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Unleashing the Power of Large Language Models for
Denoising Recommendation

Anonymous Author(s)

ABSTRACT
Recommender systems are vital for personalizing user experiences,

yet they often rely on implicit feedback data that can be noisy

and misleading. Existing denoising studies typically involve either

incorporating auxiliary information or learning denoising strate-

gies from interaction data. Nonetheless, they face challenges due

to the inherent limitations of external knowledge and interaction

data, as well as the non-universality of certain predefined assump-

tions, which hinder their ability to accurately identify noise. Re-

cently, large language models (LLMs) have garnered significant

attention due to their extensive world knowledge and powerful

reasoning capabilities. Despite this, the potential of LLMs to en-

hance the denoising process in recommendations remains largely

unexplored. In this paper, we introduce LLaRD, a novel framework

that leverages LLMs to improve the denoising process in recom-

mender systems, thereby enhancing overall recommendation per-

formance. Specifically, LLaRD generates denoising-related knowl-

edge by first enriching semantic insights from observational data

through LLMs, facilitating a comprehensive inference of user-item

preference knowledge. It then employs a novel Chain-of-Thought

(CoT) technique over user-item interaction graphs to uncover rela-

tion knowledge pertinent to denoising. Finally, it utilizes the Infor-

mation Bottleneck (IB) principle to align the denoising knowledge

generated by LLMs with the recommendation targets, effectively

filtering out both data noise and irrelevant knowledge produced

by the LLMs. Empirical results demonstrate the effectiveness of

our proposed framework, showcasing its superior performance in

denoising and recommendation accuracy. The code is available at

https://anonymous.4open.science/r/LLaRD-5EE5.

1 INTRODUCTION
Recommender systems [17, 27, 34, 54] have become essential for

mitigating information overload and delivering personalized ser-

vices. High-quality interaction data that accurately reflect user

preferences play a crucial role in enhancing the performance of

these recommendation models. In the context of limited explicit

feedback [8, 21], implicit feedback (e.g., click, purchase and views)

has emerged as a popular alternative due to its abundance and ease

of collection [20, 23]. However, implicit feedback data are often

noisy and influenced by various incidental factors, which can hin-

der their ability to accurately represent user preferences [7, 38, 46].
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(a) (b)

User preferences (ground-truth)

User preferences established from 
observational data

User preferences learning from modelsUser preferences derived from LLMs
Guidance direction from LLMs

Informative interaction data (inferred by models)
Noisy interaction data (inferred by models)

Figure 1: (a) An intuitive example of learning user pref-
erences from observational data. (b) Improvements of our
method (red) over existing methods (dark green).

For instance, false positive interactions [2, 32] may arise from users’

curiosity-driven clicks or unsatisfactory purchases, while false neg-

ative interactions [12] can result from limited exposure or restricted

browsing opportunities.

To tackle the challenge of noisy implicit feedback, denoising has

become a significant focus in recommendation research, which can

be broadly categorized into two main approaches:

• Denoising based on side information. Early studies [3, 10, 70]
utilize user dwell time and gaze patterns to identify noise. Sub-

sequent work incorporates sequence [66] and multi-behavior

data [16, 58, 65] for more effective noise detection. Recent ap-

proaches integrate external knowledge graphs [22, 40, 72] or

social graphs [9, 61] to better model user preferences. However,

these methods can incur high data collection costs, and large-

scale graphs may introduce additional noise, such as irrelevant

attributes diluting user signals [12] or simplistic integrations

amplifying noise [72].

• Denoising driven by interaction data. These methods uti-

lize data selection and weighting strategies. Selection-based ap-

proaches [13, 29, 41] identify and filter noisy interactions by

analyzing data features or employing decision networks. For

example, [41] introduces an adaptive training strategy, while

[13, 29] develop networks to exclude noisy samples. Reweighting-

based methods [41, 45] adjust sample weights during training to

mitigate noise effects, such as T-CE [41] which uses training loss

for noise identification, BOD [45] which leverages interaction-

derived priors with a bi-level optimization process.

Despite the effectiveness of interaction data-driven methods,

they usually exhibit notable limitations. Firstly, they focus on learn-

ing user preferences from interaction data to identify noise. How-

ever, limited observational data result in only a partial understand-

ing of user preferences, particularly in recognizing interactions that

signal new interests or exploration tendencies [5, 35]. For instance,
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in Figure 1(a), the pink area represents the user’s true preference

space 𝑃 , while the green area denotes the observable preference

space 𝑃 . The intersection 𝑃 ∩𝑃 reflects the true preferences inferred

from observational data. Interactions deemed as noise often consist

of data inconsistent with currently learned preferences. For exam-

ple, if an art enthusiast accidentally clicks on a gardening video,

it may be labeled as noise, but it might indicate a latent interest

in gardening sketches. Secondly, some studies rely on predefined

assumptions [29, 44] in the noise identification process. For in-

stance, [41] judging high-loss samples in training as noise, which

inadequately captures user preferences and potential associations

during noise identification (e.g., links between fine arts and gar-

dening). Consequently, it will diminish the model’s effectiveness

in denoising. To enhance the understanding of user preferences,

large language models (LLMs) [1, 52, 69] present a promising di-

rection due to their extensive world knowledge and reasoning

capabilities. Recent studies [33, 49] have explored the application

of LLMs in recommendation systems to improve the robustness

of user representations by incorporating additional semantic and

textual information. However, these approaches primarily enhance

the semantic richness of representations while they insufficiently

leveraging the potential of LLMs for denoising.

To explore the potential of LLMs for denoising in recommenda-

tion, we must address several significant challenges.

• C1: How can LLMs effectively mine information relevant
to denoising? LLMs excel at processing textual information, al-

lowing us to expand and enrich semantic insights that can inform

denoising efforts. However, the interactive data represented in

the graph structure of users and items contains rich collaborative

information that is also valuable for denoising. Unfortunately,

LLMs struggle to process this complex graph data effectively.

• C2: How can we utilize the information generated by LLMs
for denoising? While LLMs can produce additional knowledge

for denoising, theymay also generate hallucinations [62], making

direct application potentially suboptimal. Thus, it is crucial to

consider how to constrain the knowledge generated by LLMs to

align with the specific prediction targets in recommendations.

To address these challenges, we propose the Large Language
Model-enhancedRecommendationDenoiser (LLaRD), a novel frame-

work designed to develop recommendation models that are robust

to noisy data. LLaRD consists of twomain components: a knowledge

generation module and a knowledge-enhanced denoising module.

To tackle C1, the knowledge generation module leverages LLMs to

extract two types of denoising-related knowledge: 1) Preference
knowledge. Utilizing the inherent world knowledge of LLMs, we

enrich the semantic information of the data through the analysis,

reasoning, and refinement of text and interaction data. This process

extrapolates the scope of observational data and infers user and

item preferences more comprehensively. 2) Relation knowledge.
We implement a novel chain-of-thought (CoT) prompting strat-

egy [48, 56, 57] over graph structures to expand relation knowledge

by iteratively reasoning about connections among users, items, and

their neighborhood subgraphs. This approach encourages LLMs

to consider key collaborative information hidden within the graph

structure, thereby capturing relation knowledge pertinent to denois-

ing. To address C2, the knowledge-enhanced denoising module is

built upon the Information Bottleneck (IB) [37, 47, 53]. It maximizes

the mutual information across denoised data, generated knowl-

edge, and recommendation targets, while minimizing the mutual

information between the denoised data and the original data. This

mechanism further filters out knowledge irrelevant to denoising

from the information generated by LLMs, reducing the integration

of irrelevant information, such as hallucinations, and thereby en-

hancing denoising performance. As illustrated in Figure 1(b), we

anticipate that LLMs will improve the learning process of the de-

noising model, enabling it to more accurately capture the trajectory

of true user preferences (orange arrow) and extensively encompass

the preference area (pink region). In summary, our approach fa-

cilitates enhanced denoising by utilizing LLM-driven insights to

improve recommendation performance.

