

AN INFORMATION-THEORETICAL FRAMEWORK FOR OPTIMIZING EXPERIMENTAL DESIGN TO DISTIN- GUISH PROBABILISTIC NEURAL CODES

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 The Bayesian brain hypothesis has been a leading theory in understanding per-
014 ceptual decision-making under uncertainty. While extensive psychophysical ev-
015 idence supports the notion of the brain performing Bayesian computations, how
016 uncertainty information is encoded in sensory neural populations remains elusive.
017 Specifically, two competing hypotheses propose that early sensory populations en-
018 code either the likelihood function (exemplified by probabilistic population codes)
019 or the posterior distribution (exemplified by neural sampling codes) over the stim-
020 ulus, with the key distinction lying in whether stimulus priors would modulate
021 the neural responses. However, experimentally differentiating these two hypothe-
022 ses has remained challenging, as it is unclear what task design would effectively
023 distinguish the two. In this work, we present an information-theoretical frame-
024 work for optimizing the task stimulus distribution that would maximally differ-
025 entiate competing probabilistic neural codes. To quantify how distinguishable
026 the two probabilistic coding hypotheses are under a given task design, we de-
027 rive the *information gap*—the expected performance difference when likelihood
028 versus posterior decoders are applied to neural populations—by evaluating the
029 KL divergence between the true posterior and a task-marginalized surrogate pos-
030 terior. Through extensive simulations, we demonstrate that the information gap
031 accurately predicts decoder performance differences across diverse task settings.
032 Critically, maximizing the information gap yields stimulus distributions that op-
033 timally differentiate likelihood and posterior coding hypotheses. Our framework
034 enables principled, theory-driven experimental designs with maximal discrimina-
035 tive power to differentiate probabilistic neural codes, advancing our understanding
036 of how neural populations represent and process sensory uncertainty.

1 INTRODUCTION AND RELATED WORK

040 Effective perceptual decision-making requires organisms to process sensory information while
041 accounting for the uncertainty inherent in the noisy and ambiguous sensory observations.
042 The Bayesian brain hypothesis—with theoretical roots tracing to Laplace and von Helmholtz
043 (de Laplace, 1820; Helmholtz, 1891)—proposes that the brain maintains internal generative models
044 of the world and performs inference by computing probability distributions over task-relevant latent
045 world states (Knill & Richards, 1996; Knill & Pouget, 2004). This framework has proven successful
046 in explaining various aspects of human and animal perception, from multisensory integration and
047 object recognition to motion perception and sensorimotor learning (Ernst & Banks, 2002; Weiss
048 et al., 2002; Kersten et al., 2004; Alais & Burr, 2004; Kording & Wolpert, 2004). Extensive be-
049 havioral evidence demonstrates that humans and animals perform near optimally in perceptual tasks
050 that require uncertainty estimation, strongly suggesting that sensory neural populations encode both
051 task-relevant stimulus features and their associated uncertainty (Fiser et al., 2010; Pouget et al.,
052 2013; Qamar et al., 2013; Ma & Jazayeri, 2014). However, the neural implementation of proba-
053 bilistic computation remains actively debated, and how probability distributions are encoded and
represented in the brain is an area of active research (Yang & Shadlen, 2007; Orbán et al., 2016;
Walker et al., 2020; Aitchison et al., 2021; Haefner et al., 2024).

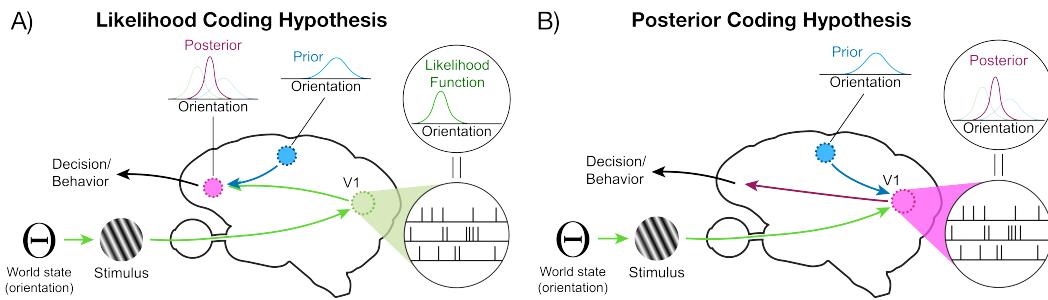


Figure 1: **Two competing hypotheses on how sensory uncertainty information is encoded in early sensory neural populations.** A) Likelihood coding hypothesis, exemplified by the probabilistic population code (Ma et al., 2006), proposes that early sensory populations encode the likelihood function over the stimulus, with posterior computation deferred to downstream areas. B) Posterior coding hypothesis, exemplified by the neural sampling code (Hoyer & Hyvärinen, 2002), posits that early sensory populations readily encode the posterior distribution over hidden world state by integrating prior knowledge conveyed via feedback connections from higher cortical areas.

An unresolved question concerns the format of probabilistic representations in sensory processing: Do early sensory populations encode the likelihood function over stimuli, or do they readily represent the posterior distribution that incorporate prior knowledge? The **likelihood coding hypothesis** (Fig. 1A) proposes that early sensory populations responding to stimuli (e.g., a drifting grating x) with underlying latent world states (e.g., orientation θ) represent likelihood functions $L(\theta) \equiv p(x|\theta)$ (Jazayeri & Movshon, 2006; Walker et al., 2020). The classic form of probabilistic population code (Ma et al., 2006) exemplifies this hypothesis, proposing that sensory areas such as the primary visual cortex (V1) represent likelihood functions, accounting for the inherent variability in neural population responses. Previous work has demonstrated that likelihood functions decoded from V1 population responses are predictive of animals’ trial-by-trial choices and reflects uncertainty associated with the sensory stimuli (Beck et al., 2008; Walker et al., 2020).

In contrast, motivated in part by the presence of extensive feedback connection from higher cortical areas that could convey existing ‘prior’ information, the **posterior coding hypothesis** (Fig. 1B) posits that sensory populations readily represent posterior distributions over latent world states $p(\theta|x)$, suggesting that even early sensory areas would incorporate the knowledge of priors to compute posterior distributions (Berkes et al., 2011; Festa et al., 2021). The neural sampling code (Hoyer & Hyvärinen, 2002) is one illustrative example in this category where a neural population is hypothesized to represent a posterior distribution by drawing a “sample” from the distribution and encoding it in its stochastic population responses, suggesting that neural variability naturally reflects the sampling process from a posterior distribution (Orbán et al., 2016; Haefner et al., 2016; Lange & Haefner, 2022; Shrinivasan et al., 2023).

The critical distinction between the two probabilistic coding hypotheses lies in whether stimulus priors $p(\theta)$ would modulate early sensory population responses. While existing studies have demonstrated that specific instantiations of each hypothesis can capture some aspects of observed neural response patterns (Haefner et al., 2016; Shivkumar et al., 2018; Walker et al., 2020), there is yet to be a targeted experiment aimed to directly distinguish the predictions from each coding hypothesis (Haefner et al., 2024). A fundamental challenge lies in identifying experimental designs—specifically, stimulus prior distributions—that would maximally differentiate the two coding hypotheses (Ma & Jazayeri, 2014). Since both coding hypotheses can often account for similar neural response patterns under traditional experimental conditions, targeted task designs where their predictions diverge maximally are crucial for distinguishing between likelihood and posterior coding hypotheses (Grabska-Barwinska et al., 2013; Shivkumar et al., 2018; Lange et al., 2023).

Motivated by research on optimal stimulus design for psychophysics studies (Watson & Pelli, 1983; Madigan & Williams, 1987), electrophysiology experiment (Levi et al., 2006; 2011), and efficient coding (Machens et al., 2005), in this work, we present an information-theoretical framework for designing experiments that optimally differentiate likelihood and posterior coding hypotheses. Our approach quantifies the expected difference in decodable information—which we term the **infor-**

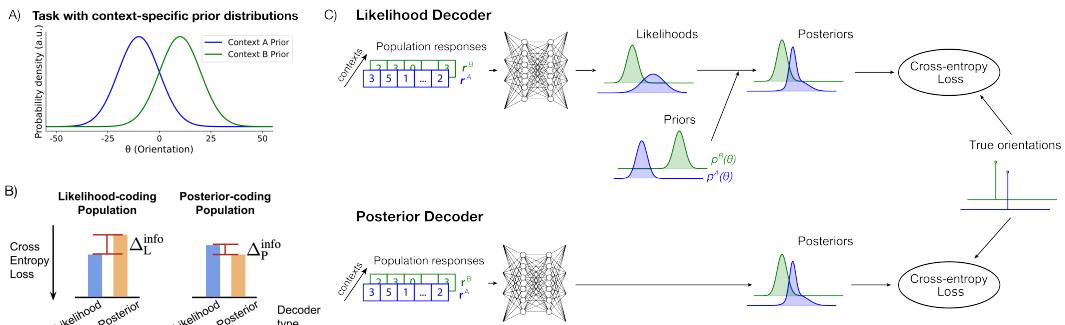


Figure 2: **A decoding approach to differentiating probabilistic neural codes.** A) An experimental paradigm consists of two contexts $c \in \{A, B\}$ with context-specific prior distributions $p^c(\theta)$. B) Information gap Δ^{info} , the difference in likelihood (blue) and posterior (orange) decoder performances, can indicate whether the underlying neural population encodes the likelihood function (left) or the posterior distributions (right). C) Deep neural network-based decoders are used for decoding the likelihood function (top) or the posterior distribution (bottom) from population responses.

mation gap $\Delta^{\text{info}}—when applying neural network-based decoders to extract likelihood or posterior information from sensory neural populations following either coding hypothesis. Specifically, we (1) derive analytical expressions for the information gap under both coding hypotheses, evaluated as the Kullback–Leibler (KL) divergence between the true posterior and a surrogate posterior utilizing Bayes-optimal estimators (Raventós et al., 2023); (2) validate theoretical predictions through simulations with deep neural network decoders applied to synthetic populations; and (3) demonstrate how maximizing the information gap yields stimulus distributions that optimally differentiate the two probabilistic coding hypotheses.$

Our framework provides a principled metric for optimizing experimental designs, establishing the theoretical upper bound on distinguishability between the two probabilistic coding hypotheses for a given task design. By maximizing this metric, we identify stimulus distributions that yield maximally differential decoder performance—providing rigorous, empirically testable predictions that directly adjudicate between competing theories of probabilistic neural representations.

2 INFORMATION GAP

We propose to determine whether early sensory populations encode likelihood functions or posterior distributions by examining how varying stimulus priors affects population responses. Classic orientation discrimination tasks under different contexts naturally involve altered stimulus prior distributions, making them ideal for testing this distinction (Qamar et al., 2013; Walker et al., 2020). Our experimental paradigm manipulates stimulus prior distributions across two different contexts and examines whether population responses vary according to changes in stimulus statistics (Fig. 2A)—a design that would leave likelihood-coding population responses invariant to an identical stimulus across contexts while systematically affecting posterior-coding population responses.

A decoding framework is leveraged to distinguish the probabilistic information content encoded in neural populations. As schematized in Fig. 2B, decoder performance degrades (increase in cross-entropy loss) when attempting to extract mismatched probabilistic content: if a neural population encodes likelihood functions, a decoder trained to extract likelihood information should outperform one extracting posterior information, and vice versa for posterior-coding populations. This differential performance between likelihood and posterior decoders thus serves as a diagnostic tool for identifying the underlying probabilistic representation. Building on recent advances in neural decoding (Walker et al., 2020), we employ deep neural network-based decoders that can effectively extract the encoded information while incorporating the structural assumptions of each probabilistic coding hypothesis (Fig. 2D).

However, it is unclear what stimulus prior distributions would lead to maximal differentiabilty under the two probabilistic coding hypotheses (Fig. 8). While intuition suggests using maximally differ-

162 ent context priors, this would limit stimulus overlap across contexts and thus prevent observing how
 163 different context priors modulate neural population responses to identical stimuli. This tradeoff—
 164 requiring sufficient prior differences to generate distinguishable population responses while main-
 165 taining adequate overlap for meaningful comparisons across contexts—cannot be resolved through
 166 intuition alone. To address this, we developed an information-theoretical framework that quantifies
 167 the expected decoder performance difference to systematically optimize experimental designs.
 168

169 **Experimental paradigm** Consider a generative model of sensory observations $\theta \rightarrow x$, where x
 170 represents noisy sensory observations (e.g. drifting gratings) generated according to the conditional
 171 distribution $p(x|\theta)$ given the hidden world state θ (e.g. orientation). We consider an experimental
 172 paradigm as introduced in Fig. 2A with two contexts $c = \{A, B\}$, each with its associated con-
 173 text frequency $p(c)$ and context-specific prior over the world state $p(\theta|c) \equiv p^c(\theta)$. Contexts of the
 174 current session are explicitly cued to ensure that subjects adopt the intended context-specific prior
 175 rather than engaging in an additional inference process about the context itself. After subjects are
 176 well trained on both contexts, familiarized with the context priors, and the performance has stabi-
 177 lized, we will then probe how early sensory populations represent probabilistic information.
 178

178 Given neural population response vectors r , our goal is to assess the difference in decoder per-
 179 formances between a likelihood decoder $g_L(r)$ and a posterior decoder $g_P(r)$, optimized through
 180 minimizing the cross-entropy loss to extract likelihood functions and posterior distributions, respec-
 181 tively. We adopt an information-theoretical approach to derive the *expected* cross-entropy difference
 182 in decoder performance—a quantity we termed *information gap* Δ^{info} —for the two coding hypothe-
 183 ses under the theoretical limit of optimal decoders of probabilistic information. This quantity thus
 184 measures the expected increase in cross-entropy loss incurred when a decoder is forced to extract
 185 probabilistic content that is not actually encoded by the population responses. Although any em-
 186 pirical decoder would underestimate the true sensory information content, we posit that the derived
 187 theoretical limits would serve as reference points in evaluating the effectiveness of a task design in
 188 differentiating probabilistic neural codes. Below, we derive the information gap under each of the
 189 two probabilistic coding hypotheses.

