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Abstract

This work explores the question of long-term credit assignment in reinforcement
learning. Assigning credit over long distances has historically been difficult in
both reinforcement learning and recurrent neural networks, where discounting
or gradient truncation respectively are often necessary for feasibility, but limit
the model’s ability to reason over longer time scales. We propose LVGTS, a
novel model-based algorithm that bridges the gap between the two fields. By
using backpropagation through a latent model and temporal shortcuts to directly
propagate gradients, LVGTS assigns credit from the future to the possibly distant
past regardless of the use of discounting or gradient truncation. We show, on simple
but carefully-designed problems, that our approach is able to perform effective
credit assignment even in the presence of distractions.

1 Introduction

In reinforcement learning (RL) [33], an agent executes actions in an environment to maximize future
rewards. An arbitrarily long period of time can occur from the execution of a particular sequence of
actions to the reception of the corresponding reward; the problem of understanding the relationship
between actions and rewards regardless of this delay is called temporal credit assignment [34].
Effective assignment of credit over long time spans is an issue for most current RL methods and is
exacerbated in realistic settings with partially observable environment states.

Zooming out, temporal credit assignment is also a fundamental problem is sequence-based supervised
learning tasks. Recurrent Neural Networks (RNNs) [10, 29] are often the go-to solution to solve
them but, in a similar way to basic RL algorithms, vanilla RNNs struggle with long-term temporal
dependencies [4, 14, 26]. The root causes of this phenomena have been thoroughly investigated, and
numerous intuitive solutions have been designed over the years to more accurately capture these
temporal dynamics, with considerable performance gains [4, 19, 21, 26, 35].

In this paper, we propose to build on the connection between temporal credit assignment in RNNs
and RL tasks, by leveraging ideas developed for the first as a natural solution to design algorithms
for the second. In particular, we exploit the similarity between the computational graph in which
Backpropagation Through Time (BPTT) operates for computing the gradients for RNNs and the one
implied by the interactions of an agent with its environment. As core techniques in RNNs allow them
to effectively propagate gradients in a more direct way to the distant past, their RL counterpart will
allow agents to assign credit to actions even when they yield rewards in a non-immediate future.

We propose Latent Value Gradients with Temporal Shortcuts (LVGTS), a novel model-based policy
optimization algorithm, which learns a latent model of the dynamics and uses it, together with
reparameterization techniques, for the analytical computation of the policy gradient. During dynamics
learning, we impose a specific attentive structure which allows the model to create shortcuts between
potentially distant states and actions; then, during policy optimization, the gradient is computed by
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backpropagating through real trajectories of experience using the learned model, implicitly injecting
nuanced credit assignment patterns into policy learning.

LVGTS is designed by starting from a Partially Observable Markov Decision Process formulation;
in that context, we highlight that a blind application of an attention mechanisms to model-based
policy optimization does not necessarily result in improved credit assignment capabilities. We then
showcase, in small but focused experiments, that LVGTS is able to deal with delayed rewards even in
the presence of distractions. To the best of our knowledge, this is the first model-based algorithm that
performs effective long-term credit assignment without the need for heuristics or reward shaping,
being simultaneously fully compatible with a discounted reinforcement learning formulation.

2 Background

Problem Definition. A continuous finite Partially Observable Markov Decision Process (POMDP)
is a tupleM = (S,O,A, f, O, r, µ, T ), where S is the state space, O ⊆ Rx is the observation space,
A ⊆ Ru is the action space, f : S × A → ∆(S) is the state transition function, O : S → ∆(O)
is the observation function, r : S × A → R is the reward function, µ ∈ ∆(S) is the initial state
distribution and T is the problem horizon. A sequence τt = (o0, a0, . . . , st, at) of t observations
and actions can be seen as taken from a space Tt of trajectories. At each discrete time step, the
agent interacts with the environment by receiving an observation and acting according to a policy
πθ : Tt → ∆(A), which potentially depends on the entire history, and which comes from a space
ΠΘ = {πθ : θ ∈ Θ ⊂ Rd} of parameterized policies. To dissect the fundamental features of
credit assignment in POMDPs, we are interested in solving so-called type 1 and type 2 information
acquisition tasks as introduced in [20]. Type 2 tasks test the agent’s capability to learn adequate
state representations in a partially observable setting where past observations, however distant, are
necessary for future reward predictions. The notion of passive memory is thus crucial to acting
optimally in such an environment: to reach the optimal policy, the agent must be able remember
a specific observation oi. Conversely, type 1 tasks test an agent’s ability to simultaneously learn
adequate memory-based state representations and perform long-term temporal credit assignment. In
this setting, the memory state is not passively observed, but needs to be sought out by the agent who
is only rewarded for it in the future when it needs to be recalled.

