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ABSTRACT

The Bayesian brain hypothesis has been a leading theory in understanding per-
ceptual decision-making under uncertainty. While extensive psychophysical ev-
idence supports the notion of the brain performing Bayesian computations, how
uncertainty information is encoded in sensory neural populations remains elusive.
Specifically, two competing hypotheses propose that early sensory populations en-
code either the likelihood function (exemplified by probabilistic population codes)
or the posterior distribution (exemplified by neural sampling codes) over the stim-
ulus, with the key distinction lying in whether stimulus priors would modulate
the neural responses. However, experimentally differentiating these two hypothe-
ses has remained challenging, as it is unclear what task design would effectively
distinguish the two. In this work, we present an information-theoretical frame-
work for optimizing the task stimulus distribution that would maximally differ-
entiate competing probabilistic neural codes. To quantify how distinguishable
the two probabilistic coding hypotheses are under a given task design, we de-
rive the information gap—the expected performance difference when likelihood
versus posterior decoders are applied to neural populations—by evaluating the
KL divergence between the true posterior and a task-marginalized surrogate pos-
terior. Through extensive simulations, we demonstrate that the information gap
accurately predicts decoder performance differences across diverse task settings.
Critically, maximizing the information gap yields stimulus distributions that op-
timally differentiate likelihood and posterior coding hypotheses. Our framework
enables principled, theory-driven experimental designs with maximal discrimina-
tive power to differentiate probabilistic neural codes, advancing our understanding
of how neural populations represent and process sensory uncertainty.

1 INTRODUCTION AND RELATED WORK

Effective perceptual decision-making requires organisms to process sensory information while
accounting for the uncertainty inherent in the noisy and ambiguous sensory observations.
The Bayesian brain hypothesis—with theoretical roots tracing to Laplace and von Helmholtz
(de Laplace, 1820; Helmholtz, 1891)—proposes that the brain maintains internal generative models
of the world and performs inference by computing probability distributions over task-relevant latent
world states (Knill & Richards, 1996; Knill & Pouget, 2004). This framework has proven successful
in explaining various aspects of human and animal perception, from multisensory integration and
object recognition to motion perception and sensorimotor learning (Ernst & Banks, 2002; Weiss
et al., 2002; Kersten et al., 2004; Alais & Burr, 2004; Körding & Wolpert, 2004). Extensive be-
havioral evidence demonstrates that humans and animals perform near optimally in perceptual tasks
that require uncertainty estimation, strongly suggesting that sensory neural populations encode both
task-relevant stimulus features and their associated uncertainty (Fiser et al., 2010; Pouget et al.,
2013; Qamar et al., 2013; Ma & Jazayeri, 2014). However, the neural implementation of proba-
bilistic computation remains actively debated, and how probability distributions are encoded and
represented in the brain is an area of active research (Yang & Shadlen, 2007; Orbán et al., 2016;
Walker et al., 2020; Aitchison et al., 2021; Haefner et al., 2024).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Two competing hypotheses on how sensory uncertainty information is encoded in
early sensory neural populations. A) Likelihood coding hypothesis, exemplified by the probabilis-
tic population code (Ma et al., 2006), proposes that early sensory populations encode the likelihood
function over the stimulus, with posterior computation deferred to downstream areas. B) Posterior
coding hypothesis, exemplified by the neural sampling code (Hoyer & Hyvärinen, 2002), posits that
early sensory populations readily encode the posterior distribution over hidden world state by inte-
grating prior knowledge conveyed via feedback connections from higher cortical areas.

An unresolved question concerns the format of probabilistic representations in sensory processing:
Do early sensory populations encode the likelihood function over stimuli, or do they readily repre-
sent the posterior distribution that incorporate prior knowledge? The likelihood coding hypothesis
(Fig. 1A) proposes that early sensory populations responding to stimuli (e.g., a drifting grating x)
with underlying latent world states (e.g., orientation θ) represent likelihood functions L(θ) ≡ p(x|θ)
(Jazayeri & Movshon, 2006; Walker et al., 2020). The classic form of probabilistic population code
(Ma et al., 2006) exemplifies this hypothesis, proposing that sensory areas such as the primary visual
cortex (V1) represent likelihood functions, accounting for the inherent variability in neural popula-
tion responses. Previous work has demonstrated that likelihood functions decoded from V1 popu-
lation responses are predictive of animals’ trial-by-trial choices and reflects uncertainty associated
with the sensory stimuli (Beck et al., 2008; Walker et al., 2020).

In contrast, motivated in part by the presence of extensive feedback connection from higher cor-
tical areas that could convey existing ‘prior‘ information, the posterior coding hypothesis (Fig.
1B) posits that sensory populations readily represent posterior distributions over latent world states
p(θ|x), suggesting that even early sensory areas would incorporate the knowledge of priors to com-
pute posterior distributions (Berkes et al., 2011; Festa et al., 2021). The neural sampling code
(Hoyer & Hyvärinen, 2002) is one illustrative example in this category where a neural population is
hypothesized to represent a posterior distribution by drawing a “sample” from the distribution and
encoding it in its stochastic population responses, suggesting that neural variability naturally reflects
the sampling process from a posterior distribution (Orbán et al., 2016; Haefner et al., 2016; Lange
& Haefner, 2022; Shrinivasan et al., 2023).

The critical distinction between the two probabilistic coding hypotheses lies in whether stimulus
priors p(θ) would modulate early sensory population responses. While existing studies have demon-
strated that specific instantiations of each hypothesis can capture some aspects of observed neural
response patterns (Haefner et al., 2016; Shivkumar et al., 2018; Walker et al., 2020), there is yet
to be a targeted experiment aimed to directly distinguish the predictions from each coding hypoth-
esis (Haefner et al., 2024). A fundamental challenge lies in identifying experimental designs—
specifically, stimulus prior distributions—that would maximally differentiate the two coding hy-
potheses (Ma & Jazayeri, 2014). Since both coding hypotheses can often account for similar neural
response patterns under traditional experimental conditions, targeted task designs where their pre-
dictions diverge maximally are crucial for distinguishing between likelihood and posterior coding
hypotheses (Grabska-Barwinska et al., 2013; Shivkumar et al., 2018; Lange et al., 2023).

Motivated by research on optimal stimulus design for psychophysics studies (Watson & Pelli, 1983;
Madigan & Williams, 1987), electrophysiology experiment (Lewi et al., 2006; 2011), and efficient
coding (Machens et al., 2005), in this work, we present an information-theoretical framework for
designing experiments that optimally differentiate likelihood and posterior coding hypotheses. Our
approach quantifies the expected difference in decodable information—which we term the infor-
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Figure 2: A decoding approach to differentiating probabilistic neural codes. A) An experimen-
tal paradigm consists of two contexts c ∈ {A,B} with context-specific prior distributions pc(θ).
B) Information gap ∆info, the difference in likelihood (blue) and posterior (orange) decoder perfor-
mances, can indicate whether the underlying neural population encodes the likelihood function (left)
or the posterior distributions (right). C) Deep neural network-based decoders are used for decoding
the likelihood function (top) or the posterior distribution (bottom) from population responses.

mation gap ∆info—when applying neural network-based decoders to extract likelihood or posterior
information from sensory neural populations following either coding hypothesis. Specifically, we
(1) derive analytical expressions for the information gap under both coding hypotheses, evaluated as
the Kullback–Leibler (KL) divergence between the true posterior and a surrogate posterior utilizing
Bayes-optimal estimators (Raventós et al., 2023); (2) validate theoretical predictions through sim-
ulations with deep neural network decoders applied to synthetic populations; and (3) demonstrate
how maximizing the information gap yields stimulus distributions that optimally differentiate the
two probabilistic coding hypotheses.

Our framework provides a principled metric for optimizing experimental designs, establishing the
theoretical upper bound on distinguishability between the two probabilistic coding hypotheses for
a given task design. By maximizing this metric, we identify stimulus distributions that yield max-
imally differential decoder performance—providing rigorous, empirically testable predictions that
directly adjudicate between competing theories of probabilistic neural representations.

2 INFORMATION GAP

We propose to determine whether early sensory populations encode likelihood functions or poste-
rior distributions by examining how varying stimulus priors affects population responses. Classic
orientation discrimination tasks under different contexts naturally involve altered stimulus prior dis-
tributions, making them ideal for testing this distinction (Qamar et al., 2013; Walker et al., 2020).
Our experimental paradigm manipulates stimulus prior distributions across two different contexts
and examines whether population responses vary according to changes in stimulus statistics (Fig.
2A)—a design that would leave likelihood-coding population responses invariant to an identical
stimulus across contexts while systematically affecting posterior-coding population responses.

A decoding framework is leveraged to distinguish the probabilistic information content encoded in
neural populations. As schematized in Fig. 2B, decoder performance degrades (increase in cross-
entropy loss) when attempting to extract mismatched probabilistic content: if a neural population
encodes likelihood functions, a decoder trained to extract likelihood information should outperform
one extracting posterior information, and vice versa for posterior-coding populations. This differ-
ential performance between likelihood and posterior decoders thus serves as a diagnostic tool for
identifying the underlying probabilistic representation. Building on recent advances in neural de-
coding (Walker et al., 2020), we employ deep neural network-based decoders that can effectively
extract the encoded information while incorporating the structural assumptions of each probabilistic
coding hypothesis (Fig. 2D).

However, it is unclear what stimulus prior distributions would lead to maximal differentiabiltiy under
the two probabilistic coding hypotheses (Fig. 8). While intuition suggests using maximally differ-
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ent context priors, this would limit stimulus overlap across contexts and thus prevent observing how
different context priors modulate neural population responses to identical stimuli. This tradeoff—
requiring sufficient prior differences to generate distinguishable population responses while main-
taining adequate overlap for meaningful comparisons across contexts—cannot be resolved through
intuition alone. To address this, we developed an information-theoretical framework that quantifies
the expected decoder performance difference to systematically optimize experimental designs.