The main contributions of this paper are summarized as follows:

• We identify and address the limitations of existing denoising rec-

ommendation methods, proposing a novel application of LLMs’

world knowledge and reasoning capabilities to enhance the per-

formance of recommendation models.

• We introduce LLaRD, a framework that integrates knowledge

generation and knowledge-enhanced denoising strategies to

leverage the capabilities of LLMs for achieving noise-robust rec-

ommendation models.

• We validate the effectiveness of LLaRD through extensive ex-

periments on three benchmark datasets and two mainstream

backbone models, demonstrating the framework’s superior per-

formance in denoising recommendation.

2 PRELIMINARIES
2.1 Denoising Recommendation
Let the user set beU = {𝑢} and the item set be I = {𝑖}, with |U|
and |I | representing the number of users and items, respectively.

The interaction matrix is R ∈ {0, 1} |U |× |I |
, where 𝑟𝑢𝑖 = 1 indicates

that user 𝑢 has interacted with item 𝑖 . Given the interaction data

D = {(𝑢, 𝑖, 𝑟𝑢𝑖 ) |𝑢 ∈ U, 𝑖 ∈ I}, we train a recommendation model

𝑓 with parameters 𝜃 𝑓 to predict the likelihood of user interactions

with unseen items, formulated as 𝜃 𝑓 = argmin𝜃 𝑓 Lrec (D), where
Lrec is the recommendation loss. Using the BPR [34] loss as an

example, we have:

Lrec = E(𝑢,𝑖, 𝑗 )∼D log(𝜎 (𝑓 (h𝑢 )⊤ 𝑓 (h𝑖 )) − 𝑓 (h𝑢 )⊤ 𝑓 (h𝑗 )), (1)

where h𝑢/𝑖 ∈ R𝑑 is the user/item representations, and 𝜎 (·) is the sig-
moid function. The triple (𝑢, 𝑖, 𝑗) consists of user 𝑢, positive sample

𝑖 , and negative sample 𝑗 , sampled pairwise from D. While 𝑟𝑢𝑖 = 1

typically indicates a positive preference, observed interactions (e.g.,
views, clicks, and purchases) may introduce noise that does not

accurately reflect true preferences. The denoising recommendation

task aims to learn a clean interaction matrix R∗ ∈ {0, 1} |U |× |I |

representing users’ genuine preferences or to derive noise-free

representations h∗
𝑢/𝑖 ∈ R𝑑 from the noisy data.

2.2 Information Bottleneck
The Information Bottleneck (IB) [37, 39, 53] is a powerful frame-

work rooted in information theory, commonly used for represen-

tation learning. Its goal is to enhance the robustness of learned
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representations for downstream tasks by discarding task-irrelevant

information from the input data. We give the following definition:

Definition 1 (Information Bottleneck). Let 𝑋 ∈ X and
𝑌 ∈ Y be random variables with joint distribution 𝑝 (𝑋,𝑌 ), where
𝑋 contains information relevant to 𝑌 . The relevant information is
quantified by the mutual information 𝐼 (𝑋 ;𝑌 ). The IB framework
seeks the most informative yet compressed representation 𝑍 by opti-
mizing the objective: max𝑍 {𝐼 (𝑌 ;𝑍 ), s.t. 𝐼 (𝑋 ;𝑍 ) ≤ 𝐼𝑐 } , where 𝐼𝑐 is
the information constraint between 𝑋 and 𝑍 .

By introducing a Lagrangemultiplier 𝜆, the constrained optimiza-

tion is reformulated as an unconstrained objective: max𝑍 𝐼 (𝑌 ;𝑍 ) −
𝜆𝐼 (𝑋 ;𝑍 ). The IB principle is widely applied to generalization and

denoising tasks. Several studies [37, 53] employ the Graph Infor-

mation Bottleneck (GIB) principle to identify stable subgraphs to

enhancemodel generalization, while methods like CGI [47] leverage

the IB framework for denoising recommendation.

2.3 Chain-of-Thought Prompting
Chain-of-Thought (CoT) prompting [42, 48, 56, 57] enhances the

reasoning capabilities of LLMs by guiding them to generate inter-

mediate reasoning steps structured as < input, thoughts, output >

instead of directly producing answers. This approach improves

both interpretability and accuracy, particularly for tasks requiring

multi-step reasoning or logical deductions.

Definition 2 (CoT Prompting). CoT prompting directs a lan-
guage model to produce a sequence of intermediate reasoning steps
𝑅 before generating the final output 𝑌 , given an input prompt 𝑋 .
Mathematically, this framework models the output 𝑌 as:

𝑝 (𝑌 |𝑋 ) =
∑︁
𝑅

𝑝 (𝑌 |𝑅,𝑋 ), 𝑝 (𝑅 |𝑋 ). (2)

This decomposition transforms complex tasks into manageable sub-
tasks, enhancing the reasoning capabilities of model.

By generating structured reasoning steps, CoT prompting en-

ables more accurate and reliable responses in complex tasks.

3 METHODOLOGY
In this section, we introduce the Large Language Model-enhanced

Recommendation Denoiser (LLaRD). As illustrated in Figure 2, it

comprises two knowledge generation modules and a denoising

module. Below, we provide a detailed overview of each component.

3.1 Preference Knowledge Generation
In this module, we extract semantic preference information from

textual data and user-item interactions despite inherent data noise.

For example, the Amazon-Book dataset includes descriptions with

irrelevant attributes, and reader reviews are often subjective and

unstructured, featuring imaginative content, citations, or coun-

terfactual statements. These factors complicate the direct extrac-

tion of meaningful preference semantics. To address this issue,

we adopt methods from prior studies [33, 55], utilizing LLMs for

text denoising and preference knowledge reasoning. We design

system prompts 𝑆𝑢 and 𝑆𝑖 for users and items, respectively, and

construct configuration texts T𝑢 = {𝑇 1

𝑢 ,𝑇
2

𝑢 , ...,𝑇
|U |
𝑢 } and T𝑖 =

{𝑇 1

𝑖
,𝑇 2

𝑖
, ...,𝑇

| I |
𝑖

} for each user and item as follows:

𝑇𝑘𝑢 = Item_title ∥ Item_description ∥ User_comments, (3)

𝑇𝑘𝑖 = Item_title ∥ Item_category ∥ Item_description. (4)

The reasoning process of profile information is defined as:

P𝑢 ,P𝑖 = LLM( [𝑆𝑢 ∥T𝑢 ], [𝑆𝑖 ∥T𝑖 ]), (5)

where LLM(·) denotes the LLM reasoning process, ∥ denotes the
concatenation of the system prompt and configuration texts. P𝑢
and P𝑖 denote the profile information for each user and item, re-

spectively. While LLMs effectively refine user preferences and item

features, integrating extensive textual knowledge for collaborative

analysis across thousands of users and items leads to semantic im-

precision and high token inference costs. To mitigate these issues,

we propose a keyword condensation technique for each user and

item, reducing semantic ambiguity and enabling incremental up-

dates to preference semantics. This approach accommodates the

dynamic nature of users and items, ensuring robust and efficient

preference extraction. Furthermore, we enhance system prompts

by introducing the 𝑆 ′
𝑢/𝑖 which guides LLMs to refine the keywords

of user preferences and item features based on the obtained profile

information P𝑢 and P𝑖 . The keyword generation process is defined

as follows:

A𝑢 ,A𝑖 = LLM

(
[𝑆 ′𝑢 ∥P𝑢 ], [𝑆 ′𝑖 ∥P𝑖 ]

)
, (6)

where A𝑢 = {𝐴1

𝑢 , 𝐴
2

𝑢 , ..., 𝐴
|U |
𝑢 } and A𝑖 = {𝐴1

𝑖
, 𝐴2

𝑖
, ..., 𝐴

| I |
𝑖

}. We

then combine the profile information P𝑢/𝑖 with keywords A𝑢/𝑖 to
form the preference knowledge F𝑢/𝑖 . The preference knowledge
F𝑢/𝑖 is converted into token sequences, resulting in token embed-

ding matrices T𝑢/𝑖 = {t1, t2, ...}. These token embeddings are pro-

cessed through a multi-layer perceptron (MLP) network𝑊𝑡 to gen-

erate semantic embeddings for each user and item:

Ẽ𝑢 , Ẽ𝑖 =𝑊𝑡 (LLM( [T𝑢 ,T𝑖 ])) + 𝑏. (7)

Finally, we encapsulate the obtained preference semantic embed-

dings Ẽ𝑢 and Ẽ𝑖 into the preference knowledge K𝑝 as:

K𝑝 =
{
Ẽ𝑢 = {ẽ𝑢1, ẽ𝑢2, ...}, Ẽ𝑖 = {ẽ𝑖1, ẽ𝑖2, ...}

}
. (8)

3.2 Relation Knowledge Generation
Previous studies utilizing LLMs to infer user preferences from inter-

action sequences often struggle to capture multi-hop relationships

and long-path dependencies essential for understanding complex

interactions. In contrast, our approach leverages the reasoning

capabilities of LLMs over graph-structured data. By integrating

preference semantics with collaborative information, we enable

LLMs to identify associative semantics among multiple interac-

tion nodes. Furthermore, we iteratively infer additional interaction

edges to construct a relation knowledge graph, enhancing the graph

learning process and improving the denoising of implicit feedback.

3.2.1 User-Centric CoT Reasoning Framework. The collab-
orative information within the user-item interaction graph is in-

valuable for denoising. However, LLMs often struggle to achieve

strong reasoning performance when dealing with complex inter-

connected data. To address this, we introduce a user-centric CoT

reasoning framework. It meticulously designs inputs for multi-hop

3
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Profiles & Keywords Generation

"item_index": 1614,
"profile": “It is a romantic 
thriller novel that would appeal 
to readers who enjoy a mix of 
romance, suspense, and 
mystery. Additionally, readers 
who appreciate descriptive and 
well-written beautiful scenes 
may also enjoy this book."

"user_index": 34, 
" profile ": "This user enjoys 
urban fiction and drama, 
particularly books with 
complicated relationships and 
affairs. Crime fiction and 
suspense novels with twists and 
turns are also appealing to them.

Urban fiction

Drama

Complicated affairs

Fast-paced action

Intense emotions

Romance

Suspense

Mystery

Beautiful scenes

Well-written

Final Output:
(n=1) Noise identify: <item_id>, <item_id>, …
(n=2) Collaborative augmentation: <user_id>, <user_id>, …
(n=3) Interest exporation: <item_id>, <item_id>, …

Chain-of-Thought Reasoning
Input Instruction:
{<User ID> with <User Profile >&< User Keywords >, 
<Interaction Sequence > with < Item Keywords >}
Please analyze the current user's preference rating 
for each interactive item.

Output Instruction:
{"item_id1": " Low ", item_id2": "Medium", "item_id3": 
" High ",  ...  }

Step1: Preference Ratings

Implicit Feedback

Original Data

…

…
Text

Step3: Collaborative Enhancement

n = 1
n = 2

n = 3

H

M

L

H

Step4: Interests Exploration.

Input Instruction:
{<User ID> with<User Profile > &< User Keywords >, < 2-hop 
Neighbors Sequence > with < User Keywords >}
Please analyze the users with the most similar preferences to the 
current user from < 2-hop Neighbors Sequence > 

Output Example:
{
<item_id>: This item is highly relevant to the preferences of the 
current user as it features emotional and intimate romance with 
themes of self-discovery and heartfelt stories, 
… }

Step2: Noise Identification

𝒗
𝒖

𝒗

𝒗
High

Medium

Low

Input Instruction:
(Continue from Step1)
Please identify noisy interactions in "Low" items 
lacking features aligned with user preferences and 
explain your reasoning.

Output Instruction:

{"item_id1": < Analysis and explanation >, … }

Input Instruction:
{<User ID> with<User Profile > &< User Keywords >, < 2-hop Neighbors 
Sequence > with < User Keywords >}
Please analyze the users with the most similar preferences to the current user 
from < 2-hop Neighbors Sequence > 

Output Example:
{
<user_id>: This user shares similar preferences with the current user, enjoying 
steamy romance, complex characters, and emotional depth, 
…  }

Preference Knowledge

M
L

P

User and Item

Interaction

Item Embedding (CF)

User Embedding (CF)

Dropped Interaction

User Embedding 
(Semantics)

Item Embedding 
(Semantics)

Chosen Neighborhood

Mask 
Generator

…

…

𝓛𝒄𝒐𝒎𝒑:  Minimize 𝑰(𝓖ᇱ; 𝓖)

𝓛𝒓𝒆𝒄:  Maximize 𝑰(𝓡; 𝓖ᇱ)

𝓡

𝓚𝒑

Relation Knowledge

𝓚𝒓

Maximizing agreement: 𝓛𝒑𝒓𝒇

…

…
Denoising Graph 𝓖ᇱ

GNN Layers

Interaction Graph 𝓖

…

…
GNN Layers

Maximizing agreement: 𝓛𝒓𝒆𝒍

Figure 2: The overview of the proposed LLaRD framework.

interactions within user-centric neighborhoods and analyzes noisy

and latent interactions based on semantic associations. By min-

ing associative semantics between multi-hop neighbors through a

multi-step reasoning process, we maintain LLM performance de-

spite the complexity and volume of historical data. Additionally, the

LLM is required to provide reasoning foundations and explanatory

text when inferring potential interaction edges, enhancing the inter-

pretability and transparency of the decision-making mechanisms.

