a minimum of 5 words to a maximum of 15
words, with a step size of 3 words. This process

creates a large set of smaller text chunks. For ex-
ample, a 20-word Hadith would be broken down
into multiple 5-word, 6-word, ..., up to 15-word
segments. This significantly increases the likeli-
hood of detecting a partial citation.

E.1.4 Final Knowledge Base Aggregation
The final, enhanced knowledge base is an aggre-
gation of multiple text variations for each original
Ayah and Hadith. For each source text, the knowl-
edge base contains:

1. The original, unaltered text.

2. The normalized (diacritic-free) version of the
text.

3. All overlapping segments generated from the
original text.

4. All overlapping segments generated from the
normalized text.

This augmentation process results in a massive in-
crease in the number of potential strings to search
for, thereby improving the recall of the lookup
method.

E.2 Stage 2: Span Detection Algorithm
With the enhanced knowledge base constructed,
the span detection algorithm processes each LLM
response to identify matching text.

E.2.1 Prioritization of Longer Matches
To ensure the quality of the matches, all entries in
the enhanced Ayah and Hadith knowledge bases
are sorted by string length in descending order.
The detection algorithm iterates through these
sorted lists, meaning it always attempts to match
the longest possible text segments first. This is
a critical step that prevents a short, partial match
(e.g., a 5-word segment) from being identified if
it is already part of a larger, more complete match
(e.g., the full 30-word Ayah).

E.2.2 Iterative String Matching
For each LLM response, the algorithm iterates
through every entry in the sorted knowledge bases
(first Ayahs, then Hadiths). It uses a standard sub-
string search to find all occurrences of a given
knowledge base entry within the response text.



E.2.3 Overlap Prevention
To avoid redundant or overlapping annotations, the
algorithm maintains a character-level boolean ar-
ray for each response text, which tracks whether
a character has already been assigned to a span.
When a potential match is found, the algorithm
checks this array to see if any character within the
candidate span has already been classified. If there
is no overlap, the span’s start and end indices are
recorded, and the corresponding characters in the
tracking array are marked as classified. This en-
sures that once a sequence of text is identified as
an Ayah, it cannot also be partially or wholly iden-
tified as another Ayah. If, after searching through
the entire knowledge base, no spans are found for
a given response, a ”No_Spans” entry is recorded
for that Question ID, as per the task requirements.

F Appendix: Development Set Error
Analysis

This entire error analysis is conducted on the offi-
cial development set provided by the shared task
organizers, which consists of 210 manually anno-
tated records.

F.1 Rule-Based Model Development Results
The rule-based model achieved a Macro F1 of 65%
on the development set. The detailed character-
level report is shown in Table 7.

Class Precision Recall F1-Score
Neither 0.85 0.96 0.90
Ayah 0.81 0.56 0.66
Hadith 0.47 0.33 0.39

Accuracy 0.81
Macro Avg 0.71 0.62 0.65
Weighted Avg 0.80 0.81 0.80

Table 7: Character-Level Classification Report for the
Rule-Based Model.

F.1.1 Further Error Analysis
Table 8 provides descriptive statistics for the
lengths of true positive, false positive, and false
negative spans.

Category Count Mean Min Max
True Positives 78 108.59 20 541
False Positives 61 69.62 3 795
False Negatives 101 104.78 6 690

Table 8: Span Length Statistics (Rule-Based Model).

F.2 Basic Fine-Tuning Development Results
The basic fine-tuning model achieved a Macro F1
of 33% on the development set. The detailed re-
port is shown in Table 9.

Class Precision Recall F1-Score
Neither 0.69 0.95 0.80
Ayah 0.87 0.09 0.16
Hadith 0.04 0.01 0.02

Accuracy 0.67
Macro Avg 0.53 0.35 0.33
Weighted Avg 0.65 0.67 0.59

Table 9: Development set classification report for the
basic fine-tuning approach.

F.2.1 Further Error Analysis
Table 10 presents the descriptive statistics for span
lengths.

Category Count Mean Min Max
True Positives 12 111.33 33 247
False Positives 13 184.46 6 1488
False Negatives 173 110.21 6 690

Table 10: Span Length Statistics (Basic Fine-Tuning).