Experimental paradigm Consider a generative model of sensory observations θ → x, where x
represents noisy sensory observations (e.g. drifting gratings) generated according to the conditional
distribution p(x|θ) given the hidden world state θ (e.g. orientation). We consider an experimental
paradigm as introduced in Fig. 2A with two contexts c = {A,B}, each with its associated con-
text frequency p(c) and context-specific prior over the world state p(θ|c) ≡ pc(θ). Contexts of the
current session are explicitly cued to ensure that subjects adopt the intended context-specific prior
rather than engaging in an additional inference process about the context itself. After subjects are
well trained on both contexts, familiarized with the context priors, and the performance has stabi-
lized, we will then probe how early sensory populations represent probabilistic information.

Given neural population response vectors r, our goal is to assess the difference in decoder per-
formances between a likelihood decoder gL(r) and a posterior decoder gP(r), optimized through
minimizing the cross-entropy loss to extract likelihood functions and posterior distributions, respec-
tively. We adopt an information-theoretical approach to derive the expected cross-entropy difference
in decoder performance—a quantity we termed information gap ∆info—for the two coding hypothe-
ses under the theoretical limit of optimal decoders of probabilistic information. This quantity thus
measures the expected increase in cross-entropy loss incurred when a decoder is forced to extract
probabilistic content that is not actually encoded by the population responses. Although any em-
pirical decoder would underestimate the true sensory information content, we posit that the derived
theoretical limits would serve as reference points in evaluating the effectiveness of a task design in
differentiating probabilistic neural codes. Below, we derive the information gap under each of the
two probabilistic coding hypotheses.

Information gap for likelihood coding hypothesis ∆info
L Given discretized sensory observations

x ∈ {xi}, a task design specified by (p(c), pc(θ)) ∀c ∈ {A,B}, and a generative model p(xi|θ), the
expected difference in cross-entropy loss between optimal likelihood and posterior decoders, or the
information gap ∆info

L for a likelihood-coding population rL ∼ p(x|θ), is derived as (see Appendix
A.1 for full derivation):

∆info
L := Ep(xi,c)

[
DKL(p

c(θ|xi) || q∗P,i(θ))
]

=
∑
xi

{
DKL(p

A(θ|xi) || q∗P,i(θ)) · p(c = A)
[∑

θ

p(xi|θ)pA(θ)
]
+

DKL(p
B(θ|xi) || q∗P,i(θ)) · p(c = B)

[∑
θ

p(xi|θ)pB(θ)
]}

(1)

where pc(θ|xi) is the true posterior given observation xi, which is the output of an optimal likelihood
decoder. The surrogate posterior q∗P,i(θ), which is the output of an optimal posterior decoder on
likelihood-coding populations, is given by:

q∗P,i(θ) =
[p(c = A)pA(θ) + p(c = B)pB(θ)] · p(xi|θ)∑

θ′{[p(c = A)pA(θ′) + p(c = B)pB(θ′)] · p(xi|θ′)}
(2)

Since likelihood-coding populations rL contain no prior information, an optimal posterior decoder
trained on such population cannot perfectly decode the posterior distribution. Instead, output of the
optimal posterior decoder converges to a Bayes-optimal estimator as determined by marginalization
over context distributions p(c) and pc(θ).

Information gap for posterior coding hypothesis ∆info
P Given discretized sensory observations

x ∈ {xi}, a task design specified by (p(c), pc(θ)) ∀c ∈ {A,B}, and a generative model p(xi|θ), the
expected difference in cross-entropy loss between optimal likelihood and posterior decoders, or the
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information gap ∆info
P for a posterior-coding population rP ∼ p(θ|x), is derived as (see Appendix

A.1 for full derivation):

∆info
P := Ep(xi,c)

[
DKL(p

c(θ|xi) || qc∗L,i(θ))
]

=
∑

(xj ,xk)

{
DKL(p

A(θ|xj) || qA∗
L,j(θ)) · p(c = A)

[∑
θ

p(xj |θ)pA(θ)
]

+DKL(p
B(θ|xk) || qB∗

L,k(θ)) · p(c = B)
[∑

θ

p(xk|θ)pB(θ)
]}

(3)

where pc(θ|xi) is the true posterior given observation xi, which is the output of an optimal posterior
decoder. qc∗L,i(θ) denotes a surrogate posterior which is the posterior distribution associated with
the output of an optimal likelihood decoder. The sum in Eq. 3 includes only pairs (xj , xk) that
satisfy the condition expressed below in Eq. 4 as they are the only observations that would yield
non-zero decoder performance difference. These are scenarios where identical population responses
rP (encoding the same posterior across the two contexts c ∈ {A,B}, i.e., rAP,j ≈ rBP,k) must map to
different likelihood functions (p(xj |θ) and p(xk|θ), respectively), preventing the optimal likelihood
decoder from achieving perfect decoding. Observation pairs that do not satisfy Eq. 4 thus has no
contribution to the sum in Eq. 3. The condition is given as:

∀θ, pA(θ|xj) = pB(θ|xk) ⇔ ∀θ, pA(θ) · p(xj |θ) ∝ pB(θ) · p(xk|θ) (4)

With this, the surrogate posterior distributions for the pair (xj , xk) are given by:

qA∗
L,j(θ) =

ℓ∗jk(θ)p
A(θ)

ZA
j [ℓ∗jk(θ)]

, qB∗
L,k(θ) =

ℓ∗jk(θ)p
B(θ)

ZB
k [ℓ∗jk(θ)]

where ℓ∗jk(θ) denotes the output of the optimal likelihood decoder on the posterior-coding popula-
tion, approaching a task-marginalized, Bayes-optimal estimator of the likelihood functions given by
Eq. 5 below. ZA

j [ℓ∗jk(θ)] and ZB
k [ℓ∗jk(θ)] are normalization constants dependent on ℓ∗jk(θ), defined

as ZA
j [ℓ∗jk(θ)] :=

∑
θ p

A(θ)ℓ∗jk(θ) and ZB
k [ℓ∗jk(θ)] :=

∑
θ p

B(θ)ℓ∗jk(θ).

The Bayes-optimal likelihood function estimator ℓ∗jk(θ) can be determined (up to a multiplicative
constant) by solving the following implicit equation using fixed-point iteration (see A.1 for detail):

ℓ∗jk(θ) ∝
ρAj p

A(θ|xj) + ρBk p
B(θ|xk)

ρA
j

ZA
j [ℓ∗jk(θ)]

pA(θ) +
ρB
k

ZB
k [ℓ∗jk(θ)]

pB(θ)
(5)

where ρAj and ρBk denote the frequencies of each context conditioned on observed neural population
responses of rAP,j or rBP,k. Let us first define SA

j := p(c = A)
∑

θ p
A(θ)p(xj |θ) and SB

k := p(c =

B)
∑

θ p
B(θ)p(xk|θ). Then the context frequencies ρAj and ρBk are given by:

ρAj := p(c = A|r = rAP,j∨rBP,k) = SA
j /(S

A
j +SB

k ), ρBk := p(c = B|r = rAP,j∨rBP,k) = SB
k /(SA

j +SB
k )

In summary, our information-theoretical framework quantifies the differentiability of the two proba-
bilistic coding hypotheses under a given task design by deriving analytical expressions of the infor-
mation gap ∆info—the expected difference in decoder cross-entropy performances—for both likeli-
hood coding hypothesis (Eq. 1) and posterior coding hypothesis (Eq. 3). The key insight stems from
identifying the formula for the task-marginalized, Bayes-optimal estimators when decoding mis-
matched probabilistic information—that is, when decoding the posterior from a likelihood-coding
population (Eq. 2) or when decoding the likelihood function from a posterior-coding population
(Eq. 5).

Below, we empirically validate that information gaps accurately predict decoder performance dif-
ferences under given task designs on simulated likelihood or posterior encoding neural populations
across diverse task settings. We then demonstrate how maximizing the information gap enables
targeted experimental designs that optimally differentiate the two probabilistic coding hypotheses.
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3 SIMULATION EXPERIMENTS

To validate that the information gap accurately predicts decoder performance differences under both
probabilistic coding hypotheses, we conducted comprehensive simulation experiments. We con-
structed synthetic likelihood-coding and posterior-coding neural populations, and applied likelihood
and posterior decoders on these synthetic populations. These simulations serve two complementary
purposes: validating our theoretical framework and providing practical insights into the scaling and
convergence behavior of the information gap measure.

Task design: Gaussian context priors We consider Gaussian context priors motivated by clas-
sic orientation-based discrimination experiments (Orbán et al., 2016; Walker et al., 2020). In this
task, subjects perform an orientation discrimination task with two contexts c ∈ {A,B}, with the
context for each session sampled randomly, i.e. p(c = A) = p(c = B) = 0.5. Within each ses-
sion, the trial-to-trial hidden world state θ (i.e. orientation) is drawn from context-specific Gaussian
prior distributions pc(θ) = N (µc, (σc)2), where µc and (σc)2) are task-specific parameters. In the
simulation, we use identical variances for the two Gaussian priors σA = σB = σ.

We simulate noisy sensory observations x by drawing from the conditional distribution defined by
a given generative model p(x|θ). This stochastic process can be seen as capturing both intrinsic
neuronal noise and extrinsic uncertainty in stimulus features. This generative model can be ex-
perimentally manipulated by varying stimulus parameters such as contrast. Indeed, lower contrast
induces increase in observation variance, reflecting increased sensory uncertainty. In the simulation,
p(x|θ) is modeled as Gaussian distributions to reflect Gaussian-like orientation tuning curves com-
monly observed in V1 neurons and to capture the effect of different contrast levels by systematically
varying the standard deviation (Walker et al., 2020).