Gradient-based Policy Optimization. The goal of the agent is to maximize the expected cumula-
tive reward of trajectories induced by its policy:

J(θ) = Eθ

[
T∑
t=0

rt

]
= Es∼µ [V πθ (s)] , (1)

where V πθ is a state-value function, which gives for every state the expected cumulative reward of
policy πθ. To maximize this metric, we are interested in estimating ∇θV . Under non-restrictive
smoothness assumptions the reparameterization trick [13, 22] allows us to rewrite the above expec-
tation, which concerns the distribution induced by policy and environment, with respect to another
random variable, for instance ε ∼ N (0, 1), to compute the gradient by direct differentiation of a
transformed function. In other words, finding∇θV becomes a simple matter of estimating∇θrt. If
the transition and reward functions of the environment are known and differentiable, then the gradient
of rt can be found by backpropagating along the trajectory. The resulting gradient is estimated
not unlike the traditional backpropagation through time (BPTT) mechanism in recurrent neural
networks. The methods, either model-based or value-based, which build upon this techniques for
policy optimization are referred to as value gradients [11, 18].

Discounting and Truncation. When dealing with large horizons, the practice of discounting the
rewards during the computation of a value function has been found to be practically beneficial
even in episodic reinforcement learning, where it would not be necessary on a theoretical level. By
constraining a problem to an effective horizon of 1

1−γ , the discount factor has been seen to reduce
the variance of model-free RL. While the advantages of discounting is not as well understood in
model-based learning, it is still employed in almost all prior works [16, 18, 32], and can intuitively
control the bias of propagating a learned model through time. Similar to discounting, RNNs often
employ truncated backpropagation through time (TBPTT) for long sequences. Again, by effectively
reducing the horizon of the backwards pass, some of the major issues in long sequences can be
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(a) Model Forward Pass
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(b) Policy Backward Pass

Figure 1: Model forward pass (Figure 1a) and policy backward pass (Figure 1b, gradient flow shown
in blue) in LVGTS, with a gradient truncation length of N = 3; model parameters and other rewards
apart from the last one are not shown for clarity. The model required an access to memory towards
m = 1 while being at time t; in result, a temporal shortcut is opened from time t to time m = 1
during the computation of the policy gradient, allowing credit to be directly assigned from one time
step to the other, regardless of their distance.

mitigated. In both cases, long-term credit assignment becomes difficult or impossible beyond the
effective horizon implied by TBPPT and discounting in vanilla RNNs and standard RL algorithms.

3 Credit Assignment with Model-based Temporal Shortcuts

Value gradient methods lie at the intersection of RNN training and reinforcement learning. Given
the popularity of discounting in RL and gradient truncation in RNNs, and their direct mathematical
connection (see Appendix), it seems natural to propose an algorithm compatible with these methods,
but at the same time featuring long-term credit assignment capabilities.

In this section, we present a value gradient method which directly exploits this connection, by
employing gradient truncation together with a strategy to circumvent the myopia it implies. Our Latent
Value Gradients with Temporal Shortcuts algorithm takes advantage of two main building blocks:
reparameterization-based stochastic value gradients (SVG) [18] and attention-memory augmented
RNNs [21]. Value gradients are used for policy optimization, and an attention-memory augmented
RNN is used for state representation in POMDPs. Given its novel architecture, LVGTS has the
capability to leverage the rich structure learned during model learning, by directly incorporating it
into credit assignment. We first introduce a naive implementation of SVG with the specialized RNN,
called latent-memory stochastic value gradients (LM-SVG). This will serve both as an introduction
and as a baseline for LVGTS.