190 **Information gap for likelihood coding hypothesis Δ_L^{info}** Given discretized sensory observations
 191 $x \in \{x_i\}$, a task design specified by $(p(c), p^c(\theta)) \forall c \in \{A, B\}$, and a generative model $p(x_i|\theta)$, the
 192 expected difference in cross-entropy loss between optimal likelihood and posterior decoders, or the
 193 *information gap* Δ_L^{info} for a likelihood-coding population $r_L \sim p(x|\theta)$, is derived as (see Appendix
 194 A.1 for full derivation):
 195

$$\begin{aligned} \Delta_L^{\text{info}} &:= \mathbb{E}_{p(x_i, c)} [D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{P,i}^*(\theta))] \\ &= \sum_{x_i} \left\{ D_{\text{KL}}(p^A(\theta|x_i) \parallel q_{P,i}^*(\theta)) \cdot p(c = A) \left[\sum_{\theta} p(x_i|\theta)p^A(\theta) \right] + \right. \\ &\quad \left. D_{\text{KL}}(p^B(\theta|x_i) \parallel q_{P,i}^*(\theta)) \cdot p(c = B) \left[\sum_{\theta} p(x_i|\theta)p^B(\theta) \right] \right\} \end{aligned} \quad (1)$$

202 where $p^c(\theta|x_i)$ is the true posterior given observation x_i , which is the output of an optimal likelihood
 203 decoder. The surrogate posterior $q_{P,i}^*(\theta)$, which is the output of an optimal posterior decoder on
 204 likelihood-coding populations, is given by:
 205

$$q_{P,i}^*(\theta) = \frac{[p(c = A)p^A(\theta) + p(c = B)p^B(\theta)] \cdot p(x_i|\theta)}{\sum_{\theta'} \{[p(c = A)p^A(\theta') + p(c = B)p^B(\theta')] \cdot p(x_i|\theta')\}} \quad (2)$$

209 Since likelihood-coding populations r_L contain no prior information, an optimal posterior decoder
 210 trained on such population cannot perfectly decode the posterior distribution. Instead, output of the
 211 optimal posterior decoder converges to a Bayes-optimal estimator as determined by marginalization
 212 over context distributions $p(c)$ and $p^c(\theta)$.
 213

214 **Information gap for posterior coding hypothesis Δ_P^{info}** Given discretized sensory observations
 215 $x \in \{x_i\}$, a task design specified by $(p(c), p^c(\theta)) \forall c \in \{A, B\}$, and a generative model $p(x_i|\theta)$, the
 216 expected difference in cross-entropy loss between optimal likelihood and posterior decoders, or *the*

216 *information gap* Δ_p^{info} for a posterior-coding population $\mathbf{r}_p \sim p(\theta|x)$, is derived as (see Appendix
 217 A.1 for full derivation):

$$\begin{aligned}
 219 \quad \Delta_p^{\text{info}} &:= \mathbb{E}_{p(x_i, c)} [D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{L,i}^{c*}(\theta))] \\
 220 \quad &= \sum_{(x_j, x_k)} \left\{ D_{\text{KL}}(p^A(\theta|x_j) \parallel q_{L,j}^{A*}(\theta)) \cdot p(c=A) \left[\sum_{\theta} p(x_j|\theta) p^A(\theta) \right] \right. \\
 221 \quad &\quad \left. + D_{\text{KL}}(p^B(\theta|x_k) \parallel q_{L,k}^{B*}(\theta)) \cdot p(c=B) \left[\sum_{\theta} p(x_k|\theta) p^B(\theta) \right] \right\} \quad (3)
 222 \\
 223 \quad & \\
 224 \quad & \\
 225 \quad &
 \end{aligned}$$

226 where $p^c(\theta|x_i)$ is the true posterior given observation x_i , which is the output of an optimal posterior
 227 decoder. $q_{L,i}^{c*}(\theta)$ denotes a surrogate posterior which is the posterior distribution associated with
 228 the output of an optimal likelihood decoder. The sum in Eq. 3 includes only pairs (x_j, x_k) that
 229 satisfy the condition expressed below in Eq. 4 as they are the only observations that would yield
 230 non-zero decoder performance difference. These are scenarios where identical population responses
 231 \mathbf{r}_p (encoding the same posterior across the two contexts $c \in \{A, B\}$, i.e., $\mathbf{r}_{p,j}^A \approx \mathbf{r}_{p,k}^B$) must map to
 232 different likelihood functions ($p(x_j|\theta)$ and $p(x_k|\theta)$, respectively), preventing the optimal likelihood
 233 decoder from achieving perfect decoding. Observation pairs that do not satisfy Eq. 4 thus has no
 234 contribution to the sum in Eq. 3. The condition is given as:

$$\forall_{\theta}, p^A(\theta|x_j) = p^B(\theta|x_k) \Leftrightarrow \forall_{\theta}, p^A(\theta) \cdot p(x_j|\theta) \propto p^B(\theta) \cdot p(x_k|\theta) \quad (4)$$

235 With this, the surrogate posterior distributions for the pair (x_j, x_k) are given by:

$$\begin{aligned}
 239 \quad q_{L,j}^{A*}(\theta) &= \frac{\ell_{jk}^*(\theta) p^A(\theta)}{Z_j^A[\ell_{jk}^*(\theta)]}, \quad q_{L,k}^{B*}(\theta) = \frac{\ell_{jk}^*(\theta) p^B(\theta)}{Z_k^B[\ell_{jk}^*(\theta)]} \\
 240 \\
 241 \quad &
 \end{aligned}$$

242 where $\ell_{jk}^*(\theta)$ denotes the output of the optimal likelihood decoder on the posterior-coding popula-
 243 tion, approaching a task-marginalized, Bayes-optimal estimator of the likelihood functions given by
 244 Eq. 5 below. $Z_j^A[\ell_{jk}^*(\theta)]$ and $Z_k^B[\ell_{jk}^*(\theta)]$ are normalization constants dependent on $\ell_{jk}^*(\theta)$, defined
 245 as $Z_j^A[\ell_{jk}^*(\theta)] := \sum_{\theta} p^A(\theta) \ell_{jk}^*(\theta)$ and $Z_k^B[\ell_{jk}^*(\theta)] := \sum_{\theta} p^B(\theta) \ell_{jk}^*(\theta)$.

246 The Bayes-optimal likelihood function estimator $\ell_{jk}^*(\theta)$ can be determined (up to a multiplicative
 247 constant) by solving the following implicit equation using fixed-point iteration (see A.1 for detail):

$$\ell_{jk}^*(\theta) \propto \frac{\rho_j^A p^A(\theta|x_j) + \rho_k^B p^B(\theta|x_k)}{\frac{\rho_j^A}{Z_j^A[\ell_{jk}^*(\theta)]} p^A(\theta) + \frac{\rho_k^B}{Z_k^B[\ell_{jk}^*(\theta)]} p^B(\theta)} \quad (5)$$

253 where ρ_j^A and ρ_k^B denote the frequencies of each context conditioned on observed neural population
 254 responses of $\mathbf{r}_{p,j}^A$ or $\mathbf{r}_{p,k}^B$. Let us first define $S_j^A := p(c=A) \sum_{\theta} p^A(\theta) p(x_j|\theta)$ and $S_k^B := p(c=B) \sum_{\theta} p^B(\theta) p(x_k|\theta)$. Then the context frequencies ρ_j^A and ρ_k^B are given by:

$$\rho_j^A := p(c=A|\mathbf{r} = \mathbf{r}_{p,j}^A \vee \mathbf{r}_{p,k}^B) = S_j^A / (S_j^A + S_k^B), \quad \rho_k^B := p(c=B|\mathbf{r} = \mathbf{r}_{p,j}^A \vee \mathbf{r}_{p,k}^B) = S_k^B / (S_j^A + S_k^B)$$

259 In summary, our information-theoretical framework quantifies the differentiability of the two proba-
 260 bilistic coding hypotheses under a given task design by deriving analytical expressions of the infor-
 261 mation gap Δ^{info} —the expected difference in decoder cross-entropy performances—for both likeli-
 262 hood coding hypothesis (Eq. 1) and posterior coding hypothesis (Eq. 3). The key insight stems from
 263 identifying the formula for the task-marginalized, Bayes-optimal estimators when decoding mis-
 264 matched probabilistic information—that is, when decoding the posterior from a likelihood-coding
 265 population (Eq. 2) or when decoding the likelihood function from a posterior-coding population
 266 (Eq. 5).

267 Below, we empirically validate that information gaps accurately predict decoder performance dif-
 268 ferences under given task designs on simulated likelihood or posterior encoding neural populations
 269 across diverse task settings. We then demonstrate how maximizing the information gap enables
 targeted experimental designs that optimally differentiate the two probabilistic coding hypotheses.

270

3 SIMULATION EXPERIMENTS

271
 272 To validate that the information gap accurately predicts decoder performance differences under both
 273 probabilistic coding hypotheses, we conducted comprehensive simulation experiments. We con-
 274 structed synthetic likelihood-coding and posterior-coding neural populations, and applied likelihood
 275 and posterior decoders on these synthetic populations. These simulations serve two complementary
 276 purposes: validating our theoretical framework and providing practical insights into the scaling and
 277 convergence behavior of the information gap measure.

278
 279 **Task design: Gaussian context priors** We consider Gaussian context priors motivated by clas-
 280 sic orientation-based discrimination experiments (Orbán et al., 2016; Walker et al., 2020). In this
 281 task, subjects perform an orientation discrimination task with two contexts $c \in \{A, B\}$, with the
 282 context for each session sampled randomly, i.e. $p(c = A) = p(c = B) = 0.5$. Within each ses-
 283 sion, the trial-to-trial hidden world state θ (i.e. orientation) is drawn from context-specific Gaussian
 284 prior distributions $p^c(\theta) = \mathcal{N}(\mu^c, (\sigma^c)^2)$, where μ^c and $(\sigma^c)^2$ are task-specific parameters. In the
 285 simulation, we use identical variances for the two Gaussian priors $\sigma^A = \sigma^B = \sigma$.

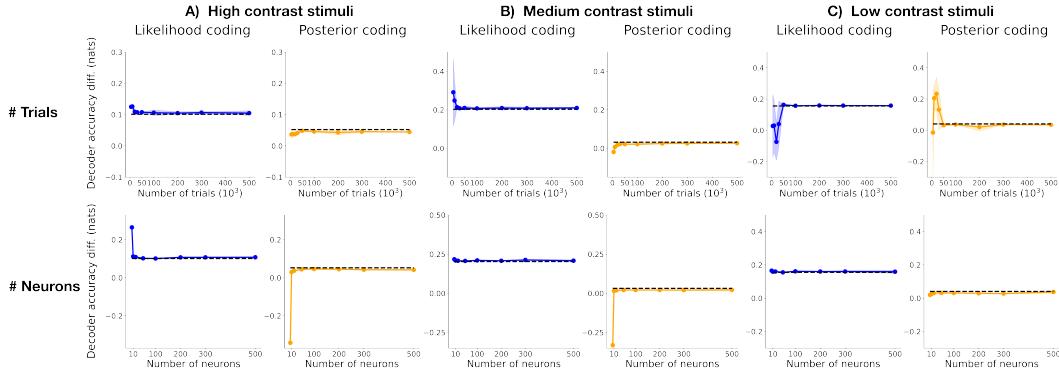
286 We simulate noisy sensory observations x by drawing from the conditional distribution defined by
 287 a given generative model $p(x|\theta)$. This stochastic process can be seen as capturing both intrinsic
 288 neuronal noise and extrinsic uncertainty in stimulus features. This generative model can be ex-
 289 perimentally manipulated by varying stimulus parameters such as contrast. Indeed, lower contrast
 290 induces increase in observation variance, reflecting increased sensory uncertainty. In the simulation,
 291 $p(x|\theta)$ is modeled as Gaussian distributions to reflect Gaussian-like orientation tuning curves com-
 292 monly observed in V1 neurons and to capture the effect of different contrast levels by systematically
 293 varying the standard deviation (Walker et al., 2020).

294 For simulated population responses, we implemented Poisson neuron models with Gaussian tun-
 295 ing curves (Walker et al., 2020). Likelihood-coding population’s mean firing rates r_L are encoded
 296 through Gaussian tuning curves based on the sampled sensory observations x , while posterior-
 297 coding population’s mean firing rates r_P are additionally modulated by the context-specific prior
 298 $p^c(\theta)$, effectively encoding the posterior $p^c(\theta|x) \propto p(x|\theta) \cdot p^c(\theta)$. In both cases, spike counts were
 299 then generated by sampling from Poisson distribution with the given mean firing rate. We addition-
 300 ally considered a more complex, gain-modulated Poisson neuron model for simulating population
 301 responses Goris et al. (2014). As shown in Fig. 2C, deep neural networks are trained with cross-
 302 entropy loss to serve as flexible, powerful decoders of probabilistic distributions, decoding either the
 303 likelihood function or the posterior from the simulated neural population responses (Walker et al.,
 304 2020). See A.3 for full details of the simulation experiments and decoder setups.

305
 306 **Scaling and convergence** We first examine the scaling and convergence properties of the the-
 307 oretical prediction of information gap. Fig. 3 demonstrates convergence of the empirical de-
 308 coder performance differences on simulated Poisson neural populations across various stimulus
 309 contrast levels. For a given set of task parameters, decoder performance differences for both sim-
 310 ulated populations—likelihood-coding (blue) and posterior-coding (orange) populations—rapidly
 311 converge to the theoretically derived information gap (dashed lines) computed via Eq. 1 and 3, as
 312 the number of trials increases (top) and as the number of neurons increases (bottom). This empirical
 313 convergence suggests that the information gap measure derived from our framework accurately pre-
 314 dictly the asymptotic decoder performance difference quantifying the effectiveness of a task design.

315
 316 **Validation across parameter space** We next assess the validity of the theoretical prediction of
 317 information gap across a wide range of simulation settings. Across different levels of stimulus con-
 318 trast, at least ten different sets of task parameters are selected to compute the theoretical value of
 319 information gap and to simulate likelihood and posterior encoding populations. Fig. 4 systemati-
 320 cally compares the theoretical predictions of information gap and the empirical decoder performance
 321 difference across diverse task design parameters, both under the Poisson neural model (top) and un-
 322 der the more complex, gain-modulated Poisson neural model (bottom, Goris et al. (2014)). On both
 323 types of simulated neural models and across different contrast levels, the comparison reveals re-
 markable agreement between the information gap prediction and the empirical decoder performance
 difference for both likelihood and posterior coding hypotheses.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339



340 **Figure 3: Decoder performance difference on simulated populations converges to the theoretical**
 341 **prediction of information gap.** A) On simulated neural populations encoding the likelihood

342 function (left, blue) or the posterior distributions (right, orange) responding to high contrast stimuli,

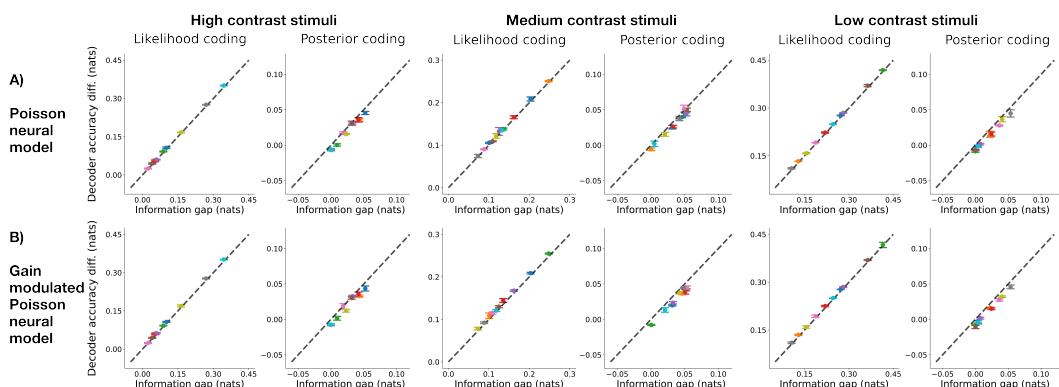
343 the difference between the likelihood and posterior decoder performances converges to the theoreti-

344 cal value of information gap (dashed lines) as the total number of trials increases (top, with fixed

345 number of neurons = 500), and as the total number of neurons in the population increases (bottom,

346 with fixed number of trials = 30k). (shaded areas denote the s.t.d. across 5 random seeds.) B) Same

347 for medium contrast stimuli and C) for low contrast stimuli.



368 **Figure 4: Information gap accurately predicts decoder performance difference on simulated**
 369 **populations across diverse task settings.** A) On simulated Poisson neural populations responding

370 to high (left), medium (middle), and low (right) contrast stimuli, theoretical values of information

371 gap (x-axis) accurately predicts the decoder performance difference on simulated neural populations

372 (y-axis) across multiple task design parameters, for both the likelihood-coding populations and the

373 posterior-coding populations. (Each color marks one set of task parameters used for both types of

374 simulated populations; Error bars denote the s.t.d. across 5 random seeds.) B) Same for simulated

375 populations using a more complex, gain-modulated Poisson neural model (Goris et al., 2014).