Step1: Preference Ratings. We represent the preference of each

user for items in their interaction sequence using a three-tier rating

system: {High, Medium, Low}. For a user 𝑢, given the preference

knowledge containing profile information and preference keywords,

along with the interaction sequenceN (1)
𝑢 = {𝑖1, 𝑖2, ...} and attribute

keywords list 𝐴𝑘
𝑖
for each item 𝑖𝑘 , we follow the steps referring

the Figure 2 for LLM inference. The output is a rated interaction

sequence N𝑅𝑎𝑡𝑒𝑑
𝑢 = {(𝑖1, 𝑙𝑢𝑖1 ), (𝑖2, 𝑙𝑢𝑖2 ), ...}, where 𝑖𝑘 denotes an

item interacted with by user 𝑢, and 𝑙𝑢𝑖𝑘 ∈ {High, Medium, Low}
represents the user’s preference rating for 𝑖𝑘 .

Step2: Noise Identification. Building on Step 1, we enable the

LLM to identify noise among interactions rated as Low, denoted by

N (1)
𝑢 (𝑙𝑜𝑤 ) = {𝑖𝑘 ∈ N (1)

𝑢 | 𝑙𝑢𝑖𝑘 = 𝐿𝑜𝑤}. The set of noise interactions
is defined as:

INoise
𝑢 = {𝑖𝑘 ∈ N𝑢 (𝑙𝑜𝑤 ) | LLM identifies 𝑖𝑘 as noise}. (9)

Consequently, the noise interaction edges for each user are repre-

sented by:

ENoise = {(𝑢, 𝑖𝑘 ) | 𝑢 ∈ U, 𝑖𝑘 ∈ INoise
𝑢 }. (10)

By rigorously analyzing the semantic associations between user

preferences and item attributes, our approach minimizes the mis-

classification of interactions that may reflect latent user interests.

This sophisticated semantic analysis enables the model to discern

and retain interactions that, although rated Low, may indicate

emerging or subtle preferences.

Step3: Collaborative Enhancement. We perform second-hop

neighbor exploration within the neighborhood of user 𝑢 to identify

users with similar preferences, constructing enhanced collaborative

interactions through semantic associations. Utilizing the preference

ratings from Step 1, we focus on items rated as High, defined as

N (1)
𝑢 (ℎ𝑖𝑔ℎ) = {𝑖𝑘 ∈ N (1)

𝑢 | 𝑙𝑢𝑖𝑘 = 𝐻𝑖𝑔ℎ}. The set of second-hop

neighbors is then determined by: N (2)
𝑢 =

⋃
𝑖𝑘 ∈N𝑢 (High) 𝑈𝑖𝑘 \ {𝑢},

where 𝑈𝑖𝑘 represents users who have interacted with item 𝑖𝑘 ,
⋃

represents the union operation, and \{𝑢} ensures that user 𝑢 is

excluded from their own set of neighbors. Subsequently, we identify

collaboratively enhanced users through LLM inference:

UCollab
𝑢 = {𝑢𝑘 ∈ N (2)

𝑢 | LLM identifies 𝑢𝑘 as enhancement}.
(11)

The corresponding set of collaborative enhancement interaction

edges for each user is represented as:

ECollab = {(𝑢,𝑢𝑘 ) | 𝑢 ∈ U, 𝑢𝑘 ∈ UCollab
𝑢 }. (12)

This collaborative enhancement leverages semantic associations to

connect users with similar high-preference interactions, thereby

enriching the recommendation capability to accurately discern and

predict user preferences.

Step4: Interests Exploration. In this step, we utilize LLM reason-

ing to explore interests within the third-hop neighborhood of user

𝑢. To prevent an exponential growth of high-order neighbors in

the interaction graph, we selectively retain only interaction edges

labeled as High, emphasizing their importance in accurately reflect-

ing user preferences. Building on the preference intensities from

previous steps and the analysis of first- and second-order neighbors,

we infer potential interest interactions among third-order neigh-

bors, defined as: N (3)
𝑢 =

⋃
𝑢𝑘 ∈N (2)

𝑢 (High)
𝐼𝑢𝑘 \ N (1)

𝑢 . We then identify

the set of interest items for user 𝑢 as:

IInterests
𝑢 = {𝑖𝑘 ∈ N (3)

𝑢 | LLM identifies 𝑖𝑘 as interests}. (13)
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The corresponding set of interest interaction edges is represented

by:

EInterests = {(𝑢, 𝑖𝑘 ) | 𝑢 ∈ U, 𝑖𝑘 ∈ IInterests
𝑢 }. (14)

Utilizing our user-centric CoT reasoning framework, we integrated

collaborative information from the interaction graph with pref-

erence semantics. This integration enabled the identification of

potential interactions that accurately reflect users’ true preferences

and encapsulate associative semantics. Through this multi-step

reasoning process, we effectively capture the underlying associa-

tion semantics, enhancing the ability of discerning and predicting

nuanced user preferences and improving recommendation.

3.2.2 Relation Knowledge Construction. To effectively lever-

age the reasoning results, we construct the above three distinct

groups of interaction edges as relation knowledge:

K𝑟 = {ENoise, ECollab, EInterests}. (15)

Subsequently, we integrate this relation knowledge into the original

interaction graph G = (U,I, E), whereU and I represent the sets

of users and items, respectively, and E = {(𝑢, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I, 𝑟𝑢𝑖 =
1} denotes the existing interaction edges. The enriched interaction

graph G𝑟𝑒𝑙 is formulated as:

G𝑟𝑒𝑙 =

(
U,I, (E \ ENoise) ∪ ECollab ∪ EInterests

)
. (16)

This enriched graph incorporates the relation knowledge by remov-

ing noise interactions and adding collaborative and interest-based

interactions. This integration enhances the downstream denoising

learning process, enabling more accurate and semantically rich

preference extraction.

3.3 Knowledge-enhanced Denoising
After generating denoising knowledge, it is essential to use this

to guide the denoising process. To achieve this, we propose a

knowledge-enhanced denoising learning approach. As illustrated in

the lower half of Figure 2, this approach includes a mask generator

and a knowledge-guided information bottleneck framework.

3.3.1 Mask Generator. To effectively capture comprehensive

user preferences and latent semantic associations within the graph

structure, we incorporate additional injected knowledge. This en-

hanced understanding facilitates data selection, reweighting, and

representation learning, enabling a robust recommendation model

even when denoising is limited to observed data. We employ a

mask generator to create a learnable mask that distinguishes noisy

interaction edges from informative ones in the original interaction

data. Specifically, given the interaction graph G = (V, E), where
V = U ∪ I and E = {(𝑢, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I, 𝑟𝑢𝑖 = 1}}, each edge is

associated with a random variable 𝑞 ∼ Bernoulli(𝜆). An edge is re-

tained if𝑞 = 1 and deleted otherwise.We parameterize the Bernoulli

parameter 𝜆 using a MLP network Φ as 𝜆 = Φ(e𝑢 ∥e𝑖 ), where ∥ de-
notes concatenation, and e𝑢 , e𝑖 ∈ R𝑑 are the embeddings of user

𝑢 and item 𝑖 from the original interaction graph G. To enable end-

to-end training, we adopt the Gumbel-Softmax reparametrization

trick, converting the discrete variable 𝑞 into a continuous variable

in the range [0, 1]:

𝑞 = 𝜎 ((log𝛿 − log(1 − 𝛿) + 𝜆𝑚)/𝜏), (17)

where 𝜏 is the temperature hyperparameter and 𝛿 ∼ Uniform(0, 1).
As 𝜏 → 0, 𝑞 approaches a binary value. Finally, we obtain the

masked graph G′ = (U,I, E′), where E′ = {(𝑢, 𝑖) | (𝑢, 𝑖) ∈
E, 𝑞𝑚 → 1}. This denoised graph retains only the informative

interaction edges deemed relevant by the mask generator, thereby

enhancing the downstream denoising learning process.