3.1 A Value Gradients Baseline

In the rest of the paper, we assume for clarity of presentation deterministic dynamics, but then use
reparameterization in our implementation to accommodate for stochasticity. When value gradients
are applied to the fully observable setting, the policy is directly improved given an (approximate)
transition model f : S × A → S and reward model r : S × A → R. In the partially observable
setting, the true underlying states are not seen, and must be instead approximated through a latent
(or belief) state ht := b(o1..ta1..t−1) ≈ st, where b(·) is some function approximator. It is also
beneficial to introduce a decoder d(ht) ≈ ot, to be employed as a regularizer. To summarize, the
models learned for latent planning are therefore:

ht := b(o1..ta1..t−1) Encoder
ot := d(ht) Decoder

ĥt := f(ĥt−1, at−1) Transition model
rt := r(ht, at) Reward model

(2)
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Given such models, we can train a policy πθ(ht) → at following the value gradient methodology
outlined in the previous section. LM-SVG implements this architecture by employing an encoder
based on an attention-augmented recurrent network architecture. This form of attention-augmented
recurrent network is similar to the one introduced in Sparse Attentive Backtracking [21]. The
parameterization then becomes:

htm := att(hi<t) ,

ht := b(ht−1, h
t
m, otat−1) ,

(3)

where att(hi<t) uses a dot-product key-value based attention mechanism [35] to select k latent states
from the past, summarize them, and passes it along the encoder b to better predict ht. A more detailed
description of this attention mechanism can also be found in Algorithm 2.

Despite being perhaps the most natural architecture for memory-based latent value gradients, this
approach presents two important drawbacks:

1. The resulting latent space is non-markovian. The transition model used for value gradi-
ents assume that the given states are Markovian, such that p(ht|hi<t) = p(ht|ht−1). This is
not the case given (3), which may make the transition model difficult or impossible to learn.

2. Credit assignment remains unchanged during policy optimization. Truncating the gra-
dients will still result in a myopic agent, no matter the accuracy of the model employed.
Long-term dependencies that are captured by the dynamics through repeated transitions are
cut short with gradient truncation, preventing long-term reasoning. The memory in this case
is only used for representation learning, and does not directly address the problem of credit
assignment in RL.

In the following, we will present an algorithm able too overcome both of these shortcomings.

3.2 Latent Value Gradients with Temporal Shortcuts

We can solve the two problems of LM-SVG by implementing a simple change: LVGTS includes htm
as an argument to the transition model f . The approximate state transitions can then be rewritten
with ĥtm which recycles the attention mechanism learned in (3), but collects the approximate states
predicted by the transition model instead:

ĥtm := att(ĥi<t) ,

ĥt := f(ĥt−1, ĥ
t
m, at−1) .

The advantages of this formulation are two-fold, conveniently addressing the two problems of
LM-SVG:

1. The resulting latent space is Markovian. Since ht−1 and htm are the only past states used
for the encoder b to predict ht, then the combination of the previous state and memory state
provides all the necessary past information for the transition model to predict ht.

2. Credit assignment is improved during policy optimization. The addition of ĥtm into the
argument of f acts as a temporal shortcut in the computational graph of ri≥t, allowing
credit to directly flow among distant time steps as seen in Figure 1.

Let us further develop the intuition behind the second point through the idea of temporal shortcuts.
Assume that ĥtm is comprised of a single state at time step m < t. The attention mechanism itself has
no bias towards selecting states that are as close to t as possible, so m can be arbitrarily far from t as
long as it was deemed important in predicting ht. Traditionally, BPTT is only able to reason of the
effects of m on t by first reasoning about m+ 1, then m+ 2, then m+ 3 until finally t is reached.
Similar to a game of broken telephone, the true effects of m on t are often difficult to discern because
of this phenomenon, whether it is due to noise or model approximations. The situation is made even
worst when employing TBPTT, where the model has no way of understanding the effects of m on
t if t −m > N . If a temporal shortcut exists between m and t, as is the case in LVGTS, a single
step of reasoning separates ht and htm instead of t−m, allowing for a more direct path for credit to
be assigned to distant events. Implemented with TBPTT, this allows the agent to reason about past
important events, and their neighboring states, just as Figure 1 suggests.
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The complete algorithm for LVGTS, including the reparameterization trick for stochastic dynamics,
is detailed in Algorithm 1. In what follows, we will see that LVGTS is capable of solving both type 1
and type 2 information acquisition tasks even with gradient truncation, while LM-SVG fails in the
former.