376
377

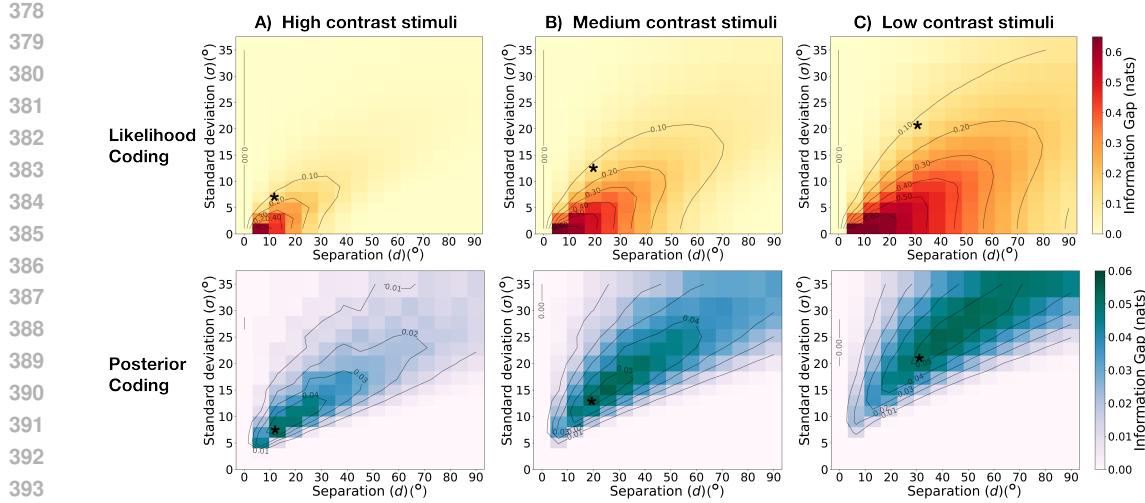


Figure 5: **Information gap landscapes inform practical task designs that optimally differentiate probabilistic representations in neural populations.** A) Information gap as a function of task parameters (d : separation between context priors, and σ : context prior standard deviations) for both the likelihood coding hypothesis (top) and the posterior coding hypothesis (bottom) when presented with high contrast stimuli. The asterisks identify strategic task designs that achieve the tradeoff where posterior-coding information gap approaches its maximum while likelihood-coding maintains sufficient discriminative signal. B) Same for medium contrast stimuli and C) for low contrast stimuli.

Notably, information gaps for likelihood-coding populations (Δ_L^{info}) exceed those for posterior-coding populations (Δ_P^{info}) by up to an order of magnitude. Our framework provides an intuitive explanation: for likelihood coding hypothesis, every observation contributes to the information gap calculation, whereas for posterior coding hypothesis, only pairs satisfying Eq. 4 contribute to the estimate. This asymmetry suggests that distinguishing posterior-coding populations presents greater experimental challenges, requiring careful task design to achieve sufficient statistical power.

Overall, these simulation results establish that our information-theoretical framework accurately predicts decoder performance differences for neural populations following either probabilistic coding hypothesis, providing a quantitative foundation for designing targeted, theory-driven experiments to differentiate probabilistic neural representations in early sensory areas.

4 TASK OPTIMIZATION TO DIFFERENTIATE PROBABILISTIC NEURAL CODES

Given the strong agreement between the empirical decoder performance differences and the theoretical information gap measure, we now demonstrate how to optimize task designs to maximally differentiate the two probabilistic coding hypotheses. The goal is to systematically explore the task parameter space to identify task parameters that would yield maximum information gap.

4.1 INFORMATION GAP LANDSCAPE FOR GAUSSIAN CONTEXT PRIORS

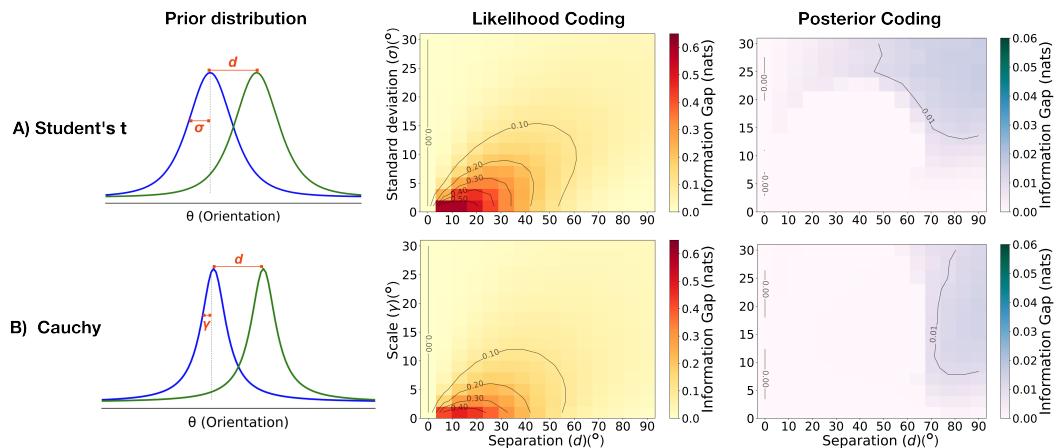
For tasks with Gaussian context priors, we evaluate the information gap across the two-dimensional task parameter space defined by (1) the distance between the two Gaussian means $d = |\mu^A - \mu^B|$, and (2) the shared standard deviation for both Gaussian priors σ (Fig. 8). The landscapes of information gap across three different contrast levels are shown in Fig. 5, for both likelihood-coding populations (top) and posterior-coding populations (bottom). We first observe that the information gap landscape depends on the stimulus contrast level, suggesting that experimental design should be tailored to specific stimulus features such as contrast. In addition, decreasing contrast expands the parameter region yielding substantial information gaps for both probabilistic codes, agreeing with the intuition that prior information becomes more influential when sensory observations alone provide insufficient information for reliable inference.

432 **Strategic task design** Crucially, for a given contrast level, the information gap landscape depends
 433 on the underlying probabilistic coding hypothesis, revealing a trade-off when optimizing experimental
 434 design: task parameters that maximize the discriminability for likelihood-coding populations
 435 diverge from those optimal for posterior-coding populations. This divergence necessitates a strate-
 436 gic selection of parameters that balance discriminative power across both hypotheses. Considering
 437 the notable asymmetry in information gap magnitudes—with posterior-coding values typically an
 438 order of magnitude smaller than likelihood-coding ones, one might prioritize parameters that max-
 439 imize posterior-coding discriminability while maintaining adequate likelihood-coding sensitivity.
 440 The asterisks in Fig. 5 identify such strategic “sweet spots” where posterior-coding information gap
 441 Δ_p^{info} approaches its maximum while likelihood-coding information gap Δ_L^{info} maintains sufficient
 442 discriminative signal. For low contrast stimuli, such optimization occurs with prior separation of
 443 $d \approx 30^\circ$ and standard deviation of $\sigma \approx 20^\circ$. As contrast increases, the optimal task parameters shift
 444 toward smaller prior separations and narrower standard deviations.

445 4.2 INFORMATION GAP LANDSCAPE FOR NON-GAUSSIAN CONTEXT PRIORS

446 We next explore the feasibility of other types of distributions in addition to Gaussian distributions as
 447 the choice for stimulus context priors. Specifically, we test the effectiveness of using heavy-tailed
 448 priors including student’s t-distribution and Cauchy distribution to differentiate the two probabilistic
 449 coding hypotheses. Fig. 6 shows the information gap landscape under medium contrast stimuli using
 450 the student’s t-distribution (top) or the Cauchy distribution (bottom) as stimulus priors. Compared
 451 to Gaussian priors, areas with high information gap become more limited under heavy-tailed priors.
 452 In particular, posterior-coding information gap is zero almost throughout the entire parameter space,
 453 indicating that heavy-tailed priors are not suitable for distinguishing posterior-coding populations.
 454 Our theoretical framework provides an explanation: under heavy-tailed distribution, there are barely
 455 any observation pairs satisfying Eq. 4 that contribute to the information gap (See A.4 for details).
 456 Finally, there is almost no overlap between areas where the information gap for each coding hypo-
 457 thesis is maximized, suggesting that any choice of task parameters optimal for identifying one coding
 458 hypothesis will necessarily sacrifice the effectiveness of identifying the other. Overall, this analysis
 459 suggests that heavy-tailed priors are not ideal for differentiating probabilistic coding hypotheses.

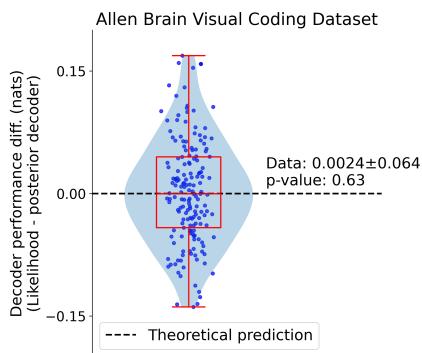
460 In summary, our framework transforms parameter selection from heuristic search to principled opti-
 461 mization, directly identifying task designs that maximize statistical power for differentiating proba-
 462 bilistic neural representations. The resulting information gap landscapes can guide targeted experi-
 463 menters toward parameter combinations most likely to yield decisive empirical results.



479 **Figure 6: Information gap landscape suggests heavy tailed distributions are not ideal stimulus**
 480 **prior distributions for differentiating coding hypotheses.** A) Using student’s t-distribution with
 481 degrees of freedom $\nu = 3$ as stimulus priors (left), information gap under medium contrast stimuli as
 482 a function of task parameters (separation d and standard deviations σ) for both the likelihood coding
 483 hypothesis (middle) and the posterior coding hypothesis (right) shows decreased information gap
 484 with minimal overlap compared to task design with Gaussian context priors. B) Same for Cauchy
 485 distribution as stimulus priors with task parameters separation d and scale γ .

486 5 EMPIRICAL RESULTS ON REAL DATA

488 Distinguishing the two probabilistic coding hypotheses depends on how population responses
 489 change across contexts with different priors, yet existing datasets mostly provide only a single fixed
 490 stimulus context without manipulation in priors. To demonstrate that existing dataset with single-
 491 context experimental designs cannot adjudicate the two coding hypotheses, we report empirical
 492 results on orientation decoding from real neural data using the Allen Brain Observatory Visual Cod-
 493 ing Neuropixels Dataset (Siegle et al., 2021). Under such single-context experimental design with
 494 uniform prior, our theory predicts no performance difference between the likelihood and posterior
 495 decoders, i.e. $\Delta^{\text{info}} = 0$. In Fig. 7, we performed orientation decoding analysis on the Allen Visual
 496 Coding dataset. The result shows indistinguishable performance between the likelihood and poste-
 497 rior decoders (difference = 0.0024 ± 0.064 , $p = 0.63$), which agrees with our theoretical prediction.
 498 In fact, previous decoding work on macaque V1 similarly discussed why their experimental design
 499 resulted in an ambiguity in differentiating coding hypotheses due to the lack of multiple context
 500 priors (Walker et al., 2020). This result on empirical data underscores why future experiments in-
 501 corporating context-dependent prior manipulations will be essential for adjudicating the competing
 502 probabilistic coding hypotheses.



503 **Figure 7: Decoding analysis on the Allen Visual**
 504 **Coding datasets (Siegle et al., 2021) shows**
 505 **indistinguishable decoder performance**

506 **difference.** Across 169 sessions with large enough
 507 trials (> 300 trials), the decoder cross-entropy
 508 performance difference (likelihood decoder -
 509 posterior decoder) is 0.0024 ± 0.064 , which is not
 510 significantly different from the model prediction of
 511 0 ($p = 0.63$). This empirical result underscores the
 512 necessity of the context-dependent prior
 513 manipulation for distinguishing probabilistic coding
 514 hypotheses. (Each dot indicates one session.)

515 6 DISCUSSION AND CONCLUSIONS

516 We presented an information-theoretical framework for optimizing experimental design to address
 517 whether early sensory neural populations encode likelihood functions or posterior distributions. We
 518 derive analytical expressions for *information gap*—the expected decoder performance difference
 519 when extracting mismatched probabilistic content. This measure quantifies how effectively an ex-
 520 perimental design can distinguish between competing probabilistic coding hypotheses, providing
 521 precise predictions validated through extensive simulations. Most critically, maximizing the in-
 522 formation gap yields principled experimental designs that can optimally discriminate between proba-
 523 bilistic neural codes, enabling decisive experiments to resolve a fundamental debate about Bayesian
 524 computation in the brain. More broadly, by developing theoretical framework to quantify how well
 525 experiments can distinguish between competing coding hypotheses, this approach demonstrates how
 526 computational theory can directly guide experimental neuroscience.

527 **Scope and limitations** To compute information gap, our framework requires reasonable generative
 528 models and thus may require prior work establishing neural responses properties. In addition,
 529 the decoding approach requires sufficient population response data for training. Our framework also
 530 provides a foundation that can be extended in several directions: 1) The framework extends be-
 531 yond orientation-based stimuli to continuous observations and other types of distributions through
 532 numerical methods; 2) The decoding approach may be used to characterize hybrid coding hypoth-
 533 esis beyond pure likelihood or posterior coding; 3) Incorporating more bio-realistic neural models
 534 such as noise correlations and nonlinearities would further strengthen predictions. These extensions
 535 represent opportunities to refine the theoretical framework for guiding experimental designs.

540 **Reproducibility statement** Complete source code for computing the information gap, implementing
 541 both likelihood and posterior decoders, and running all simulation experiments is available as
 542 part of the supplementary materials to facilitate the review process. Upon acceptance, all code will
 543 be released publicly to facilitate experimental design and reproducibility. The detailed derivation of
 544 information gap, including assumptions and complete proofs, is presented in Appendix A.1. This
 545 enables verification of the theoretical claims and adaptation to related problems. The details of
 546 simulation experiments including synthetic neural population response generation procedures, deep
 547 neural network decoder architectures and hyperparameters, and training procedures are presented in
 548 Appendix A.3.

549

550 REFERENCES

551

552 Laurence Aitchison, Jannes Jegminat, Jorge Aurelio Menendez, Jean-Pascal Pfister, Alexandre
 553 Pouget, and Peter E Latham. Synaptic plasticity as bayesian inference. *Nature neuroscience*,
 554 24(4):565–571, 2021.

555

556 David Alais and David Burr. The ventriloquist effect results from near-optimal bimodal integration.
 557 *Current biology*, 14(3):257–262, 2004.

558

559 Jeffrey M Beck, Wei Ji Ma, Roozbeh Kiani, Tim Hanks, Anne K Churchland, Jamie Roitman,
 560 Michael N Shadlen, Peter E Latham, and Alexandre Pouget. Probabilistic population codes for
 561 bayesian decision making. *Neuron*, 60(6):1142–1152, 2008.

562

563 Pietro Berkes, Gergő Orbán, Máté Lengyel, and József Fiser. Spontaneous cortical activity reveals
 564 hallmarks of an optimal internal model of the environment. *Science*, 331(6013):83–87, 2011.

565

566 Pierre Simon de Laplace. *Théorie analytique des probabilités*, volume 7. Courcier, 1820.

567

568 Marc O Ernst and Martin S Banks. Humans integrate visual and haptic information in a statistically
 569 optimal fashion. *Nature*, 415(6870):429–433, 2002.

570

571 Dylan Festa, Amir Aschner, Aida Davila, Adam Kohn, and Ruben Coen-Cagli. Neuronal variability
 572 reflects probabilistic inference tuned to natural image statistics. *Nature communications*, 12(1):
 573 3635, 2021.

574

575 József Fiser, Pietro Berkes, Gergő Orbán, and Máté Lengyel. Statistically optimal perception and
 576 learning: from behavior to neural representations. *Trends in cognitive sciences*, 14(3):119–130,
 577 2010.

578

579 Deep Ganguli and Eero Simoncelli. Implicit encoding of prior probabilities in optimal neural popu-
 580 lations. *Advances in neural information processing systems*, 23, 2010.

581

582 Deep Ganguli and Eero P Simoncelli. Efficient sensory encoding and bayesian inference with het-
 583 erogeneous neural populations. *Neural computation*, 26(10):2103–2134, 2014.

584

585 Robbe LT Goris, J Anthony Movshon, and Eero P Simoncelli. Partitioning neuronal variability.
 586 *Nature neuroscience*, 17(6):858–865, 2014.

587

588 Agnieszka Grabska-Barwinska, Jeff Beck, Alexandre Pouget, and Peter Latham. Demixing odors-
 589 fast inference in olfaction. *Advances in Neural Information Processing Systems*, 26, 2013.

590

591 Ralf M Haefner, Pietro Berkes, and József Fiser. Perceptual decision-making as probabilistic infer-
 592 ence by neural sampling. *Neuron*, 90(3):649–660, 2016.

593

594 Ralf M Haefner, Jeff Beck, Cristina Savin, Mehrdad Salmasi, and Xaq Pitkow. How does the brain
 595 compute with probabilities? *arXiv preprint arXiv:2409.02709*, 2024.

596

597 H von Helmholtz. Versuch einer erweiterten anwendung des fechnerschen gesetzes im farbensystem.
 598 *Z. Psychol. Physiol. Sinnesorg*, 2:1–30, 1891.

599

600 Patrik Hoyer and Aapo Hyvärinen. Interpreting neural response variability as monte carlo sampling
 601 of the posterior. *Advances in neural information processing systems*, 15, 2002.