F.3 Database Lookup Development Results
The database lookup approach achieved a Macro
F1 of 52% on the development set. The detailed
classification report is shown in Table 11.

Class Precision Recall F1-Score
Neither 0.74 0.88 0.80
Ayah 0.80 0.30 0.44
Hadith 0.34 0.31 0.32

Accuracy 0.70
Macro Avg 0.62 0.50 0.52
Weighted Avg 0.70 0.70 0.68

Table 11: Development set classification report for the
database lookup approach.

The database lookup approach shows a signifi-
cant class imbalance in its performance. While it
achieves high recall for the ”Neither” class (88%),
its ability to identify religious texts is limited. For
”Ayah” spans, the model has good precision (80%)
but low recall (30%), indicating it is confident
when it makes a prediction but misses many actual
verses. The performance on ”Hadith” spans is poor
across all metrics (F1-score of 32%). This model’s
tendency to over-predict the ‘Neither‘ class high-



lights the inherent difficulty of relying solely on
exact-match lookups for this task.

F.3.1 Further Error Analysis
Table 12 provides descriptive statistics for span
lengths of the lookup method.

Category Count Mean Min Max
True Positives 57 130.49 21 690
False Positives 467 12.19 2 71
False Negatives 109 93.11 6 677

Table 12: Span Length Statistics (Lookup Method).

G Generative Data Augmentation
Ablation Study

As referenced in the discussion, an ablation study
was conducted to evaluate the efficacy of using
a generative Large Language Model for synthetic
data augmentation. This approach, was compared
against the primary rule-based methodology to de-
termine its suitability for creating a training corpus.
This appendix details the complete methodology,
from data preprocessing to the final generation of
contextualized examples.

Methodology
The generative approach utilized the
aubmindlab/aragpt2-base model, a transformer-
based model for Arabic language generation,
accessed via the Hugging Face ‘transformers‘
library. The core strategy was to embed authentic
religious texts into open-ended prompt templates
and have the model generate a plausible contin-
uation, thereby creating a full, contextualized
sentence around the original text.

1. Data Preprocessing
Before being used in prompts, the raw source texts
underwent several preprocessing steps to increase
data diversity and manage sequence length:

• Text Loading: The full set of Quranic verses
(Ayahs) and Prophetic narrations (Hadiths)
were loaded from their respective source
JSON files.

• Text Splitting: Quranic verses exceeding
a 25-token limit (as determined by the
AraBERTv2 tokenizer) were split into two
smaller segments. This was done to prevent
truncation and ensure the model could pro-
cess the entire text.

• Normalization Augmentation: To make the
model robust to script variations, a duplicate
version of each Ayah was created with all dia-
critics (Tashkeel) removed. The final pool of
texts for generation included originals, split
segments, and their normalized counterparts.

G.1 Template Examples for Data Generation
The core of the generative augmentation strat-
egy involved embedding authentic religious texts
within specific prompt templates to simulate
natural-language citations. As shown in Table
14, these prompts were designed to frame the re-
ligious text as evidence or a quotation within a
larger sentence. During the generation process, the
text placeholder was dynamically replaced with a
Quranic verse or Hadith, which was then used to
prompt the AraGPT2 model to generate a contex-
tual continuation.

As referenced in Section 8, an ablation study
was conducted to evaluate the efficacy of using
a generative Large Language Model for synthetic
data augmentation. This approach was compared
against the primary rule-based methodology to de-
termine its suitability for creating a training corpus
for the verification task. This appendix details the
methodology, the prompt templates used, and the
analysis of its significant limitations.

G.1.1 Generative Process
For each religious text, the following generative
process was executed:

1. A prompt template was selected at random
from the list above.

2. The religious text was inserted into the tem-
plate.

3. The complete prompt was passed to the
AraGPT2 text-generation pipeline with spe-
cific parameters:

• max_new_tokens=30: To generate a
short, contextual continuation rather
than a long, potentially divergent para-
graph.

• no_repeat_ngram_size=2: To prevent
the model from getting stuck in repeti-
tive loops and improve the quality of the
generated text.