4 Experiments

We test LVGTS and LM-SVG on a few simple type 1 and type 2 information acquisition tasks.
The goal of these experiments are to verify the algorithms’ capabilities to perform long-term credit
assignment beyond what gradient truncation permits. First, we formalize the two types of tasks into
two respective concrete environments.

4.1 Environments

Algorithm 1: Latent Value Gradients with
Temporal Shortcuts
Input :Episode length T , truncation length N , and

models: b(ht, wt|o1..t, a1..t−1), d(ot|ht),
f(ht+1|ht, hm, at, ξ), r(rt|ht, at),
πθ(at|ht, η).

while not converged do
Observe initial observation o1;
for t← 1 to T do

ht ← b(o1..t, a1..t−1) from Algorithm 2;
at ← πθ(ht, ηt), ηt ∼ ρ(η);
Take action at and observe ot+1, rt from

the environment ;
Insert (ot, at, rt, ot+1) into D;

end
Train b, d, f, r with (7) using D ;
Initialize latent state ĥ1 ← b(o1a0);
Initialize memory:M∈ RT×|h|,M[1]← ĥ1;

Initialize return: G← 0;
for t← 1 to T do

Infer ξ, wt|ot−1, at−1, ot following
Algorithm 2;
hm ←

∑
wt[i]∈wt

wt[i]M[i];

ât ← πθ(ĥt, ηt), r̂t ← r(ĥt, ât);
ĥt+1 ← f(ĥt, hm, ât, ξ);
G← G+ r̂t;
if t+ 1 mod N == 0 then

ĥt ←Detach(ĥt);
end
M[t+ 1]← ĥt;

end
Update πθ using∇θG;

end

Passive Memory Task (Type 2 Informa-
tion Acquisition). The passive memory task
(PMT) is a simplification of the grid world envi-
ronments in [20, 36], generalised to the continu-
ous state-action space. Given two constant time
stamps t1 and t2, the task is separated into three
phases: remember, distractor, recall.

1. The remember phase (t < t1): A ran-
dom observation om is generated for
the agent to see. Actions in this phase
do not affect future observations. In
the simple case, this phase can be char-
acterized by the observation generation
process: om ∼ N (0, 1).

2. The distractor phase (t1 < t < t2):
Any desired continuous task can be in-
serted here. It serves to distract the
agent with an unrelated task, tempo-
rally distancing the first and second
phase.

3. The recall phase (t > t2): Random
unrelated observations are shown here,
but a reward is given to the agent for
adequately remembering the randomly
generated observation om seen during
the remember phase. For some maxi-
mum reward c, the reward can be de-
fined as: rt>t2 = (at − om)2 + c.

Active Memory Task (Type 1 Information
Acquisition). The active memory task (AMT)
uses the same three phases defined above for
PMT, with a slight modification to the remember phase. Instead of always observing the correct
memory observation, om is only fully observed when performing the correct action. Given this
action to be am, defined in the environment, the observations in the remember phase for AMT are
ot<t1 = om + (am − at)ε, where ε ∼ N (0, σ).

We consider three different instances of these two tasks: dummy-PMT, dummy-AMT, and pendulum-
AMT. The prefix specifies what environment is used for the distractor phase. The dummy environment
always returns ot = 0, rt = 0 for any t1 < t < t2. The pendulum environment is the Pendulum-v0
environment for the OpenAI Gym library [6].
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4.2 Results

LM-SVG and LVGTS are tested on all three instances of PMT and AMT with t1 = 3, t2 = 10,
and T = 15. In all cases, c = 0.5, therefore the maximum possible return for each episode is 2.
Both algorithms are subjected to a truncation length of N = 4, which means that long-term credit
assignment from the recall phase to the remember phase is impossible without skip connections. We
set k = 3 for all experiments, allowing for a maximum of three skip connections to be made to the
past at every time step. The results in Figure 2 show the top fifteen best performing runs out of twenty.
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Figure 2: Results of truncated LVGTS and truncated LM-SVG on dummy-PMT, dummy-AMT and
pendulum-AMT. On the top row, the return is plotted against the number of episodes during training
using value gradient truncation of length 4. On the bottom row, the attention weights for LVGTS are
shown with their corresponding tasks. In red are the points in time that are recalled during one step
of the recall phase (t = 12). Attention is put from the recall phase to the remember phase, which
allows truncated LVGTS to perform long-term credit assignment beyond the truncation length.