594 Mehrdad Jazayeri and J Anthony Movshon. Optimal representation of sensory information by neural
 595 populations. *Nature neuroscience*, 9(5):690–696, 2006.
 596

597 Daniel Kersten, Pascal Mamassian, and Alan Yuille. Object perception as bayesian inference. *Annu.
 598 Rev. Psychol.*, 55(1):271–304, 2004.

599 David C Knill and Alexandre Pouget. The bayesian brain: the role of uncertainty in neural coding
 600 and computation. *TRENDS in Neurosciences*, 27(12):712–719, 2004.
 601

602 David C Knill and Whitman Richards. *Perception as Bayesian inference*. Cambridge University
 603 Press, 1996.

604 Konrad P Kording and Daniel M Wolpert. Bayesian integration in sensorimotor learning. *Nature*,
 605 427(6971):244–247, 2004.
 606

607 Richard D Lange and Ralf M Haefner. Task-induced neural covariability as a signature of approxi-
 608 mate bayesian learning and inference. *PLoS computational biology*, 18(3):e1009557, 2022.
 609

610 Richard D Lange, Sabyasachi Shivkumar, Ankani Chattoraj, and Ralf M Haefner. Bayesian en-
 611 coding and decoding as distinct perspectives on neural coding. *Nature neuroscience*, 26(12):
 2063–2072, 2023.
 612

613 Jeremy Lewi, Robert Butera, and Liam Paninski. Real-time adaptive information-theoretic opti-
 614 mization of neurophysiology experiments. *Advances in Neural Information Processing Systems*,
 19, 2006.
 615

616 Jeremy Lewi, David M Schneider, Sarah MN Woolley, and Liam Paninski. Automating the design
 617 of informative sequences of sensory stimuli. *Journal of computational neuroscience*, 30(1):181–
 200, 2011.
 618

619 Wei Ji Ma and Mehrdad Jazayeri. Neural coding of uncertainty and probability. *Annual review of
 620 neuroscience*, 37(1):205–220, 2014.
 621

622 Wei Ji Ma, Jeffrey M Beck, Peter E Latham, and Alexandre Pouget. Bayesian inference with prob-
 623 abilistic population codes. *Nature neuroscience*, 9(11):1432–1438, 2006.
 624

625 Christian K Machens, Tim Gollisch, Olga Kolesnikova, and Andreas VM Herz. Testing the effi-
 626 ciency of sensory coding with optimal stimulus ensembles. *Neuron*, 47(3):447–456, 2005.
 627

628 Robert Madigan and David Williams. Maximum-likelihood psychometric procedures in two-
 629 alternative forced-choice: Evaluation and recommendations. *Perception & Psychophysics*, 42
 (3):240–249, 1987.
 630

631 Gergő Orbán, Pietro Berkes, József Fiser, and Máté Lengyel. Neural variability and sampling-based
 probabilistic representations in the visual cortex. *Neuron*, 92(2):530–543, 2016.
 632

633 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 634 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 635 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
 636

637 Alexandre Pouget, Jeffrey M Beck, Wei Ji Ma, and Peter E Latham. Probabilistic brains: knowns
 and unknowns. *Nature neuroscience*, 16(9):1170–1178, 2013.
 638

639 Ahmad T Qamar, R James Cotton, Ryan G George, Jeffrey M Beck, Eugenia Prezhdo, Allison Lau-
 640 dano, Andreas S Tolias, and Wei Ji Ma. Trial-to-trial, uncertainty-based adjustment of decision
 641 boundaries in visual categorization. *Proceedings of the National Academy of Sciences*, 110(50):
 20332–20337, 2013.
 642

643 Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
 644 emergence of non-bayesian in-context learning for regression. *Advances in neural information
 645 processing systems*, 36:14228–14246, 2023.
 646

647 Daniel B Rubin, Stephen D Van Hooser, and Kenneth D Miller. The stabilized supralinear network:
 a unifying circuit motif underlying multi-input integration in sensory cortex. *Neuron*, 85(2):402–
 417, 2015.

648 Sabyasachi Shrivkumar, Richard Lange, Ankani Chatteraj, and Ralf Haefner. A probabilistic pop-
649 ulation code based on neural samples. *Advances in neural information processing systems*, 31,
650 2018.

651 Suhas Srinivasan, Konstantin-Klemens Lurz, Kelli Restivo, George Denfield, Andreas Tolias,
652 Edgar Walker, and Fabian Sinz. Taking the neural sampling code very seriously: A data-driven
653 approach for evaluating generative models of the visual system. *Advances in Neural Information
654 Processing Systems*, 36:21945–21959, 2023.

655 Joshua H Siegle, Xiaoxuan Jia, Séverine Durand, Sam Gale, Corbett Bennett, Nile Graddis, Greg-
656 gory Heller, Tamina K Ramirez, Hannah Choi, Jennifer A Luviano, et al. Survey of spiking in the
657 mouse visual system reveals functional hierarchy. *Nature*, 592(7852):86–92, 2021.

658 Edgar Y Walker, R James Cotton, Wei Ji Ma, and Andreas S Tolias. A neural basis of probabilistic
659 computation in visual cortex. *Nature Neuroscience*, 23(1):122–129, 2020.

660 Andrew B Watson and Denis G Pelli. Quest: A bayesian adaptive psychometric method. *Perception
661 & psychophysics*, 33(2):113–120, 1983.

662 Yair Weiss, Eero P Simoncelli, and Edward H Adelson. Motion illusions as optimal percepts. *Nature
663 neuroscience*, 5(6):598–604, 2002.

664 Tianming Yang and Michael N Shadlen. Probabilistic reasoning by neurons. *Nature*, 447(7148):
665 1075–1080, 2007.

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL
703704 A.1 INFORMATION GAP DERIVATION
705

706 Consider a generative model of sensory observations $\theta \rightarrow x$, where x is the noisy sensory obser-
707 vation (e.g. a drifting grating stimulus) generated according to the conditional distribution $p(x|\theta)$,
708 where θ is the hidden state of the environment (e.g. true orientation of the drifting grating stimulus).
709 Note that the likelihood function is given by $\mathcal{L}(\theta) \equiv p(x|\theta)$ for a specific observation x . Consider
710 an experimental setup where there are two possible stimulus generation contexts: $c = \{A, B\}$ with
711 their associated context-specific latent priors $p^c(\theta) := p(\theta|c)$ and their context frequencies $p(c)$.
712

713 Given a sensory observation x and a context c , the context-dependent posterior distribution of θ ,
714 denoted as $p^c(\theta|x) := p(\theta|x, c)$, is given by the Baye’s rule:
715

$$\begin{aligned} p^c(\theta|x) &= \frac{p^c(\theta, x)}{p^c(x)} \\ &= \frac{p^c(x|\theta) \cdot p^c(\theta)}{\sum_{\theta'} p^c(x|\theta') \cdot p^c(\theta')}, \quad \text{Since the generative process } \theta \rightarrow x \text{ is independent of } c, \\ &= \frac{p(x|\theta) \cdot p^c(\theta)}{\sum_{\theta'} p(x|\theta') \cdot p^c(\theta')} \\ &\propto p(x|\theta) \cdot p^c(\theta) \end{aligned}$$

723 For a given neural population response vector r , consider two competing probabilistic coding hy-
724 pothesis:
725

- 726 **Likelihood coding hypothesis:** $r_L \sim p(x|\theta)$, where the neural population responses r_L is
727 hypothesized to encode the likelihood function of the stimulus $p(x|\theta)$.
728
- 729 **Posterior coding hypothesis:** $r_P \sim p(\theta|x)$, where the neural population response r_P is
730 hypothesized to encode the posterior distribution of the hidden state given the stimulus
731 $p(\theta|x)$.
732

733 We consider whether it is possible to differentiate the probabilistic information content encoded in
734 given neural population responses r through a decoding approach. Intuitively, if a neural population
735 is encoding the likelihood function, then a decoder decoding the likelihood function should lead to a
736 better performance than a decoder decoding the posterior distribution; vice versa if the neural popu-
737 lation is encoding the posterior distribution. In other words, decoder performance degrades when
738 trying to decode mismatched probabilistic content, such that the difference in decoder performance
739 when decoding the likelihood function versus decoding the posterior distribution can be used to dif-
740 ferentiate whether a given neural population is encoding the likelihood function (likelihood coding
741 hypothesis) or the posterior distribution (posterior coding hypothesis). Below, we formalize this
742 intuition by deriving the expected decoder performance difference.
743

744 Consider applying a decoder function g which is optimized to decode some probabilistic information
745 content from the neural population responses under cross-entropy loss:
746

$$g(r) \longrightarrow p(\cdot) \quad \text{where } g \text{ is a decoder function}$$

747 Note that to establish the expected difference between decoder performances, we assume ideal de-
748 coders in derivations. Empirically, we assume the decoder is expressive enough (e.g. a multi-layer
749 perceptron, MLP) and fully trained, and the data is abundant such that the performance of the de-
750 coder would closely approximate that of the ideal decoder.
751

752 Adopting an information-theoretical approach, our goal is to derive the *expected difference* between
753 decoder performances as measured in cross-entropy when decoding the likelihood function versus
754 decoding the posterior distribution from given neural population responses r , a quantity that we
755 termed the *information gap*, Δ^{info} , between the two decoders under a given experimental design
756 specified by $(p(c), p^c(\theta))$, $\forall c \in \{A, B\}$ and a generative model $p(x|\theta)$. Below we will separately
757 derive the information gap for likelihood coding hypothesis, Δ_L^{info} , and the information gap for pos-
758 terior coding hypothesis, Δ_P^{info} , respectively. As a by-product, our information-theoretical analysis
759 framework also allows for deriving the *expected decoder performance* for each decoder under the
760 limit of perfect decoding as measured in cross-entropy.
761

756 A.1.1 INFORMATION GAP FOR LIKELIHOOD CODING HYPOTHESIS Δ_L^{INFO}
757758 For a likelihood coding population, the neural population responses \mathbf{r}_L encode the likelihood function
759 of the sensory stimulus, which are not modulated by and hence independent of the context
760 prior.

761
$$\mathbf{r}_L \sim f(p(x|\theta)), \text{ where } f \text{ is some neural encoding function.}$$

762 Note that since the decoders are optimized under cross-entropy loss:

763
$$H(p, q) = -\mathbb{E}_p[\log q] = H(p) + D_{\text{KL}}(p \parallel q)$$

764 when $q^* = p \Leftrightarrow H(p, q^*)$ is minimized.
765766 **Decoding performance of a perfect likelihood decoder g_L**
767768 Applying a likelihood decoder g_L to a likelihood coding population \mathbf{r}_L , we want

769
$$g_L(\mathbf{r}_L) \longrightarrow p(x|\theta)$$

770 Let us assume the observation space can be discretized into $x \in \{x_i\}$, and consider the neural
771 population responses associated with each x_i :

772
$$\forall x_i, c : \mathbf{r}_{L,i}^c = \mathbf{r}_{L,i} \sim f(p(x_i|\theta))$$

773 Since $\mathbf{r}_{L,i}$ is context-independent, let us denote the likelihood decoder output $g_L(\mathbf{r}_{L,i}^c) = g_L(\mathbf{r}_{L,i})$.
774 Since the ground truth context prior $p^c(\theta)$ is provided to the likelihood decoder g_L as schematized
775 in Fig. 2, with the likelihood decoder output $g_L(\mathbf{r}_{L,i})$ and the corresponding context prior $p^c(\theta)$, the
776 context-dependent decoded posterior distribution $q_{L,i}^c(\theta)$ is given by:
777

778
$$q_{L,i}^c(\theta) = \eta_{L,i}^c \cdot g_L(\mathbf{r}_{L,i}) \cdot p^c(\theta), \text{ where } \eta_{L,i}^c \text{ is a normalization constant.}$$

779

780 The cross-entropy loss for data samples associated with x_i, c , i.e. $H(p^c(\theta|x_i), q_{L,i}^c(\theta))$, is minimized
781 when:

782
$$\begin{aligned} q_{L,i}^{c*}(\theta) &= p^c(\theta|x_i) \\ 783 \Rightarrow \eta_{L,i}^c \cdot g_L^*(\mathbf{r}_{L,i}) \cdot p^c(\theta) &= \frac{p(x_i|\theta) \cdot p^c(\theta)}{p(x_i)} \\ 785 \Rightarrow g_L^*(\mathbf{r}_{L,i}) &= \alpha_{L,i}^c \cdot p(x_i|\theta), \text{ where } \alpha_{L,i}^c \text{ is a constant} \end{aligned} \quad (6)$$

787 That is, after training, the likelihood decoder output $g_L(\mathbf{r}_{L,i})$ will converge to $g_L^*(\mathbf{r}_{L,i}) \propto p(x_i|\theta)$
788 given enough samples.
789790 To get the expected cross-entropy loss across the entire data set, we marginalizing over all x_i, c , and
791 the expected cross-entropy loss for a perfect likelihood decoder can be evaluated as:

792
$$\begin{aligned} \mathbb{E}_{p(x_i, c)}[H(p^c(\theta|x_i), q_{L,i}^{c*}(\theta))] &= \mathbb{E}_{p(x_i, c)}[H(p^c(\theta|x_i)) + D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{L,i}^{c*}(\theta))] \\ 793 &= \mathbb{E}_{p(x_i, c)}[H(p^c(\theta|x_i))] \\ 794 &= \sum_{x_i, c} H(p^c(\theta|x_i)) \cdot p(x_i, c) \\ 795 &= \sum_{x_i, c} H(p^c(\theta|x_i)) \cdot p(c) \left[\sum_{\theta} p(x_i|\theta) p^c(\theta) \right] \\ 797 &= \sum_{x_i} \sum_c H(p^c(\theta|x_i)) \cdot p(c) \left[\sum_{\theta} p(x_i|\theta) p^c(\theta) \right] \\ 798 &= \sum_{x_i} \left\{ H(p^A(\theta|x_i)) \cdot p(c = A) \left[\sum_{\theta} p(x_i|\theta) p^A(\theta) \right] + \right. \\ 800 &\quad \left. H(p^B(\theta|x_i)) \cdot p(c = B) \left[\sum_{\theta} p(x_i|\theta) p^B(\theta) \right] \right\} \quad (7) \end{aligned}$$

806 where the second equality holds because $D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{L,i}^{c*}(\theta)) = 0$ for a perfect likelihood
807 decoder as derived above. That is, the expected cross-entropy loss for a perfect likelihood decoder
808 should approach the expected posterior entropy as determined by the context frequencies and context
809 prior distributions as given by Eq. 7.