3.3.2 Knowledge-guided Information Bottleneck for De-
noising. Building on the Information Bottleneck (IB) principle,

we present an optimization framework for denoising interaction

graphs. Our dual objectives are to maximize the retention of user

preference information in the denoised graph and to minimize the

mutual information between the denoised and original graphs. To

comprehensively capture true user preferences, we integrate su-

pervisory signals from interaction data with additional knowledge

from LLMs, encompassing both explicit preferences and latent se-

mantic associations. This combined approach effectively guides the

denoising process. The optimization objective is formally expressed

as:

max

G′
𝐼 (R;G′) + 𝛼𝐼 (K𝑝 ,K𝑟 ;G′) − 𝛽𝐼 (G′

;G), (18)

where 𝐼 (R;G′) denotes the mutual information between recom-

mendation targets R and the denoised graph G′
. 𝐼 (K𝑝 ,K𝑟 ;G′) in-

corporates the mutual information between preference knowledge

K𝑝 relation knowledge K𝑟 , and the denoised graph G′
integrat-

ing additional supervisory signals from LLMs. 𝐼 (G′
;G) denotes

the mutual information between the denoised graph G′
and the

original graph G Here, 𝛼 and 𝛽 are the hyperparameters that bal-

ance the influence of knowledge integration and noise reduction,

respectively. Next, we detail the implementation of each term in

Equation (18).

Term1: Maximizing Mutual Information with Recommenda-
tion Information. The first term aims to maximize information

relevant to the recommendation task. We maximizes mutual infor-

mation with the task-related information within G′
by minimizing

the BPR loss:

L𝑟𝑒𝑐 =
∑︁

(𝑢,𝑖, 𝑗 ) ∈D
− log𝜎 (𝑦′𝑢𝑖 − 𝑦

′
𝑢 𝑗 ) 𝑦′𝑢𝑖 = h′⊤𝑢 h′𝑖 , (19)

where D = {(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ D+, (𝑢, 𝑗) ∈ D−} is the training set,

h𝑢/𝑖 and h′𝑢/𝑖 are the user and item representations after 𝐿 GNN lay-

ers on G′
. Minimizing L𝑟𝑒𝑐 effectively maximizes 𝐼 (R;G′), ensur-

ing that the denoised graph retains essential preference information

from recommendation prediction.

Term2: Preference & Relation Knowledge Integration. The
second term promotes retaining information in the denoised graph

G′
that integrate with both preference knowledge K𝑝 and relation

knowledgeK𝑟 . Given the collaborative embeddings e𝑢 and the pref-

erence knowledge embedding ẽ𝑢 and ẽ𝑖 from K𝑝 , our optimization

objective uses the InfoNCE [15] loss to denote:

L𝑝𝑟 𝑓 =
∑︁
𝑣∈V

− log

exp(sim(h′𝑣, ẽ𝑣)/𝜏 ′)∑
𝑣′∈V′,𝑣′≠𝑣 exp(sim(h′𝑣, ẽ𝑣′ )/𝜏 ′)

, (20)

which sim(·) is the cosine similarity function, and 𝜏 ′ is the temper-

ature parameter. h′𝑣 is the final representation on G′
after 𝐿 GNN

layers, and ẽ𝑣 are embeddings derived from preference knowledge

K𝑝 Minimizing L𝑝𝑟 𝑓 enhances the agreement between G′
and
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preference knowledge, capturing user preferences within semantic

information. For the relation knowledge K𝑟 , we treat the relation

knowledge graph G𝑟𝑒𝑙 with embeddings Ê𝑢 = {ê𝑢1, ê𝑢2, ...} and
Ê𝑖 = {ê𝑖1, ê𝑖2, ...} as an augmented view of the interaction graph.

After 𝐿 GNN layers on G𝑟𝑒𝑙 , we obtain representation
ˆh𝑢 and

ˆh𝑖 .
The optimization objectives is defined as:

L𝑟𝑒𝑙 =
∑︁
𝑣∈V

− log

exp(sim(h′𝑣, ˆh𝑣)/𝜏 ′)∑
𝑣′∈V′,𝑣′≠𝑣 exp(sim(h′𝑣, ˆh𝑣′ )/𝜏 ′)

, (21)

where 𝜏 ′ is the temperature parameter and sim(·) is the cosine

similarity function. Minimizing L𝑟𝑒𝑙 integrates G′
with relation

knowledge K𝑟 , capturing latent semantic associations within the

graph structure.

Term3: Minimizing Mutual Information for Denoising. The
third term facilitates the compression of information in the original

interaction graph, filtering out of redundant interactions. Directly

minimizing mutual information between two high-dimensional

graph representations is computationally intractable. To overcome

this, we utilize the Hilbert-Schmidt Independence Criterion (HSIC)

as an approximation for mutual information between G and G′
.

First, we select appropriate kernel functions 𝑘 (·) and𝑚(·) for G
and G′

, respectively. For instance, Gaussian kernels are employed:

𝑘 (h𝑣, h𝑗 ) = exp

(
−
∥h𝑣 − h𝑗 ∥2

2𝜎2
𝑘

)
, 𝑚(h′𝑣, h′𝑗 ) = exp

(
−
∥h′𝑣 − h′

𝑗
∥2

2𝜎2𝑚

)
,

(22)

where 𝜃𝑘 and 𝜃𝑚 are kernel bandwidth parameter, h and h′ are
the user/item representation of G and G′

, respectively. Using these

kernel functions, we compute the kernel matrices 𝐾 and 𝑀 from

the G and G′
:

K = [𝑘 (h𝑣, h𝑗 )]𝑛×𝑛, M = [𝑚(h′𝑣, h′𝑗 )]𝑛×𝑛, (23)

where 𝑛 is the number of users/items in the graph and 𝑣, 𝑗 ∈ [0, 𝑛].
To center the kernel matrices and remove the mean, we apply the

centering matrix H = I − 1

𝑛 11
⊤
, where I𝑛 is the 𝑛 × 𝑛 identity

matrix and 1 is an 𝑛-dimensional vector of ones. The centralized

kernel matrices are K̃ = HKH and M̃ = HMH. Using the centralized
matrices K̃ and M̃, we compute HSIC as an approximation of mutual

information between G and G′
:

HSIC(G,G′) = 1

(𝑛 − 1)2
trace(K̃M̃). (24)

The loss term for information compression using HSIC is defined

as:

L𝑐𝑜𝑚𝑝 = HSIC(G,G′) = 1

(𝑛 − 1)2
trace(K̃M̃). (25)

Minimizing HSIC effectively reduces the mutual information be-

tween the original graph G and the denoised graph G′
, ensuring

that G′
retains only the information necessary for the recommenda-

tion task, thereby achievingmaximum compression and eliminating

redundant interactions.