While both algorithms are able to solve the passive memory task, indicating a competency towards
representation learning, only LVGTS is able to reliably solve both AMT instances, even in the
presence of a distraction. Conversely, truncated LM-SVG struggles to surpass the performance of an
ideal myopic agent even with minimal distractions (dummy-AMT). When distrations are present, in
the form of the pendulum task, LM-SVG completely fails under truncation. The maximum myopic
return is calculated based on a policy that acts perfectly in phases 2 and 3 according to the noisy
observation in phase 1, but acts completely randomly in the first phase. Additionally, the bottom row
of Figure 2 shows the agent forming the correct shortcuts to the past for credit to flow through in the
third phase.

These results demonstrate that even though we truncate the gradients of LVGTS, a model-based
algorithm, it is still able to perform long-term credit assignment in a POMDP well beyond its effective
horizon without the need for heuristics.

5 Related Work

Long-Term Credit Assignment in RNNs. A fundamental problem faced while training recurrent
neural networks is the assignment of credit across timesteps. The goal of facilitating this task
inspired the development of nuanced architectures and training algorithms, which go well-beyond
the primordial forms of RNNs, based on the simple flow of a latent state through time [10]. Indeed,
vanilla RNNs are susceptible to exploding and vanishing gradients during backpropagation [19, 26],
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which hinder the ability to model dynamics spanning over long time windows. To counterbalance
this, attention [4] has been recently proposed as a particularly successful paradigm: instead of being
constrained to only look at a single, most recent, state, the model is augmented with the capability of
attending time frames from the past. Methods such as transformers [35] and SAB [21], which we use
as a backbone for our algorithm, extensively leverage attention mechanisms.

Value Gradients. The intuitive approach of improving a control policy by differentiating through
the dynamics and reward function was one of the first to be conceived in modern RL [30, 37]. Based
on this idea, the resulting family of algorithmic tools encompasses both direct differentiation through
the learned dynamics [1, 8, 11] and the use of the gradient from a learned value function [12, 15,
23, 31]. Value gradients have been recently revamped [2, 7, 18] due to their synergy with automatic
differentiation, the workhorse of deep learning [5], which allows automatic computation of the policy
gradient from the computational graph constructed by repeatedly evaluating dynamics, policy and
reward. It is possiible to extend value gradients to partially observable and complex environments, by
using latent models [16] and computing gradients through the latent space.

Overcoming delayed rewards in RL. Delayed rewards pose a great challenge to long-term credit
assignment in reinforcement learning [3, 20]. Traditional use of the discount factor is especially
problematic in these settings, as it is a direct contradiction to the reality of delayed rewards in many
real world problems [24, 27, 36]. Previous work in addressing this issue has mostly been model-
free, and includes methods around meta-learning [28, 38], reward reshaping [3, 28], re-weighting
discounting factors [38], and hindsight reasoning [17, 25]. Of particular relevance is the work on
Temporal Value Transport (TVT) [20]. TVT is a model-free approach that shares one important
similarity with our work: they use an attention-based architecture for latent state representation.
However, there are two major differences with LVGTS. Our algorithm is model-based, and directly
reuses the attention weights for policy optimization, not requiring any reward shaping heuristic.
We take full advantage of automatic differentiation and let this process naturally handle the value
transport that is manually implemented in TVT.

6 Conclusion

In this paper, we presented a model-based method for long-term credit assignment, based on per-
forming backpropagation through time in latent space. By allowing the agent to construct temporal
shortcuts during model learning, credit can be assigned to distant events during policy optimization,
while taking full advantage of truncated backpropagation through time. We show, through a simple
set of experiments, that LVGTS is able solve both type 2 and type 1 information acquisition tasks.
Value gradient algorithms have historically been shown to have difficulty scaling to larger more
complex environments, and can benefit greatly from using an approximate value function [2, 18]. A
natural followup to our work is to scale it to more difficult problems, and to see how critics and value
functions might translate into this framework.
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A Appendix

A.1 Truncated Value Gradients and Discounting

We formalize here the relationship of truncated value gradients with discounting. For the remainder
of this section, we suppose a deterministic environment with Markov states st. The truncated value
function can be written in the following form, where the complete proof can be found in [18]:

∇θV tn−trunc(st; θ) =

T∑
k=t

∂rk
∂ak

∂ak
∂θ

+
∂sk+1

∂ak

∂ak
∂θ

∂V k+1(sk+1; θ)

∂sk+1
,

∂V i(si; θ)

∂si
=
∂ri
∂si

+
∂ri
∂ai

∂ai
∂si

+

(
∂si+1

∂si
+
∂si+1

∂ai

∂ai
∂si

)
∂V i+1(si+1; θ)

∂si+1
, for i < T − n

(4)

∂V T−n(sT−n; θ)

∂sT−n
:= 0 .