810 **Decoding performance of the best possible posterior decoder g_P**
811812 Applying a posterior decoder g_P to a likelihood coding population \mathbf{r}_L , we want:

813
$$g_P(\mathbf{r}_L) \longrightarrow p^c(\theta|x)$$

814 However, since there is no context information encoded in the population responses \mathbf{r}_L , the posterior
815 decoder g_P cannot achieve the same performance as the likelihood decoder in Eq. 7, as there are
816 scenarios where identical inputs ($\mathbf{r}_{L,i}$) are trained to map to different outputs ($p^c(\theta|x_i)$) depending
817 on the inaccessible ground-truth context information $p^c(\theta)$.818 Let us consider the neural population responses associated with each observation x_i :

819
$$\forall x_i, c : \mathbf{r}_{L,i}^c = \mathbf{r}_{L,i} \sim f(p(x_i|\theta))$$

820

821 The frequency of a context given the observation of data samples associated with x_i is given by:

822
$$\begin{aligned} p(c|x=x_i) &= \frac{p(c, x_i)}{p(x_i)} \\ 823 &= \frac{p(c) \cdot p(x_i|c)}{\sum_{c'} p(c') \cdot p(x_i|c')} \\ 825 &= \frac{p(c) \cdot \sum_{\theta} p^c(\theta) \cdot p(x_i|\theta)}{\sum_{c'} p(c') \sum_{\theta} p^c(\theta) \cdot p(x_i|\theta)} \\ 827 &= \frac{p(c) \cdot \sum_{\theta} p^c(\theta) \cdot p(x_i|\theta)}{\sum_{c'} p(c') \sum_{\theta} p^c(\theta) \cdot p(x_i|\theta)} \\ 828 \end{aligned}$$

829 Let us denote

830
$$\begin{aligned} S_i^A &:= p(c=A) \sum_{\theta} p^A(\theta) p(x_i|\theta) \\ 831 S_i^B &:= p(c=B) \sum_{\theta} p^B(\theta) p(x_i|\theta) \\ 832 \end{aligned}$$

833 Hence, we can define the observation-dependent context frequency for a given x_i as:

834
$$\begin{aligned} \rho_i^A &:= p(c=A|x=x_i) = S_i^A / (S_i^A + S_i^B) \\ 835 \rho_i^B &:= p(c=B|x=x_i) = S_i^B / (S_i^A + S_i^B) \end{aligned}$$

836 Now, let us denote the posterior decoder output $q_{P,i}(\theta) := g_P(\mathbf{r}_{L,i})$, highlighting that the output can
837 be interpreted directly as the posterior distribution over the hidden state θ , as schematized in Fig. 2.
838 Since the posterior decoder output is agnostic to the specific context and the associated prior $p^c(\theta)$,
839 under cross-entropy loss, $q_{P,i}(\theta)$ is trained to minimize the expression below:

840
$$\begin{aligned} \min_{q_{P,i}(\theta)} & \left\{ \mathbb{E}_{p(c|x_i)} [H(p^c(\theta|x_i), q_{P,i}(\theta))] \right\} \\ 841 &= \min_{q_{P,i}(\theta)} \left\{ \rho_i^A H(p^A(\theta|x_i), q_{P,i}(\theta)) + \rho_i^B H(p^B(\theta|x_i), q_{P,i}(\theta)) \right\} \\ 842 &= \min_{q_{P,i}(\theta)} \left\{ - \sum_{\theta} [\rho_i^A p^A(\theta|x_i) \cdot \log q_{P,i}(\theta) + \rho_i^B p^B(\theta|x_i) \cdot \log q_{P,i}(\theta)] \right\} \\ 843 &= \min_{q_{P,i}(\theta)} \left\{ - \sum_{\theta} [\rho_i^A p^A(\theta|x_i) + \rho_i^B p^B(\theta|x_i)] \cdot \log q_{P,i}(\theta) \right\} \\ 844 & \end{aligned}$$

845 Since $p^A(\theta|x_i)$ and $p^B(\theta|x_i)$ are both probability distributions over θ , and $\rho_i^A + \rho_i^B = 1$, the
846 expression $\rho_i^A p^A(\theta|x_i) + \rho_i^B p^B(\theta|x_i)$ represents a proper probability distribution over θ . Therefore
847 the loss above is minimized when:

848
$$\begin{aligned} q_{P,i}^*(\theta) &= \rho_i^A p^A(\theta|x_i) + \rho_i^B p^B(\theta|x_i) \\ 849 &= \frac{S_i^A}{S_i^A + S_i^B} \frac{p^A(\theta)p(x_i|\theta)}{\sum_{\theta} p^A(\theta)p(x_i|\theta)} + \frac{S_i^B}{S_i^A + S_i^B} \frac{p^B(\theta)p(x_i|\theta)}{\sum_{\theta} p^B(\theta)p(x_i|\theta)} \\ 850 &= \frac{[p(c=A)p^A(\theta) + p(c=B)p^B(\theta)] \cdot p(x_i|\theta)}{S_i^A + S_i^B} \\ 851 &= \frac{[p(c=A)p^A(\theta) + p(c=B)p^B(\theta)] \cdot p(x_i|\theta)}{\sum_{\theta'} \{[p(c=A)p^A(\theta') + p(c=B)p^B(\theta')] \cdot p(x_i|\theta')\}} \\ 852 & \end{aligned}$$

That is, after training, the best possible posterior decoder output for data samples associated with x_i , i.e. $q_{P,i}^*(\theta)$, is as if the decoder were to use a surrogate prior:

$$\tilde{p}_i(\theta) = p(c = A)p^A(\theta) + p(c = B)p^B(\theta) \quad (8)$$

which is the task-marginalized, Bayes-optimal estimator of the prior distributions over θ across contexts $c \in \{A, B\}$. Interestingly, this surrogate prior distribution is independent of x_i .

Since likelihood-coding populations r_L contain no prior information $p^c(\theta)$, a posterior decoder g_P trained on such population responses cannot perfectly decode the posterior distribution. Instead, the posterior decoder output converges to a Bayes-optimal estimate of context-dependent posteriors determined by the context distributions $p(c)$ and $p^c(\theta)$. To obtain the expected cross-entropy loss across the entire data set, we marginalize over all x_i, c , yielding:

$$\begin{aligned} \mathbb{E}_{p(x_i, c)}[H(p^c(\theta|x_i), q_{P,i}^*(\theta))] &= \mathbb{E}_{p(x_i, c)}[H(p^c(\theta|x_i)) + D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{P,i}^*(\theta))] \\ &= \mathbb{E}_{p(x_i, c)}[H(p^c(\theta|x_i))] + \mathbb{E}_{p(x_i, c)}[D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{P,i}^*(\theta))] \\ &= \text{CE loss of the perfect likelihood decoder (Eq. 7)} \\ &\quad + \mathbb{E}_{p(x_i, c)}[D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{P,i}^*(\theta))] \end{aligned} \quad (9)$$

Information gap for a likelihood coding population Δ_L^{info}

From Eq. 9, let us define Δ_L^{info} , the information gap between a perfect likelihood decoder (g_L^*) and the best possible posterior decoder (g_P^*) applied on a likelihood-coding population, evaluated as the expected difference in cross-entropy loss between the two decoders:

$$\begin{aligned} \Delta_L^{\text{info}} &:= \mathbb{E}_{p(x_i, c)}[D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{P,i}^*(\theta))] \\ &= \sum_{x_i, c} D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{P,i}^*(\theta)) \cdot p(x_i, c) \\ &= \sum_{x_i, c} D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{P,i}^*(\theta)) \cdot p(c) \left[\sum_{\theta} p(x_i|\theta)p^c(\theta) \right] \\ &= \sum_{x_i} \sum_c D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{P,i}^*(\theta)) \cdot p(c) \left[\sum_{\theta} p(x_i|\theta)p^c(\theta) \right] \\ &= \sum_{x_i} \left\{ D_{\text{KL}}(p^A(\theta|x_i) \parallel q_{P,i}^*(\theta)) \cdot p(c = A) \left[\sum_{\theta} p(x_i|\theta)p^A(\theta) \right] + \right. \\ &\quad \left. D_{\text{KL}}(p^B(\theta|x_i) \parallel q_{P,i}^*(\theta)) \cdot p(c = B) \left[\sum_{\theta} p(x_i|\theta)p^B(\theta) \right] \right\} \end{aligned} \quad (10)$$

Eq. 10 provides an analytical expression for the information gap for a likelihood-coding population under a task design specified by $(p(c), p^c(\theta))$ and a generative model $p(x|\theta)$. Per observation x_i , the expression evaluates the KL divergence between the true posterior $p^c(\theta|x_i)$ and a surrogate posterior $q_{P,i}^*(\theta)$, which is the output of the best possible posterior decoder utilizing the task-marginalized, Bayes-optimal estimator of the prior distribution (Eq. 8). The KL divergence is then marginalized across x_i to derive the total expected performance difference between likelihood decoders and posterior decoders.

A.1.2 INFORMATION GAP FOR POSTERIOR CODING HYPOTHESIS Δ_P^{INFO}

For a posterior coding population, the neural population responses r_P^c encode the posterior distribution over θ given x under the context c , i.e. $p^c(\theta|x)$, and are therefore modulated by and dependent on the context prior $p^c(\theta)$:

$$r_P^c \sim f(p^c(\theta|x)), \text{ where } f \text{ is some neural encoding function.}$$

Decoding performance of a perfect posterior decoder g_P

918 Applying a posterior decoder g_P to a posterior-coding population \mathbf{r}_P , we want
 919
 920

$$g_P(\mathbf{r}_P) \longrightarrow p^c(\theta|x)$$

921 As before, let us assume the observation space can be discretized into $x \in \{x_i\}$, and consider the
 922 neural population responses associated with each x_i :
 923

$$\forall x_i, c : \mathbf{r}_{P,i}^c \sim f(p^c(\theta|x_i))$$

924 We denote the output of a posterior decoder as $q_{P,i}^c(\theta) := g_P(\mathbf{r}_{P,i}^c)$, which is context-dependent
 925 as $\mathbf{r}_{P,i}^c$ depends on the context c . As the output of the posterior decoder $q_{P,i}^c(\theta)$ can be directly
 926 interpreted as the posterior distribution (schematized in Fig. 2), the cross-entropy loss for data
 927 samples associated with x_i, c , i.e. $H(p^c(\theta|x_i), q_{P,i}^c(\theta))$, is minimized when:
 928

$$q_{P,i}^{c*}(\theta) = p^c(\theta|x_i)$$

929 That is, after training, the posterior decoder output $g_P(\mathbf{r}_{P,i}^c)$ will converge to $q_{P,i}^{c*}(\theta) = p^c(\theta|x_i)$,
 930 provided sufficient training samples are available.
 931

932 To obtain the expected cross-entropy loss across the entire data set, we marginalize over all x_i, c ,
 933 yielding:
 934

$$\begin{aligned} \mathbb{E}_{p(x_i, c)}[H(p^c(\theta|x_i), q_{P,i}^{c*}(\theta))] &= \mathbb{E}_{p(x_i, c)}[H(p^c(\theta|x_i)) + D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{P,i}^{c*}(\theta))] \\ &= \mathbb{E}_{p(x_i, c)}[H(p^c(\theta|x_i))] \\ &= \sum_{x_i, c} H(p^c(\theta|x_i)) \cdot p(x_i, c) \\ &= \sum_{x_i, c} H(p^c(\theta|x_i)) \cdot p(c) \left[\sum_{\theta} p(x_i|\theta) p^c(\theta) \right] \\ &= \sum_{x_i} \sum_{c} H(p^c(\theta|x_i)) \cdot p(c) \left[\sum_{\theta} p(x_i|\theta) p^c(\theta) \right] \\ &= \sum_{x_i} \left\{ H(p^A(\theta|x_i)) \cdot p(c = A) \left[\sum_{\theta} p(x_i|\theta) p^A(\theta) \right] + \right. \\ &\quad \left. H(p^B(\theta|x_i)) \cdot p(c = B) \left[\sum_{\theta} p(x_i|\theta) p^B(\theta) \right] \right\} \quad (11) \end{aligned}$$

952 where the second equality holds because $D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{P,i}^{c*}(\theta)) = 0$ for a perfect posterior
 953 decoder as derived above. Hence, the expected cross-entropy loss for a perfect posterior decoder on
 954 a posterior coding population should approach the expected posterior entropy as determined by the
 955 context frequencies and context prior distribution as given by Eq. 11. Note Eq. 11 is the same as
 956 the expected cross-entropy loss for a perfect likelihood decoder on a likelihood coding population
 957 as derived previously in Eq. 7.
 958

959 Decoding performance of the best possible likelihood decoder g_L

960 Applying a likelihood decoder g_L to a posterior coding population \mathbf{r}_P , we want
 961

$$g_L(\mathbf{r}_P) \longrightarrow p(x|\theta)$$

963 In contrast to the mismatched decoding scenario of applying a posterior decoder to a likelihood-
 964 coding population where the posterior decoder cannot perfectly decode the posterior distributions
 965 from population responses for *any* observation x_i , application of a likelihood decoder to a posterior-
 966 coding population requires more intricate considerations—we reason below that only *some* x_i would
 967 cause the likelihood decoder to fail to perfectly decode the likelihood function from a posterior-
 968 coding population. We first reiterate that the posterior population responses \mathbf{r}_P^c are context depen-
 969 dent, which means that for the same x_i , the neural responses $\mathbf{r}_{P,i}^c$ are different across the two con-
 970 texts. Hence, from the perspective of a likelihood decoder, for each x_i , the inputs (neural responses
 971 $\mathbf{r}_{P,i}^c$) are different across contexts, but the target output ($p(x_i|\theta)$) is the same. Because the ground-
 972 truth context priors $p^c(\theta)$ are explicitly provided to the likelihood decoder, this scenario “pressures”

972 the decoder to learn a *many-to-one* mapping, which is generally achievable for a sufficiently powerful
 973 likelihood decoder (Fig. 2C).

974 To identify the condition in which the likelihood decoder would fail to perfectly decode the likelihood
 975 function from posterior coding population responses, recall that when applying a posterior
 976 decoder to a likelihood-coding population, the main reason why the posterior decoder cannot be perfect
 977 is that it is forced to map identical inputs ($\mathbf{r}_{L,i}$) into multiple distinct target outputs ($p^c(\theta|x_i)$).
 978 In other words, the decoder cannot be perfect because it is trying to learn a *one-to-many* mapping.
 979 Given this insight, for the scenario of applying a likelihood decoder on a posterior-coding population,
 980 we identify the condition under which likelihood decoders are forced to map identical inputs to
 981 distinct target outputs. Consider the set of pairs $\chi := \{(x_j, x_k)\}$, where each pair (x_j, x_k) satisfies:

$$\begin{aligned} 982 \quad & \mathbf{r}_{P,j}^A \approx \mathbf{r}_{P,k}^B \\ 983 \quad \Leftrightarrow & \quad p^A(\theta|x_j) \approx p^B(\theta|x_k), \forall \theta \quad (\text{can be measured in terms of KL divergence}) \\ 984 \quad \Leftrightarrow & \quad p^A(\theta) \cdot p(x_j|\theta) \propto p^B(\theta) \cdot p(x_k|\theta), \forall \theta \end{aligned} \quad (12)$$

985 That is, we consider the condition $\mathbf{r}_{P,j}^A \approx \mathbf{r}_{P,k}^B$, where the inputs ($\mathbf{r}_{P,j}^A$ or $\mathbf{r}_{P,k}^B$) to the likelihood
 986 decoder g_L are (approximately) the same but the target output differs based on the context
 987 ($p(x_j|\theta)$ or $p(x_k|\theta)$). Under the assumption of ideal decoders, the set of pairs in $\chi = \{(x_j, x_k)\}$
 988 are the only scenarios where it is impossible for an ideal likelihood decoder to be perfect. In these
 989 scenarios, identical inputs (population responses encoding the same posterior distributions) need
 990 to be decoded into different outputs (distinct likelihood functions), which is not achievable by any
 991 functional decoder, regardless of training sample size or expressive of parametrization.