4. The model’s output, a new, longer string con-
taining the original text, was captured as the
‘full text‘.



5. Finally, the character start and end indices of
the original ‘span text‘ were located within
the newly generated ‘full text‘ to create the fi-
nal labeled data point. A fallback mechanism
was included to use the prompt itself if the
generation process failed.

Table 16 provides examples of the final struc-
tured data produced by this pipeline.

G.2 Limitations and Analysis of Generated
Data

While the objective was to create diverse train-
ing examples, the generative methodology proved
inappropriate for this verification task.The out-
puts were frequently plagued by factual inaccu-
racies, nonsensical statements, and linguistic arti-
facts, introducing significant noise into the training
data.For a verification task in a sensitive domain
like Islamic studies, the integrity of the source
text and its context is paramount.The generative
model’s tendency to ”hallucinate” or produce il-
logical continuations is a critical failure that under-
mines the purpose of the training data, as it creates
misleading training signals. Table 15 provides rep-
resentative examples of these failure modes.



Component Training Examples Validation Examples

Ayah Prefixes

:ሌᇿ؇ّأ Մ៰Ղا ڢ؇ل
و༥ܭ: ਲ਼؜ Մ៰Ղا وڢ؇ل

:ቕሹ୍ଲاܳـ اܳگݠآن ሒᇭ ورد პაႰ
:Մ៰Ղا ঺঒؇ب ሒᇭو
:Մ៰Ղا آل؇ت و݆݁

:ሌᇿ؇وّأ َ۬؇༲ݿٴ لگިل
:Մ៰Ղا لگިل اܳލ؊ن ۱ڍا ሒᇭو

෠ຶڎ: ቕሹ୍ଲاܳـ اܳگݠآن ሒᇭو
:Մ៰Ղا آل؇ت و݆݁
:Մ៰Ղا أߖ߳ل وڢڎ

:ሌᇿ؇وّأ ਊಾ؇رك اࠍ੆ݑ لگިل و
اࠍ੆ܝࡗࡲ: ாணᄳᄟا ሒᇭو
َگݠأ: Մ៰Ղا ঺঒؇ب ሒᇭو
:ሌᇿ؇ّأ ᄩᄟިڢ ዻዧذ আॻ༟ واᄴᄟܳ٭ܭ

Ayah Suffixes

اܳأޙࡗࡲ Մ៰Ղا ݬڎق
۰ஓ୷ாண آل۰

ቕሹ୍ଲاܳـ اܳگݠآن ݆݁
و༥ܭ ਲ਼؜ Մ៰Ղا ఈ႙၍م
اࠍ੆ܝࡗࡲ ாணᄳᄟا ݆݁

દઊଫଊأٺగጻዧ ଫଊ༟ة ዻዧᄳᄟو
ይዧٷ؇س ਃಸ؇ن و۱ڍا

Մ៰Ղا ఈ႙၍م ݆݁ ۱ڍا
؜ޙ٭۰݄ آل۰

ቕሹ୍ଲاܳـ اܳگݠآن ݆݁
ඔ൹ৎ৊؇اܳأ رب ఈ႙၍م
اࠍ੆ܝࡗࡲ ாணᄳᄟا ݆݁
۰ஓ୷ ாண آل۰
اܳأޙࡗࡲ) Մ៰Ղا (ݬڎق

Hadith Prefixes

وݿ޺޾: ༟ܹ٭۬ Մ៰Ղا আॻݬ Մ៰Ղا رݿިل ڢ؇ل
وݿ޺޾: ༟ܹ٭۬ Մ៰Ղا আॻݬ ม฀اܳٷ وڢ؇ل
وݿ޺޾: ༟ܹ٭۬ Մ៰Ղا আॻݬ ม฀اܳٷ ؜݆

ڢ؇ل: وݿ޺޾ ༟ܹ٭۬ Մ៰Ղا আॻݬ ม฀اܳٷ أن روى
ا๤དྷܳلژ: ೓ಱڎ੆اࠍ ሒᇭو

ڢ؇ل: ؜ٷ۬ Մ៰Ղا ๴ཚر ۱ݠߌߵة ሒᇀأ و؜݆

ل۰: اܳٷٴި اܳފٷ۰ ሒᇭو
وݿ޺޾: ༟ܹ٭۬ Մ៰Ղا আॻݬ ม฀اܳٷ ۱ڎي و݆݁
وݿ޺޾: ༟ܹ٭۬ Մ៰Ղا আॻݬ اෂීݿިل గఒ༟ٷ؇ وڢڎ