For simulated population responses, we implemented Poisson neuron models with Gaussian tun-
ing curves (Walker et al., 2020). Likelihood-coding population’s mean firing rates rL are encoded
through Gaussian tuning curves based on the sampled sensory observations x, while posterior-
coding population’s mean firing rates rP are additionally modulated by the context-specific prior
pc(θ), effectively encoding the posterior pc(θ|x) ∝ p(x|θ) · pc(θ). In both cases, spike counts were
then generated by sampling from Poisson distribution with the given mean firing rate. We addition-
ally considered a more complex, gain-modulated Poisson neuron model for simulating population
responses Goris et al. (2014). As shown in Fig. 2C, deep neural networks are trained with cross-
entropy loss to serve as flexible, powerful decoders of probabilistic distributions, decoding either the
likelihood function or the posterior from the simulated neural population responses (Walker et al.,
2020). See A.3 for full details of the simulation experiments and decoder setups.

Scaling and convergence We first examine the scaling and convergence properties of the the-
oretical prediction of information gap. Fig. 3 demonstrates convergence of the empirical de-
coder performance differences on simulated Poisson neural populations across various stimulus
contrast levels. For a given set of task parameters, decoder performance differences for both sim-
ulated populations—likelihood-coding (blue) and posterior-coding (orange) populations—rapidly
converge to the theoretically derived information gap (dashed lines) computed via Eq. 1 and 3, as
the number of trials increases (top) and as the number of neurons increases (bottom). This empirical
convergence suggests that the information gap measure derived from our framework accurately pre-
dicts the asymptotic decoder performance difference quantifying the effectiveness of a task design.

Validation across parameter space We next assess the validity of the theoretical prediction of
information gap across a wide range of simulation settings. Across different levels of stimulus con-
trast, at least ten different sets of task parameters are selected to compute the theoretical value of
information gap and to simulate likelihood and posterior encoding populations. Fig. 4 systemati-
cally compares the theoretical predictions of information gap and the empirical decoder performance
difference across diverse task design parameters, both under the Poisson neural model (top) and un-
der the more complex, gain-modulated Poisson neural model (bottom, Goris et al. (2014)). On both
types of simulated neural models and across different contrast levels, the comparison reveals re-
markable agreement between the information gap prediction and the empirical decoder performance
difference for both likelihood and posterior coding hypotheses.
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Figure 3: Decoder performance difference on simulated populations converges to the theoret-
ical prediction of information gap. A) On simulated neural populations encoding the likelihood
function (left, blue) or the posterior distributions (right, orange) responding to high contrast stimuli,
the difference between the likelihood and posterior decoder performances converges to the theoret-
ical value of information gap (dashed lines) as the total number of trials increases (top, with fixed
number of neurons = 500), and as the total number of neurons in the population increases (bottom,
with fixed number of trials = 30k). (shaded areas denote the s.t.d. across 5 random seeds.) B) Same
for medium contrast stimuli and C) for low contrast stimuli.

Figure 4: Information gap accurately predicts decoder performance difference on simulated
populations across diverse task settings. A) On simulated Poisson neural populations responding
to high (left), medium (middle), and low (right) contrast stimuli, theoretical values of information
gap (x-axis) accurately predicts the decoder performance difference on simulated neural populations
(y-axis) across multiple task design parameters, for both the likelihood-coding populations and the
posterior-coding populations. (Each color marks one set of task parameters used for both types of
simulated populations; Error bars denote the s.t.d. across 5 random seeds.) B) Same for simulated
populations using a more complex, gain-modulated Poisson neural model (Goris et al., 2014).
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Figure 5: Information gap landscapes inform practical task designs that optimally differentiate
probabilistic representations in neural populations. A) Information gap as a function of task
parameters (d: separation between context priors, and σ: context prior standard deviations) for both
the likelihood coding hypothesis (top) and the posterior coding hypothesis (bottom) when presented
with high contrast stimuli. The asterisks identify strategic task designs that achieve the tradeoff
where posterior-coding information gap approaches its maximum while likelihood-coding maintains
sufficient discriminative signal. B) Same for medium contrast stimuli and C) for low contrast stimuli.

Notably, information gaps for likelihood-coding populations (∆info
L ) exceed those for posterior-

coding populations (∆info
P ) by up to an order of magnitude. Our framework provides an intuitive

explanation: for likelihood coding hypothesis, every observation contributes to the information gap
calculation, whereas for posterior coding hypothesis, only pairs satisfying Eq. 4 contribute to the
estimate. This asymmetry suggests that distinguishing posterior-coding populations presents greater
experimental challenges, requiring careful task design to achieve sufficient statistical power.

Overall, these simulation results establish that our information-theoretical framework accurately pre-
dicts decoder performance differences for neural populations following either probabilistic coding
hypothesis, providing a quantitative foundation for designing targeted, theory-driven experiments to
differentiate probabilistic neural representations in early sensory areas.

4 TASK OPTIMIZATION TO DIFFERENTIATE PROBABILISTIC NEURAL CODES

Given the strong agreement between the empirical decoder performance differences and the theo-
retical information gap measure, we now demonstrate how to optimize task designs to maximally
differentiate the two probabilistic coding hypotheses. The goal is to systematically explore the task
parameter space to identify task parameters that would yield maximum information gap.

4.1 INFORMATION GAP LANDSCAPE FOR GAUSSIAN CONTEXT PRIORS

For tasks with Gaussian context priors, we evaluate the information gap across the two-dimensional
task parameter space defined by (1) the distance between the two Gaussian means d = |µA −
µB |, and (2) the shared standard deviation for both Gaussian priors σ (Fig. 8). The landscapes of
information gap across three different contrast levels are shown in Fig. 5, for both likelihood-coding
populations (top) and posterior-coding populations (bottom). We first observe that the information
gap landscape depends on the stimulus contrast level, suggesting that experimental design should
be tailored to specific stimulus features such as contrast. In addition, decreasing contrast expands
the parameter region yielding substantial information gaps for both probabilistic codes, agreeing
with the intuition that prior information becomes more influential when sensory observations alone
provide insufficient information for reliable inference.
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Strategic task design Crucially, for a given contrast level, the information gap landscape depends
on the underlying probabilistic coding hypothesis, revealing a trade-off when optimizing experi-
mental design: task parameters that maximize the discriminability for likelihood-coding populations
diverge from those optimal for posterior-coding populations. This divergence necessitates a strate-
gic selection of parameters that balance discriminative power across both hypotheses. Considering
the notable asymmetry in information gap magnitudes—with posterior-coding values typically an
order of magnitude smaller than likelihood-coding ones, one might prioritize parameters that max-
imize posterior-coding discriminability while maintaining adequate likelihood-coding sensitivity.
The asterisks in Fig. 5 identify such strategic “sweet spots” where posterior-coding information gap
∆info

P approaches its maximum while likelihood-coding information gap ∆info
L maintains sufficient

discriminative signal. For low contrast stimuli, such optimization occurs with prior separation of
d ≈ 30◦ and standard deviation of σ ≈ 20◦. As contrast increases, the optimal task parameters shift
toward smaller prior separations and narrower standard deviations.

4.2 INFORMATION GAP LANDSCAPE FOR NON-GAUSSIAN CONTEXT PRIORS

We next explore the feasibility of other types of distributions in addition to Gaussian distributions as
the choice for stimulus context priors. Specifically, we test the effectiveness of using heavy-tailed
priors including student’s t-distribution and Cauchy distribution to differentiate the two probabilistic
coding hypotheses. Fig. 6 shows the information gap landscape under medium contrast stimuli using
the student’s t-distribution (top) or the Cauchy distribution (bottom) as stimulus priors. Compared
to Gaussian priors, areas with high information gap become more limited under heavy-tailed priors.
In particular, posterior-coding information gap is zero almost throughout the entire parameter space,
indicating that heavy-tailed priors are not suitable for distinguishing posterior-coding populations.
Our theoretical framework provides an explanation: under heavy-tailed distribution, there are barely
any observation pairs satisfying Eq. 4 that contribute to the information gap (See A.4 for details).
Finally, there is almost no overlap between areas where the information gap for each coding hypoth-
esis is maximized, suggesting that any choice of task parameters optimal for identifying one coding
hypothesis will necessarily sacrifice the effectiveness of identifying the other. Overall, this analysis
suggests that heavy-tailed priors are not ideal for differentiating probabilistic coding hypotheses.

In summary, our framework transforms parameter selection from heuristic search to principled opti-
mization, directly identifying task designs that maximize statistical power for differentiating proba-
bilistic neural representations. The resulting information gap landscapes can guide targeted experi-
menters toward parameter combinations most likely to yield decisive empirical results.

Figure 6: Information gap landscape suggests heavy tailed distributions are not ideal stimulus
prior distributions for differentiating coding hypotheses. A) Using student’s t-distribution with
degrees of freedom ν = 3 as stimulus priors (left), information gap under medium contrast stimuli as
a function of task parameters (separation d and standard deviations σ) for both the likelihood coding
hypothesis (middle) and the posterior coding hypothesis (right) shows decreased information gap
with minimal overlap compared to task design with Gaussian context priors. B) Same for Cauchy
distribution as stimulus priors with task parameters separation d and scale γ.
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5 EMPIRICAL RESULTS ON REAL DATA

Distinguishing the two probabilistic coding hypotheses depends on how population responses
change across contexts with different priors, yet existing datasets mostly provide only a single fixed
stimulus context without manipulation in priors. To demonstrate that existing dataset with single-
context experimental designs cannot adjudicate the two coding hypotheses, we report empirical
results on orientation decoding from real neural data using the Allen Brain Observatory Visual Cod-
ing Neuropixels Dataset (Siegle et al., 2021). Under such single-context experimental design with
uniform prior, our theory predicts no performance difference between the likelihood and posterior
decoders, i.e. ∆info = 0. In Fig. 7, we performed orientation decoding analysis on the Allen Visual
Coding dataset. The result shows indistinguishable performance between the likelihood and poste-
rior decoders (difference = 0.0024±0.064, p = 0.63), which agrees with our theoretical prediction.
In fact, previous decoding work on macaque V1 similarly discussed why their experimental design
resulted in an ambiguity in differentiating coding hypotheses due to the lack of multiple context
priors (Walker et al., 2020). This result on empirical data underscores why future experiments in-
corporating context-dependent prior manipulations will be essential for adjudicating the competing
probabilistic coding hypotheses.