992 With the insight that only observations in the set of pairs $\chi = \{(x_j, x_k)\}$ where Eq. 12 is satisfied will
 993 cause the likelihood decoder to fail to perfectly decode the likelihood function, let us now derive the
 994 expected likelihood decoder output for each pair. Firstly, consider the frequency of a context given
 995 an observation of neural responses associated with $\mathbf{r}_{P,j}^A$ or $\mathbf{r}_{P,k}^B$:

$$\begin{aligned} 996 \quad p(c = A|\mathbf{r} = \mathbf{r}_{P,j}^A \vee \mathbf{r}_{P,k}^B) &= \frac{p(c = A, \mathbf{r} = \mathbf{r}_{P,j}^A \vee \mathbf{r}_{P,k}^B)}{p(\mathbf{r} = \mathbf{r}_{P,j}^A \vee \mathbf{r}_{P,k}^B)} \\ 997 \quad &= \frac{p(c = A) \cdot \sum_{\theta} p^A(\theta)p(x_j|\theta)}{p(c = A) \cdot \sum_{\theta} p^A(\theta)p(x_j|\theta) + p(c = B) \cdot \sum_{\theta} p^B(\theta)p(x_k|\theta)} \end{aligned}$$

1000 Similarly, we have:

$$1001 \quad p(c = B|\mathbf{r} = \mathbf{r}_{P,j}^A \vee \mathbf{r}_{P,k}^B) = \frac{p(c = B) \cdot \sum_{\theta} p^B(\theta)p(x_k|\theta)}{p(c = A) \cdot \sum_{\theta} p^A(\theta)p(x_j|\theta) + p(c = B) \cdot \sum_{\theta} p^B(\theta)p(x_k|\theta)}$$

1002 Let us denote

$$\begin{aligned} 1003 \quad S_j^A &:= p(c = A) \sum_{\theta} p^A(\theta)p(x_j|\theta) \\ 1004 \quad S_k^B &:= p(c = B) \sum_{\theta} p^B(\theta)p(x_k|\theta) \end{aligned}$$

1005 Define the observation-dependent context frequency for observing data samples coming from $\mathbf{r}_{P,j}^A$
 1006 or $\mathbf{r}_{P,k}^B$:

$$\begin{aligned} 1007 \quad \rho_j^A &:= p(c = A|\mathbf{r} = \mathbf{r}_{P,j}^A \vee \mathbf{r}_{P,k}^B) = S_j^A / (S_j^A + S_k^B) \\ 1008 \quad \rho_k^B &:= p(c = B|\mathbf{r} = \mathbf{r}_{P,j}^A \vee \mathbf{r}_{P,k}^B) = S_k^B / (S_j^A + S_k^B) \end{aligned}$$

1009 Now, let us denote the context-independent likelihood decoder output as $\ell_{jk}(\theta) := g_L(\mathbf{r} = \mathbf{r}_{P,j}^A \vee$
 1010 $\mathbf{r}_{P,k}^B)$. The context-dependent posterior distribution given the corresponding context prior $p^c(\theta)$ is

1026 given by:
 1027

$$1028 q_{L,j}^A(\theta) = \frac{p^A(\theta)\ell_{jk}(\theta)}{\sum_{\theta'} p^A(\theta')\ell_{jk}(\theta')} = \frac{p^A(\theta)\ell_{jk}(\theta)}{Z_j^A[\ell_{jk}(\theta)]}$$

$$1029 q_{L,k}^B(\theta) = \frac{p^B(\theta)\ell_{jk}(\theta)}{\sum_{\theta'} p^B(\theta')\ell_{jk}(\theta')} = \frac{p^B(\theta)\ell_{jk}(\theta)}{Z_k^B[\ell_{jk}(\theta)]}$$

$$1030$$

$$1031$$

$$1032$$

1033 where $Z_j^A[\ell_{jk}(\theta)]$ and $Z_k^B[\ell_{jk}(\theta)]$ are normalization constants dependent on $\ell_{jk}(\theta)$, defined as:
 1034

$$1035 Z_j^A[\ell_{jk}(\theta)] := \sum_{\theta} p^A(\theta)\ell_{jk}(\theta)$$

$$1036$$

$$1037 Z_k^B[\ell_{jk}(\theta)] := \sum_{\theta} p^B(\theta)\ell_{jk}(\theta)$$

$$1038$$

$$1039$$

1040 Under cross-entropy loss, we want $\ell_{jk}(\theta)$ (and hence its associated posteriors $q_{L,j}^A(\theta)$ and $q_{L,k}^B(\theta)$)
 1041 to minimize:
 1042

$$1043 \min_{\ell_{jk}(\theta)} \left\{ \rho_j^A H(p^A(\theta|x_j), q_{L,j}^A(\theta)) + \rho_k^B H(p^B(\theta|x_k), q_{L,k}^B(\theta)) \right\}$$

$$1044$$

$$1045 = \min_{\ell_{jk}(\theta)} \left\{ - \sum_{\theta} \left[\rho_j^A p^A(\theta|x_j) \log q_{L,j}^A(\theta) + \rho_k^B p^B(\theta|x_k) \log q_{L,k}^B(\theta) \right] \right\}$$

$$1046$$

$$1047 = \min_{\ell_{jk}(\theta)} \left\{ - \sum_{\theta} \left[\rho_j^A \frac{p^A(\theta)p(x_j|\theta)}{\sum_{\theta'} p^A(\theta')p(x_j|\theta')} \log \frac{p^A(\theta)\ell_{jk}(\theta)}{Z_j^A[\ell_{jk}]} + \right. \right.$$

$$1048 \rho_k^B \frac{p^B(\theta)p(x_k|\theta)}{\sum_{\theta'} p^B(\theta')p(x_k|\theta')} \log \frac{p^B(\theta)\ell_{jk}(\theta)}{Z_k^B[\ell_{jk}]} \right] \right\} \quad (13)$$

$$1049$$

$$1050$$

$$1051$$

$$1052$$

1053 Define
 1054

$$1055 \mu_j^A(\theta) := \rho_j^A p^A(\theta|x_j) = \rho_j^A \frac{p^A(\theta)p(x_j|\theta)}{\sum_{\theta'} p^A(\theta')p(x_j|\theta')} = \frac{p(c=A)p^A(\theta)p(x_j|\theta)}{S_j^A + S_k^B}$$

$$1056$$

$$1057 \mu_k^B(\theta) := \rho_k^B p^B(\theta|x_k) = \rho_k^B \frac{p^B(\theta)p(x_k|\theta)}{\sum_{\theta'} p^B(\theta')p(x_k|\theta')} = \frac{p(c=B)p^B(\theta)p(x_k|\theta)}{S_j^A + S_k^B}$$

$$1058$$

$$1059$$

1060 Note
 1061

$$1062 \sum_{\theta} \mu_j^A(\theta) = \frac{p(c=A) \sum_{\theta} p^A(\theta)p(x_j|\theta)}{S_j^A + S_k^B} = \rho_j^A$$

$$1063$$

$$1064 \sum_{\theta} \mu_k^B(\theta) = \frac{p(c=B) \sum_{\theta} p^B(\theta)p(x_k|\theta)}{S_j^A + S_k^B} = \rho_k^B$$

$$1065$$

$$1066$$

$$1067$$

1068 The cross-entropy loss term in Eq. 13 can be rewritten as:
 1069

$$1070 L(\ell_{jk}(\theta)) = - \sum_{\theta} \left[\mu_j^A(\theta) \cdot \left(\log p^A(\theta) + \log \ell_{jk}(\theta) - \log Z_j^A[\ell_{jk}(\theta)] \right) + \right.$$

$$1071 \left. \mu_k^B(\theta) \cdot \left(\log p^B(\theta) + \log \ell_{jk}(\theta) - \log Z_k^B[\ell_{jk}(\theta)] \right) \right]$$

$$1072$$

$$1073 = - \left\{ \sum_{\theta} \left[\mu_j^A(\theta) \log p^A(\theta) + \mu_k^B(\theta) \log p^B(\theta) \right] \right.$$

$$1074 \left. + \sum_{\theta} \left[(\mu_j^A(\theta) + \mu_k^B(\theta)) \cdot \log \ell_{jk}(\theta) \right] \right.$$

$$1075 \left. - \left[\sum_{\theta} \mu_j^A(\theta) \right] \cdot \log Z_j^A[\ell_{jk}(\theta)] - \left[\sum_{\theta} \mu_k^B(\theta) \right] \cdot \log Z_k^B[\ell_{jk}(\theta)] \right\} \quad (14)$$

$$1076$$

$$1077$$

$$1078$$

$$1079$$

1080 Note from Eq. 14, we can see that $L(\alpha\ell) = L(\ell)$, $\forall \alpha > 0$, as the normalization factors cancel out
 1081 the multiplicative effect. Therefore ℓ^* that minimizes L is determined up to a multiplicative constant,
 1082 agreeing with our intuition that the output of a likelihood decoder should be only determined up to
 1083 a multiplicative constant as in Eq. 6.

1084 The above minimization happens at the critical point $\ell_{jk}^*(\theta)$ where $\frac{\partial L}{\partial \ell_{jk}^*(\theta)} = 0$, $\forall \theta$, with L defined
 1085 in Eq. 14.

1086 Before proceeding to find the minimum for this variational calculus problem, let us first evaluate:

$$1089 \frac{\partial}{\partial \ell_{jk}(\theta)} Z_j^A[\ell_{jk}(\theta)] = \frac{\partial}{\partial \ell_{jk}(\theta)} \left\{ \sum_{\theta'} p^A(\theta') \ell_{jk}(\theta') \right\} = p^A(\theta)$$

$$1091 \frac{\partial}{\partial \ell_{jk}(\theta)} Z_k^B[\ell_{jk}(\theta)] = \frac{\partial}{\partial \ell_{jk}(\theta)} \left\{ \sum_{\theta'} p^B(\theta') \ell_{jk}(\theta') \right\} = p^B(\theta)$$

1093

1094 To find the minimum, let us take the derivative of L with respect to $\ell_{jk}(\theta)$ and set it to zero:

$$1095 0 = \frac{\partial L(\ell_{jk}(\theta))}{\partial \ell_{jk}(\theta)} \\ 1096 = -\frac{\partial}{\partial \ell_{jk}(\theta)} \left\{ \sum_{\theta} \left[\mu_j^A(\theta) \log p^A(\theta) + \mu_k^B(\theta) \log p^B(\theta) \right] \right. \\ 1097 \quad \left. + \sum_{\theta} \left[(\mu_j^A(\theta) + \mu_k^B(\theta)) \cdot \log \ell_{jk}(\theta) \right] \right. \\ 1098 \quad \left. - \left[\sum_{\theta} \mu_j^A(\theta) \right] \cdot \log Z_j^A[\ell_{jk}(\theta)] - \left[\sum_{\theta} \mu_k^B(\theta) \right] \cdot \log Z_k^B[\ell_{jk}(\theta)] \right\} \\ 1099 \\ 1100 = -\left\{ \frac{\mu_j^A(\theta) + \mu_k^B(\theta)}{\ell_{jk}(\theta)} - \frac{\left[\sum_{\theta} \mu_j^A(\theta) \right]}{Z_j^A[\ell_{jk}(\theta)]} \frac{\partial Z_j^A[\ell_{jk}(\theta)]}{\partial \ell_{jk}(\theta)} - \frac{\left[\sum_{\theta} \mu_k^B(\theta) \right]}{Z_k^B[\ell_{jk}(\theta)]} \frac{\partial Z_k^B[\ell_{jk}(\theta)]}{\partial \ell_{jk}(\theta)} \right\} \\ 1101 \\ 1102 = -\left\{ \frac{\mu_j^A(\theta) + \mu_k^B(\theta)}{\ell_{jk}(\theta)} - \frac{\rho_j^A}{Z_j^A[\ell_{jk}(\theta)]} p^A(\theta) - \frac{\rho_k^B}{Z_k^B[\ell_{jk}(\theta)]} p^B(\theta) \right\}$$

1103

1104 Therefore the minimization happens when (determined up to a multiplicative constant):

$$1105 \ell_{jk}^*(\theta) \propto \frac{\mu_j^A(\theta) + \mu_k^B(\theta)}{\frac{\rho_j^A}{Z_j^A[\ell_{jk}^*]} p^A(\theta) + \frac{\rho_k^B}{Z_k^B[\ell_{jk}^*]} p^B(\theta)} \\ 1106 = \frac{\rho_j^A p^A(\theta|x_j) + \rho_k^B p^B(\theta|x_k)}{\frac{\rho_j^A}{Z_j^A[\ell_{jk}^*]} p^A(\theta) + \frac{\rho_k^B}{Z_k^B[\ell_{jk}^*]} p^B(\theta)} \quad (15)$$

1107 Eq. 15 gives an implicit expression for $\ell_{jk}^*(\theta)$, since both $Z_j^A[\ell_{jk}^*]$ and $Z_k^B[\ell_{jk}^*]$ depend on $\ell_{jk}^*(\theta)$.

1108 The equation can be solved using fixed-point iteration starting with some initial guess for $\ell_{jk}^{(0)}(\theta) > 0$. For instance:

1109 Initialize $\ell_{jk}^{(0)}(\theta) \propto 1$

1110 for $t = 0, 1, 2, \dots$:

1111 compute $Z_j^{A,(t)}[\ell_{jk}^{(t)}] = \sum_{\theta} \ell_{jk}^{(t)}(\theta) p^A(\theta)$

1112 $Z_k^{B,(t)}[\ell_{jk}^{(t)}] = \sum_{\theta} \ell_{jk}^{(t)}(\theta) p^B(\theta)$

1113 update $\ell_{jk}^{(t+1)}(\theta) = \frac{\rho_j^A p^A(\theta|x_j) + \rho_k^B p^B(\theta|x_k)}{\frac{\rho_j^A}{Z_j^{A,(t)}[\ell_{jk}^{(t)}]} p^A(\theta) + \frac{\rho_k^B}{Z_k^{B,(t)}[\ell_{jk}^{(t)}]} p^B(\theta)}$

1114 Stop when $\ell_{jk}^{(t)}(\theta)$ converges (up to a multiplicative constant).

That is, as given by Eq. 15, after training, the best possible likelihood decoder output for data samples associated with $r_{P,j}^A$ and $r_{P,k}^B$ is as if the likelihood decoder were to divide a surrogate posterior that is a weighted sum of ground-truth posteriors $\rho_j^A p^A(\theta|x_j) + \rho_k^B p^B(\theta|x_k)$ by a surrogate prior that is a weighted sum of ground-truth priors $\frac{\rho_j^A}{Z_j^A[\ell_{jk}^*]} p^A(\theta) + \frac{\rho_k^B}{Z_k^B[\ell_{jk}^*]} p^B(\theta)$.

The posterior of the best possible likelihood decoder output $g_L^* = \ell_{jk}^*(\theta)$ given the corresponding context prior for $r_{P,j}^A$ and $r_{P,k}^B$ is evaluated as:

$$q_{L,j}^{A*}(\theta) = \frac{\ell_{jk}^*(\theta)p^A(\theta)}{Z_j^A[\ell_{jk}^*]}$$

$$q_{L,k}^{B*}(\theta) = \frac{\ell_{jk}^*(\theta)p^B(\theta)}{Z_k^B[\ell_{jk}^*]}$$

Hence, to obtain the expected cross-entropy loss across the entire data set, we marginalize over all x_i, c , and the total cross-entropy loss for the best possible likelihood decoder can be expressed as:

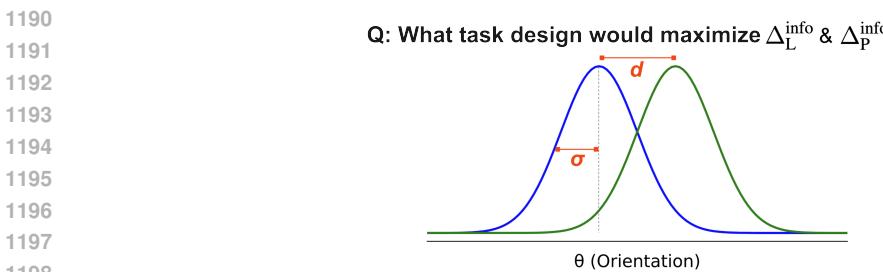
$$\begin{aligned} \mathbb{E}_{p(x_i, c)}[H(p^c(\theta|x_i), q_{L,i}^{c*}(\theta))] &= \mathbb{E}_{p(x_i, c)}[H(p^c(\theta|x_i)) + D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{L,i}^{c*}(\theta))] \\ &= \mathbb{E}_{p(x_i, c)}[H(p^c(\theta|x_i))] + \mathbb{E}_{p(x_i, c)}[D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{L,i}^{c*}(\theta))] \\ &= \text{CE loss for the perfect posterior decoder (Eq. 11)} \\ &\quad + \mathbb{E}_{p(x_i, c)}[D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{L,i}^{c*}(\theta))] \end{aligned} \quad (16)$$

Information gap for a posterior coding population Δ_p^{info}

From equation 16, let us define Δ_p^{info} , the information gap for a posterior coding population between a perfect posterior decoder (g_P^*) and the best possible likelihood decoder (g_L^*), as the expected difference in the cross-entropy loss of the two decoders:

$$\begin{aligned} \Delta_p^{\text{info}} &:= \mathbb{E}_{p(x_i, c)}[D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{L,i}^{c*}(\theta))] \\ &= \sum_{x_i, c} D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{L,i}^{c*}(\theta)) \cdot p(x_i, c), \text{ since only } x_i \in \chi = \{(x_j, x_k)\} \text{ terms are nonzero} \\ &= \sum_{x_i \in \chi, c} D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{L,i}^{c*}(\theta)) \cdot p(x_i, c) \\ &= \sum_{x_i \in \chi, c} D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{L,i}^{c*}(\theta)) \cdot p(c) \left[\sum_{\theta} p(x_i|\theta) p^c(\theta) \right] \\ &= \sum_{x_i \in \chi} \sum_c D_{\text{KL}}(p^c(\theta|x_i) \parallel q_{L,i}^{c*}(\theta)) \cdot p(c) \left[\sum_{\theta} p(x_i|\theta) p^c(\theta) \right] \\ &= \sum_{(x_j, x_k)} \left\{ D_{\text{KL}}(p^A(\theta|x_j) \parallel q_{L,j}^{A*}(\theta)) \cdot p(c = A) \left[\sum_{\theta} p(x_j|\theta) p^A(\theta) \right] \right. \\ &\quad \left. + D_{\text{KL}}(p^B(\theta|x_k) \parallel q_{L,k}^{B*}(\theta)) \cdot p(c = B) \left[\sum_{\theta} p(x_k|\theta) p^B(\theta) \right] \right\} \end{aligned} \quad (17)$$

Eq. 17 provides an analytical expression for the information gap for a posterior-coding population under a task design specified by $(p(c), p^c(\theta))$ and a generative model $p(x|\theta)$. Per pair of observations (x_j, x_k) , we evaluate the KL divergence between the true posterior ($p^A(\theta|x_j)$ or $p^B(\theta|x_k)$) and a surrogate posterior ($q_{L,j}^{A*}(\theta)$ or $q_{L,k}^{B*}(\theta)$), which is the posterior distribution associated with the output of the best possible likelihood decoder utilizing the task-marginalized, Bayes-optimal estimators as given by Eq. 15. The KL divergence is then marginalized across the pairs (x_j, x_k) to derive the total expected performance difference between likelihood decoders and posterior decoders.