Model Optimization. The overall loss function combines the BPR

loss, preference & relation knowledge and information compression

loss, defined as:

L = L𝑟𝑒𝑐 + 𝛼 (L𝑝𝑟 𝑓 + L𝑟𝑒𝑙 ) + 𝛽L𝑐𝑜𝑚𝑝 , (26)

where 𝛼 and 𝛽 are hyperparameters that balance the contribution

of the preference alignment loss and the information compression

loss, respectively.

4 EXPERIMENTS
To evaluate the effectiveness of LLaRD, we carry out a series of

experiments to address the following Research Questions:
• RQ1: How does LLaRD perform compared to various state-of-

the-art denoising models when applied to different backbones?

• RQ2: How can we verify the effectiveness of denoising knowl-

edge mined by LLMs in denoising learning?

• RQ3: How effectively can LLaRD help the model acquire robust

representations mitigate noise issues?

• RQ4: Is LLaRD effective in boosting the performance of cold-

start users?

4.1 Experimental Settings
We conduct experiments on three benchmark datasets: Steam, Yelp,

and Amazon-Book. We use two backbone models: GMF [26] and

LightGCN [17]. Our baseline methods consist of instance-level

denoising and representation-level denoising. The instance-level

method include WBPR [11], T-CE [41], R-CE [41], DeCA [44],

SGDL [12], BOD [45] andDCF [18]. The representation-levelmethod

include SGL [51], SimGCL [63] and RLMRec [33]. More details of

the dataset and implementation are provided in Appendix B.

4.2 Performance Comparison (RQ1)
To evaluate the effectiveness and generalizability of our framework,

we compared our proposed LLaRD method with existing denois-

ing baselines across three datasets and two backbone models. The

following observations summarize our findings:

• Our proposed LLaRD consistently outperforms mainstream de-

noising techniques across all three datasets and both backbone

models. On average, LLaRD surpasses the second-best model,

BOD, by approximately 6.92% when integrated with GMF, and

by 11.79% with LightGCN. Although BOD employs a bi-level

optimization strategy to extract prior knowledge, it lacks a com-

prehensive understanding of preferences and mining the rela-

tional semantics within interaction samples, resulting in inferior

performance compared to our method.

• Against interaction data-driven methods such as T-CE, DeCA,

DCF, and SGDL, which are constrained to identifying patterns

within observed data and and rely on training loss for noise

identification, LLaRD demonstrates a substantial performance

improvement ranging from 46.1% to 68.53%. This significant

enhancement is attributed to our utilization of LLMs to infer

user preferences beyond the available interaction data and the

application of CoT reasoning to progressively uncover com-

plex semantic associations within the interaction graph, thereby

eliminating dependence on predefined assumptions.

• LLaRD outperforms robust representation learning methods by

approximately 34.34% to 49.31%. The LLM-enhanced method,

RLMRec, also achieves a significant 14.93% improvement over

traditional approaches like SGL and SimGCL by aligning user

preferences across semantic and collaborative spaces, demon-

strating the effectiveness of LLMs in providing task-relevant
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Table 1: Overall performance comparison of different baselines on the backbone models. Bold numbers indicate the best per-
formance, and underlined numbers indicate the second-best performance. "R" and "N" stand for Recall and NDCG, respectively.

Dataset Amazon-Book Yelp Steam

Backbone Method R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

GMF

Normal 0.0506 0.0399 0.0740 0.0463 0.0437 0.0352 0.0787 0.0465 0.0603 0.0512 0.0984 0.0599

WBPR 0.0513 0.0404 0.0753 0.0477 0.0440 0.0359 0.0793 0.0569 0.0599 0.0505 0.0984 0.0597

R-CE 0.0664 0.0508 0.0995 0.0615 0.0550 0.0464 0.0894 0.0578 0.0636 0.0536 0.1030 0.0665

T-CE 0.0679 0.0533 0.1017 0.0641 0.0535 0.0453 0.0871 0.0565 0.0641 0.0536 0.1029 0.0663

DeCA 0.0814 0.0619 0.1237 0.0710 0.0600 0.0515 0.0981 0.0619 0.0677 0.0555 0.1047 0.0676

SGDL 0.0975 0.0741 0.1489 0.0902 0.0683 0.0560 0.1098 0.0696 0.0704 0.0582 0.1084 0.0699

RLMRec 0.0968 0.0728 0.1483 0.0896 0.0662 0.0548 0.1092 0.0693 0.0810 0.0654 0.1283 0.0811

BOD 0.1009 0.0779 0.1520 0.0944 0.0706 0.0574 0.1126 0.0712 0.0718 0.0596 0.1135 0.0744

LLaRD 0.1083 0.0851 0.1619 0.1027 0.0708 0.0578 0.1135 0.0723 0.0819 0.0657 0.1291 0.0817

LightGCN

Normal 0.0670 0.0495 0.1010 0.0613 0.0539 0.0452 0.0871 0.0566 0.0731 0.0627 0.1170 0.0784

WBPR 0.0674 0.0496 0.1016 0.0620 0.0539 0.0450 0.0877 0.0571 0.0735 0.0629 0.1165 0.0777

T-CE 0.0693 0.0530 0.1079 0.0715 0.0585 0.0501 0.0906 0.0612 0.0736 0.0624 0.1133 0.0754

DCF 0.0723 0.0557 0.1112 0.0743 0.0614 0.0524 0.0926 0.0627 0.0768 0.0672 0.1164 0.0771

DeCA 0.0832 0.0611 0.1291 0.0799 0.0652 0.0576 0.1092 0.0689 0.0827 0.0711 0.1288 0.0882

SGL 0.1018 0.0791 0.1498 0.0949 0.0718 0.0603 0.1171 0.0759 0.0795 0.0671 0.1254 0.0833

SimGCL 0.1109 0.0873 0.1538 0.1013 0.0709 0.0599 0.1146 0.0748 0.0576 0.0471 0.0903 0.0587

SGDL 0.1135 0.0872 0.1675 0.1054 0.0800 0.0661 0.1323 0.0841 0.0933 0.0769 0.1458 0.0755

RLMRec 0.1034 0.0788 0.1600 0.0960 0.0794 0.0652 0.1275 0.0815 0.0926 0.0746 0.1452 0.0924

BOD 0.1244 0.0985 0.1777 0.1131 0.0922 0.0739 0.1432 0.0884 0.1001 0.0802 0.1469 0.0891

LLaRD 0.1408 0.1126 0.2028 0.1326 0.0975 0.0809 0.1574 0.1008 0.1054 0.0868 0.1631 0.1059

Table 2: The impact of different components in LLaRD.

Amazon-Book Steam

Ablation R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

LLaRD 0.1408 0.1126 0.2028 0.1326 0.1054 0.0868 0.1631 0.1059

w/o MI𝑚𝑖𝑛 0.1259 0.1009 0.1868 0.1205 0.0977 0.0800 0.1525 0.0982

w/o MI𝑚𝑎𝑥 0.1301 0.1039 0.1856 0.1215 0.0949 0.0774 0.1494 0.0957

w/o PK 0.1385 0.1090 0.1983 0.1292 0.1012 0.0837 0.1559 0.1017

w/o RK 0.1369 0.1075 0.1947 0.1244 0.1001 0.0819 0.1532 0.0904

information. However, LLaRD surpasses these methods by not

only ensuring robust representations but also addressing data-

level denoising. It leverages higher-order associative semantics

compared to RLMRec and enhances noise recognition capabili-

ties, resulting in superior performance.