Figure 7: Decoding analysis on the Allen Visual
Coding datasets (Siegle et al., 2021) shows
indistinguishable decoder performance
difference. Across 169 sessions with large enough
trials (> 300 trials), the decoder cross-entropy
performance difference (likelihood decoder -
posterior decoder) is 0.0024± 0.064, which is not
significantly different from the model prediction of
0 (p = 0.63). This empirical result underscores the
necessity of the context-dependent prior
manipulation for distinguishing probabilistic coding
hypotheses. (Each dot indicates one session.)

6 DISCUSSION AND CONCLUSIONS

We presented an information-theoretical framework for optimizing experimental design to address
whether early sensory neural populations encode likelihood functions or posterior distributions. We
derive analytical expressions for information gap—the expected decoder performance difference
when extracting mismatched probabilistic content. This measure quantifies how effectively an ex-
perimental design can distinguish between competing probabilistic coding hypotheses, providing
precise predictions validated through extensive simulations. Most critically, maximizing the infor-
mation gap yields principled experimental designs that can optimally discriminate between proba-
bilistic neural codes, enabling decisive experiments to resolve a fundamental debate about Bayesian
computation in the brain. More broadly, by developing theoretical framework to quantify how well
experiments can distinguish between competing coding hypotheses, this approach demonstrates how
computational theory can directly guide experimental neuroscience.

Scope and limitations To compute information gap, our framework requires reasonable genera-
tive models and thus may require prior work establishing neural responses properties. In addition,
the decoding approach requires sufficient population response data for training. Our framework also
provides a foundation that can be extended in several directions: 1) The framework extends be-
yond orientation-based stimuli to continuous observations and other types of distributions through
numerical methods; 2) The decoding approach may be used to characterize hybrid coding hypoth-
esis beyond pure likelihood or posterior coding; 3) Incorporating more bio-realistic neural models
such as noise correlations and nonlinearities would further strengthen predictions. These extensions
represent opportunities to refine the theoretical framework for guiding experimental designs.
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Reproducibility statement Complete source code for computing the information gap, implement-
ing both likelihood and posterior decoders, and running all simulation experiments is available as
part of the supplementary materials to facilitate the review process. Upon acceptance, all code will
be released publicly to facilitate experimental design and reproducibility. The detailed derivation of
information gap, including assumptions and complete proofs, is presented in Appendix A.1. This
enables verification of the theoretical claims and adaptation to related problems. The details of
simulation experiments including synthetic neural population response generation procedures, deep
neural network decoder architectures and hyperparameters, and training procedures are presented in
Appendix A.3.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 INFORMATION GAP DERIVATION

Consider a generative model of sensory observations θ → x, where x is the noisy sensory obser-
vation (e.g. a drifting grating stimulus) generated according to the conditional distribution p(x|θ),
where θ is the hidden state of the environment (e.g. true orientation of the drifting grating stimulus).
Note that the likelihood function is given by L(θ) ≡ p(x|θ) for a specific observation x. Consider
an experimental setup where there are two possible stimulus generation contexts: c = {A,B} with
their associated context-specific latent priors pc(θ) := p(θ|c) and their context frequencies p(c).

Given a sensory observation x and a context c, the context-dependent posterior distribution of θ,
denoted as pc(θ|x) := p(θ|x, c), is given by the Baye’s rule:

pc(θ|x) = pc(θ, x)

pc(x)

=
pc(x|θ) · pc(θ)∑
θ′ pc(x|θ′) · pc(θ′)

, Since the generative process θ → x is independent of c,

=
p(x|θ) · pc(θ)∑
θ′ p(x|θ′) · pc(θ′)

∝ p(x|θ) · pc(θ)

For a given neural population response vector r, consider two competing probabilistic coding hy-
pothesis:

1. Likelihood coding hypothesis: rL ∼ p(x|θ), where the neural population responses rL is
hypothesized to encode the likelihood function of the stimulus p(x|θ).

2. Posterior coding hypothesis: rP ∼ p(θ|x), where the neural population response rP is
hypothesized to encode the posterior distribution of the hidden state given the stimulus
p(θ|x).

We consider whether it is possible to differentiate the probabilistic information content encoded in
given neural population responses r through a decoding approach. Intuitively, if a neural population
is encoding the likelihood function, then a decoder decoding the likelihood function should lead to a
better performance then a decoder decoding the posterior distribution; vice versa if the neural pop-
ulation is encoding the posterior distribution. In other words, decoder performance degrades when
trying to decode mismatched probabilistic content, such that the difference in decoder performance
when decoding the likelihood function versus decoding the posterior distribution can be used to dif-
ferentiate whether a given neural population is encoding the likelihood function (likelihood coding
hypothesis) or the posterior distribution (posterior coding hypothesis). Below, we formalize this
intuition by deriving the expected decoder performance difference.

Consider applying a decoder function g which is optimized to decode some probabilistic information
content from the neural population responses under cross-entropy loss:

g(r) −→ p(·) where g is a decoder function
Note that to establish the expected difference between decoder performances, we assume ideal de-
coders in derivations. Empirically, we assume the decoder is expressive enough (e.g. a multi-layer
perceptron, MLP) and fully trained, and the data is abundant such that the performance of the de-
coder would closely approximate that of the ideal decoder.

Adopting an information-theoretical approach, our goal is to derive the expected difference between
decoder performances as measured in cross-entropy when decoding the likelihood function versus
decoding the posterior distribution from given neural population responses r, a quantity that we
termed the information gap, ∆info, between the two decoders under a given experimental design
specified by (p(c), pc(θ)),∀c ∈ {A,B} and a generative model p(x|θ). Below we will separately
derive the information gap for likelihood coding hypothesis, ∆info

L , and the information gap for pos-
terior coding hypothesis, ∆info

P , respectively. As a by-product, our information-theoretical analysis
framework also allows for deriving the expected decoder performance for each decoder under the
limit of perfect decoding as measured in cross-entropy.
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A.1.1 INFORMATION GAP FOR LIKELIHOOD CODING HYPOTHESIS ∆INFO
L

For a likelihood coding population, the neural population responses rL encode the likelihood func-
tion of the sensory stimulus, which are not modulated by and hence independent of the context
prior.

rL ∼ f(p(x|θ)), where f is some neural encoding function.

Note that since the decoders are optimized under cross-entropy loss:
H(p, q) = −Ep[log q] = H(p) +DKL(p || q)

when q∗ = p ⇔ H(p, q∗) is minimized.

Decoding performance of a perfect likelihood decoder gL

Applying a likelihood decoder gL to a likelihood coding population rL, we want
gL(rL) −→ p(x|θ)

Let us assume the observation space can be discretized into x ∈ {xi}, and consider the neural
population responses associated with each xi:

∀xi, c : r
c
L,i = rL,i ∼ f(p(xi|θ))

Since rL,i is context-independent, let us denote the likelihood decoder output gL(rcL,i) = gL(rL,i).
Since the ground truth context prior pc(θ) is provided to the likelihood decoder gL as schematized
in Fig. 2, with the likelihood decoder output gL(rL,i) and the corresponding context prior pc(θ), the
context-dependent decoded posterior distribution qcL,i(θ) is given by:

qcL,i(θ) = ηcL,i · gL(rL,i) · pc(θ), where ηcL,i is a normalization constant.

The cross-entropy loss for data samples associated with xi, c, i.e. H(pc(θ|xi), q
c
L,i(θ)), is minimized

when:
qc∗L,i(θ) = pc(θ|xi)

⇒ ηcL,i · g∗L(rL,i) · pc(θ) =
p(xi|θ) · pc(θ)

p(xi)

⇒ g∗L(rL,i) = αc
L,i · p(xi|θ), where αc

L,i is a constant (6)

That is, after training, the likelihood decoder output gL(rL,i) will converge to g∗L(rL,i) ∝ p(xi|θ)
given enough samples.

To get the expected cross-entropy loss across the entire data set, we marginalizing over all xi, c, and
the expected cross-entropy loss for a perfect likelihood decoder can be evaluated as:

Ep(xi,c)[H(pc(θ|xi), q
c∗
L,i(θ))] = Ep(xi,c)[H(pc(θ|xi)) +DKL(p

c(θ|xi) || qc∗L,i(θ))]

= Ep(xi,c)[H(pc(θ|xi))]

=
∑
xi,c

H(pc(θ|xi)) · p(xi, c)

=
∑
xi,c

H(pc(θ|xi)) · p(c)
[∑

θ

p(xi|θ)pc(θ)
]

=
∑
xi

∑
c

H(pc(θ|xi)) · p(c)
[∑

θ

p(xi|θ)pc(θ)
]

=
∑
xi

{
H(pA(θ|xi)) · p(c = A)

[∑
θ

p(xi|θ)pA(θ)
]
+

H(pB(θ|xi)) · p(c = B)
[∑

θ

p(xi|θ)pB(θ)
]}

(7)

where the second equality holds because DKL(p
c(θ|xi) || qc∗L,i(θ)) = 0 for a perfect likelihood

decoder as derived above. That is, the expected cross-entropy loss for a perfect likelihood decoder
should approach the expected posterior entropy as determined by the context frequencies and context
prior distributions as given by Eq. 7.
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Decoding performance of the best possible posterior decoder gP

Applying a posterior decoder gP to a likelihood coding population rL, we want:
gP (rL) −→ pc(θ|x)

However, since there is no context information encoded in the population responses rL, the posterior
decoder gP cannot achieve the same performance as the likelihood decoder in Eq. 7, as there are
scenarios where identical inputs (rL,i) are trained to map to different outputs (pc(θ|xi)) depending
on the inaccessible ground-truth context information pc(θ).