We can rewrite the recurrent relationship iteratively to better understand how it compares to the
original value function:

∂V in−trunc(si; θ)

∂si
=
∂ri
∂si

+
∂ri
∂ai

∂ai
∂si

+

i+n∑
j=i+1

( j∏
l=i

(
∂sl+1

∂sl
+
∂sl+1

∂al

∂al
∂sl

)

)
(
∂rj
∂sj

+
∂rj
∂aj

∂aj
∂sj

) (5)

The original un-truncated and undiscounted value function being:

V i(si; θ) =

T∑
k=i

rk

∂V i(si; θ)

∂si
=
∂ri
∂si

+
∂ri
∂ai

∂ai
∂si

+

T∑
j=i+1

( j∏
l=i

(
∂sl+1

∂sl
+
∂sl+1

∂al

∂al
∂sl

)

)
(
∂rj
∂sj

+
∂rj
∂aj

∂aj
∂sj

) ,

and an n-step value function being:

V in−step(si; θ) =

i+n∑
k=i

rk

∂V in−step(si; θ)

∂si
=
∂ri
∂si

+
∂ri
∂ai

∂ai
∂si

+

i+n∑
j=i+1

( j∏
l=i

(
∂sl+1

∂sl
+
∂sl+1

∂al

∂al
∂sl

)

)
(
∂rj
∂sj

+
∂rj
∂aj

∂aj
∂sj

) .

(6)
We can now appreciate the equivalence between equations 5 and 6, demonstrating that the n-
truncated value gradient is equivalent to a full value gradient using an n-step value function.
Given that in traditional actor-critic methods, the critic V̂ i(si) is only used derivative estimation [9],
the n-truncated value gradient is not so different than policy gradient algorithms with γ = 1− 1

n ,
where future rewards are discounted smoothly instead of discretely.

A.2 Training the Latent Models

Given a dataset of transition observations sampled from the environment (o1..ta1..t−1, at, ot+1, rt)
the environment model approximations are trained on the following loss function:

ht :=b(o1..ta1..t−1) ,

ht+1 :=b(o1..t+1a1..t) ,

Lrew =
1

2

[
rt(ht, at)− rt

]2

,

Ldecoder =
1

2

[
d(ht)− ot

]2

,

Ltrans =
1

2
||f(StopGradient(ht), at)− StopGradient(ht+1)||2 .
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The total loss sums all the above terms, and can be controlled by the constants αrew, αdecoder, αtrans,

Lmodels = αrewLrew + αdecoderLdecoder + αtransLtrans . (7)

The decoder model acts as a regularizer, and provides a training signal beyond simple reward
prediction for the latent model.

A.3 Attention Augmented RNN

The attention augmented RNN that uses key-value dot product attention, inspired by the work in
[21] is detailed here. We assume a sparse recall to memory with k memory recalls, where k is a
hyper-parameter set during training. Given a new observation otat−1, and the previous latent state
ht−1 the procedure returns the next latent state ht, and the attention weights attnk used for predicting
ht.

Algorithm 2: Procedure for attention-augmented RNN
b(ot, at−1, ht−1)

Input :

History o1..t, a1..t−1 ∈ Rt×d

Sparsity k

Attention Key-gen W ∈ Rd×dk

Multilayer Perceptron MLPψ : R1×d → R1×dk

K ← o1..t, a1..t−1W;
ĥt ← MLPψ(otat−1);
attnw ← ĥtK

T ;
attnk ← sorted(attnw)[k + 1];
attnk ← ReLU(attnw − attnk);

hm ←
∑t

i=1 attnk[i]oiai−1∑
i attnk[i] ;

return ĥt + hm, attnk
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