4.3 Ablation Study (RQ2)
To verify the effectiveness of denoising knowledge mined by LLMs

and ensure its effective utilization in model learning, we conduct

ablation studies to assess the contributions of various components

within LLaRD. We design the following four model variants:

• w/o MI𝑚𝑖𝑛 : Removes the process of minimizing mutual infor-

mation between the denoised and original interaction graph.

• w/o MI𝑚𝑎𝑥 : Removes the process of maximizing mutual infor-

mation between the denoised graph and denoising knowledge.

• w/o PK: Removes the integration of preference knowledge in

the denoising framework.

• w/o RK: Removes the integration of relation knowledge in the

denoising framework.

As shown in Table 2, removing certain components leads to varying

degrees of the performance degradation in LLaRD. The most signif-

icant decline occurs with the w/o MImin variant, demonstrating
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(a) Amazon-Book dataset
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(b) Steam dataset

Figure 3: Impact comparison w.r.t. noise ratio in added in-
teraction data. The bars display Recall@20, while the curve
shows the drop rate in performance.

the effectiveness of our denoising approach based on the informa-

tion bottleneck principle. Additionally, omitting either preference

knowledge (w/o PK) or relation knowledge (w/o RK) results in per-
formance reductions, highlighting their importance for denoising

recommendations. Furthermore, when using the w/o MImax, the
performance decreases, underscoring the significance of denoising

knowledge for model learning.

4.4 Model Benefits Analysis (RQ3 & RQ4)
Robustness to Noisy Interactions. To evaluate the robustness

of LLaRD to noisy interactions, following previous studies [45, 51],

we conducted experiments by introducing adversarial interaction

examples (i.e., 5%, 10%, 15%, and 20% negative user-item interac-

tions) into the training set, while keeping the test set unchanged.

Figures 3(a) and 3(b) present the results on the Amazon-Book and

Steam datasets, respectively. This demonstrates that LLaRD con-

sistently outperforms all baseline methods across all noise levels.

Additionally, the performance drop of LLaRD remains relatively
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Figure 4: Recommendation performance over different cold-
start user groups on Amazon-Book (upper) and Steam (lower)
dataset.

stable compared to the baselines, highlighting its superior resilience

to differing noise intensities. These results indicate that the denois-

ing framework LLaRD effectively identifies and leverages useful

patterns even in the presence of significant noise.

Cold-Start Recommendation. To evaluate the effectiveness in

cold-start scenarios characterized by extremely sparse interaction

data, we divide all users into five groups based on their interaction

frequency. A lower group ID corresponds to sparser user activity

and more severe cold-start issues. We compare LLaRD with vari-

ous baseline methods across different cold-start levels. As shown

in Figure 4, the results clearly indicate that LLaRD consistently

outperforms baselines across all cold-start levels. This superior per-

formance is attributed to the ability of LLaRD to derive preference

knowledge and relation knowledge from LLMs, thereby enabling

effective noise identification and robust modeling of both users and

items, even in cold-start scenarios.

5 RELATEDWORK
Denoising in Recommendation. Recommendation typically treat

observed interactions as positive and unobserved ones as negative

in implicit feedback [7, 12]. However, this approach can incorporate

erroneous clicks or biased behaviors, leading to false positives and

negatives that degrade user experience [38]. Existing denoising

methods are generally categorized as follows: 1) Selection-Based
Methods: These methods [11, 50] filter out noisy feedback while

retaining clean data. Early approaches [20, 31] use samplers based

on data characteristics, whereas adaptive strategies later identify

unreliable instances by detecting significant loss early in training.

Recent techniques [29] employ deep reinforcement learning for

effective noise removal. DCF [18] uses a dual-correction framework

to identify noise through changes in sample loss over time. 2) Re-
weighting-Based Methods: This approach assigns higher weights

to informative interactions. Initial methods [44, 46] utilize training

loss to assign lower weights to high-loss samples. Recent works

like DeCA [44] and BOD [45] have introduced novel evaluation

criteria and optimization strategies for more accurate weight learn-

ing. 3) Side-Information-Based Methods and Special Strate-
gies [12, 51, 60]: Early approaches [3, 10, 70] utilize dwell time and

annotations to detect noise. [16, 58, 66] incorporate sequential or

multi-behavior data to capture unexpected interactions. [40, 72]

have employed knowledge graphs to enhance preference modeling,

facilitating denoising frameworks. In addition, there are some stud-

ies that learn robust representations by designing special denoising

strategies. Early work [24, 36, 54] employ autoencoders to reduce

noise in representations. [51, 63] leverage self-supervised learning

on graph-structured data for greater stability. Despite their effective-

ness, existing methods rely heavily on observed data and predefined

assumptions to model user preferences and distinguish noise. In

contrast, our approach leverages LLMs to acquire denoising knowl-

edge, extracting inferred preference and relational semantics to

capture noise interactions.

LLMs in Recommendation. LLMs [4, 68] have emerged as power-

ful tools for enhancing recommendation by leveraging deep seman-

tic understanding and extensive pre-trained knowledge [6, 55, 67].

Some approaches [64, 64] capture latent preferences by generating

textual tokens derived from user and item semantics, effectively

modeling user preferences through LLMs’ rich semantic capabili-

ties. Other studies [14, 28, 30, 69] employ LLMs as recommenders

by crafting specific instructions and fine-tuning them for recom-

mendation tasks, utilizing their adaptability for tailored functional-

ities. Additionally, certain research [19, 25] adapts LLMs to down-

stream tasks using prompts without fine-tuning. For example, [19]

introduce LLMs as zero-shot conversational recommender systems,

while ToolRec [71] and RecMind [43] design CoT prompts to enable

LLMs to handle complex reasoning within recommendation scenar-

ios. Furthermore, methods [33, 49, 55, 59] generate rich-semantic

embeddings and integrate reasoning knowledge into traditional

models, improving understanding of user preferences and item

features, thereby improving recommendation. Despite advance-

ments in utilizing LLMs for various tasks, exploration in denoising

recommendations remains limited. Our approach leverages LLMs

to extract denoising-related knowledge, enhancing robustness by

addressing noise interactions.

6 CONCLUSION
In this paper, we introduced LLaRD, a novel framework that lever-

ages large language models (LLMs) to enhance the denoising pro-

cess in recommendation. It improved denoising ability of the model

by guiding LLMs to mine and inferred denoising-related knowledge

from text and interaction data. Specifically, it first enriched seman-

tic insights via LLMs, enabling a more comprehensive inference

of user-item preferences. Then it employed a Chain-of-Thought

(CoT) strategy over user-item interaction graphs to uncover relation

knowledge relevant to denoising. Finally, the Information Bottle-

neck (IB) principle effectively aligned the denoised knowledge with

recommendation targets. Through extensive empirical evaluations,

we demonstrated that LLaRD significantly improves both denois-

ing and recommendation accuracy compared to existing methods.