1188 A.2 SCHEMATICS FOR TASK DESIGN TRADEOFF
11891199 Figure 8: **Design tradeoff.**
 1200
 12011202 A.3 DETAILS OF SIMULATION EXPERIMENT
1203

1204 A.3.1 SIMULATED NEURAL POPULATIONS

1205 We consider tasks with Gaussian context priors motivated by classic orientation discrimination psy-
 1206 chophysical tasks (Orbán et al., 2016; Walker et al., 2020). In this task, subjects perform an orienta-
 1207 tion discrimination under two contexts $c \in \{A, B\}$, with the context for each session sampled ran-
 1208 domly, i.e. $p(c = A) = p(c = B) = 0.5$. Within each session, the trial-to-trial hidden world state θ
 1209 (i.e. orientation) is drawn from context-specific Gaussian prior distributions $p^c(\theta) = \mathcal{N}(\mu^c, (\sigma^c)^2)$,
 1210 where μ^c and $(\sigma^c)^2$ are task-specific parameters. In the simulation, we consider $\theta \in \{-90^\circ, 90^\circ\}$,
 1211 and use identical variances for the two Gaussian priors $\sigma^A = \sigma^B = \sigma$. Consequently, the experi-
 1212 mental design is fully specified by the tuple of task parameters (μ^A, μ^B, σ) . Furthermore, foregoing
 1213 cardinal orientation consideration, the circular symmetry of orientations θ suggests that only the sep-
 1214 aration between the two means $d = |\mu^A - \mu^B|$ would meaningfully impact perception. Given this,
 1215 we always center the two means around zero, meaning $\mu^A = -\frac{1}{2}d$ and $\mu^B = \frac{1}{2}d$. We systematically
 1216 vary (d, σ) to cover the task spectrum of Gaussian context priors in the simulation studies.

1217 Noisy sensory observations x are drawn from the conditional distribution defined by the given gener-
 1218 ative model $p(x|\theta)$. This stochastic process can be seen as capturing both intrinsic neuronal noise
 1219 and uncertainty in the extrinsic stimulus features. This generative model can be experimentally ma-
 1220 nipulated through stimulus parameters such as contrast, where lower contrast induces increased ob-
 1221 servation variance, reflecting increased sensory uncertainty. In the simulation, $p(x|\theta)$ is modeled as
 1222 Gaussian distributions to reflect Gaussian orientation tuning curves commonly found among simple
 1223 V1 neurons. We model the effect of different contrast levels by systematically varying the standard
 1224 deviation of the generative model σ_{obs} (Walker et al., 2020). To this end, standard deviations σ_{obs} of
 1225 8, 15, and 25 are chosen to model the generative model under high, medium, and low contrast levels,
 1226 respectively. Finally, on each trial, the hidden world state θ is drawn from $p^c(\theta) = \mathcal{N}(\mu^c, (\sigma^c)^2)$
 1227 and then the observation is drawn from the conditional distribution $p(x|\theta) = \mathcal{N}(\theta, \sigma_{\text{obs}}^2)$.

1228 For simulated population responses, we first implement Poisson neuron models with Gaussian tun-
 1229 ing curves and Poisson variability (Walker et al., 2020). A population of neurons indexed by l , rang-
 1230 ing from 5-500 neurons, was constructed with Gaussian tuning curves $\mathcal{N}(\theta_l, \sigma_{\text{obs}}^2)$ with their means
 1231 θ_l tiling up the orientation space and their standard deviations being σ_{obs} . For likelihood-coding
 1232 populations, the mean firing rate of each neuron on each trial, after an observation x is sampled, is

1233 determined by the probability density of its Gaussian tuning curve, i.e. $f(x) = \frac{1}{\sqrt{2\pi\sigma_{\text{obs}}^2}} e^{-\frac{(x-\theta_l)^2}{2\sigma_{\text{obs}}^2}}$,
 1234 scaled with a fixed constant of 30 to approximate the typical range of neuron firing rates observed
 1235 experimentally (Walker et al., 2020). For posterior-coding populations, the mean firing rate of each
 1236 neuron is further multiplied by the context-specific prior $p^c(\theta)$, thus effectively encoding the pos-
 1237 terior $p^c(\theta|x) \propto p(x|\theta) \cdot p^c(\theta)$ in their mean firing rates. For both populations, trial-to-trial spike
 1238 counts are then generated by sampling from Poisson distribution with the specified mean firing rates.

1239 For some simulation experiments, we additionally implemented a more complex, gain-modulated
 1240 Poisson neuron model for simulating population responses (Goris et al., 2014). The gain-modulated
 1241 Poisson neuron model has been proposed to account for the supra-Poisson variability commonly
 1242 observed experimentally among V1 neurons. In this model, the mean firing rate of the neuron is

1242 the product of two terms: 1) the original rate determined by the Gaussian tuning curve model, and
 1243 2) a stimulus-independent gain factor G . Goris et al. (2014) proposed and validated on V1 neural
 1244 data that this stimulus-independent gain factor G can be effectively modeled as following a gamma
 1245 distribution with a mean of one and variance of σ_G^2 . Based on their results, we choose a biologically
 1246 realistic value of $\sigma_G \approx 0.5$ in our simulation. Therefore, on a trial-to-trial basis, after an original
 1247 rate is determined according to the procedure in the previous paragraph for the likelihood-coding or
 1248 posterior-coding population, a random gain factor is then sampled from the gamma distribution and
 1249 multiplied with the original rate to get the mean firing rate for the gain-modulated Poisson neuron
 1250 model. Similarly, spike counts are then generated from the mean firing rates with Poisson variability.

1251 **A.3.2 PROBABILISTIC INFORMATION DECODER**

1252 As described in Fig. 2C, deep neural networks parametrized by multi-layered perceptrons are trained
 1253 with cross-entropy loss to serve as flexible, powerful decoders to decode either the likelihood func-
 1254 tion or the posterior distribution from simulated neural population responses (Walker et al., 2020).
 1255 We use fully-connected, deep neural networks with two hidden layers, with 300 and 200 units in
 1256 the first and second layer, respectively. All hidden units are rectified linear units, and dropout rates
 1257 of 0.5 are used for both layers. The input dimension to the first layer is the number of neurons in
 1258 the simulated population, ranging from 5–500. The output layer is a fully connected readout with
 1259 no nonlinearity and a dimension of the number of possible hidden states. In our simulation, we
 1260 consider orientation $\theta \in \{-90^\circ, 90^\circ\}$ and discretize them into one degree bins, leading to a total
 1261 number of possible hidden states of 181. To facilitate numerical stability, the decoded probability
 1262 quantity is operating in the log space. The posterior decoder output is treated as the log-posterior,
 1263 which is directly optimized to minimize the cross-entropy loss. The likelihood decoder output is
 1264 treated as the log-likelihood, which is then integrated with the ground truth log-prior to arrive at the
 1265 final output that is optimized to minimize the cross-entropy loss. To encourage smoothness of the
 1266 decoded probability distributions, an L_2 regularizer on the log-posteriors filtered with a Laplacian
 1267 filter of the form $h = [0.25, 0.5, 0.25]$ is added to the cross-entropy term, as proposed in (Walker
 1268 et al., 2020). We use (0.8, 0.2) for train-validation split for training the decoders. A held-out test set
 1269 is used to final evaluation and all results in the paper are on the test test. Early stop with patience of
 1270 10 and minimal change of 2e-6 in validation set cross-entropy loss is adopted to prevent overfitting.
 1271 All models were constructed and trained using the Pytorch framework (Paszke et al., 2019).

1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296
1297

A.4 DETAILED RESULTS ON HEAVY-TAILED PRIORS

1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

Below we first provide the full results of information gap landscape across various contrast levels for heavy-tailed context priors including student's t-distribution (Fig. 9) and Cauchy distribution (Fig. 10). Note that for t-distribution we report the results using degrees of freedom $\nu = 3$. When $\nu \rightarrow \infty$ the t-distribution reduces to a standard Gaussian distribution, and when $\nu = 0$ the t-distribution becomes the Cauchy distribution. We then provide an intuitive example explaining why the information gap for posterior coding hypothesis is dramatically lower under heavy-tailed context priors compared to Gaussian context priors. The main reason is that under Gaussian generative models, when integrated with heavy-tailed priors, the posteriors tend to become asymmetric (as opposed to Gaussian priors where the posteriors are still symmetric Gaussian), thus limiting the number of pairs (x_j, x_k) that could confuse the likelihood decoder.

1308
1309

A.4.1 INFORMATION GAP LANDSCAPE

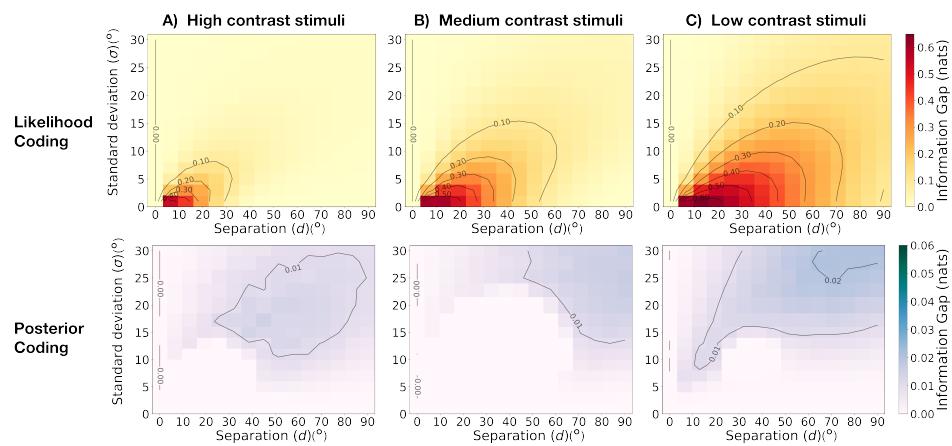
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324

Figure 9: **Information gap landscapes when using student's t-distribution with degrees of freedom $\nu = 3$ as context priors.** A) Information gap as a function of task parameters (d : separation between context priors, and σ : context prior standard deviations) for both the likelihood coding hypothesis (top) and the posterior coding hypothesis (bottom) when presented with high contrast stimuli. B) Same for medium contrast stimuli and C) for low contrast stimuli.

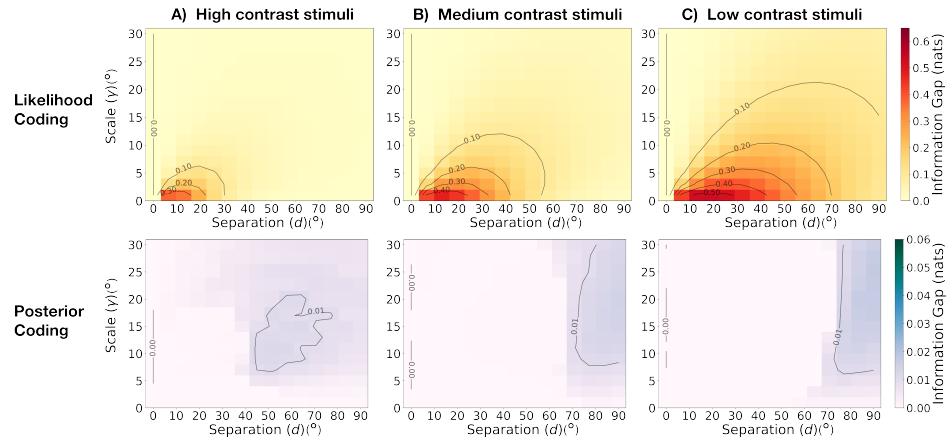
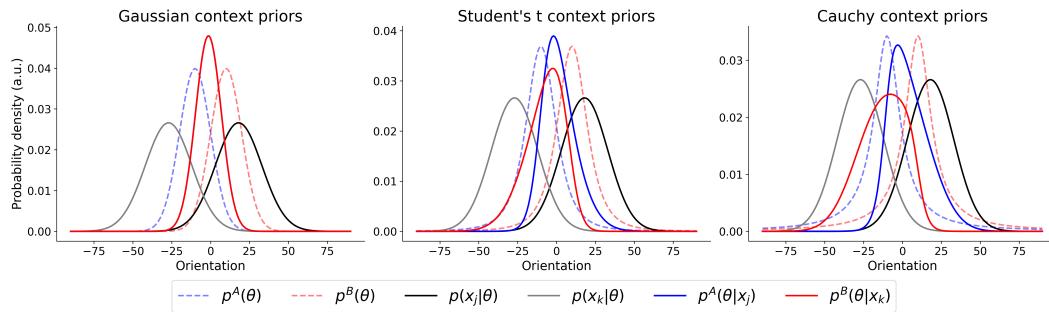
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345

Figure 10: **Information gap landscapes when using Cauchy distribution as context priors.** A) Information gap as a function of task parameters (d : separation between context priors, and γ : context prior scales) for both the likelihood coding hypothesis (top) and the posterior coding hypothesis (bottom) when presented with high contrast stimuli. B) Same for medium and C) low contrast stimuli.