෠ຶڎ: ا๤དྷܳلژ ೓ಱڎ੆اࠍ ሒᇭو
:೓ಱڎ੆اࠍ ሒᇭ ༥؇ء პაႰ

Hadith Suffixes

اܳٴ༱؇ري رواه
݁ފ޺޾ رواه
ොේ٭ں ೓ಱڎ༡

وݿ޺޾ ༟ܹ٭۬ Մ៰Ղا আॻݬ
ل۰ اܳٷٴި اܳފٷ۰ ݆݁
༟ܹ٭۬) (݁ٺڰݑ

وݿ޺޾ ༟ܹ٭۬ Մ៰Ղا আॻݬ ڢ؇ل პაႰ أو

ل۰ اܳٷٴި اܳފٷ۰ ݆݁
๤ཇلژ ਊ಻ިي ೓ಱڎ༡
اৎ৊ݱޚࠕࠥ ۱ڎي ݆݁
وݿ޺޾ ༟ܹ٭۬ Մ៰Ղا আॻݬ

اଫଐܳ݁ڍي) (رواه

Neutral & Transition Sentences

૭૙ྥٷٺھ. أن ஓ୷ܝٷٷ؇ ،ዻዧذ আॻ༟ و਍ಸ؇ء
ا๤དྷྥܳلؕ. ؜ޙ۰݄ ༃لިࡵ و۱ڍا
.ඔ൹ޝ݁ٷగጻዧ ۱ڎال۰ ۱ڍا ሒᇭو

لأگߺࠊن. ܳگިم ৚৑ل؇ت ዻዧذ ሒᇭ إن
.༃ဒීاෂا اܳگިل ި۱ و۱ڍا

ً ݁أ؇ وܳٷٺ؊݁ܭ
اܳފ٭؇ق ۱ڍا ሒᇭو
وይዧٺިݪ٭ں
اৎ৊ټ؇ل ુળܳ٭ᎂو

اܳݱڎد ۱ڍا ሒᇭو
اৎ৊ިݪިع. أᆇᆅ٭۰ ܳٷ؇ ඔඐਊಱ و۱ڍا

Table 13: Template for rule-based data generation across training and validation sets.



Component Arabic Examples English Translation
Prompt Tem-
plates أن আॻ༟ ࢴࣖل و۱ڍا {text}، :ሒᇿ؇اܳٺ ً؇ܳٷݧ ዝདྷྥ૭ُ૏ڎ The following text is cited: {text}, and

this indicates that

:ሒᇿ؇اܳٺ اܳٷݧ ،ᄭᄟ؊ފৎ৊ا ۱ڍه আॻ༟ ا๤དྷܳ؜٭۰ ᄭᄟد৙৑ا ݆݁
أن ዻዧذ ݆݁ لڰ۳ُܾ و {text}،

Among the legal evidence for this issue
is the following text: {text}, and it is
understood from this that

{text}، :ሒሃو ،۰݄ዛᔻ ڢݯ٭۰ ሒᇿ؇اܳٺ اܳٷݧ ཯ྥٷ؇ول
أن ۋ٭ت

The following text addresses an impor-
tant issue, which is: {text}, as

๤ཛྷ؇أৎ৊ا واڢأٷ؇ ሒᇭ }text{، :ᄩᄟިڢ ݆݁ ا৖৑ݿٺڰ؇دة ஓ୷ܝ݆
لݑ ޗݠ ؜݆

We can benefit from the saying: }text{,
in the contemporary reality by

Table 14: Prompt templates used for the generative data augmentation experiment. The {text} placeholder was
replaced with an authentic religious text.