Future work will explore further refinements to the framework and

its applicability across diverse recommendation scenarios.
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User_ 1260 :
Keywords: [small-town]/[humor]/ [light-hearted]/[witty dialogue]
Ratings: 
Item_ 2147 :  Medium [\"light-hearted\", \"supernatural\", \"humor\", \"vibrant characters\", \"Salem setting\"]
Item_ 320 :    High [\"contemporary romance\", \"humor\", \"animal charm\", \"small town\", \"rescued animals\"]
Item_ 5798 :  High [\"contemporary romance\", \"small-town\", \"cute animals\", \"sweet love\", \"low conflict\"]
Item_ 5641 :  Low [\"steamy romance\", \"strong characters\", \"open-minded\", \"letting go\", \"control\"]
Item_ 3373 :  Low [\"steamy romance\", \"strong male characters\", \"simple storyline\"]

Item_ 320 :
Keywords: [contemporary romance]/[humor]/[animal charm]/[small town]/[rescued animals] 
Ratings: 
User_ 2649 : High [\” contemporary romance\",\"well-developed characters\",\"small town\",\"rescued animals\",\"humor\"],

Ratings\":{\"320\":\"High\",\"1196\":\"Medium\",\"4329\":\"Low\"}}"

User_ 4298 :  High [\”romance\",\"small-town\",\"animal charm\",\"heartwarming\",\"feminist\"],
Ratings:
Item_1919: High [\"dystopian\", \"feminist\", \"political\", \"women's rights\", \"power control\"]}"
Item_ 4741: High [\" second chances\", \"small-town\", \"family dynamics\", \"vineyard setting\", \"unexpected love\"]}"
Item_ 320: High (self)
Item_ 841: Medium, Item_ 3197: Medium,  Item_ 37: Medium, Item_ 5761: Low, Item_ 216: Low, Item_ 219: Low

User_ 946 :  High [\” romance novels\",\"small town\",\"emotional connection\",\"suspenseful plot\",\"well-developed characters\"]
Ratings:
Item_ 320: High (self)
Item_4550: High [\”emotional\", \"unpredictable twists\", \"romantic\", \"detailed characters\", \"gripping storyline\"]}"
Item_5278: Low, Item_6977: Medium,  Item_4179: Medium, Item_ 6519: Low, Item_ 878: Medium, …

Item_ 5798 :
Keywords: [contemporary romance]/[small-town]/[cute animals\/[sweet love]/[low conflict]
Ratings: 
User_ 10801 :    High [ romantic novels\",\"well-developed characters\",\"historical setting\",\"second chance\",\"whimsical creatures

Ratings:
Item_ 1153: High [\"historical romance\", \"well-written characters\", \"unique plots\", \"emotionally charged\", \"adventure love\", \"second chances\"]
Item_ 5798: High (self)
Item_ 1858: High [\"historical romance\", \"deception\", \"family disputes\", \"forbidden love\", \"witty dialogue\"]}“

Item_ 778: Low,  Item_ 5358: Medium,  Item_ 2191:Low,  Item_ 8679: Medium,  Item_ 458: Medium,  Item_ 9159: Medium,  Item_ 1471:Mediu

User_ 5493 :  High [romance novels\",\"well-developed characters\",\"intriguing storylines\",\"personal drama\",\"passionate relationships\"],\“
Ratings: 
Item _5798: High (self)
Item _ 2388: Medium, Item _ 1865: Low , Item _ 5600: Low,  Item _ 5197: Medium,  Item _ 7939: Low,  Item _ 7901: Low

"{\"User_id\": 1260, 
\“Step2\”: \“Item 5641 is judged to be an interaction noise
\"Step3\": \"User 5493 is highly similar to user_A due to shared preferences for well-developed characters and passionate relationships, which align with user_A's interest in relatable and quirky characters.\",
\"Step4\": \"Item 1858 is highly relevant to user_A's preferences as it features witty dialogue and historical romance, fitting well with user_A's taste for light-hearted and humorous romance novels.\", 

\“Output\": {\“noise_i\": 5641, \“collab_u\": 5493, \“interest_i\": 1858}}"

Figure 5: The CoT reasoning case of LLaRD.

A CASE STUDY
B MORE IMPLEMENTATION DETAILS
B.1 Dataset Details
We conduct experiments on three benchmark datasets: Steam, Yelp,

and Amazon-Book. Following the methods of [17, 33], we apply

k-core filtering and divide each dataset into training, validation, and

testing sets with a 3:1:1 ratio. Additionally, we remove interactions

with ratings below 3, except for the Steam dataset, which does not

include rating information and is therefore unfiltered. We provide

the statistics of experimental datasets in Table 3

Table 3: Statistics of experimental datasets.

Statistics Amazon-Book Steam Yelp

# Users 11,000 23,310 11,091

# Items 9,332 5,237 11,010

# Interactions 120,464 316,190 166,620

# Density 1.2e-3 2.6e-4 1.4e-4

B.2 Evaluation Metrics
To ensure a fair evaluation and minimize bias, we adopt the all-

rank protocol, considering all non-interacted items as candidates.

We assess performance using Recall@𝑁 and NDCG@𝑁 , reporting

average values for 𝑁 = 10 and 𝑁 = 20.

B.3 Baselines and Backbone Models
We conduct experiments using two backbone models.

• GMF [26] decomposes the interaction matrix into implicit vec-

tors and computes their element-wise product to capture fea-

tures.

• LightGCN [17] is a widely adopted graph-based recommenda-

tion model. To demonstrate the effectiveness of our proposed

method, we perform a fair comparison against traditional de-

noising techniques and state-of-the-art baselines.

Our baseline methods include instance-level denoising methods

and representation-level denoising methods.

Instance-level Denoising.
• WBPR [11] is a sampling-based denoising method that assumes

a negative item should be both highly popular and non-interacted.

• T-CE [41] is a re-weighting based method with truncated loss

and dynamic thresholds during training.

• R-CE [41] is a re-weighting based method with reweighted loss

and dynamic thresholds during training.

• DeCA [44] is a re-weighting basedmethod addressing prediction

disagreements of noisy interactions across models.
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• SGDL [12] collects clean interactions at training onset, using

similarity as a distinguishing criterion.

• BOD [45] models denoising as a bi-level optimization problem,

extracting prior data information to generate weights.

• DCF [18] designs correction strategies for sample dropping and

progressive labeling for precise denoising.

Representation-level Denoising.
• SGL [51] is a self-supervised framework performing graph con-

trastive learning with multiple views for robust representations.

• SimGCL [63] is a self-supervised framework adding uniform

noise to embeddings to create contrasting views.

• RLMRec [33] utilizes LLMs to capture the complex user behav-

ior semantics, enhancing recommendations through contrastive

and generative techniques.

B.4 Hyper-parameter Settings.
To ensure a fair comparison with the baselines, the dimension of

representations and MLP is set to 64, and the GNN layer is set

to 3, for all base models. The temperature value of contrastive

learning from the range of 0.1, ..., 0.5. The temperature value of

gumbel-max is 0.0001, and the hidden dim of attention is set to

64. During training, all methods are trained with a fixed batch

size of 1024.We train all models using the learning rate 1e-3 with

Adam optimizer without weight decay. We adopt the early stop

technique based on the model’s performance on the validation set.

To generate the preference knowledge and relation knowledge,

we leverage the Qwen model (specifically, qwen-long). For other

parameters, we mainly use the official setting from the original

paper and open-source code for fair comparisons. To allow for

reproducibility, we also provide an anonymous code link of our

work: https://anonymous.4open.science/r/LLaRD-5EE5.
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