Let us consider the neural population responses associated with each observation xi:
∀xi, c : r

c
L,i = rL,i ∼ f(p(xi|θ))

The frequency of a context given the observation of data samples associated with xi is given by:

p(c|x = xi) =
p(c, xi)

p(xi)

=
p(c) · p(xi|c)∑
c′ p(c

′) · p(xi|c′)

=
p(c) ·

∑
θ p

c(θ) · p(xi|θ)∑
c′ p(c

′)
∑

θ p
c′(θ) · p(xi|θ)

Let us denote
SA
i := p(c = A)

∑
θ

pA(θ)p(xi|θ)

SB
i := p(c = B)

∑
θ

pB(θ)p(xi|θ)

Hence, we can define the observation-dependent context frequency for a given xi as:
ρAi := p(c = A|x = xi) = SA

i /(S
A
i + SB

i )

ρBi := p(c = B|x = xi) = SB
i /(SA

i + SB
i )

Now, let us denote the posterior decoder output qP,i(θ) := gP (rL,i), highlighting that the output can
be interpreted directly as the posterior distribution over the hidden state θ, as schematized in Fig. 2.
Since the posterior decoder output is agnostic to the specific context and the associated prior pc(θ),
under cross-entropy loss, qP,i(θ) is trained to minimize the expression below:

min
qP,i(θ)

{
Ep(c|xi)

[
H(pc(θ|xi), qP,i(θ))

]}
= min

qP,i(θ)

{
ρAi H(pA(θ|xi), qP,i(θ)) + ρBi H(pB(θ|xi), qP,i(θ))

}
= min

qP,i(θ)

{
−
∑
θ

[
ρAi p

A(θ|xi) · log qP,i(θ) + ρBi p
B(θ|xi) · log qP,i(θ)

]}
= min

qP,i(θ)

{
−
∑
θ

[
ρAi p

A(θ|xi) + ρBi p
B(θ|xi)

]
· log qP,i(θ)

}
Since pA(θ|xi) and pB(θ|xi) are both probability distributions over θ, and ρAi + ρBi = 1, the
expression ρAi p

A(θ|xi)+ ρBi p
B(θ|xi) represents a proper probability distribution over θ. Therefore

the loss above is minimized when:
q∗P,i(θ) = ρAi p

A(θ|xi) + ρBi p
B(θ|xi)

=
SA
i

SA
i + SB

i

pA(θ)p(xi|θ)∑
θ p

A(θ)p(xi|θ)
+

SB
i

SA
i + SB

i

pB(θ)p(xi|θ)∑
θ p

B(θ)p(xi|θ)

=
[p(c = A)pA(θ) + p(c = B)pB(θ)] · p(xi|θ)

SA
i + SB

i

=
[p(c = A)pA(θ) + p(c = B)pB(θ)] · p(xi|θ)∑

θ′{[p(c = A)pA(θ′) + p(c = B)pB(θ′)] · p(xi|θ′)}
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That is, after training, the best possible posterior decoder output for data samples associated with
xi, i.e. q∗P,i(θ), is as if the decoder were to use a surrogate prior:

p̃i(θ) = p(c = A)pA(θ) + p(c = B)pB(θ) (8)

which is the task-marginalized, Bayes-optimal estimator of the prior distributions over θ across
contexts c ∈ {A,B}. Interestingly, this surrogate prior distribution is independent of xi.

Since likelihood-coding populations rL contain no prior information pc(θ), a posterior decoder gP
trained on such population responses cannot perfectly decode the posterior distribution. Instead,
the posterior decoder output converges to a Bayes-optimal estimate of context-dependent posteriors
determined by the context distributions p(c) and pc(θ). To obtain the expected cross-entropy loss
across the entire data set, we marginalize over all xi, c, yielding:

Ep(xi,c)[H(pc(θ|xi), q
∗
P,i(θ))] = Ep(xi,c)[H(pc(θ|xi)) +DKL(p

c(θ|xi) || q∗P,i(θ))]

= Ep(xi,c)[H(pc(θ|xi))] + Ep(xi,c)

[
DKL(p

c(θ|xi) || q∗P,i(θ))
]

= CE loss of the perfect likelihood decoder (Eq. 7)

+ Ep(xi,c)

[
DKL(p

c(θ|xi) || q∗P,i(θ))
]

(9)

Information gap for a likelihood coding population ∆info
L

From Eq. 9, let us define ∆info
L , the information gap between a perfect likelihood decoder (g∗L) and

the best possible posterior decoder (g∗P ) applied on a likelihood-coding population, evaluated as the
expected difference in cross-entropy loss between the two decoders:

∆info
L := Ep(xi,c)

[
DKL(p

c(θ|xi) || q∗P,i(θ))
]

=
∑
xi,c

DKL(p
c(θ|xi) || q∗P,i(θ)) · p(xi, c)

=
∑
xi,c

DKL(p
c(θ|xi) || q∗P,i(θ)) · p(c)

[∑
θ

p(xi|θ)pc(θ)
]

=
∑
xi

∑
c

DKL(p
c(θ|xi) || q∗P,i(θ)) · p(c)

[∑
θ

p(xi|θ)pc(θ)
]

=
∑
xi

{
DKL(p

A(θ|xi) || q∗P,i(θ)) · p(c = A)
[∑

θ

p(xi|θ)pA(θ)
]
+

DKL(p
B(θ|xi) || q∗P,i(θ)) · p(c = B)

[∑
θ

p(xi|θ)pB(θ)
]}

(10)

Eq. 10 provides an analytical expression for the information gap for a likelihood-coding population
under a task design specified by (p(c), pc(θ)) and a generative model p(x|θ). Per observation xi, the
expression evaluates the KL divergence between the true posterior pc(θ|xi) and a surrogate posterior
q∗P,i(θ), which is the output of the best possible posterior decoder utilizing the task-marginalized,
Bayes-optimal estimator of the prior distribution (Eq. 8). The KL divergence is then marginal-
ized across xi to derive the total expected performance difference between likelihood decoders and
posterior decoders.

A.1.2 INFORMATION GAP FOR POSTERIOR CODING HYPOTHESIS ∆INFO
P

For a posterior coding population, the neural population responses rcP encode the posterior distribu-
tion over θ given x under the context c, i.e. pc(θ|x), and are therefore modulated by and dependent
on the context prior pc(θ):

rcP ∼ f(pc(θ|x)), where f is some neural encoding function.

Decoding performance of a perfect posterior decoder gP

17
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Applying a posterior decoder gP to a posterior-coding population rP, we want

gP (rP) −→ pc(θ|x)

As before, let us assume the observation space can be discretized into x ∈ {xi}, and consider the
neural population responses associated with each xi:

∀xi, c : r
c
P,i ∼ f(pc(θ|xi))

We denote the output of a posterior decoder as qcP,i(θ) := gP (r
c
P,i), which is context-dependent

as rcP,i depends on the context c. As the output of the posterior decoder qcP,i(θ) can be directly
interpreted as the posterior distribution (schematized in Fig. 2), the cross-entropy loss for data
samples associated with xi, c, i.e. H(pc(θ|xi), q

c
P,i(θ)), is minimized when:

qc∗P,i(θ) = pc(θ|xi)

That is, after training, the posterior decoder output gP (rcP,i) will converge to qc∗P,i(θ) = pc(θ|xi),
provided sufficient training samples are available.

To obtain the expected cross-entropy loss across the entire data set, we marginalize over all xi, c,
yielding:

Ep(xi,c)[H(pc(θ|xi), q
c∗
P,i(θ))] = Ep(xi,c)[H(pc(θ|xi)) +DKL(p

c(θ|xi) || qc∗P,i(θ))]

= Ep(xi,c)[H(pc(θ|xi))]

=
∑
xi,c

H(pc(θ|xi)) · p(xi, c)

=
∑
xi,c

H(pc(θ|xi)) · p(c)
[∑

θ

p(xi|θ)pc(θ)
]

=
∑
xi

∑
c

H(pc(θ|xi)) · p(c)
[∑

θ

p(xi|θ)pc(θ)
]

=
∑
xi

{
H(pA(θ|xi)) · p(c = A)

[∑
θ

p(xi|θ)pA(θ)
]
+

H(pB(θ|xi)) · p(c = B)
[∑

θ

p(xi|θ)pB(θ)
]}

(11)

where the second equality holds because DKL(p
c(θ|xi) || qc∗P,i(θ)) = 0 for a perfect posterior

decoder as derived above. Hence, the expected cross-entropy loss for a perfect posterior decoder on
a posterior coding population should approach the expected posterior entropy as determined by the
context frequencies and context prior distribution as given by Eq. 11. Note Eq. 11 is the same as
the expected cross-entropy loss for a perfect likelihood decoder on a likelihood coding population
as derived previously in Eq. 7.

Decoding performance of the best possible likelihood decoder gL

Applying a likelihood decoder gL to a posterior coding population rP, we want

gL(rP) −→ p(x|θ)

In contrast to the mismatched decoding scenario of applying a posterior decoder to a likelihood-
coding population where the posterior decoder cannot perfectly decode the posterior distributions
from population responses for any observation xi, application of a likelihood decoder to a posterior-
coding population requires more intricate considerations—we reason below that only some xi would
cause the likelihood decoder to fail to perfectly decode the likelihood function from a posterior-
coding population. We first reiterate that the posterior population responses rcP are context depen-
dent, which means that for the same xi, the neural responses rcP,i are different across the two con-
texts. Hence, from the perspective of a likelihood decoder, for each xi, the inputs (neural responses
rcP,i) are different across contexts, but the target output (p(xi|θ)) is the same. Because the ground-
truth context priors pc(θ) are explicitly provided to the likelihood decoder, this scenario “pressures”
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the decoder to learn a many-to-one mapping, which is generally achievable for a sufficiently power-
ful likelihood decoder (Fig. 2C).