Original Text (Ayah) Full Generated Output Analysis of Failure

ڎوُرِ اܳݱّ֡ ࢻِࣕاَتِ ٌ ༟َܹࡗِࡲ ُ ۬ ّ֟ إَ֣ ۗ َ ᕡ ّ֟ ݿَ޺ َ Մ ّ֟ ՃՂا ّ݆֟ وَܳـَٰܝِ ِਵਦْ ᕚ৙৑ْا ሒِᇭ ْ وَܳٺَٷََ؇ز؜َْࡤࡲُ
:ᄩᄟިڢ ݆݁ ا৖৑ݿٺڰ؇دة ஓ୷ܝ݆
؜݆ ๤ཛྷ؇أৎ৊ا واڢأٷ؇ ሒᇭ {text}،
لݑ ޗݠ ౏టոاڤ׫ ౏టոׂ ۝ܙل ا
ոֿزڲܙոຖ ، اिऻ׾ּܙن

Nonsensical Artifact:
The generated con-
tinuation (in bold) is
grammatically incorrect
and semantically mean-
ingless. It represents the
“illogical artifacts” men-
tioned in the discussion,
creating a confusing
and useless training
example.

و݁؇ ஓஇݠه ݆݁ ܳ٭؊ၯ၍ިا

{text}، :ሒᇿ؇اܳٺ ً؇ܳٷݧ ዝདྷྥ૭ُ૏ڎ
أن আॻ༟ ࢴࣖل و۱ڍا اڤרܙع ٢׾ا
ټ׭જੴة ോ്מ١ ؔܙاࠢࡇ ႚ႐ ١٤ᝥոاڤء ڲڷ
ਫ਼੊ץ١ ࣷ࣬ຐ ฝ്׫ܙي أֿٝ ؼמ֛ ،
ඒ൷اڤ ١ॴటاڤ֏׾ا اॊूڤמոف ڲڷ ոຐڤמ١
اڤ֔׿ࠥࡇ ڲڷ ١ֵոؓاڤܙ ᆃᅞ ຐոਫ਼੍׿
اڤ෕ເ܈ոن ڲ׭ڞ اদগॊूاض ڲڷ
اڤؠڪ֦ وأদগاض

Contextual Hallumina-
tion: The model cor-
rectly identifies the text
fragment as relating to
food but proceeds to hal-
lucinate a detailed, mod-
ern nutritional context
(fiber, cancer, heart dis-
ease) that is not present
in the original Quranic
narrative. This creates
a factually incorrect and
misleading association.

Table 15: Examples of incorrect and nonsensical data produced by the AraGPT2-based generative augmentation
method.



Fu
ll
G
en

er
at
ed

Te
xt

(fu
ll_

te
xt
)

O
rig

in
al

Sp
an

(sp
an

_t
ex
t)

St
ar
t(
ch
ar
_s
ta
rt
)

En
d
(c
ha

r_
en

d)
La

be
l(
la
be

l_
ty
pe

)

َ۬؇༲
Մݿٴ

៰Ղنا
আॻأ

༟ل
اࢴࣖ

و۱ڍ
،ۖጥ

጑༥ߓߵ
ݥ

ار܋
:ሒᇿ؇

ݧاܳٺ
ً؇ܳٷ

ዝདྷڎ
ྥ૭ُ૏

؇ਃ಻ᄴ
ᄟިرا

݆أ݁
޺޾݁

৖ّأ
৑؇݁

۹గఒ
يلأ

ᄳᄟا
و۱ި

ك،
يߌߵا

ᄳᄟا
ި۱ሌ

ᇿ؇وّأ
ڎأَ۬

෠ຶቕ
ሹ୍ଲ

ناܳـ
اܳگݠآ

ሒᇭ؇
ّ؊ܹ݁ٷ

وᎂذا
රඝة.