1350
 1351 **A.4.2 AN EXAMPLE EXPLAINING WHY Δ_p^{INFO} IS DRAMATICALLY DECREASED UNDER**
 1352 **HEAVY-TAILED CONTEXT PRIORS**



1363
 1364 **Figure 11: Heavy tailed context priors, when integrated with Gaussian likelihood function, lead**
 1365 **to asymmetric posterior distributions, limiting the pairs of identical posteriors satisfying Eq.**
 1366 **12 that would cause imperfect likelihood decoders on posterior-coding populations.** Across

1367 task designs with Gaussian context priors (left), student's t context priors with $\nu = 3$ (middle), and

1368 Cauchy context priors (right), the context priors $p^A(\theta)$ and $p^B(\theta)$ are shown in dashed blue and red

1369 lines, respectively. Note they all share identical standard deviation or scale parameters to facilitate

1370 comparison. One example pair of $(x_j, x_k) = (18^\circ, -27^\circ)$ that satisfies Eq. 12 under Gaussian

1371 context priors is shown here, with the associated likelihood functions $p(x_j|\theta)$ and $p(x_k|\theta)$ plotted

1372 in solid gray and black lines, respectively. The posterior distributions under each context priors,

1373 $p^A(\theta|x_j)$ and $p^B(\theta|x_k)$ are shown as solid blue and red lines, respectively. Under Gaussian context

1374 priors (left), the two posteriors are equal to each other, i.e. $p^A(\theta|x_j) = p^B(\theta|x_k)$, hence the two

1375 lines overlap. However, as the context priors become increasingly heavy-tailed as under student's

1376 t distribution (middle) and Cauchy distributions (right), the two posteriors become more and more

1377 asymmetric, leading to non-identical posterior distributions that no longer satisfy Eq. 12. This

1378 example demonstrates why there are much less pairs (x_j, x_k) that would satisfy Eq. 12, accounting

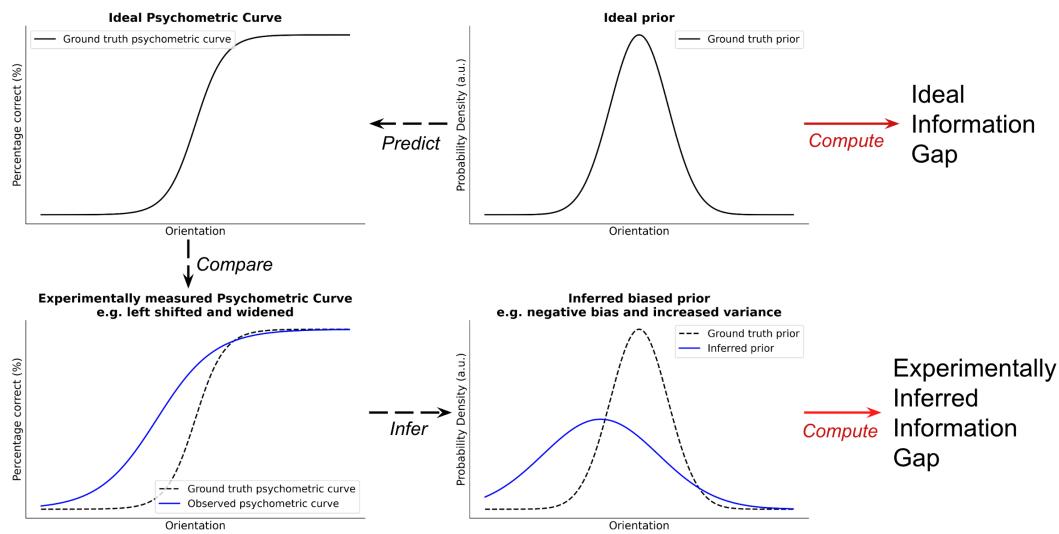
1379 for the observation that the information gap of posterior-coding population is dramatically decreased

1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404 A.5 INCORPORATING BIASED PRIOR FROM BEHAVIOR DATA
1405

1406 Although our main analysis focuses on the theoretical decoding limit using the optimal priors, our
1407 framework naturally accommodates model mismatch or biased priors by incorporating behavioral
1408 (psychometric) measurements. The procedure is detailed in Fig. 12:

- 1409 • **Analyze the psychometric curve:** In perceptual tasks (e.g., orientation discrimination
1410 tasks), deviations in the subject’s psychometric curve (correct rate as a function of stim-
1411 ulus orientation) from the ideal observer reveal model mismatch or biased priors.
- 1412 • **Infer the subject’s model mismatch/ biased prior:** Features (such as leftward shifts or
1413 increased slope/variance) in the psychometric function can be mapped to corresponding
1414 biases or increased uncertainty in the subject’s internal mismatched prior.
- 1415 • **Compute the information gap using the inferred prior:** The inferred biased prior can
1416 then be used directly in our information-gap calculation, yielding predictions that account
1417 for the subject’s model mismatch and more accurately reflect expected empirical decoder
1418 differences.



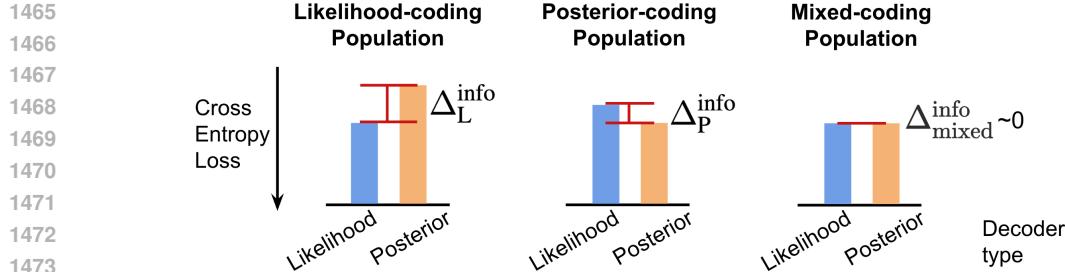
1429 Figure 12: The information gap computation can incorporate behavior data by estimating the sub-
1430 ject’s biased prior from its psychometric curve.
1431

1441 A.6 EXTENDING OUR FRAMEWORK TO MIXED CODING HYPOTHESIS
1442

1443 In this section we discuss a more nuanced probabilistic coding hypothesis and how our proposed
1444 framework could be extended to identify or falsify it. As an example of *mixed* coding hypothesis,
1445 Ganguli & Simoncelli (2010; 2014) proposed combining heterogeneous tuning curves—which embed
1446 aspects of the prior—with spiking variability that reflects the likelihood, yielding a hybrid code in
1447 which sensory responses carry both likelihood information and a structurally instantiated prior. This
1448 example can be categorized as a mixed or intermediate hypothesis, in between the canonical pure
1449 likelihood and pure posterior coding hypothesis. Our framework can naturally accommodate such
1450 mixed coding hypothesis by evaluating how each decoder performs under mismatched information.
1451 As shown in Fig. 13, since now both the likelihood and posterior decoders can recover the correct
1452 distributions, our theory predicts an information gap $\Delta^{\text{info}} = 0$. This zero-info-gap signature is
1453 distinct and does not arise under optimized task designs for either pure likelihood- or pure posterior-
1454 coding populations, which produce reliably nonzero and separable values. As a result, optimizing
1455 the task to maximally separate the two canonical hypotheses simultaneously maximizes sensitivity to
1456 departures from them. A mixed code that yields $\Delta^{\text{info}} = 0$ under the same optimized design becomes
1457 cleanly identifiable as neither pure likelihood nor pure posterior. Thus this discussion illustrates how
1458 our method could generalize beyond the two extreme hypotheses and provides a principled tool for
1459 distinguishing both pure and mixed coding schemes.

1458 More broadly, we do not claim that likelihood and posterior coding are the only relevant theories in
 1459 the literature, but they represent the two major families of theories that differ in what probabilistic
 1460 quantity is encoded. Our contribution is to provide a principled methodology for experimentally
 1461 distinguishing such theories. By optimizing task parameters to maximally separate these canonical
 1462 extremes, we simultaneously maximize sensitivity to discriminating more nuanced probabilistic
 1463 coding theories like the mixed coding hypothesis.

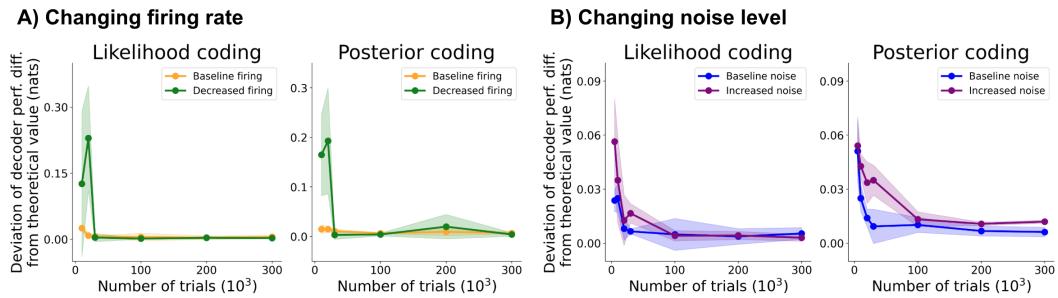
1464



1474
 1475 Figure 13: Under mixed coding hypothesis, the information gap becomes zero.
 1476

1477 A.7 EFFECT OF NOISE AND FIRING RATE

1479 As shown in Fig. 14, decreasing firing rates or increasing noise slows the convergence of empirical
 1480 decoder performance differences. More trials are needed for the empirical decoder performance
 1481 difference to approach the theoretical information gap. However, with sufficient data, the decoder
 1482 performance differences ultimately converge to the same theoretical value. This reflects the expected
 1483 effect of reduced signal-to-noise ratio—decoding becomes harder, but the underlying difference
 1484 in decodable information is unchanged. Thus, while low SNR increases data requirements, the
 1485 theoretical information gap remains the correct predictor of the asymptotic difference between the
 1486 two hypotheses.



1497
 1498 Figure 14: Effect of firing rate and noise level.
 1499

1500 A.8 FACTORS AFFECTING CONVERGENCE SPEED

1501 We conducted ablation study to examine the factors that determine how quickly empirical performance
 1502 converges to the theoretical value of information gap. Our main simulations assume that
 1503 neural tuning curves tile the full orientation space, consistent with standard V1 models Rubin et al.,
 1504 2015. In Fig. 15A, when the population is randomly sampled without full coverage of the entire orientation
 1505 space, since no decoder can recover information about orientations lacking tuned neurons, we found that convergence with respect to neuron count becomes substantially slower. In addition,
 1506 in Fig. 3, the neuron-scaling experiment uses 30k trials so that decoders quickly approach the theoretical limit. In Fig. 15B, we performed an ablation with fewer trials (3k trials) and observed that
 1507 convergence is again slower because the decoder cannot reliably estimate the encoded distributions
 1508 from limited data. In practice, the above factors can be mitigated by modern population recordings
 1509 that provide large number of trials with hundreds to thousands of simultaneously recorded neurons
 1510 that cover full range of orientation space.

Finally, to demonstrate that our result is robust to the level of discretization of the orientation variable, we repeated the convergence analysis with higher-resolution orientation bins (0.25° instead of 1° as in the main results), and obtained indistinguishable results. This confirms that the accuracy of information gap and its empirical convergence are robust to binning and reflect the underlying decodable information rather than numerical artifacts.

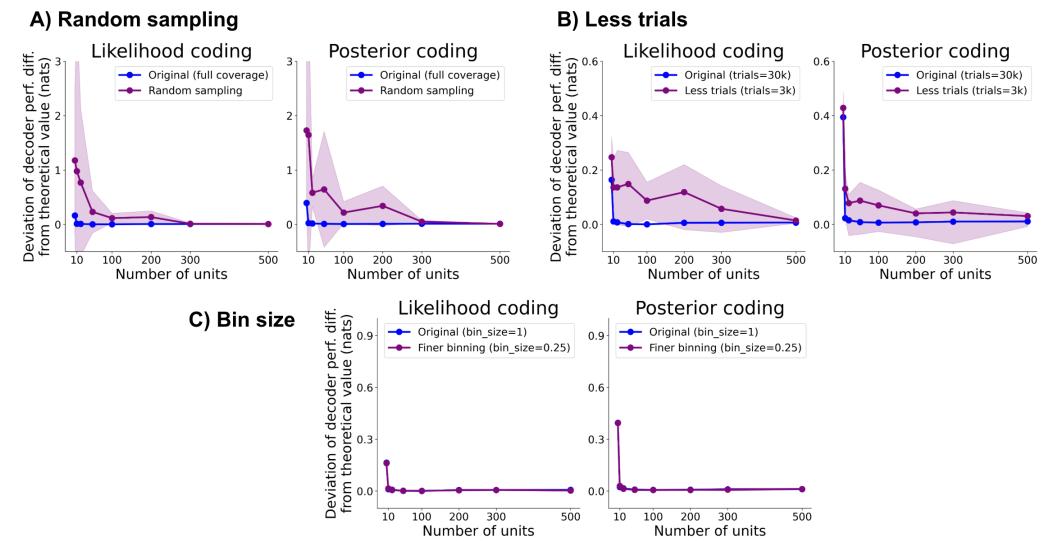


Figure 15: Examine factors affecting convergence speed. A) Effect of orientation coverage. B) Effect of trial numbers. C) Effect of bin size.

A.9 THIN TAILED PRIORS

To provide further examples on non-Gaussian context priors, we examined thin-tailed distributions as stimulus prior distributions. We reported additional analyses using canonical thin-tailed generalized normal distributions with $\beta > 2$ in Fig. 16. The information gap landscape shows that thin-tailed priors similarly lead to near-0 posterior-coding information gaps across task parameter space. Our framework provides a similar explanation: under thin-tailed context priors, the resulting posteriors become highly asymmetric across contexts (Fig. 17), reducing the feasible set of (x_j, x_k) pairs that can satisfy Eq. 12, thereby shrinking the posterior-coding information gap, which mirrors the failure mode observed with heavy-tailed priors.

What about uniform priors? As shown in Fig. 17, a uniform prior induces no context-dependent modulation of the posterior. Hence, likelihood- and posterior-coding populations become nearly indistinguishable, causing the information gap to collapse for both hypotheses.

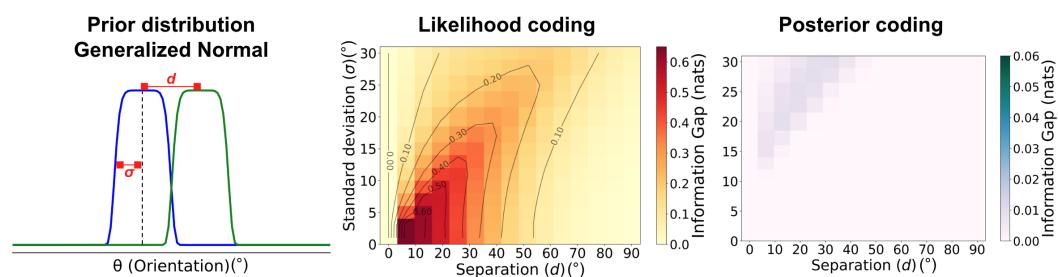


Figure 16: Information gap landscapes when using generalized normal distribution as context priors. A) Information gap as a function of task parameters (d : separation between context priors, and σ : context prior standard deviations) for both the likelihood coding hypothesis (middle) and the posterior coding hypothesis (right).

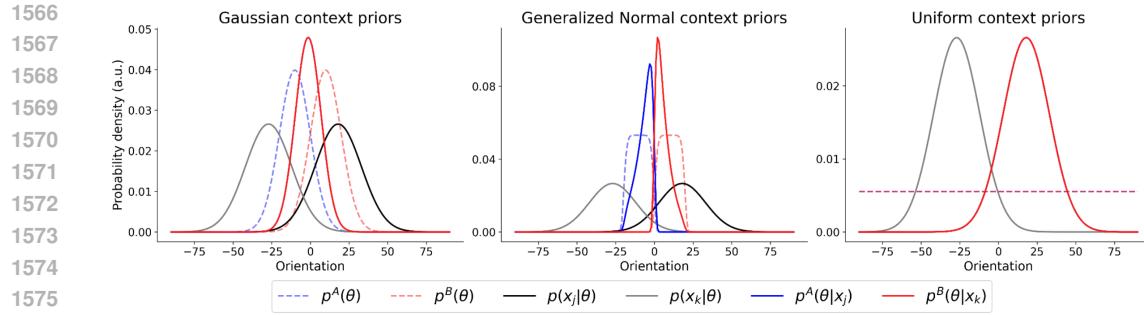


Figure 17: Thin tailed context priors, when integrated with Gaussian likelihood function, lead to asymmetric posterior distributions, limiting the pairs of identical posteriors satisfying Eq. 12 that would cause imperfect likelihood decoders on posterior-coding populations.

A.10 EXAMPLE LIKELIHOOD AND POSTERIOR

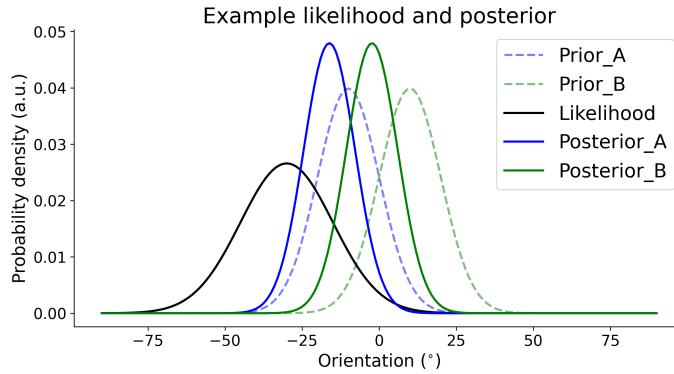


Figure 18: Example of the ground truth likelihood, priors, and posteriors.