To identify the condition in which the likelihood decoder would fail to perfectly decode the like-
lihood function from posterior coding population responses, recall that when applying a posterior
decoder to a likelihood-coding population, the main reason why the posterior decoder cannot be per-
fect is that it is forced to map identical inputs (rL,i) into multiple distinct target outputs (pc(θ|xi)).
In other words, the decoder cannot be perfect because it is trying to learn a one-to-many mapping.
Given this insight, for the scenario of applying a likelihood decoder on a posterior-coding popula-
tion, we identify the condition under which likelihood decoders are forced to map identical inputs to
distinct target outputs. Consider the set of pairs χ := {(xj , xk)}, where each pair (xj , xk) satisfies:

rAP,j ≈ rBP,k

⇔ pA(θ|xj) ≈ pB(θ|xk), ∀θ (can be measured in terms of KL divergence) (12)

⇔ pA(θ) · p(xj |θ) ∝ pB(θ) · p(xk|θ), ∀θ

That is, we consider the condition rAP,j ≈ rBP,k, where the inputs (rAP,j or rBP,k) to the likeli-
hood decoder gL are (approximately) the same but the target output differs based on the context
(p(xj |θ) or p(xk|θ)). Under the assumption of ideal decoders, the set of pairs in χ = {(xj , xk)}
are the only scenarios where it is impossible for an ideal likelihood decoder to be perfect. In these
scenarios, identical inputs (population responses encoding the same posterior distributions) need
to be decoded into different outputs (distinct likelihood functions), which is not achievable by any
functional decoder, regardless of training sample size or expressive of parametrization.

With the insight that only observations in the set of pairs χ = (xj , xk) where Eq. 12 is satisfied will
cause the likelihood decoder to fail to perfectly decode the likelihood function, let us now derive the
expected likelihood decoder output for each pair. Firstly, consider the frequency of a context given
an observation of neural responses associated with rAP,j or rBP,k:

p(c = A|r = rAP,j ∨ rBP,k) =
p(c = A, r = rAP,j ∨ rBP,k)

p(r = rAP,j ∨ rBP,k)

=
p(c = A) ·

∑
θ p

A(θ)p(xj |θ)
p(c = A) ·

∑
θ p

A(θ)p(xj |θ) + p(c = B) ·
∑

θ p
B(θ)p(xk|θ)

Similarly, we have:

p(c = B|r = rAP,j ∨ rBP,k) =
p(c = B) ·

∑
θ p

B(θ)p(xk|θ)
p(c = A) ·

∑
θ p

A(θ)p(xj |θ) + p(c = B) ·
∑

θ p
B(θ)p(xk|θ)

Let us denote

SA
j := p(c = A)

∑
θ

pA(θ)p(xj |θ)

SB
k := p(c = B)

∑
θ

pB(θ)p(xk|θ)

Define the observation-dependent context frequency for observing data samples coming from rAP,j
or rBP,k:

ρAj := p(c = A|r = rAP,j ∨ rBP,k) = SA
j /(S

A
j + SB

k )

ρBk := p(c = B|r = rAP,j ∨ rBP,k) = SB
k /(SA

j + SB
k )

Now, let us denote the context-independent likelihood decoder output as ℓjk(θ) := gL(r = rAP,j ∨
rBP,k). The context-dependent posterior distribution given the corresponding context prior pc(θ) is
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given by:

qAL,j(θ) =
pA(θ)ℓjk(θ)∑
θ′ pA(θ′)ℓjk(θ′)

=
pA(θ)ℓjk(θ)

ZA
j [ℓjk(θ)]

qBL,k(θ) =
pB(θ)ℓjk(θ)∑
θ′ pB(θ′)ℓjk(θ′)

=
pB(θ)ℓjk(θ)

ZB
k [ℓjk(θ)]

where ZA
j [ℓjk(θ)] and ZB

k [ℓjk(θ)] are normalization constants dependent on ℓjk(θ), defined as:

ZA
j [ℓjk(θ)] :=

∑
θ

pA(θ)ℓjk(θ)

ZB
k [ℓjk(θ)] :=

∑
θ

pB(θ)ℓjk(θ)

Under cross-entropy loss, we want ℓjk(θ) (and hence its associated posteriors qAL,j(θ) and qBL,k(θ))
to minimize:

min
ℓjk(θ)

{
ρAj H(pA(θ|xj), q

A
L,j(θ)) + ρBk H(pB(θ|xk), q

B
L,k(θ))

}
= min

ℓjk(θ)

{
−
∑
θ

[
ρAj p

A(θ|xj) log q
A
L,j(θ) + ρBk p

B(θ|xk) log q
B
L,k(θ)

]}
= min

ℓjk(θ)

{
−
∑
θ

[
ρAj

pA(θ)p(xj |θ)∑
θ′ pA(θ′)p(xj |θ′)

log
pA(θ)ℓjk(θ)

ZA
j [ℓjk]

+

ρBk
pB(θ)p(xk|θ)∑
θ′ pB(θ′)p(xk|θ′)

log
pB(θ)ℓjk(θ)

ZB
k [ℓjk]

]}
(13)

Define

µA
j (θ) := ρAj p

A(θ|xj) = ρAj
pA(θ)p(xj |θ)∑
θ′ pA(θ′)p(xj |θ′)

=
p(c = A)pA(θ)p(xj |θ)

SA
j + SB

k

µB
k (θ) := ρBk p

B(θ|xk) = ρBk
pB(θ)p(xk|θ)∑
θ′ pB(θ′)p(xk|θ′)

=
p(c = B)pB(θ)p(xk|θ)

SA
j + SB

k

Note ∑
θ

µA
j (θ) =

p(c = A)
∑

θ p
A(θ)p(xj |θ)

SA
j + SB

k

= ρAj

∑
θ

µB
k (θ) =

p(c = B)
∑

θ p
B(θ)p(xk|θ)

SA
j + SB

k

= ρBk

The cross-entropy loss term in Eq. 13 can be rewritten as:

L(ℓjk(θ)) = −
∑
θ

[
µA
j (θ) ·

(
log pA(θ) + log ℓjk(θ)− logZA

j [ℓjk(θ)]
)
+

µB
k (θ) ·

(
log pB(θ) + log ℓjk(θ)− logZB

k [ℓjk(θ)]
)]

= −
{∑

θ

[
µA
j (θ) log p

A(θ) + µB
k (θ) log p

B(θ)
]

+
∑
θ

[(
µA
j (θ) + µB

k (θ)
)
· log ℓjk(θ)

]
−
[∑

θ

µA
j (θ)

]
· logZA

j [ℓjk(θ)]−
[∑

θ

µB
k (θ)

]
· logZB

k [ℓjk(θ)]
}

(14)
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Note from Eq. 14, we can see that L(αℓ) = L(ℓ), ∀α > 0, as the normalization factors cancel out
the multiplicative effect. Therefore ℓ∗ that minimizes L is determined up to a multiplicative constant,
agreeing with our intuition that the output of a likelihood decoder should be only determined up to
a multiplicative constant as in Eq. 6.

The above minimization happens at the critical point ℓ∗jk(θ) where ∂L
∂ℓ∗jk(θ)

= 0, ∀θ, with L defined
in Eq. 14.

Before proceeding to find the minimum for this variational calculus problem, let us first evaluate:
∂

∂ℓjk(θ)
ZA
j [ℓjk(θ)] =

∂

∂ℓjk(θ)

{∑
θ′

pA(θ′)ℓjk(θ
′)
}
= pA(θ)

∂

∂ℓjk(θ)
ZB
k [ℓjk(θ)] =

∂

∂ℓjk(θ)

{∑
θ′

pB(θ′)ℓjk(θ
′)
}
= pB(θ)

To find the minimum , let us take the derivative of L with respect to ℓjk(θ) and set it to zero:

0 =
∂L(ℓjk(θ))

∂ℓjk(θ)

= − ∂

∂ℓjk(θ)

{∑
θ

[
µA
j (θ) log p

A(θ) + µB
k (θ) log p

B(θ)
]

+
∑
θ

[(
µA
j (θ) + µB

k (θ)
)
· log ℓjk(θ)

]
−
[∑

θ

µA
j (θ)

]
· logZA

j [ℓjk(θ)]−
[∑

θ

µB
k (θ)

]
· logZB

k [ℓjk(θ)]
}

= −
{µA

j (θ) + µB
k (θ)

ℓjk(θ)
−

[∑
θ µ

A
j (θ)

]
ZA
j [ℓjk(θ)]

∂ZA
j [ℓjk(θ)]

∂ℓjk(θ)
−

[∑
θ µ

B
k (θ)

]
ZB
k [ℓjk(θ)]

∂ZB
k [ℓjk(θ)]

∂ℓjk(θ)

}
= −

{µA
j (θ) + µB

k (θ)

ℓjk(θ)
−

ρAj
ZA
j [ℓjk(θ)]

pA(θ)− ρBk
ZB
k [ℓjk(θ)]

pB(θ)
}

Therefore the minimization happens when (determined up to a multiplicative constant):

ℓ∗jk(θ) ∝
µA
j (θ) + µB

k (θ)

ρA
j

ZA
j [ℓ∗jk]

pA(θ) +
ρB
k

ZB
k [ℓ∗jk]

pB(θ)

=
ρAj p

A(θ|xj) + ρBk p
B(θ|xk)

ρA
j

ZA
j [ℓ∗jk]

pA(θ) +
ρB
k

ZB
k [ℓ∗jk]

pB(θ)
(15)

Eq. 15 gives an implicit expression for ℓ∗jk(θ), since both ZA
j [ℓ∗jk] and ZB

k [ℓ∗jk] depend on ℓ∗jk(θ).

The equation can be solved using fixed-point iteration starting with some initial guess for ℓ(0)jk (θ) >
0. For instance:

Initialize ℓ
(0)
jk (θ) ∝ 1

for t = 0, 1, 2, ... :

compute Z
A,(t)
j [ℓ

(t)
jk ] =

∑
θ

ℓ
(t)
jk (θ)p

A(θ)

Z
B,(t)
k [ℓ

(t)
jk ] =

∑
θ

ℓ
(t)
jk (θ)p

B(θ)

update ℓ
(t+1)
jk (θ) =

ρAj p
A(θ|xj) + ρBk p

B(θ|xk)

ρA
j

Z
A,(t)
j [ℓ

(t)
jk ]

pA(θ) +
ρB
k

Z
B,(t)
k [ℓ

(t)
jk ]

pB(θ)

Stop when ℓ
(t)
jk (θ) converges (up to a multiplicative constant).
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That is, as given by Eq. 15, after training, the best possible likelihood decoder output for data
samples associated with rAP,j and rBP,k is as if the likelihood decoder were to divide a surrogate
posterior that is a weighted sum of ground-truth posteriors ρAj p

A(θ|xj)+ρBk p
B(θ|xk) by a surrogate

prior that is a weighted sum of ground-truth priors
ρA
j

ZA
j [ℓ∗jk]

pA(θ) +
ρB
k

ZB
k [ℓ∗jk]

pB(θ).