৚৑وا

ۖጥ጑
༥ߓߵ

ݥ
ار܋

22
34

Ay
ah

৖ً৑ْިَڢ
ڢَُިُܳިا

و َՄ ֟ ّՃ
Ղُިاا

֟گ :اّّ
ሒᇿ؇ٺ

ݧاܳ
،اܳٷ

ᄭᄟ؊ފ
ৎ৊ها

۱ڍ
আॻ༟

๤؜٭۰
དྷܳاᄭ

ᄟد৙৑
݆݁ا

ۜص
݁ފٺ

ި۱؇
،و݁

ܾዛዀܹ
༟ص

واۏ
ި۱؇

وا݁
ாணࣕࢴ

ዻأن
ዧ݆ذ

ܾ݁
ولڰ۳ُ

ࢴِࣖاً،
ݿَڎ

ݿ޺޾.
٭۬و

ܹ༟Մ
៰Ղاআ

ॻݬ
ᄩᄟިݿ

ሌور
ᇿ؇ّأ

Մ៰Ղا
۰༟؇ޗ

ሒᇭه
ڎ݁ި

༱ٺ૭
૏أن

،و
ܾୖ୒

ڎࢴِࣖاً
৖ًݿَ

৑ْިَڢ
ڢَُިُܳިا

و َՄ ֟ ّՃ
Ղُިاا

֟گ اّّ
48

91
Ay

ah

Մ៰Ղا
تأن

ۋ٭
،ۖ َՄ ֟ ّՃ

Ղا৖
֟ ّ৑֣وُاإ

ّأَٴْڎُ
৖֟ ّ৑ ᕚأ

:ሒሃ
۰،و

݄ዛᔻ
ݯ٭۰

ሒᇿڢ
اܳٺ؇

ݧ
لاܳٷ

཯ྥٷ؇و
݆݁

౪ڍوا
౜ద৖

৑ن
،وأ

إل؇ه
৖৑إ

ٴڎوا
৖لأ

৑ن
؊ًඔ

൹ޝ݁ٷ
ৎ৊ها

؜ٴ؇د
ਵਦأ

ሌڢڎ
ᇿ؇ّأ

وأن
؇ء،

ނڰأ
৖৑و

وܳ٭؇ء
وَ۬أ

د

ۖ َՄ ֟ ّՃՂا
৖֟ ّ৑֣إ

ٴْڎُوُا
৖ّأَ

֟ ّ৑ ᕚأ
34

59
Ay

ah

Ta
bl

e1
6:

Ex
am

pl
es

of
th

efi
na

ls
tru

ct
ur

ed
ou

tp
ut

fro
m

th
eg

en
er

at
iv

ed
at

aa
ug

m
en

ta
tio

n
pi

pe
lin

eu
sin

g
A

ra
G

PT
2.

Th
is

ta
bl

ei
llu

str
at

es
th

ef
or

m
at

of
th

eg
en

er
at

ed
da

ta
,i

nc
lu

di
ng

th
e

fu
ll

ge
ne

ra
te

d
te

xt
an

d
th

e
id

en
tifi

ed
ch

ar
ac

te
rs

pa
ns

of
th

e
or

ig
in

al
re

lig
io

us
te

xt
em

be
dd

ed
w

ith
in

it.


	Introduction
	Background
	Related Work

	System Overview
	Core Model
	Training Data Generation

	Data and Preprocessing Pipeline
	Data Sources
	Data Preprocessing and Augmentation Pipeline
	Dataset Splits

	Experimental Setup
	Evaluation Metric

	Results
	Ablation Study Analysis

	Error Analysis
	Impact of Class Imbalance
	Span-Level Error Patterns

	Discussion
	Conclusion
	Experimental Configuration
	Data Structures and Format Specifications
	Source Data Structures
	Test Data Format
	Submission Format

	Development Set: Exploratory Data Analysis
	Comprehensive Data Preprocessing Pipeline
	Stage 1: Data Acquisition and Validation
	Stage 2: Text Preprocessing and Augmentation
	Text Segmentation
	Arabic Script Normalization

	Stage 3: Template-Based Contextual Generation
	Stage 4: Dataset Partitioning
	Stage 5: Tokenization and Label Assignment
	Validation Framework
	Quality Control


	Database Lookup Methodology
	Stage 1: Knowledge Base Construction and Enhancement
	Initial Data Loading
	Arabic Script Normalization
	Text Segmentation for Partial Matching
	Final Knowledge Base Aggregation

	Stage 2: Span Detection Algorithm
	Prioritization of Longer Matches
	Iterative String Matching
	Overlap Prevention


	Appendix: Development Set Error Analysis
	Rule-Based Model Development Results
	Further Error Analysis

	Basic Fine-Tuning Development Results
	Further Error Analysis

	Database Lookup Development Results
	Further Error Analysis


	Generative Data Augmentation Ablation Study
	Template Examples for Data Generation
	Generative Process

	Limitations and Analysis of Generated Data