The posterior of the best possible likelihood decoder output g∗L = ℓ∗jk(θ) given the corresponding
context prior for rAP,j and rBP,k is evaluated as:

qA∗
L,j(θ) =

ℓ∗jk(θ)p
A(θ)

ZA
j [ℓ∗jk]

qB∗
L,k(θ) =

ℓ∗jk(θ)p
B(θ)

ZB
k [ℓ∗jk]

Hence, to obtain the expected cross-entropy loss across the entire data set, we marginalize over all
xi, c, and the total cross-entropy loss for the best possible likelihood decoder can be expressed as:

Ep(xi,c)[H(pc(θ|xi), q
c∗
L,i(θ))] = Ep(xi,c)[H(pc(θ|xi)) +DKL(p

c(θ|xi) || qc∗L,i(θ))]

= Ep(xi,c)[H(pc(θ|xi))] + Ep(xi,c)

[
DKL(p

c(θ|xi) || qc∗L,i(θ))
]

= CE loss for the perfect posterior decoder (Eq. 11)

+ Ep(xi,c)

[
DKL(p

c(θ|xi) || qc∗L,i(θ))
]

(16)

Information gap for a posterior coding population ∆info
P

From equation 16, let us define ∆info
P , the information gap for a posterior coding population between

a perfect posterior decoder (g∗P ) and the best possible likelihood decoder (g∗L), as the expected dif-
ference in the cross-entropy loss of the two decoders:

∆info
P := Ep(xi,c)

[
DKL(p

c(θ|xi) || qc∗L,i(θ))
]

=
∑
xi,c

DKL(p
c(θ|xi) || qc∗L,i(θ)) · p(xi, c), since only xi ∈ χ = {(xj , xk)} terms are nonzero

=
∑

xi∈χ,c

DKL(p
c(θ|xi) || qc∗L,i(θ)) · p(xi, c)

=
∑

xi∈χ,c

DKL(p
c(θ|xi) || q∗L,i(θ)) · p(c)

[∑
θ

p(xi|θ)pc(θ)
]

=
∑
xi∈χ

∑
c

DKL(p
c(θ|xi) || qc∗L,i(θ)) · p(c)

[∑
θ

p(xi|θ)pc(θ)
]

=
∑

(xj ,xk)

{
DKL(p

A(θ|xj) || qA∗
L,j(θ)) · p(c = A)

[∑
θ

p(xj |θ)pA(θ)
]

+DKL(p
B(θ|xk) || qB∗

L,k(θ)) · p(c = B)
[∑

θ

p(xk|θ)pB(θ)
]}

(17)

Eq. 17 provides an analytical expression for the information gap for a posterior-coding population
under a task design specified by (p(c), pc(θ)) and a generative model p(x|θ). Per pair of observations
(xj , xk), we evaluate the KL divergence between the true posterior (pA(θ|xj) or pB(θ|xk)) and a
surrogate posterior (qA∗

L,j(θ) or qB∗
L,k(θ)), which is the posterior distribution associated with the output

of the best possible likelihood decoder utilizing the task-marginalized, Bayes-optimal estimators as
given by Eq. 15. The KL divergence is then marginalized across the pairs (xj , xk) to derive the total
expected performance difference between likelihood decoders and posterior decoders.
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A.2 SCHEMATICS FOR TASK DESIGN TRADEOFF

Figure 8: Design tradeoff.

A.3 DETAILS OF SIMULATION EXPERIMENT

A.3.1 SIMULATED NEURAL POPULATIONS

We consider tasks with Gaussian context priors motivated by classic orientation discrimination psy-
chophysical tasks (Orbán et al., 2016; Walker et al., 2020). In this task, subjects perform an orienta-
tion discrimination under two contexts c ∈ {A,B}, with the context for each session sampled ran-
domly, i.e. p(c = A) = p(c = B) = 0.5. Within each session, the trial-to-trial hidden world state θ
(i.e. orientation) is drawn from context-specific Gaussian prior distributions pc(θ) = N (µc, (σc)2),
where µc and (σc)2) are task-specific parameters. In the simulation, we consider θ ∈ {−90◦, 90◦},
and use identical variances for the two Gaussian priors σA = σB = σ. Consequently, the experi-
mental design is fully specified by the tuple of task parameters (µA, µB , σ). Furthermore, foregoing
cardinal orientation consideration, the circular symmetry of orientations θ suggests that only the sep-
aration between the two means d = |µA − µB | would meaningfully impact perception. Given this,
we always center the two means around zero, meaning µA = − 1

2d and µB = 1
2d. We systematically

vary (d, σ) to cover the task spectrum of Gaussian context priors in the simulation studies.

Noisy sensory observations x are drawn from the conditional distribution defined by the given gen-
erative model p(x|θ). This stochastic process can be seen as capturing both intrinsic neuronal noise
and uncertainty in the extrinsic stimulus features. This generative model can be experimentally ma-
nipulated through stimulus parameters such as contrast, where lower contrast induces increased ob-
servation variance, reflecting increased sensory uncertainty. In the simulation, p(x|θ) is modeled as
Gaussian distributions to reflect Gaussian orientation tuning curves commonly found among simple
V1 neurons. We model the effect of different contrast levels by systematically varying the standard
deviation of the generative model σobs (Walker et al., 2020). To this end, standard deviations σobs of
8, 15, and 25 are chosen to model the generative model under high, medium, and low contrast levels,
respectively. Finally, on each trial, the hidden world state θ is drawn from pc(θ) = N (µc, (σc)2)
and then the observation is drawn from the conditional distribution p(x|θ) = N (θ, σ2

obs).

For simulated population responses, we first implement Poisson neuron models with Gaussian tun-
ing curves and Poisson variability (Walker et al., 2020). A population of neurons indexed by l, rang-
ing from 5-500 neurons, was constructed with Gaussian tuning curves N (θl, σ

2
obs) with their means

θl tiling up the orientation space and their standard deviations being σobs. For likelihood-coding
populations, the mean firing rate of each neuron on each trial, after an observation x is sampled, is

determined by the probability density of its Gaussian tuning curve, i.e. f(x) = 1√
2πσ2

obs

e
− (x−θl)

2

2σ2
obs ,

scaled with a fixed constant of 30 to approximate the typical range of neuron firing rates observed
experimentally (Walker et al., 2020). For posterior-coding populations, the mean firing rate of each
neuron is further multiplied by the context-specific prior pc(θ), thus effectively encoding the pos-
terior pc(θ|x) ∝ p(x|θ) · pc(θ) in their mean firing rates. For both populations, trial-to-trial spike
counts are then generated by sampling from Poisson distribution with the specified mean firing rates.

For some simulation experiments, we additionally implemented a more complex, gain-modulated
Poisson neuron model for simulating population responses (Goris et al., 2014). The gain-modulated
Poisson neuron model has been proposed to account for the supra-Poisson variability commonly
observed experimentally among V1 neurons. In this model, the mean firing rate of the neuron is
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the product of two terms: 1) the original rate determined by the Gaussian tuning curve model, and
2) a stimulus-independent gain factor G. Goris et al. (2014) proposed and validated on V1 neural
data that this stimulus-independent gain factor G can be effectively modeled as following a gamma
distribution with a mean of one and variance of σ2

G. Based on their results, we choose a biologically
realistic value of σG ≈ 0.5 in our simulation. Therefore, on a trial-to-trial basis, after an original
rate is determined according to the procedure in the previous paragraph for the likelihood-coding or
posterior-coding population, a random gain factor is then sampled from the gamma distribution and
multiplied with the original rate to get the mean firing rate for the gain-modulated Poisson neuron
model. Similarly, spike counts are then generated from the mean firing rates with Poisson variability.

A.3.2 PROBABILISTIC INFORMATION DECODER

As described in Fig. 2C, deep neural networks parametrized by multi-layered perceptrons are trained
with cross-entropy loss to serve as flexible, powerful decoders to decode either the likelihood func-
tion or the posterior distribution from simulated neural population responses (Walker et al., 2020).
We use fully-connected, deep neural networks with two hidden layers, with 300 and 200 units in
the first and second layer, respectively. All hidden units are rectified linear units, and dropout rates
of 0.5 are used for both layers. The input dimension to the first layer is the number of neurons in
the simulated population, ranging from 5–500. The output layer is a fully connected readout with
no nonlinearity and a dimension of the number of possible hidden states. In our simulation, we
consider orientation θ ∈ {−90◦, 90◦} and discretize them into one degree bins, leading to a total
number of possible hidden states of 181. To facilitate numerical stability, the decoded probability
quantity is operating in the log space. The posterior decoder output is treated as the log-posterior,
which is directly optimized to minimize the cross-entropy loss. The likelihood decoder output is
treated as the log-likelihood, which is then integrated with the ground truth log-prior to arrive at the
final output that is optimized to minimize the cross-entropy loss. To encourage smoothness of the
decoded probability distributions, an L2 regularizer on the log-posteriors filtered with a Laplacian
filter of the form h = [0.25, 0.5, 0.25] is added to the cross-entropy term, as proposed in (Walker
et al., 2020). We use (0.8, 0.2) for train-validation split for training the decoders A held-out test set
is used to final evaluation and all results in the paper are on the test test. Early stop with patience of
10 and minimal change of 2e-6 in validation set cross-entropy loss is adopted to prevent overfitting.
All models were constructed and trained using the Pytorch framework (Paszke et al., 2019).
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A.4 DETAILED RESULTS ON HEAVY-TAILED PRIORS

Below we first provide the full results of information gap landscape across various contrast levels
for heavy-tailed context priors including student’s t-distribution (Fig. 9) and Cauchy distribution
(Fig. 10). Note that for t-distribution we report the results using degrees of freedom ν = 3. When
ν → ∞ the t-distribution reduces to a standard Gaussian distribution, and when ν = 0 the t-
distribution becomes the Cauchy distribution. We then provide an intuitive example explaining why
the information gap for posterior coding hypothesis is dramatically lower under heavy-tailed context
priors compared to Gaussian context priors. The main reason is that under Gaussian generative
models, when integrated with heavy-tailed priors, the posteriors tend to become asymmetric (as
opposed to Gaussian priors where the posteriors are still symmetric Gaussian), thus limiting the
number of pairs (xj , xk) that could confuse the likelihood decoder.

A.4.1 INFORMATION GAP LANDSCAPE

Figure 9: Information gap landscapes when using student’s t-distribution with degrees of free-
dom ν = 3 as context priors. A) Information gap as a function of task parameters (d: separation
between context priors, and σ: context prior standard deviations) for both the likelihood coding
hypothesis (top) and the posterior coding hypothesis (bottom) when presented with high contrast
stimuli. B) Same for medium contrast stimuli and C) for low contrast stimuli.

Figure 10: Information gap landscapes when using Cauchy distribution as context priors. A)
Information gap as a function of task parameters (d: separation between context priors, and γ: con-
text prior scales) for both the likelihood coding hypothesis (top) and the posterior coding hypothesis
(bottom) when presented with high contrast stimuli. B) Same for medium and C) low contrast stim-
uli.
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A.4.2 AN EXAMPLE EXPLAINING WHY ∆INFO
P IS DRAMATICALLY DECREASED UNDER

HEAVY-TAILED CONTEXT PRIORS

Figure 11: Heavy tailed context priors, when integrated with Gaussian likelihood function, lead
to asymmetric posterior distributions, limiting the pairs of identical posteriors satisfying Eq.
12 that would cause imperfect likelihood decoders on posterior-coding populations. Across
task designs with Gaussian context priors (left), student’s t context priors with ν = 3 (middle), and
Cauchy context priors (right), the context priors pA(θ) and pB(θ) are shown in dashed blue and red
lines, respectively. Note they all share identical standard deviation or scale parameters to facilitate
comparison. One example pair of (xj , xk) = (18◦,−27◦) that satisfies Eq. 12 under Gaussian
context priors is shown here, with the associated likelihood functions p(xj |θ) and p(xk|θ) plotted
in solid gray and black lines, respectively. The posterior distributions under each context priors,
pA(θ|xj) and pB(θ|xk) are shown as solid blue and red lines, respectively. Under Gaussian context
priors (left), the two posteriors are equal to each other, i.e. pA(θ|xj) = pB(θ|xk), hence the two
lines overlap. However, as the context priors become increasingly heavy-tailed as under student’s
t distribution (middle) and Cauchy distributions (right), the two posteriors become more and more
asymmetric, leading to non-identical posterior distributions that no longer satisfy Eq. 12. This
example demonstrates why there are much less pairs (xj , xk) that would satisfy Eq. 12, accounting
for the observation that the information gap of posterior-coding population is dramatically decreased
under heavy-tailed context priors.
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A.5 INCORPORATING BIASED PRIOR FROM BEHAVIOR DATA

Although our main analysis focuses on the theoretical decoding limit using the optimal priors, our
framework naturally accommodates model mismatch or biased priors by incorporating behavioral
(psychometric) measurements. The procedure is detailed in Fig. 12:

• Analyze the psychometric curve: In perceptual tasks (e.g., orientation discrimination
tasks), deviations in the subject’s psychometric curve (correct rate as a function of stim-
ulus orientation) from the ideal observer reveal model mismatch or biased priors.

• Infer the subject’s model mismatch/ biased prior: Features (such as leftward shifts or
increased slope/variance) in the psychometric function can be mapped to corresponding
biases or increased uncertainty in the subject’s internal mismatched prior.

• Compute the information gap using the inferred prior: The inferred biased prior can
then be used directly in our information-gap calculation, yielding predictions that account
for the subject’s model mismatch and more accurately reflect expected empirical decoder
differences.

Figure 12: The information gap computation can incorporate behavior data by estimating the sub-
ject’s biased prior from its psychometric curve.

A.6 EXTENDING OUR FRAMEWORK TO MIXED CODING HYPOTHESIS

In this section we discuss a more nuanced probabilistic coding hypothesis and how our proposed
framework could be extended to identify or falsify it. As an example of mixed coding hypothesis,
Ganguli & Simoncelli (2010; 2014) proposed combing heterogeneous tuning curves—which embed
aspects of the prior—with spiking variability that reflects the likelihood, yielding a hybrid code in
which sensory responses carry both likelihood information and a structurally instantiated prior. This
example can be categorized as a mixed or intermediate hypothesis, in between the canonical pure
likelihood and pure posterior coding hypothesis. Our framework can naturally accommodate such
mixed coding hypothesis by evaluating how each decoder performs under mismatched information.
As shown in Fig. 13, since now both the likelihood and posterior decoders can recover the correct
distributions, our theory predicts an information gap ∆info = 0. This zero-info-gap signature is
distinct and does not arise under optimized task designs for either pure likelihood- or pure posterior-
coding populations, which produce reliably nonzero and separable values. As a result, optimizing
the task to maximally separate the two canonical hypotheses simultaneously maximizes sensitivity to
departures from them. A mixed code that yields ∆info = 0 under the same optimized design becomes
cleanly identifiable as neither pure likelihood nor pure posterior. Thus this discussion illustrates how
our method could generalize beyond the two extreme hypotheses and provides a principled tool for
distinguishing both pure and mixed coding schemes.
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More broadly, we do not claim that likelihood and posterior coding are the only relevant theories in
the literature, but they represent the two major families of theories that differ in what probabilistic
quantity is encoded. Our contribution is to provide a principled methodology for experimentally
distinguishing such theories. By optimizing task parameters to maximally separate these canoni-
cal extremes, we simultaneously maximize sensitivity to discriminating more nuanced probabilistic
coding theories like the mixed coding hypothesis.

Figure 13: Under mixed coding hypothesis, the information gap becomes zero.

A.7 EFFECT OF NOISE AND FIRING RATE

As shown in Fig. 14, decreasing firing rates or increasing noise slows the convergence of empirical
decoder performance differences. More trials are needed for the empirical decoder performance
difference to approach the theoretical information gap. However, with sufficient data, the decoder
performance differences ultimately converge to the same theoretical value. This reflects the expected
effect of reduced signal-to-noise ratio—decoding becomes harder, but the underlying difference
in decodable information is unchanged. Thus, while low SNR increases data requirements, the
theoretical information gap remains the correct predictor of the asymptotic difference between the
two hypotheses.

Figure 14: Effect of firing rate and noise level.

A.8 FACTORS AFFECTING CONVERGENCE SPEED

We conducted ablation study to examine the factors that determine how quickly empirical perfor-
mance converges to the theoretical value of information gap. Our main simulations assume that
neural tuning curves tile the full orientation space, consistent with standard V1 models Rubin et al.,
2015. In Fig. 15A, when the population is randomly sampled without full coverage of the entire ori-
entation space, since no decoder can recover information about orientations lacking tuned neurons,
we found that convergence with respect to neuron count becomes substantially slower. In addition,
in Fig. 3, the neuron-scaling experiment uses 30k trials so that decoders quickly approach the the-
oretical limit. In Fig. 15B, we performed an ablation with fewer trials (3k trials) and observed that
convergence is again slower because the decoder cannot reliably estimate the encoded distributions
from limited data. In practice, the above factors can be mitigated by modern population recordings
that provide large number of trials with hundreds to thousands of simultaneously recorded neurons
that cover full range of orientation space.
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Finally, to demonstrate that our result is robust to the level of discretization of the orientation vari-
able, we repeated the convergence analysis with higher-resolution orientation bins (0.25◦ instead of
1◦ as in the main results), and obtained indistinguishable results. This confirms that the accuracy
of information gap and its empirical convergence are robust to binning and reflect the underlying
decodable information rather than numerical artifacts.

Figure 15: Examine factors affecting convergence speed. A) Effect of orientation coverage. B)
Effect of trial numbers. C) Effect of bin size.

A.9 THIN TAILED PRIORS

To provide further examples on non-Gaussian context priors, we examined thin-tailed distributions
as stimulus prior distributions. We reported additional analyses using canonical thin-tailed gener-
alized normal distributions with β > 2) in Fig. 16. The information gap landscape shows that
thin-tailed priors similarly lead to near-0 posterior-coding information gaps across task parameter
space. Our framework provides a similar explanation: under thin-tailed context priors, the resulting
posteriors become highly asymmetric across contexts (Fig. 17), reducing the feasible set of (xj , xk)
pairs that can satisfy Eq. 12, thereby shrinking the posterior-coding information gap, which mirrors
the failure mode observed with heavy-tailed priors.

What about uniform priors? As shown in Fig. 17, a uniform prior induces no context-dependent
modulation of the posterior. Hence, likelihood- and posterior-coding populations become nearly
indistinguishable, causing the information gap to collapse for both hypotheses.

Figure 16: Information gap landscapes when using generalized normal distribution as context
priors. A) Information gap as a function of task parameters (d: separation between context priors,
and σ: context prior standard deviations) for both the likelihood coding hypothesis (middle) and the
posterior coding hypothesis (right).
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Figure 17: Thin tailed context priors, when integrated with Gaussian likelihood function, lead to
asymmetric posterior distributions, limiting the pairs of identical posteriors satisfying Eq. 12 that
would cause imperfect likelihood decoders on posterior-coding populations.

A.10 EXAMPLE LIKELIHOOD AND POSTERIOR

Figure 18: Example of the ground truth likelihood, priors, and posteriors.
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